
Mathematisches Forschungsinstitut Oberwolfach

Report No. 31/2023

DOI: 10.4171/OWR/2023/31

Transport and Scale Interactions in Geophysical Flows

Organized by
Christian L. E. Franzke, Busan

Marcel Oliver, Ingolstadt
Jens Rademacher, Hamburg
Irina Rypina, Woods Hole

16 July – 21 July 2023

Abstract. This interdisciplinary workshop brought together researchers
working on different aspects of transport and scale interactions across the
spectrum of geophysical fluid dynamics: geometry and computation of trans-
port and exchange processes in geophysical flows, Lagrangian coherent struc-
tures, (geo-strophic) turbulence, nonlinear waves and coherent structures in
the Eulerian description of fluids, and stochastic methods in multiscale sys-
tems. Each of these topics have their own vibrant communities as well as
well-established and emerging connections. This meeting aimed to bridge
across the entire span of topics from a dynamical systems perspective, and to
connect classical approaches with new developments in data-driven modeling
and stochastic modeling.
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Introduction by the Organizers

This interdisciplinary workshop concerned various aspects of transport and scale
interactions in geophysical fluid dynamics through the lens of dynamical systems
methods. There were 44 participants present in Oberwolfach and up to 8 online.

Geophysical fluid flow is fundamentally intertwined with transport in different
ways. Passive transport of buoyancy, tracers, and solid particles is one of the
more visible aspects. Other transported quantities are “active”, interacting with
themselves, other scalars, or the flow. In geophysical flows, the arguably most
prominent active scalar is the potential vorticity which dominates the dynamics
of rotating stratified flow. It connects transport to geostrophic turbulence, its
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characteristic feature being the cascade of energy to large scales, a process which
favors the emergence of large-scale, coherent structures which, in turn, determine
mixing and transport of other Lagrangian quantities.

The range of problems include the analysis of scale interaction, the parametriza-
tion of unresolvable scales and unresolvable physics in computational models
through surrogate models or consistent closures, emergence and dynamics of co-
herent structures, the characterization of coherent structures as nonlinear waves
as well as through data-driven methods, and their interaction with secondary pro-
cesses such as solid particles and complex bio-geochemistry.

Particular emphasis was given to approaches that bridge between subfields, ex-
emplified by the emergence of Eulerian stochastic PDEs from Lagrangian particle
dynamics, the connection between asymptotic and data-driven methods in weakly
coupled systems and the emerging use of transfer operator techniques for black-box
modeling of dynamical systems. Key aspects were thus:

• Lagrangian Transport in Geophysical Fluid Flows
• Lagrangian Coherent Structures and Barriers
• Turbulence
• PDEs, nonlinear waves and coherent velocity structures
• Transport under Uncertainty

The contributions in this report reflect this melange and were augmented by
discussion sessions that prompted subsequent individual intense discussions. No-
tably, a reappearing subject of discussion concerned the practice and boundaries
of machine learning in this field. We also felt that the poster pitches before dinner
and poster sessions after dinner worked rather well and fostered further interac-
tions; all posters were present for the duration of the workshop.

We believe the workshop has strengthened existing and explored new connec-
tions between the above five topic areas and their communities.

The workshop organizers thank in particular the conference video assistants
Paul Holst and Marc Tiofack for managing the partial hybrid nature and online
as well as on-site technology, and Anton Kutsenko for collecting the abstracts for
this report, and putting it together.

We also thank the MFO the staff for the wonderful hospitality.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Edgar Knobloch and Lennaert van Veen in the “Simons
Visiting Professors” program at the MFO.
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Abstracts

Parameterization of mesoscale eddies via kinetic energy backscatter
(deterministic and stochastic options)

Ekaterina Bagaeva

One way to overcome limitations in ocean resolution is by parametrizing phys-
ical processes. However, traditional parameterization methods applied to the
mesoscale range processes on eddy-permitting mesh resolutions, known as viscous
momentum closure, result in over-dissipation of eddy kinetic energy. To address
this issue, the viscous closure has an energy backscatter that returns energy back
to the system. We work with the dynamic energy backscatter that is based on
the amount of unresolved kinetic energy (UKE). Our study suggests that includ-
ing the advection of UKE can consider the effects of nonlocality on the subgrid.
Additionally, we recommend incorporating a stochastic element into the subgrid
energy equation to account for variability, which is not present in a deterministic
approach.

This approach has been shown to increase eddy activity and improve flow char-
acteristics, including mean vertical profiles, KE and dissipation spectra, and sea
surface height. Our implementations are tested on two intermediate complex-
ity setups of the global ocean model FESOM2 (the Finite-volume Sea ice-Ocean
Model), which include an idealized channel setup and a double-gyre setup.

Extending stochastic sensitivity: probabilistically quantifying the
impact of subgrid scales on Lagrangian transport

Sanjeeva Balasuriya

(joint work with Liam Blake, John Maclean)

When assessing transport in geophysical flows, an important consideration is that
the unsteady Eulerian velocity data is usually only available on a spatio-temporal
grid. Consequently, any inferred transport from such data will inevitably not have
information on subgrid scales (the so-called “stochastic parametrization” problem
[2]), or of effects occurring on time-scales smaller than available. This means that
simply using the velocity data as given in assessing transport will lead to errors, as
the data would need to be interpolated to the subgrid scale when computing the
Lagrangian motion of fluid parcels or tracers. In essence, one is using a potentially
unjustified extension of the gridded Eulerian velocity field, without taking into
consideration the fact that this extension must have an uncertainty associated
with it. Indeed, observed or measured Eulerian velocity data of geophysical flows
typically has many different types of uncertainties:

(1) The subgrid-scale uncertainty as described above, associated with the fact
that data is only available on a spatial grid.
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(2) Model uncertainty, related to the fact that usually some model is used
in converting observations into Eulerian velocity data. For example, sea-
surface heights sensed by satellite are usually used as a scaled streamfunc-
tion for the velocity field, in view of the geostrophic assumption, which is
of course only approximately correct.

(3) There is often missing data, for example in satellite sensing when clouds
are present.

(4) Nonuniformity in the uncertainty is common, for example when using
satellite data whose certainty diminishes further away from satellite tracks.

One way to think of dealing with these issues is to supplement the deterministic
terms (for which one uses available data) with stochastic ones. In other words,
the model for predicting the Lagrangian location of fluid parcels changes from
an ordinary differential equation to a stochastic differential equation. This is
a typical way to think of adding model uncertainty to any deterministic model
which describes the evolution of a collection of state variables; in this example,
the state variables represent the location, and the model consists of the unsteady
Eulerian velocities which push the fluid parcels.

Recently, a method for characterizing the uncertainty in the time-evolving po-
sitions of fluid parcels was developed for two-dimensional flows for which Eulerian
velocity data is available on a grid. The “stochastic sensitivity” field quantifies
the eventual location uncertainty for each initial location of a fluid parcel, and is
defined as the variance in the deviation from the trajectory from its deterministic
prediction [1]. Non-uniform uncertainties in the model, e.g., when the tracks of
satellites sensing ocean data only cover some areas, or when cloud cover impedes
the gathering of data, can be incorporated into this model. However, the explicitly
computable expressions for the stochastic sensitivity field could only be expressed
in two dimensions.

This talk extends the concept of stochastic sensitivity to any general dimen-
sion, and moreover provides not just one number (the stochastic sensitivity) for
each initial position, but rather gives an explicit expression for the uncertainty’s
spatial distribution in the limit of small uncertainty. The theoretical develop-
ment requires understanding the difference of solutions of a stochastic differential
equation with small noise in comparison with its deterministic counterpart. An
intuitive method for this analysis would be to formally linearize the stochastic
differential equation around the deterministic solution, and discard higher-order
terms [5]. Doing so leads to a linearized differential equation for the stochastic
component [5, 4]. If the noise in the original model were non-multiplicative - that
is, it did not depend on the state of the evolving variable - then a closeness of the
solutions to the stochastic and deterministic equations can be established in terms
of the Kullback–Leibler divergence [4], thereby providing a possible justification
for the linearization process. Other justifications appear in different contexts [3].

Permitting multiplicative noise is crucial in the geophysical applications, where
the uncertainty is spatially dependent. Moreover, there is interest not just in
establishing closeness of stochastic and deterministic solutions, but in obtaining
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a computable uncertainty quantification or eventual Lagrangian trajectory loca-
tions. In this talk, it is shown that the distribution limits to a multivariate normal
distribution (a Gaussian) with a (in general) non-diagonal covariance matrix, for
any finite time. The covariance matrix can be explicitly computed using purely de-
terministic trajectories and the stochastic model for the data uncertainty, without
having to perform expensive stochastic simulations. Two alternatives are pre-
sented for the covariance: an explicit analytical expression using the flow map of
the deterministic flow, and a differential equation it obeys which can be used to
provide a more efficient computation given Eulerian velocity data. The variance
in the direction of greatest covariance is the stochastic sensitivity, which can be
equivalently computed as the leading eigenvalue of the covariance matrix. The
computability of this theoretical uncertainty distribution is demonstrated using
oceanic velocity data. How to computationally leverage the obtained theory of
multivariate normal distributions to numerically determine more general proba-
bility distributions in realistic settings is shown using the idea of Gaussian mixture
models.

In summary, in assessing the transport of fluid parcels based on available un-
steady Eulerian velocity data which is subject to spatial uncertainties, these tools
provide a methodology for quantifying the impact of subgrid processes directly as
a spatial probability distribution which evolves temporally.
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Nonlinear dynamics of golden tides

Francisco J. Beron-Vera

(joint work with F. Andrade-Cano, G.J. Goni, D. Karrasch, M.J. Olascoaga
and J. Triñanes)

Geometric fluid mechanics casts new light on the problem of Sargassum inun-
dation, commonly referred to as golden tides, in the Caribbean Sea [2]. Pelagic
Sargassum is a genus of large brown seaweed (a type of alga). A raft of pelagic
Sargassum is composed of clumps formed by flexible stems which are kept afloat by
means of bladders filled with gas. A raft drifts under the action of ocean currents
and winds, subjected to physiological changes which are not considered here.
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On one hand, recent nonlinear dynamical systems results pertaining to the
fluid kinematics identify the carriers of Sargassum with coherent Lagrangian vor-
tices whose (flow-invariant) boundaries defy stretching [5]. More specifically, such
stretching defying boundaries are (closed) null-geodesics of the (indefinite) Loren-
ztian metric defined by the generalized Green–Lagrange strain tensor Eλ(x) :=

Ct+Tt (x) − λId. Here Ct+Tt (x) is the Cauchy–Green strain tensor, which objec-
tively (i.e., in an observer-independent fashion) measures deformation over the
finite time interval [t, t + T ] of material initialized at time t at each point x of
two-dimensional domain. In turn, λ > 0 is a factor by which each subset of a
closed null-geodesic of Eλ(x) stretches (or shrinks) over [t, t+T ]. When λ = 1 the
arclength of the stretching defying boundary of a coherent Lagrangian vortex at
time t is reassumed at time t+ T . This property along with the area preservation
property in the incompressible case conveys such boundaries extraordinary coher-
ence. Moreover, it turns out that such λ-loops in general not only defy stretching
but also resist diffusion [7]. And, numerically, they are observed to enclose [1] max-
ima of the deviation, with respect to the mean of the fluid mass, of the vorticity
averaged along trajectories over [t, t+ T ], denoted LAVDt+Tt (x), [6].

The above generalized Kolmogorov–Arnold–Moser tori possess finite-time at-
tractors for the cargo, viz., Sargassum rafts modeled as elastic networks of inertial
(i.e., buoyant, finite-size) particles, which makes dragging by ocean currents and
winds effective. More specifically, the networks are assumed to evolve according to
a system of Maxey–Riley equations, modified for particles floating at the ocean–
atmosphere interface, coupled by the linear-elastic spring forces acting between
adjacent particles of the network [4]. Assume that the surface ocean velocity is
in near geostrophic balance and the winds are sufficiently calm. Denote by x∗

the location where the LAVD scalar field maximizes within a λ-loop at time t.
By the smooth dependence of the solutions of the equations governing the mo-
tion of an elastic network of inertial particles, a network initially O(ε)-close to x∗

will remain O(ε)-close to the trajectory flowing from it over a finite-time interval

[t, t + T ]. Denote by F t+Tt the map that takes the particles forming the network
at time t to their new positions at time t + T , and let kij be the stiffness of the

spring connecting particle i with particle j. In [4] it is shown that detDF t+Tt < 1,
that is, the fluid trajectory flowing from x∗ is overall attracting over [t, t + T ],
for all kij if the fluid mass enclosed by a coherent Lagrangian vortex (limited by
a λ-loop) rotates anticyclonically, while if kij is sufficiently large when it does it
cyclonically. It turns out that the condition on kij is easy to be satisfied, partic-
ularly when the number of particles forming a network is large, which typically is
the case. One thus can expect that mesoscale ocean eddies in general represent
traps for Sargassum rafts, which is consistent with evidence inferred from satellite
images of the ocean surface.

On the other hand, a two-dimensional model of baroclinic Caribbean Sea eddy
dynamics, with buoyancy inhomogeneity (e.g, [3]) and Lie–Poisson Hamilton-
ian structure, identifies thermal instability induced by bottom topography vari-
ation as a mechanism for filamentation and ensuing coastal inundation. More
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specifically, the model equations can be cast in the form ∂tµ = {µ, h} for µ :=
(q, ψ, q2) where q1 is the quasigeostrophic potential vorticity in the top of a sys-
tem of two layers while q2 is that in the bottom layer. The variable ψ is propor-
tional to the buoyancy deviation from the reference buoyancy in the top layer,
representing the (constant) reduced gravity g′ corresponding to a nearby sys-
tem with homogeneous fluid layers. The Hamiltonian is given by the system’s
energy, viz., h[µ] := 1

2

∫
D
H1|∇ψ1|2 +H2|∇ψ2|2 + f2

0

g′ (ψ1 − ψ2)
2 d2x. Here, ψ1

and ψ2 are the flow streamfunctions in the top and bottom layer, respectively,
H1 = H and H2 = rH , are the thicknesses of the layers at rest, and f0 is
the reference Coriolis parameter in the flow domain D. The bracket is given

by {f, h}[µ] :=
∫
D

q1
rH

[
δf
δq1
, δhδq1

]
+ ψ

rH

([
δf
δq1
, δhδψ

]
−
[
δh
δq1
, δfδψ

])
+ q2

H

[
δf
δq2
, δhδq2

]
d2x.

Here, the square bracket is the canonical Poisson bracket in R2. Let sdiff(D) be the
Lie enveloping algebra of SDiff(D), the group of area preserving diffeomorphisms
in D. The corresponding vector space is that of smooth time-dependent functions
in D, denoted F(D), and the Lie bracket is given by [ , ]. The bracket { , } is
Lie–Poisson, representing a product for a realization of a Lie enveloping algebra
on functionals in the dual (with respect to the L2 inner product) of sdiff(D) ×
sdiffs(D), where sdiffs(D) is the extension of sdiff(D) by semidirect product to
the vector space sdiff(D) × F(D), with the representation of sdiff(D) on F(D)
given by [ , ]. When density inhomogeneity (temperature variation) is ignored in
the upper layer, which makes { , } a direct-product Lie–Poisson bracket, numerical
simulations of the system initialized with a Gaussian vortex structure are seen to
lead to the formation of a coherent Lagrangian vortex that propagates westward in
a zonal channel with linearly decreasing depth to the west, minimally describing
the bathymetry in the eastern Caribbean, with no noticeable distortion. But
when temperature variation is allowed, the vortex filaments in a manner similar to
typically shallow Caribbean eddies right before entering the western Caribbean.
Such vortices are capable of attracting and carrying within Sargassum when they
are coherent as discussed above. Thus thermal instability induced by bottom
topography variation in the sense just described provides a mechanism for golden
tides arrival on the coasts of the Yucatan Peninsula and Central America.

The results are consequential for the prediction of Sargassum arrival, and thus
for response and planning.
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Predicting spatiotemporal chaos by “learning” conjugate
tubular neighborhoods

Nazmi Burak Budanur

Data-driven predictive models of spatiotemporally chaotic dynamics, see e.g. [1],
are typically black-box, i.e. non-interpretable, systems and require large amounts
of data to train. I argue that one can produce significantly simpler models if
one aims to model the system not as whole but rather to generate an ensemble
of models each of which applying to different subregions of the state space. For
a demonstration, I consider the Kuramoto–Sivashinsky system arising from the
discretization of the partial differential equation

(1) ut + uxu = −uxx − uxxxx ,

where the subscripts t and x denote partial derivatives with respect to time and
space, respectively, and u(x, t) is a scalar field satisfying the periodic boundary
condition u(x + L, t) = u(x, t). I fix the domain length as L = 22.0 and consider
an N = 30-dimensional Fourier series discretization following Cvitanović et al. [2],
who reported chaotic dynamics along with the unstable time-invariant solutions,
e.g. (relative) equilbria and (relative) periodic orbits, in this system. My numerical
experiments suggest that the chaotic trajectories of the system often visit the
neighborhood of a relative periodic orbit which satisfy up(x−∆xp) = ΦTp [up(x)],
where Φt is the flow map implied by the numerical simulation of (1), Tp ≈ 32.80
and ∆xp ≈ 10.96. I propose to model the dynamics in the vicinity of this relative
periodic orbit through a series of operations summarized as a block diagram in
Fig. 1.

u(t)  
 (symm. 
 red.)

ξ(t)  
 (enc.)

η(t) τ 
 (linear 
 evol.)

η(t+ τ)  
 (dec.)

ξ ′(t+ τ) −1 
 (inv.

 symm. 
 red.)

u′(t+ τ)

Figure 1. Block diagram depicting the series of operations for
predicting the dynamics in the vicinity of a periodic orbit.

The first transformation shown in Fig. 1 is the symmetry reduction S, which
is a coordinate transformation that eliminates the symmetry degeneracy in the
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data, without loosing any other dynamical information. In other words, ξ =
S(u) = S(γu), where γ ∈ Γ is a member of the symmetry group Γ such that an
inverse S−1(ξ) = γ′u, where γ′ ∈ Γ, can also be found. One can formulate such a
transformation for the present system by combining the Fourier mode amplitudes
such that the symmetry-reduced state variables’ phases sum up to 2π under the
action of symmetry operations as will be explained in [3].

The innermost block in Fig. 1 represents the linear time evolution η(t+τ) = Lτη
where η ∈ R3. The linear dynamics under Lτ corresponds to the neighborhood
of a periodic orbit which traces the unit circle in η1η2-plane with a period Tp
and its Floquet multipliers are equal to the leading two Floquet multipliers of
the original orbit. In the present case, these are a pair of complex multipliers
Λ1,2 = 0.3166± i1.8136 corresponding to an unstable manifold spiraling out of the
orbit’s tubular neighborhood. The assumption that underlie the model depicted
in Fig. 1 is that the dynamics nearby the periodic orbit is dominated by its
leading unstable subspace, thus, one can find a pair of encoder (E) and decoder
(D) transformations that maps symmetry-reduced states ξ to the latent space η
and back. I implement the transformations E : RN → R3 and D : R3 → RN as
multilayer perceptrons with two hidden layers of 128 nodes and sigmoid linear unit
(SiLU) activation functions. I train these networks via stochastic gradient descent
to minimize

(2) Loss = MSE(ξ(t+ τ), ξ′(t+ τ)) +MSE(D(E(ξ(t))), ξ(t)) +MSE(ξp, ηp) ,

where MSE is the “mean squared error”, ξ are symmetry-reduced states in the
periodic orbit’s neighborhood, ξ′ are the model predictions, ξp are the states on
the periodic orbit, and ηp are those in the latent space. From left to right in (2)
are the three error terms which I refer to as the prediction error, the auotencoder
error, and the periodic orbit error terms. In my numerical experiments, I found the
latter two to be necessary to prevent the networks from discovering an arbitrary
mapping between the trajectories of two systems. I train the model by providing
the algorithm with pairs of (ξ(t), ξ(t+ τ)), where τ ∈ [0, Tp), in randomly selected
batches of 100 sampled from 1000 trajectories in the periodic orbit’s neighborhood.

To test the model, I simulate a chaotic trajectory beginning from a random on-
attractor initial condition and check the relative autoencoder error ǫAE(t) = ‖ξ(t)−
D(E(ξ(t)))‖/‖ξ(t)‖ for the states along the trajectory. The left-most panels of Fig.
2 show two episodes (top and bottom) with initial conditions satisfying ǫAE(t) <
6% projected onto the principal components of the periodic orbit in the symmetry-
reduced state space (orange curves). The corresponding model predictions starting
from the initial conditions are plotted green along with the periodic orbit in dashed
blue. The projections labeled “latent space” show the same trajectories in the
η1η2-plane, where the periodic orbit can be seen to be mapped onto the unit
circle. Space-time visualizations show the chaotic trajectory segments next to their
model predictions as color-coded amplitude of the scalar field u(x, t). As shown,
the simulated fields and their predicted counterparts are visually indistinguishable.
My preliminary numerical experiments suggest that the episodes similar to those
shown in Fig. 2 correspond to roughly a third of the total time evolution in
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Figure 2. Two test episodes (top and bottom) sampled from a
chaotic trajectory simulation and the corresponding model predic-
tions visualized as projections from the symmetry-reduced space
onto the principal components and in the latent space. Space-
time plots visualize the amplitude of the scalar fields u(x, t) of
the simulated trajectories and the model predictions.

Kuramoto–Sivashinsky system at this domain size. I plan to report a detailed
quantitative analysis and an additional model corresponding to the neighborhood
of another periodic orbit in a future publication.

In summary, I demonstrated here that one could leverage the knowledge of
periodic orbits to produce a predictive model of the Kuramoto–Sivashinsky system
that captures a portion of the chaotic dynamics. I argue that in comparison
to the black-box data-driven models, the present one offers a significant degree
of interpretability since its latent-space dynamics is fully understood as a three-
dimensional linear system.
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Geostrophic Eddies Spread Near-Inertial Wave Energy to
High Frequencies

Oliver Bühler

(joint work with Wenjing Dong, K. Shafer Smith)

The generation of broadband wave energy frequency spectra from narrowband
wave forcing in geophysical flows remains a conundrum. In contrast to the long-
standing view that nonlinear wave-wave interactions drive the spreading of wave
energy in frequency space, recent work suggests that Doppler-shifting by geostroph-
ic flows may be the primary agent. We investigate this possibility by ray trac-
ing a large number of inertia-gravity wave packets through three-dimensional,
geostrophically turbulent flows generated either by a quasigeostrophic (QG) simu-
lation or by synthetic random processes. We find that, in all cases investigated, a
broadband quasi-stationary inertia-gravity wave frequency spectrum forms, irre-
spective of the initial frequencies and wave vectors of the packets. The frequency
spectrum is well represented by a power law. A possible theoretical explanation
relies on the analogy between the kinematic stretching of passive tracer gradients
and the refraction of wave vectors. Consistent with this hypothesis, the spec-
trum of eigenvalues of the background flow velocity gradients predicts a frequency
spectrum that is nearly identical to that found by integration of the ray tracing
equations.

A 3D Lagrangian analysis of certain aspects of atmospheric
circulation, with application to the 2019-2020 wildfire event

Jezabel Curbelo

(joint work with Irina I. Rypina)

Throughout the 2019/2020 Australian bushfire season, wildfires gave rise to a
concentrated plume characterized by an unprecedented amount of smoke within
the lower stratosphere.

Motivated by this event, our study employs a dynamical system approach to in-
vestigate the three-dimensional atmospheric transport in the general region of the
plume and identify key features of its temporal evolution. Specifically, aided by the
Finite Time Lyapunov Exponent tool (FTLE), we identify Lagrangian Coherent
Structures (LCS) that simplify the description of three-dimensional transport. The
study is based on the atmospheric wind reanalysis model ERA5 [1] and involves
the comparison of smoke plume simulations with available observations.

To begin, we compare the various formulations of FTLEs proposed in [2] to in-
vestigate the effects of vertical velocity and vertical shear on the movement of the
plume. Stratospheric winds display relatively weaker vertical velocities compared
to their horizontal counterparts. However, we show that the quasi-2D approach
overlooks the fact that even minor vertical displacements can subject air parcels
to distinct horizontal advection patterns driven by strong vertical shear. As a



1746 Oberwolfach Report 31/2023

Figure 1. Simplified scheme of forward path types initialized on
January 6, 2020, in different regions (indicated by colors) at an
18 km height, considering constant buoyancy. Specifically, a value
of 0.0022 m/s is added to the vertical velocity. Forward FTLE
is represented in black and gray for τ = 20 and τ = 40 days,
respectively. The red trajectory corresponds to path P1, and the
magenta one corresponds to path P2.

result, achieving an accurate representation of three-dimensional transport neces-
sitates considering trajectory movements in all three dimensions and, significantly,
incorporating the vertical shear terms into the formulation of the FTLE matrix.

Some of the uncovered Lagrangian Coherent Structures (LCS) that are directly
relevant to the evolution of the smoke plume from the wildfire event of 2019-2020
are considered in detail. Additionally, other LCS that are less relevant to the
plume but exhibit interesting geometries are examined, such as the presence of 3D
lobe dynamics at play.

The movement of smoke plumes is significantly influenced by the buoyancy
of hot smoke, as indicated by the analysis of simulated trajectories in the ERA
reanalysis model. We estimated the time-averaged buoyant velocity by comparing
the altitude difference between the simulated and observed P1 trajectories on
February 26th. Incorporating this buoyant velocity into the ERA5 velocities led
to a substantial improvement in agreement with observations.
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Figure 1 illustrates the distribution of LCS on January 6th, coinciding with
the detection of a highly organized smoke patch observed from satellites nearly
halfway across the globe from Australia. This coherent patch bifurcated into two
segments: one tracing a westward trajectory towards Australia at significantly
higher altitudes (P1), and the other progressing eastward at lower altitudes (P2).
The partitioning of the plume into P1 and P2 on January 6th strongly indicated
the presence of robust LCS in the area at that specific time. These LCS acted
as effective transport barriers, dictating distinct trajectory outcomes for parcels
situated on opposing sides of the LCS.

In fact, the FTLE map depicted in Figure 1 displayed numerous prominent
ridges, serving as proxy LCS. These ridges outlined distinct zones within the re-
gion, each characterized by qualitatively distinct behaviors of fluid parcels. The
schematic representations of trajectories initialized in various regions are also pre-
sented in Figure 1. Particularly noteworthy are the regions colored in red and
magenta, corresponding to the paths followed by P1 and P2, respectively, which
are of primary interest to our study.

The former originates from an eddy-like feature centered around 125W, 55N,
characterized by two elongated and slender tendrils extending from its core. On
the other hand, the latter originates in the eastern section of the domain and
is isolated from the surrounding regions by a robust FTLE ridge. This ridge
exhibits a three-dimensional tilted-curtain-line geometry, spanning the altitudes
of the observed plume (16-22 km), which is highlighted with a dashed blue line in
the figure.

This eddy feature had a notable impact on the evolution of the smoke plume
[3, 4]. We investigate its formation, which took place around the same time and
in close proximity to the area of intense wildfires. Furthermore, we analyze its
subsequent evolution. For example, during the entrainment of the smoke plume, we
observed the formation of a dipole structure, wherein the smoke was concentrated
solely within the anticyclonic portion. Finally, we describe how this structure
sustained its coherence over an extended period. Further details can be found at
[5].
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Radu, D. Schepers, A. Simmons, C. Soci, et al. Global reanalysis: goodbye ERA-interim,
hello ERA5. ECMWF newsletter, 159:17–24, 2019.

[2] Mohamed H. M. Sulman, Helga S. Huntley, B. L. Lipphardt, and A. D. Kirwan. Leaving
flatland: Diagnostics for lagrangian coherent structures in three-dimensional flows. Physica
D: Nonlinear Phenomena, 258:77–92, 2013.



1748 Oberwolfach Report 31/2023

[3] S. M. Khaykin, B. Legras, S. Bucci, P. Sellitto, L. Isaksen, F. Tence, S. Bekki, A. Bourassa,
L. Rieger, D. Zawada, et al. The 2019/20 Australian wildfires generated a persistent smoke-
charged vortex rising up to 35 km altitude. Communications Earth & Environment, 1(1):1–

12, 2020.
[4] G. P. Kablick, D. R. Allen, M. D. Fromm, and G. E. Nedoluha. Australian Pyrocb

Smoke generates synoptic-scale stratospheric anticyclones. Geophysical Research Letters,
47(13):e2020GL088101, 2020.

[5] J. Curbelo, I. I. Rypina. A three dimensional Lagrangian analysis of the smoke plume from
the 2019/2020 Australian wildfire event. (Available at https://doi.org/10.1002/essoar.

10512436.1, Submitted 2023.).

Drifter-Based Analysis of a Coherent Submesoscale Eddy in the
Balearic Sea

Michael Dotzel

(joint work with Irina I. Rypina, Larry Pratt)

On March 1st 2022, a suite of drifters resolving flow speeds at different depths
were deployed at the northeast periphery of a particularly coherent eddy of radius
approximately 4 km. This suite was comprised of 9 CARTHE and 3 CODE drifters
(surface), 10 SVP drifters (15 m), and 9 each of WHOI ”holey sock” drifters
capturing speeds at 8, 22, 35, and 50 m depths, the bulk of which survived for
2 weeks before dying. A linear least squares approach to calculating horizontal
velocity gradients for drifters at each depth reveals subsurface depth-uniformity in
vorticity (around 2f) and surface signatures of around 3f, with divergence around
0.5f (peaking at ± f) at all depths. Tilting, stretching, and additional terms in the
vorticity balance are all of the same order of magnitude, indicating no particular
dynamic responsible for maintaining the eddy. The velocity field obtained by
applying drifter data to a Gaussian Process Regression reveals that for two weeks,
the eddy does not appreciably change in size (radius remains at about 4 km at
all subsurface depths) but the velocity gradually decays in both depth and time.
Due to the lack of observations available outside of the eddy, however, Lagrangian
estimates such as LAVD and FTLE are somewhat unreliable in demonstrating the
observed coherence of the eddy.
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Coherence timescales, fronts, and dynamic regime change (a sketch)

Gary Froyland

(joint work with Michael C. Denes, Shane R. Keating, Péter Koltai)

Our goal was to illustrate how dynamic operator-theoretic techniques can be help
to analyse and understand geophysical phenomena. We began by recapping the
definition of the dynamic Laplacian [1], which defines a dynamic spectral geometry
for dynamical systems. The leading nontrivial eigenvalue of the dynamic Laplacian
quantifies the exponential global mixing that occurs on the geophysical domain
over the time duration of computation. The corresponding eigenfunction reveals
the dominant coherent sets in the domain.

Sometimes there is clear time duration over which Lagrangian computations
should be made, but often the choice of flow time is a matter of trial and error. In
the first part of the talk, we introduced the notion of maximal coherence timescale
as the time duration over which the mixing rate per unit time is minimized; equiv-
alently the duration over which coherence is maximized. We illustrated the com-
putation of this timescale for a single ocean eddy and a field of ocean eddies. The
maximal coherence timescale is the shortest of three timescales we discussed. A
longer timescale is the median residence time of an ocean eddy, where we have
identified the ocean eddy using an eigenfunction of the dynamic Laplacian, com-
puted over the maximal coherence timescale. The median residence time is the
time that it takes for half of the water in the eddy to be flushed out, and is of
clear importance for quantifying eddy transport. The third and longest timescale
is the tracking time; the time over which an Eulerian or Lagrangian method can
discern a continuous signature of an eddy. This latter time is often provided as
the “eddy lifetime” in the literature, even though the eddy may be completely
flushed, perhaps more than once. Therefore tracking time is less relevant for sea-
water transport. In our experiment we found a maximal coherence timescale of
38 days, a median residence time of 140 days, and a tracking time in excess of
250 days. These definitions are crucial for careful definitions of transport (such as
ocean eddies) and we recommend their use in transport calculations.

The dynamic Laplacian was then applied to identify Southern Ocean fronts
directly from water parcel trajectories, without any inference from physical wa-
ter properties such as temperature, salinity, etc... Fronts were defined as level-
set contours of the leading dynamic Laplacian eigenfunction, where the dynamic
Laplacian was computed over 540 days, the mean circumnavigation time for water
parcels around Antarctica. We found that these dynamically defined fronts often
coincided with sharp gradients in physical scalar fields such as sea-surface height
and temperature, and to a lesser extent, salinity, even though these scalar fields
were instantaneous snapshots, rather than having a 540-day Lagrangian history.
By comparing fronts with pullbacks of 30-day ahead fronts, we can quantify and
map northward and southward flux out of/into daily sequences of fronts. Aver-
aging such daily 30-day fluxes over 4.5 years we obtain a composite picture of
north/south cross-frontal transport [3]. This novel cross-frontal transport map
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is highly structured and unlike similar maps in the literature. We believe that
sea floor bathymetry may play a key role in the transition from northward to
southward transport and vice-versa.

Finally, to tackle the problem of automatic identification of birth and death
of coherent features, we introduced an inflated dynamic Laplacian on a time-
expanded domain. On each time fibre, we endow the domain with a pullback metric
(pulling back the Euclidean metric from the future time). The distinct time fibres
are connected by a one-dimensional diffusion across the single time dimension. A
substantial theory connecting dynamic geometry with the spectrum of the inflated
dynamic Laplacian is contained in [4]. We used the leading two eigenfunctions of
the inflated dynamic Laplacian to capture a Southern polar vortex breakup event.
The timing and spatial extent of the loss of coherence during the breakup is clearly
distinguished by the eigenfunctions.
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Subgridscale parametrization via machine learning from noisy
observations: deterministic and stochastic approaches

Georg Gottwald

(joint work with Sebastian Reich)

We consider the closure problem of subgridscale parametrization in multiscale
systems. Given a slow=fast system the aim is to find a reduced effective equation
for the slow dynamics only. We present two separate methods to determine the
closure term from noisy observations: a deterministic approach and a stochastic
approach.

The deterministic approach employs a simple random feature maps machine
learning architecture the parameters of which are learned sequentially using data
assimilation. The data assimilation component controls the observational noise.
To account for eventual stochasticity of the closure term we introduce a Langevin
sampler based on diffusion maps to draw samples from the distribution of the
closure term.
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Identifying Missing Dynamics with Machine Learning Algorithms

John Harlim

In the talk, I will discuss a general closure framework to compensate for the model
error arising from missing dynamical systems. The proposed framework reformu-
lates the model error problem into a supervised learning task to estimate a very
high-dimensional closure model, deduced from the Mori-Zwanzig representation of
a projected dynamical system with a projection operator chosen based on Takens
embedding theory [3, 1, 2]. Besides theoretical convergence, this connection pro-
vides a systematic framework for closure modeling using available machine learning
algorithms. I will demonstrate supporting numerical examples in predicting spa-
tiotemporal chaotic systems, including the 57-mode barotropic stress models with
multiscale interactions that mimic the blocked and unblocked patterns observed
in the atmosphere and the Kuramoto-Sivashinsky equation which spatiotemporal
chaotic pattern formation models trapped ion mode in plasma and phase dynamics
in reaction-diffusion systems [2].

The second part of this talk concerns the applications of the proposed closure
framework to statistical closure problems [4, 5]. One of the difficulties in this
statistical closure problem is the lack of training data, which is a configuration
that is not desirable in supervised learning with neural network models. In this
study with the 40-dimensional Lorenz-96 model, the shortage of data is due to
the stationarity of the statistics beyond the decorrelation time. Thus, the only
informative content in the training data is from the short-time transient statis-
tics. Beyond the training data issues, the closure problem has several practical
challenges in non-homogeneous statistical regimes. That is, we need to ensure
that the closure model produces positive-definite covariance matrix estimation yet
overcomes the inherent instability of the stochastic fluctuation dynamics.

The final topic of the talk is on deducing error bounds and mathematical condi-
tions that allow for the estimated model (attained by machine learning algorithm)
to reproduce the underlying stationary statistics, such as one-point statistical mo-
ments and auto-correlation functions, in learning Ito diffusions [6]. Based on the
perturbation theory of ergodic Markov chains and the linear response theory, we
deduce a linear dependence of the errors of one-point and two-point invariant
statistics on the error in the learning of the drift and diffusion coefficients. We
examine the mathematical conditions for the theoretical error bounds on two well-
understood learning algorithms: the kernel-based spectral regression method and
the shallow random neural networks with the ReLU activation function.
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SWOT: A wonderful new era of upper ocean physics

Darryl Holm

(joint work with Albert Dombret, Ruiao Hu and Oliver D. Street)

Can waves amplify currents? We discuss a new wonderful theory of deterministic
and stochastic transport in upper ocean dynamics (STUOD).

The ocean surface is a compound dynamical system of waves forced by the wind
and propagating on fluid currents. The wind’s force induces a rate-of-change of
horizontal wave momentum, which couples to the fluid current via the Kelvin cir-
culation theorem for the sum of the wave momentum plus the current momentum.1

The fluid current transports mass, while the waves propagate phase φ(x, t) in
the moving frame of the current flow. The dynamics for this compound system can
be derived from Hamilton’s principle, δS = 0 for S =

∫
Ldt, written for reduction

by symmetry [6] of the sum of three Lagrangians

L = Lfluid(gt, ġt, a0) + Lwave(φ̇, dφ) + Lint

= Lfluid(ġtg
−1
t , a0g

−1
t ) + Lwave(φ̇g

−1
t , dφg−1

t ) + Lint

= ℓfluid(u, at) + ℓwave(φ̇g
−1
t , dφg−1

t ) + ℓint(Nu · ∇φ)
The quantity a0 represents initial conditions of passively advected variables (trac-
ers) such as mass density, evolving as at = a0g

−1
t by the push-forward action of

the time-dependent flow map gt.
The reduced interaction Lagrangian ℓint is a functional of both wave and fluid

variables. The coupling in the reduced Lagrangian ℓint for wave, mean flow in-
teraction (WMFI) is the momentum map for the wave degree of freedom that is
carried by the fluid. In ℓint, this momentum map is paired in the L2 sense with
the velocity of the fluid current. This pairing takes the wave dynamics into the
frame of motion of the fluid. Upon taking the variation of ℓfluid + ℓint in the
fixed Eulerian frame wrt the fluid velocity, u, one obtains the total wave + fluid
momentum.

1Wave breaking impulses also transfer horizontal wave momentum to fluid momentum. How-
ever, wave breaking is far more local, random, dissipative, and uncertain than the shift of wave
momentum by wind forcing followed by the fluid circulation induced from the Kelvin theorem
by the non-inertial force of frame change from the Eulerian frame into the fluid frame. Wave
breaking impulses would be represented variationally by using the Lagrange-d’Alembert method
to introduce space-time stochastic forcing in the fluid motion equation in the Eulerian frame.
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In the corresponding Hamiltonian formulation of WMFI, the total wave +
fluid momentum appears in the upper left corner of the upper-left block diagonal
semidirect-product Lie-Poisson operator. That is, the upper-left block diagonal is
a Lie-Poisson bracket. In this upper left corner of the Lie-Poisson operator, the
vector field for the fluid velocity, u, Lie transports the total wave + fluid momen-
tum as well as the advected fluid variables, at, with the Lie-derivative action of
the fluid velocity vector field.

In the integrand of the corresponding Kelvin circulation theorem, the Eulerian
fluid circulation velocity is measured relative to the wave momentum per unit
mass, which is proportional to the local group velocity of the wave degree of
freedom. The wave momentum per unit mass then plays the role of the Stokes
drift velocity in the Craik-Leibovich ‘vortex force’ in the creation of Langmuir
circulations. This observation was augmented by explaining how the deterministic
WMFI equations could be made stochastic by modifying the loop integral in the
the WMFI Kelvin-Noether theorem to make its velocity stochastic in the sense of
Stratonovich [2, 3, 4, 5].

The lower-right block-diagonal of this (untangled) Poisson operator acts on
variations of the Hamiltonian with respect to the wave variables; namely, the
wave action density N d2x and the wave vector k := ∇φ. The lower-right block
of the block-diagonal Poisson operator can be either a symplectic 2-cocycle (when
the order parameter is a scalar), or it can be a generalised 2-cocycle with L2-
dual covariant derivatives (when the wave order-parameter dof that transforms
according to the Lie algebra of the remaining part of the broken symmetry is
non-Abelian). The non-Abelian case occurs in condensed matter theories of liquid
crystals and spin glasses, for example.

For waves on the ocean surface and for internal waves in the ocean, the reduced
interaction Lagrangian ℓint =

∫
u · N∇φd2x is the product of the wave action

density (N d2x = δLwave/δφ̇) times the Doppler shift of the wave frequency (u·k =
u · ∇φ, u = ġtg

−1) that arises from the shift of the Lagrangian for the wave phase
dynamics into the moving frame of the fluid current.

Mathematically, from our earlier work on the dynamics of complex fluids such
as liquid crystals [1], we know this representation of ocean surface dynamics follows
from Lagrangian reduction by stages for the push-forward of the composition of
diffeomorphisms (or diffeos: smooth invertible maps of the reference configuration
of the fluid into its present configuration in the flow domain) acting on function-

als of space-time derivatives of phase (φ̇, dφ), first by right action of 1D unitary
transformations to obtain wave phase dynamics, then by right action of diffeos on
the tangent space of the fluid flow map (gt, ġt) and on the phase-reduced wave
variables to shift them both into the Eulerian fluid representation.

Motivated by the recent first-look satellite image data from the NASA and ESA
SWOT (Surface Water and Ocean Topography) mission [7], the talk and its slides
illustrated the approach described above for compound wave-current interaction
in the cases of the Burgers-KdV current-wave configuration dynamics in both 1D
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and 2D. The 1D Burgers-KdV case showed a variety of interesting nonlinear wave-
current interactions. The 2D case was actually Euler-KdV rather than Burgers-
KdV. Since no simulations had yet been accomplished for the latter 2D case the
question arose whether the interesting compound soliton traveling wave solutions
in the 1D Burgers-KdV case would persist in the 2D Euler-KdV case. This issue
arising from discussions will be addressed in future work.
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Global strong solutions for the 3D primitive equations with negative
viscosity kinetic energy backscatter parametrization

Paul Holst

The energy of turbulent flows transfers between large and small scales. Since
numerical simulations of ocean models require discretizations of the equations of
motion, there is a finite cutoff scale beyond which motion is not resolved. One
idea to reduce the associated overdissipation of energy is a numerically motivated
backscatter parameterization, where the term energy backscatter is, in physical
terms, a term for a missing energy transfer from the unresolved scales to the re-
solved flow. Here, we are interested in results about the well-posedness of ocean
models provided with such backscatter parametrizations. In this project, the
inital-boundary value problem of the continuous 3-dimensional primitive equa-
tions of the ocean with a negative kinetic energy backscatter parametrization is
studied. More precisely, the existence and uniqueness of a global strong solution
are established.
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Co-recurrent SST-SAT States Indicate Strong-impact Events over
Tropical Pacific

Yu Huang

(joint work with Ming Shi, Zuntao Fu)

Sea surface temperature anomalies (SSTA) over the tropical Pacific, including
events like El Niño-Southern Oscillation (ENSO), can lead to intensified air-sea
interactions and various climate impacts. As a result, monitoring regional SSTA
and its interaction with the atmosphere is of significant importance. While several
indices based on area-mean SSTA are used to describe the magnitude of these
events, the area-mean processing often overlooks valuable dynamical information
due to the cancellation of local negative and positive anomalies.

By embedding spatio-temporal data into the state space, it becomes possible
to measure the local dynamical states of the underlying system along its temporal
evolution. This approach provides an alternative to the traditional area-mean
processing. Faranda et al. [4] introduced the Dynamical Systems Metric (DSM),
which measures the instantaneous values of persistence and dimension for a given
system. Additionally, DSM allows for the estimation of the co-recurrence ratio
between two systems, such as SSTA and the overlaying surface air temperature
anomalies (SATA).

Compared to covariance analysis, which considers the entire probability distri-
bution of variables, DSM focuses more on the tail of the probability distribution.
This characteristic makes DSM particularly useful for analyzing extreme events.
Therefore, applying DSM offers a new and promising way to monitor SSTA and
the atmosphere over the tropical Pacific region. It provides valuable insights into
the local dynamics and interaction patterns of the underlying systems, enabling a
more comprehensive understanding of climate phenomena and their broader cli-
mate impacts.

In this report, I present a systematic investigation focusing on the co-recurrence
ratio between SSTA and their overlaying atmospheric fields over the tropical Pa-
cific. The analysis of high co-recurrence ratios reveals events characterized by
strong air-sea interactions and feedback, leading to significant weather impacts
not only around the Pacific but also in remote regions.

One of the notable findings of this study is the explanation of the relatively
weak impact of the super El Niño in 2015/2016. The air-sea co-recurrence ratio
sheds light on the ENSO diversity and asymmetry, providing valuable insights into
the underlying mechanisms of these phenomena. Moreover, the index introduced
in this report proves to be effective in identifying unusual neutral days with pro-
longed strong air-sea couplings. Unlike regular ENSO events, these days exhibit
less homogeneous SST anomaly distributions, yet they have caused intense cli-
mate impacts. Understanding and monitoring such occurrences can be crucial for
predicting and managing climate-related impacts in various regions.

The investigation also emphasizes the examination of various magnitude levels
of SST-SAT co-recurrence ratio and its corresponding impacts on the atmosphere.
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Specifically, the results demonstrate that the instantaneous persistence and dimen-
sion of SATA have strong connections with the co-recurrence ratio, particularly
for extreme values, and they display the ability to distinguish between different
types of El Niño events. Furthermore, the study delves into the climate impacts
arising from distinct El Niño events and reveals that these impacts can be differ-
entiated based on the SST-SAT co-recurrence ratio. Notably, the study identifies
that the divergent effects on global climate teleconnections are primarily present
in the upper troposphere.

Overall, this systematic investigation on the co-recurrence ratio between SSTA
and its overlaying atmospheric fields offers a new perspective on analyze the air-
sea interactions in the tropical Pacific. It also shows the promising ability of DSM
applied to air-sea interactions in climate studies, allowing for extracting more valid
dynamical information of climate events from the spatio-temporal dataset.

Whereas there still exist open questions for analyzing the air-sea co-recurrence.
One is whether the instantaneous persistence, dimension and co-recurrence ratio
can be used as prediction factors to forecast the climate impacts, which has not
been explored. Second is that the co-recurrence ratio by DSM cannot infer causal
direction from the air-sea interactions, which needs further technical efforts. Third
is that the long-term variability of the SSTA is with considerable uncertainty, and
it is still unknown whether DSM can infer long-term variations from the SSTA
data.
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The Lagrangian Dynamics of Kinematic Properties in the Ocean

Helga S. Huntley

(joint work with A. D. Kirwan, Jr., James Turbett)

A number of recent large drifter deployments have resulted in a wealth of data
on trajectories in the ocean, which in turn are leading to new insights into the
transport and dispersion properties and, by extension, into the velocities and ve-
locity gradients of the underlying currents. The kinematic properties (KPs), i.
e., normal and shear deformation rates (a and b, respectively), relative vorticity
(c), and divergence (d), can be estimated from a group of drifters based either
on a least squares (energy minimizing) fit to a linearization around the cluster
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centroid position or velocity [3, 4], on the change in area of a convex hull of the
drifter positions (and “area” in transformed coordinates) [3] or integration around
the boundary of the convex hull [2], or on gradients computed on a statistically
interpolated velocity field [1]. This framework naturally gives rise to Lagrangian
KP time series.

These observations have motivated a new look at the KP evolution equations,
first derived by Petterssen [5] and considered in the context of synoptic-scale atmo-
spheric circulation. With the application to near-surface oceanic drifter observa-
tions in mind, the equations have here been modified to apply to motion at a fixed
depth over time and space scales of the order of days and kilometers. The starting
point are the two-dimensional equations of motion for the velocity components
(u, v)

u̇− fv = Fx,(1)

v̇ + fu = Fy,(2)

where f is the Coriolis parameter and the external forcing terms are kept generic,
potentially representing baroclinic torque, wind stress curl, geopotential gradients,
etc. They are summarized in terms of a velocity potential Φ and a stream function
Ψ:

(3) F = 〈Fx,Fy〉 = ∇× [kΨ+∇× (kΦ)]

A quadratic Taylor expansion of Ψ and Φ, differentiation, and simplification results
in a set of non-linearly coupled ordinary differential equations describing the along-
trajectory temporal evolution:

(4)

ȧ+ da− fb = 2(Â− Ĉ) + 2B

ḃ+ db + fa = −2(A− C) + 2B̂

ċ+ dc+ fd = −2(A+ C)

ḋ+
1

2
(d2 + f2 + a2 + b2 − (c+ f)2) = 2(Â+ Ĉ).

Thus, the coupling occurs due to the divergence d appearing in all equations and
all KPs appearing in the d-equation.

The solution space even for simple steady forcing turns out to be quite com-
plex, sensitive to both forcing and initial conditions. Here, only a small subset of
the 10-dimensional parameter space is explored by systematically varying initial
conditions and forcing terms, further assuming that the latter remain constant.

Generally, for a given constant forcing, there are two steady-state solutions. In
most (although not all) cases, these are characterized by positive and negative
absolute vorticity (ξ := c + f), respectively. Their stability is a function of the
particular choice of the forcing.

The homogeneous case (zero external forcing) exhibits a fundamental instability
when c = −f , reminiscent of the classic Raleigh-Taylor inertial instability found in
rotating fluids. Solutions are stable if and only if absolute vorticity dominates total
deformation rate, i. e., ξ2 > a2 + b2, indicating a central role for the generalized
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Okubo number G = a2 + b2 − ξ2, using the absolute vorticity. All stable solu-
tions are inertially periodic or constant. Further, total deformation rate, absolute
vorticity, and the combination H = d2+f2−G = d2+f2−a2−b2+ξ2 are dynam-

ically conserved, in the sense that their product with dilation δ = exp(
∫ t
0
d(τ)dτ)

(path-integrated divergence) is constant along trajectories.

Constant hyperbolic forcing of the form A = C = Â = Ĉ = 0, B 6= 0 and/or

B̂ 6= 0 permits as stable solutions only the two steady-states. All other initial
conditions lead to instabilities with divergence tending to −∞.

Constant elliptic forcing of the form B = B̂ = 0, A = C, and Â = Ĉ exhibits

different behavior, which also depends on whether A 6= 0 and/or Â 6= 0. In
particular, both stable and unstable solution arise. For pure Ψ-forcing (A 6= 0),
stable solutions converge to the steady state with positive divergence. This is also
the case if Â > f2/8. Stable solutions for Â < f2/8, on the other hand, are
oscillatory, with periods that can be sub- or superinertial. Moreover, the period
is the same for a2 + b2, c, and d, but is frequently different for the individual
deformation rates a and b.

These complexities of the solution space arise, in spite of the deceptively sim-
ple setting. They illustrate that observed KP time series cannot be interpreted
in isolation, as divergence, vorticity, and deformation rate are intimately linked.
Moreover, observed periodicities in these time series do not necessarily reflect pe-
riodicities in the external forcing: Inertial oscillations arise intrinsically, and both
sub- and superinertial oscillations can occur with constant forcing.
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Exact solutions and short-wavelength instabilities for geophysical
fluid flows

Delia Ionescu-Kruse

The study of geophysical fluid flows presents considerable challenges. Geometrical
complexities, wind-driven surface waves, underlying non-uniform currents, den-
sity stratification, and so on, can occur. An in-depth qualitative study of the full
problem is analytically intractable. In order to make the problem manageable,
simplifying assumptions are formulated. For the wave-current interactions we rely
on the inviscid theory. The Euler equations, the incompressibility condition and
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the equation of mass conservation together with the appropriate kinematic and
dynamic boundary conditions are written in a rotating frame with the origin at
a point on the Earth’s surface. The Earth is assumed to be a sphere of radius
R = 6378 km rotating eastward with a constant speed Ω = 73 × 10−6 rad/s
around its polar axis. Locally, it is convenient to use a Cartesian representation of
the problem: at a latitude φ, we take a plane tangent to the surface of the Earth
and a Cartesian coordinate system (x, y, z), the x-axis horizontally due east, the
y-axis horizontally due north and the z-axis upward. In this coordinate system,
the rotation vector Ω has the components (0,Ωcosφ,Ω sinφ). The Coriolis pa-

rameters, defined by f := 2Ω sinφ, f̂ := 2Ω cosφ, depend on the variable latitude
φ. For surface water waves propagating zonally in a relatively narrow ocean strip
less than a few degrees of latitude wide, it is adequate to use the f - or β-plane
approximations [9, 11, 20]. Within the f -plane approximation, the Coriolis param-

eters are treated as constants, but within the β-plane approximation f̂ is constant
and a linear variation with the latitude is introduced, that is, f + βy, with f

constant and β := f̂
R

= 2Ω cosφ
R

; close to the Equator f̂ = 2Ω, f = 0, β = 2Ω
R
.

The approach pioneered by Gerstner of finding explicit exact solutions for gravity
fluid flows within the Lagrangian framework, was extended to geophysical flows
too. A Gerstner-like three-dimensional solution in the f -plane approximation at
an arbitrary latitude, was obtained by Pollard [21]:





x = x0 − am
k e

mz0 sin[k(x0 − ct)]
y = y0 + f amk2ce

mz0 cos[k(x0 − ct)]
z = z0 + aemz0 cos[k(x0 − ct)]

(1)

x0, y0, z0 are the Lagrangian variables, x0 ∈ R, y0 ∈ R, mz0 ≤ z̃0 < 0, z̃0 being
fixed, k > 0 is a fixed wave number, a, m > 0 are parameters and c is the wave
speed. In order for the transformation (1) to be a local change of coordinates, the
parameters a and m have to satisfy the condition a2m2 ≤ 1. From Euler’s equa-
tions we also getm2(k2c2−f2) = k4c2 and from the dynamical boundary condition

we obtain the dispersion relation for the wave speed: c2(k2c2 − f2) = (g − f̂ c)2.
The solution (1) is valid for arbitrary vertical stratification. In [8] a depth-invariant
mean current was accommodated into (1). In the β-plane approximation, at an ar-
bitrary latitude or in the equatorial region, nonlinear three-dimensional Gerstner-
like solutions have also been derived (see, for example, [2, 3, 4, 12] and the ref-
erences therein). For these solutions, the β-plane effect is not noticeable in the
dispersion relation but manifests itself in the amplitude decay.

In the equatorial region, the underlying currents are highly depth-dependent:
within the upper 200–250 m of the ocean there is a westward wind-driven current
and a strong eastward jet, the Equatorial Undercurrent (EUC), at depths between
100-200 m [6, 9, 11]. The Gerstner-type exact solutions fail to capture strong
depth-variations of the flows. Constantin & Johnson presented in [6] exact non-
linear solutions that describe equatorial flows on a rotating sphere with sufficient
freedom, for example, arbitrary velocity profiles in the vertical direction, and are
directly relevant to the EUC. The flows are described in a right handed spherical
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coordinate system with the origin at a point on the Earth’s surface, (r, θ, ϕ), r > 0,
0 ≤ θ = π

2 − φ ≤ π, 0 ≤ ϕ ≤ 2π, with the unit vectors (er, eθ, eϕ). In this system,
Ω = Ωcos θ er−Ω sin θ eθ, the velocity field U = Uer+V eθ +Weϕ and an exact
steady solution to the free boundary problem, purely in the azimuthal direction,
is given by [6]:

U = 0 = V, W = W(r sin θ),(2)

with W an arbitrary function of its argument. This function may be prescribed at
the Equator for θ = π

2 . A simple choice for W(r) is the following parabolic profile:

W(r) =

{
We − (We +Ww)

(
r−R0

R−R0

)2

, for R̄ ≤ r ≤ R
0, for r < R̄

(3)

where R̄ := R0 − (R−R0)
√

We

We+Ww
, Ww > 0 is a constant surface speed to the

West andWe > 0 is a maximum constant speed at r = R0 < R within the EUC to
the East. A similar approach [7] was successful for modeling the most significant
current in our oceans and the only current that completely encircles the polar axis,
that is, the Antarctic Circumpolar Current (ACC).

Once an exact solution is available, the study of its stability becomes an im-
portant issue. A rigorous mathematical approach to the problem of stability for
general 3D inviscid incompressible flows is the short-wavelength method which
was developed independently by Bayly [1], Friedlander & Vishik [10] and Lifs-
chitz & Hameiri [19]. It turns out that this method is also successful for geo-
physical flows and geophysical barotropic flows, see the survey [16]. We dis-
turb the rotating flow (U, P ) by a small perturbation (u, p), with u0 at t = 0,
P and p are the pressures. The evolution in time of small perturbations in

the WKB form, that is, u(t,X ) = [A(t,X ) + ǫA(t,X )] e
i
ǫ
f(t,X ) + ǫurem(t,X , ǫ),

p(t,X ) = [B(t,X ) + ǫB(t,X )] e
i
ǫ
f(t,X ) + ǫprem(t,X , ǫ), ǫ a small parameter, X be-

ing either (x, y, z) or (r, θ, ϕ), is governed up to the remainder terms - terms
that can be shown to be incapable of canceling the growth of the leading-order
terms [13] - by the eikonal equation for the wave phase f and the transport equa-
tion for the wave amplitude of the velocity A. As the eikonal equation and the
transport equation involve only the advective derivative along U, we can think of
this system of PDEs as a system of ODEs along trajectories of the the basic flow:
dX
dt = U(t,X ). The local instability or stability depends on whether the amplitude
vector A(t) grows with time or not. If for any initial data the amplitude vector
A(t) is uniformly bounded in time, then the flow is stable, otherwise it is unstable.
To detect instabilities, it is sufficient to make a clever choice for the initial position
and direction of the wave vector that is likely to give an exponentially growing
amplitude vector. For flows described in the Lagrangian framework, the usually
nonlinear trajectories equations are already solved, thus, they are good candidates
to apply the method.
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Theorem 1 [14]. If the Pollard waves (1) are sufficiently large, they are unstable;
more precisely, if their steepness, defined as kaemz0 , exceeds a specific threshold

akemz0 >

√
k2c2 − f2

kc

k2c2−2f2

2kc
√
k2c2−f2

+ f̂
kc

√
2 + 2f̂√

k2c2−f2
+

(
k2c2−2f2

2kc
√
k2c2−f2

+ f̂
kc

)2

then, the amplitude A increases in time at an exponential growth rate.

For f = 0, f̂ = 0, the right-hand side becomes 1
3 , and we recover Leblanc’s result

[18] for Gerstner’s wave. For equatorial waves, i. e. f = 0, f̂ = 2Ω, the right-hand

side has a value
>≈ 1

3 . For waves near the North Pole f = 2Ω, f̂ = 0, the right-hand

has a value
<≈ 1

3 These considerations suggest that the waves in polar regions are
more prone to instability than those in the equatorial regions.

A wave-steepness instability criterion for the Gerstner-like waves in the β-plane
approximation, at an arbitrary latitude or at the Equator, can be also proved
[2, 3, 5].

Theorem 2 [15], [17]. For the exact steady flows purely in the azimuthal direction,
the wave phase function f is constant along the streamlines of the basic flow. The
behavior in time of the amplitude vector A is determined by the eigenvalues of
the matrix of an autonomous linear differential system. For some realistic velocity
profiles relevant for the EUC model (for example, (3)) or for the ACC model, A
remains bounded in time, thus, these flows are locally stable.
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Non-radial kernel-based interpolation for the sphere

Janin Jäger

(joint work with Martin Buhmann, Jean Carlo Guella)

Strictly positive definite kernels K : Sd−1 × Sd−1 → C, allow the unique solution
of the following interpolation problem:

Let Ξ ⊂ Sd−1 be a finite set of distinct points, and f(ξ) ∈ C, ξ ∈ Ξ, a set of
function values. Find s : Sd−1 → C satisfying

s(ζ) =
∑

ξ∈Ξ

λξK(ξ, ζ) = f(ζ), ∀ζ ∈ Ξ,

λξ ∈ C.
These kernels are not necessarily radially symmetric but the isotropic kernels

(or spherical radial basis functions), for which the value of K only depends on the
geodesic distance between its arguments, are a subset of this class. There are only
few results on this class of kernels if radial symmetry is not assumed.

We use the series expansion of the kernel in spherical harmonics to give a general
representation of such kernels without assuming radial symmetry, before we study
kernels with specific (weaker) properties like axial symmetry or invariance under
parity. For kernels with these properties we derive conditions that ensure (strict)
positive definiteness.
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Simulating ocean eddies: Parameterizations and diagnostics

Stephan Juricke

We present and diagnose a set of new momentum closures that can help to sub-
stantially reduce overdissipation in global ocean simulations. In this context, a
good representation of mesoscale turbulence is crucial for realistic simulations of
the major ocean currents, their variability, and overall ocean dynamics. The choice
of momentum closures can strongly affect the representation of mesoscale turbu-
lence. Generally, ocean models at resolutions close to or slightly finer than the
Rossby radius of deformation are too dissipative, killing both existing eddies as
well as preventing the formation of sufficiently many new eddies.

We discuss our implementation of the kinetic energy backscatter parameteri-
zation which works in combination with a classical viscous closure. It generally
reinjects energy with an anti-dissipative operator that acts on larger scales than the
viscous operator. It therefore reinjects energy at larger scales then those smaller
scales that are strongly affected by viscous dissipation. The combination of both
leads to a numerically stable, energized flow simulation that is substantially less
dissipative than a purely viscous closure. Different methods for choosing the am-
plitude of local backscatter and the form of the backscatter operator as well as
different viscosities are discussed. All simulations have been carried out with the
unstructured grid, finite volume ocean model FESOM2. We adapt the spectral di-
agnostics for energy and dissipation power to be able to use them on the triangular
grids utilized by FESOM2.

The main conclusions are that the backscatter parameterizations are able to
re-energize the flow and substantially improve simulations of the global ocean
circulation as well as the stratification. However, they need to be carefully con-
strained to achieve best results. Various backscatter options exist in FESOM2;
not all adapt automatically with resolution. Finally, suitable (spectral or alterna-
tive scale) diagnostics for scale interactions on unstructured grids are crucial to
understand associated energy transfers.

Deterministic and stochastic surrogate models for fast
oscillatory motion

Marc Aurele Tiofack Kenfack

(joint work with Marcel Oliver)

Spontaneous generation is one of the mechanisms by which gravity waves are gener-
ated from atmospheric or ocean models. It has the fundamental implications that
it limits the validity of balanced models and provides the sources of gravity wave
activity. It’s therefore directly linked to the problem of dynamical regimes (slow
and fast dynamics) separation in geophysical flows, which has a non-negligible
role in numerical weather predictions. In this work, we describe this phenome-
non in an idealized setting, but from a slightly broad point of view by providing
a model based on the asymptotic estimate of the amplitude of waves generated,
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which substitutes very accurately the parent system in the generation of unbal-
anced dynamics. The Lorenz’63 system is used as a generator of pseudo-random
or periodic sequences of poles, the latter being detected by using the AAA algo-
rithm for rational interpolation. The surrogate model is corroborated via the 0-1
test for chaos by [1, 2] and highlights the crucial role that plays the phase of the
singularities of the system.
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Thoughts on Machine Learning

Rupert Klein

Concerns: Techniques of machine learning (ML) and what is called “artificial
intelligence” (AI) today find a rapidly increasing range of applications touching
upon social, economic, and technological aspects of everyday life. They are also
being used increasingly and with great enthusiasm to fill in gaps in our scientific
knowledge by data-based modeling approaches. I have followed these developments
over the past almost 20 years with interest and concern, and with mounting dis-
appointment. This leaves me sufficiently worried to raise here a couple of pointed
remarks.

Obviously, when these technologies are being employed to take over decisive
functionality in safety-critical applications, we would like to exactly know how to
guarantee their compliance with pre-defined guardrails and limitations. Moreover,
when ML techniques are utilized as building blocks in scientific research, it would
violate scientific standards – in the authors opinion – if these building blocks were
used without a thorough understanding of their functionality, including inaccura-
cies, uncertainties, and other pitfalls.

The most frequently used tools in ML and AI today are deep neural networks
(DNNs) and, to the best of my knowledge, they currently constitute a particularly
severe breach of what I postulate to be desirable for safety-critical applications
and for their utilization in scientific research. In fact, I see the following related
and further drawbacks:

a) Interpretability/Explainability: It is remarkable that the issue of how to reli-
ably interpret the workings of DNN technology has become a topic of intense
research only relatively recently, see [1], and can by far not be considered
fully explored today.

b) Generalizability and out-of-sample performance: The quality of ML-learned
functions is quite usually tested via some version of cross-validation [2]: Split
the available data into a training and one or more testing sets, train the
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function on the former and test “generalizability” utilizing the latter. A key
problem with the often rather high-dimensional spaces of function arguments
is that no explicit definition of the domain of the learned function is pro-
vided. Therefore, when a new input argument is to be used in an application,
there seem to be no systematic qualifiers that would indicate whether this
argument may or may not be used as an argument of the learned function
with any confidence.

c) Inefficiency in terms of data needed: DNNs are “big data” techniques, and
it turns out they do, in fact, need rather large data sets for training – with
consequences for the computational expense of their training, [3].

d) Inefficiency of function representation: DNNs based on ReLU (rectified lin-
ear unit) activation functions are popular in AI generically and as building
blocks of more complex function constructions. ReLU-DNNs are known to
represent piecewise linear functions on polygones in the space of function
arguments, and He et al. [4] show that ReLU-DNNs require on the order of
DκDN free parameters to represent a piecewise linear function on a simpli-
cial grid with N nodes in D dimensions, with κ ≥ 2. Comparing this, for
large D, with the number of degrees of freedom needed for the same task by
a standard finite element ansatz, i.e., with (D+1)N , we find another reason
for the extensive computational costs of DNN training.

e) Inefficiency of optimization algorithms: Thus far, (variants of) stochastic
gradient descent methods for the solution of the DNN parameter estima-
tion problem seem to be essentially the only reliable option [5]. Yet, these
come with at most first order convergence, with further consequences for the
computational expense of DNN training in comparison with methods the
structure of which allows employing second order convergent Newton-type
techniques in solving their parameter estimation problem.

f) Condition / Sensitivity: A mounting number of examples in the literature
show that ML-learned functions can be tricked by so-called “adversarial
attacks” to yield clearly false or low-quality results by effectively exploiting
the often bad conditioning of the function learning problem, see [6, 7, 8, 9]
and references therein.

Alternatives: We are not bound to utilizing neural network technology for ma-
chine learning and in the context of artificial intelligence, however. Alternatives
that overcome many of the above mentioned drawbacks and limitations are be-
ing developed. In this context, I have become aware of the recent family of
“Sparse Probabilistic Approximations” (SPA) [3, 10, 11, 13] by Illia Horenko and
co-workers. These methods turn out to be (i) at least as – and in many cases much
more – powerful than DNNs in terms of the quality of functions learned; they (ii)
come with natural indicators for the domain of the learned functions; targeting
small data problems by design, they are (iii) generically much less data hungry
than DNNs (thereby avoiding concern c), see above); their parameter estimation
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can (iv) be cast into optimization problems that are amenable to far-reaching
partially analytical and iterative methods yielding second-order convergence; ver-
sions are available that (v) address a wide range of ML tasks, such as clustering,
classification, regression, and more. On problems it has been used for, such as
cancer classification, data-based El Niño prediction, or financial decision making
[12], the recent eSPA+1 technique for data classification in [13] has out-performed
DNNs and other machine learning techniques decisively in terms of the quality of
results or computational efficiency or both. As regards computational efficiency,
the method comes with complexity T ·D ·K, where, T , is the number of available
data samples, D is dimension of the function argument (or feature) space, and K
is akin to the number of allowed input data clusters one would impose when ap-
plying some clustering technique for dimension reduction. In fact, this complexity
is that of the K-means clustering algorithm, which is highly efficient but all by
itself insufficient to solve machine learning problems beyond data clustering.

As is the case for the entire SPA family of methods, eSPA+ comes with a
clean mathematical structure in which each ingredient has a transparent role and
interpretation. This is seen in the following example: The parameter estimation
problem of eSPA+ for the El Niño prediction problem reads as

(1) (S,Γ,W,Λ)◦ = argmin
S,Γ,W ,Λ

L+
eSPA

(
S,Γ,W ,Λ

∣∣ X,Π∆t
)
.

Here X = (Xt)
T
t=1 ∈ IRD×T is the set of D-dimensional function arguments in the

available data set. In the example, each Xt ∈ IRD consists of D = 200 degrees of
freedom characterizing tropical pacific ocean sea surface and equatorial deep ocean
water temperatures. Π∆t = (Π∆t

t )Tt=1 ∈ {0, 1}T is the set of observations stating
whether at time t + ∆t an El Niño did (Π∆t

t = 1) or did not (Π∆t
t = 0) occur;

S ∈ IRD×K is a matrix whose columns Sk ∈ IRD are K centers of data clusters
or “boxes” in the space of function arguments akin to cluster centers in the K-
means scheme, and Γ ∈ [0, 1]K×T is a columnwise probabilistic matrix such that,
when the problem has been solved, (S◦Γ◦)t ≈ Xt provides a reduced approximate
representation of the argument-space input data X; W ∈ [0, 1]D is a probability
distribution over the dimensions of the argument (or feature) space with smallWd

indicating weak influence of the dth data dimension on the prediction outcome,
and Λ ∈ [0, 1]K is the set of probabilities Λk of El Niño occuring a time of ∆t
down the road if a data point belongs to the kth cluster.

1eSPA+ = entropy-optimal scalable probabilistic approximation, with algorithmic efficiency
enhancements
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The functional to be minimized then reads as

(2)

L∗

eSPA

(
S,Γ,W ,Λ

∣∣ X,Π∆t
)
=

1

T

D∑

d=1

Wd

T∑

t=1

(Xd,t − (SΓ)d,t)
2

︸ ︷︷ ︸
D-red.: state approximation error

− εW

D∑

d=1

Wd log

(
1

Wd

)

︸ ︷︷ ︸
D-red.: feature discrimination

− εΛ
T

T∑

t=1

Π∆t
t (ln (Λ) Γ)t

︸ ︷︷ ︸
supervision

.

All terms in this functional have a clear interpretation: The first term on the right
is a W -weighted Euclidean norm measuring the quality of approximating X by
(SΓ). The role of this term is to enable an effective dimension reduction in that the
key information in the space of arguments is stored in the K reference points (or
cluster centers) S◦

k , with K ≪ T when the approach is successful. The dimension-
wise weighting byWd of the components (Xd,t−(SΓ)d,t)

2 of the Euclidean distance
enables a further effective dimension reduction in that dimensions (or features)
that only minimally affect the El Niño prediction receive a lesser weight in the
solution and therefore contribute only marginally to the functional’s value when
the problem is solved. To achieve a least-biased discrimination of features in this
way, the Shannon entropy of the distribution W is subtracted from the functional
as a penalty in the second term on the right. That is, we seek to maximize
Shannon-entropy and thus find the broadest possible distribution W under the
given conditions.

The third term on the right, which implements the supervision of the clas-
sification learning problem, stems from interpreting the data Π∆t

t ∈ {0, 1} as
probabilities for the occurrence of El Niño some time ∆t in the future, and then

(3) −
T∑

t=1

Π∆t
t (ln (Λ) Γ)t ≈

T∑

t=1

Π∆t
t ln

(
1

(ΛΓ)t

)

is an approximation to that part of the Kullback-Leibler (KL) divergence between
the data Π∆t

t and their approximations (ΛΓ)t which depends explicitly on the
unknowns Λ and Γ. It turns out that this latter approximation provably generates
an upper bound for the functional utilizing the original KL-divergence, and in this
sense the approximation is robust.

Now, once we have (S,Γ,W ,Λ)◦ determined by solving the above minimiza-
tion problem, and today’s state of ocean temperature data X∗ is observed, then
a probabilistic El Niño forecast is obtained as follows: Find the best-possible ap-
proximation of X∗ by a convex combination SΓ∗ of the reference points Sk, with

Γ∗ ∈ [0, 1]K ,
∑K

k=1 Γ
∗
k = 1. This yields the pertinent probabilistic weights Γ∗

k

and the eSPA+-predicted probability for El Niño occurance a time ∆t from today

becomes ΛΓ∗ =
∑K

k=1 ΛkΓ
∗
k.

Besides the clear interpretability of this method (concern a) taken care of), there
is also an exceedingly efficient algorithm for its training: The idea detailed in [13]
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is to iteratively solve for one of the unknowns in (S,Γ,W ,Λ) while keeping the
other three fixed. Each of these steps allows for either an analytical or a numerical
solution that scales linearly in the complexity parameters (D, T , K), and the
entire iteration procedure can be cast as a Newton-type method [14]. This yields
very fast (second order) convergence, so that concern e) does not arise for the
SPA-family of methods.

Note also, that the convex hull of the reference points S◦
k serves as a natural and

robust estimate of the domain of the learned function. Thus, concern b) would at
least in part be taken care of as well.

As regards concern d), it is shown in [3, 10] that the variant of eSPA+ described
in (1)–(3) produces piecewise linear solutions on simplices with corners defined
by the references points Sk. Therefore, these solutions are classical linear finite
element functions, and the number of degrees of freedom needed to represent them
is (D + 1)K. Hence, eSPA+ does not suffer from concern d) either.

Addressing the remaining robustness concern f) for the SPA-family of methods
is work in progress at the time of this writing.
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Lagrangian Coherent Structures for describing ocean transport across
scales: from the large scale circulation to the sub-mesoscale

Ana M. Mancho

Following the spirit of Poincarś works, which identify geometrical partitions in the
phase space that separate solutions of dynamical systems with qualitatively differ-
ent behaviors, in the context of geophysical flows, Lagrangian Coherent Structures
(LCS) are structures that recognize regions where fluid trajectories have different
origins or fates. Indeed, in the purely advective approach, fluid parcels evolve
according to the dynamical system:

(1)
dx

dt
= v(x, t),

where v(x, t) is the vector field, linked to the ocean velocity field. In this set-
ting, Lagrangian Coherent Structures can be used to study transport, and events
ranging from global-scale circulation to sub-mesoscale coastal applications are re-
ported. In these applications, LCS are computed with the tool of Lagrangian
Descriptors introduced in [1, 2, 3].

First, recent results reported in [4] on ocean transport across the global Atlantic
Meridional Overturning Circulation (AMOC) are discussed. The results explore
transport across a climatological model for the AMOC in which the velocity field in
Eq. (1) is obtained from averages of velocities of the ECCO product [5] over many
years (1992-2017). This leads to a 3D stationary dynamical system (the averaged
velocity does not depend on time), where vertical transport is studied with the
support of LCS. The discussion is focused on two regions. The first one is the
Flemish Cap region, a zone of interaction between the major AMOC components.
Here, the analysis identifies a domain of deep waters that ascend very rapidly to
the ocean surface, in just 80 days. The second region is the Irminger Sea. Here,
the analysis confirms the existence of a downwelling zone and reveals a previously
unreported upwelling connection between very deep waters and the ocean surface,
where waters slowly ascend in a swirling manner in around 800 days.

The second application discusses results reported in [6] on the ability of LCS to
characterize a spill produced in Gran Canaria after the crash of the ferry Volcan
Tamasite with the Mandela Pier of the Port of La Luz on Friday, 21st April 2017.
In this setting, LCS have provided a deep understanding of the dispersion produced
by ocean currents as they identify key dynamical objects controlling transport in
the area. In particular, hyperbolic trajectories are attached to the coastline in a
detachment configuration. This kind of hyperbolic trajectories has the unstable
manifold transversal to the coast. Under the presence of this dynamical object,
the spill evolves, leaving the coast towards the interior of the ocean, becoming
aligned with the unstable manifold. Satellite and in situ observations are consis-
tent with the existence of this dynamical structure, which is found in both a very
high-resolution model (at a metric scale) for La Luz Port, produced by Puertos
del Estado, and in a coarser dataset available from the Copernicus Marine En-
vironmental Monitoring Service (CMEMS) for the Iberia-Biscay-Ireland domain.
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The attempt to compare the performance of each model in this event, with respect
to the observed evolution of the spill, leads to a measure of the error, for which
a spatial structure is found closely connected to the stable manifolds of the hy-
perbolic trajectories present in the dynamical system (1). These connections are
thoroughly explored in [7]. More recently, the analysis of an oil spill of unknown
origin affecting the coast of Israel in 2021 [8] has allowed further exploration of cor-
respondences between the uncertainty associated with specific datasets regarding
the observations and the unstable manifolds of the hyperbolic trajectories present
in the dynamical system (1) (see [9]).
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Buoyant Clustering and Reactivity of Ocean Contaminants.

Jamie Meacham

(joint work with Pavel Berloff)

Accurate modeling of mixing processes in the ocean is essential to understanding
the ecological risk posed by contaminants such as plastic pollutants and agricul-
tural runoff. Observations of floating material at the ocean surface, such as mi-
croplastic pollutants, as well as biological populations like phytoplankton [1] and
Sargassum [2] show a tendency to form dense clusters. One mechanism behind
this is that particles with neutral/positive buoyancy behave in a fundamentally
different way to passive tracers. In particular, buoyant particles have a tendency
to form a layer around the vertical level of their neutral buoyancy [3]. As a re-
sult, they predominantly follow the horizontal surface currents, which are weakly
convergent.

We construct an idealized model of floating tracers where particles follow a
kinematic ocean surface velocity and couple this to a simple biogeochemical model
representing reactions between nutrients (which follow the full 3-dimensional flow
passively), buoyant plankton and buoyant contaminants.

Cluster formation by buoyancy forces are found to significantly alter the long-
time behavior of the system. An analytic expression for the new equilibrium is
derived and verified with numerical experiments. We find that contaminants are
far more potent when clustering occurs, due to efficient mixing between them
and the plankton population. The new equilibrium is characterized by a sharp
cutoff for plankton extinction, with extinction occurring at a much lower rate of
contaminant forcing.

References

[1] A. Jordi, G. Basterretxea, S. Anglès, Influence of ocean circulation on phytoplankton
biomass distribution in the Balearic Sea: Study based on Sea-viewing Wide Field-of-view
Sensor and altimetry satellite data, J. Geophys. Res. 114 (2009), C11005.

[2] J. Gower, C. Hu, G. Borstad, S. King, Ocean Color Satellites Show Extensive Lines of
Floating Sargassum in the Gulf of Mexico, IEEE Transactions on Geoscience and Remote
Sensing 44 (2006) 3619-3625

[3] C. Reartes, P.D. Mininni, Dynamical regimes and clustering of small neutrally buoyant
inertial particles in stably stratified turbulence, Phys. Rev. Fluids 8 (2023), 054501.

Report on work relating to Sampling-Dependent Transition Paths of
Iceland–Scotland Overflow Water

Philippe Miron

Recently introduced in oceanography to interpret the near-surface circulation,
transition path theory (TPT) is a methodology that rigorously characterizes en-
sembles of trajectory pieces flowing out from a source last and into a target next,
i.e., those that most productively contribute to transport. As part of two recent
publications, we used TPT to study the deep circulation of the North Atlantic
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ocean, and quantify the different pathways out of the region. Transition path
theory (TPT) based on Markov chains has been applied to investigate the equa-
torward export of Iceland-Scotland Overflow Water (ISOW). Previous analysis
of trajectories of submerged floats challenged the conventional theory of abyssal
circulation, which posits that ISOW should flow steadily along a deep boundary
current (DBC) around the subpolar North Atlantic before exiting.

The TPT analysis focuses on the flow from the origin of ISOW to its exit region
in the subpolar North Atlantic and suggests that insufficient sampling may intro-
duce bias into previous conclusions. Three time-homogeneous Markov chains are
constructed to model ISOW flow: one with a high number of simulated trajectories
covering the flow domain uniformly, and two with fewer trajectories that cover the
domain heterogeneously, using observed or simulated trajectories subsampled at
the observed frequency. The densely sampled chain supports a well-defined DBC,
although it is uncertain if this is specific to the considered simulation. However,
the more heterogeneously sampled chains, regardless of the nature of trajectories
used, do not exhibit a clear DBC. Analyzing the sensitivity of the Markov chains
to sampling, recommendations are made to expand the existing float dataset for
improved accuracy in drawing conclusions about long-term aspects of ISOW cir-
culation.

References

[1] F.J. Beron-Vera, M.J. Olascoaga, L. Helfmann and P. Miron, Sampling-Dependent Tran-
sition Paths of Iceland–Scotland Overflow Water, Journal of Physical Oceanography 53

(2022), 1151–1160.
[2] P. Miron, F.J. Beron-Vera and M.J. Olascoaga, Transition paths of North Atlantic Deep

Water, Journal of Atmospheric and Oceanic Technology 39 (2022), 959–971.

Stepsize Variations for Lyapunov Exponents to Counter
Persistent Errors

Florian Noethen

Lyapunov exponents are important quantities in the analysis of complex dynamical
systems. Usually, they are computed with Benettin’s algorithm, which propagates
linear perturbations along a background trajectory. While many applications trust
in convergence of the algorithm, they often do not consider the effects of numerical
errors. In fact, integration errors tend to accumulate in the averaging process of
Benettin’s algorithm when using constant or adaptive stepsizes and lead to limits
different from the Lyapunov exponents.

I will present rules for stepsizes to counter the accumulation of integration
errors. Rigorous convergence results are obtained for a broad class of linear systems
while numerical observations indicate similar behavior for nonlinear systems [1].
Finally, I will discuss ideas on how to extend the convergence results from linear
to nonlinear systems via Koopman theory.
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Inertial ocean dynamics

Maria J. Olascoaga

(joint work with F.J. Beron-Vera and P. Miron)

It has been long observed in fluid mechanics that finite-size, buoyant or inertial
particle motion differs from infinitesimally small, neutrally buoyant or Lagrangian
particle motion. The seminal work of Maxey and Riley in 1983 [1] established first
principles foundation for this observation, representing the result of many years of
research starting with the pioneering study of Sir George Stokes in the mid 1800s
on the motion of a small solid sphere (pendulum) immersed in a fluid at rest.

The Maxey–Riley equation is a Newton-type second law involving several forces.
These included, mainly, the flow force (exerted on the particle by the undisturbed
fluid), the added mass force (resulting from the part of the fluid moving with the
particle), the lift force (arising when the particle rotates as it moves in a sheared
flow), and the Stokes drag (caused by the fluid viscosity).

The Maxey–Riley equation represents an undisputed framework for the study of
inertial particle motion in fluid mechanics. However, efforts by the geophysical fluid
dynamics community to adopt the Maxey–Riley framework are scarce, including
a handful of applications in meteorology and oceanography.

The portability of the Maxey–Riley equation to oceanography has been thwarted
by the challenging problem of accounting for the combined effects of ocean currents
and winds on particle drift. This problem, which has been approached in a largely
piecemeal ad-hoc manner in oceanohraphy, was addressed recently by Beron-Vera,
Olascoaga and Miron [2]. These authors derived from the Maxey–Riley equation
a new equation—referred to herein as the BOM equation—for the drift of inertial
particles floating at the air–sea interface.

More specifically, the derivation of the BOM equation starts by considering a
small spherical particle floating at the interface between two homogeneous fluids.
The heavier fluid represents the ocean water. The (much) lighter fluid atop repre-
sents the air. The BOM equation follows by vertically integrating the Maxey–Riley
equation across the particle’s extent. An important addition in the geophysical
case is the Coriolis force, which is the only perceptible effect of the planet’s rota-
tion in a frame attached to the planet such that the local vertical is sufficiently
tilted toward the nearest pole to counterbalance the centrifugal force.

As with the Maxey–Riley equation, the positions of the particles in the BOM
equation evolve slowly in time while their velocities vary rapidly. This makes the
BOM equation a singular perturbation problem. Geometric singular perturbation
theory can then be applied to study the long-time asymptotic nonlinear dynamics
of inertial particles on the slow manifold, Mτ , which attracts all the solutions of
the BOM equation exponentially fast in time.



1774 Oberwolfach Report 31/2023

More specifically, unique up to an error of O(e−1/τ ) ≪ O(τ), the locally in-
variant slow manifold Mτ normally attracts all solutions of the BOM equation
when τ > 0 is small exponentially fast (Fig.1). Proportional to the square of the
particle radius, τ is the Stokes time, setting the inertial particle’s response time
to the medium. The manifold Mτ lies O(τ)-close to the critical manifold, M0. For
the fast dynamics, i.e., with time rescaled by τ−1, M0 is filled with fixed points,
while for the slow dynamics, i.e., with time unscaled, motion on M0 is nontriv-
ial, evolving according to the buoyancy-weighted average of water (v) and air (w)
velocities, viz.,

(1) u(x, t) = (1− α)v(x, t) + αw(x, t)

where x stands for horizontal position, t is time, and α > 0 is a (typically very
small) parameter that depends on the water-particle-density ratio (δ > 1) in closed
form, known as windage. With and O(τ2)-error, the reduced BOM equation

(2) ẋ = u+ τuτ , uτ :=

(
R
Dv

Dt
+R

(
f + 1

3ω
)
v⊥ − Du

Dt
−
(
f + 1

3Rω
)
u⊥

)

controls the motion off Mτ . Here, ω := ∇ · v⊥ is the vorticity, R > 0 is a function
of δ (decaying from 1), and f is the Coriolis parameter. When τ = 0, each point
offM0 belongs to the stable manifold ofM0, which is foliated by its distinct stable
fibers (stable manifolds of points onM0). The stable manifolds ofM0 and its stable
fibers perturb along with M0. Consequently, for 0 < τ ≪ 1 each point off Mτ is
connected to a point onMτ by a fiber in the sense that is follows a trajectory that
approaches its partner on Mτ exponentially fast in time. The only caveat is that
rapid changes in time of u, will lead to rapid changes on Mτ , thereby hindering
its efficacy in absorbing trajectories of the BOM equation over finite time. Yet
appropriate redefinition of the slow manifold involving history integrals of the fast
time scale can compensate the effects of such rapid variations.

x

vp
Mτ

M0

t

O(τ)
ẋ = u + τuτ

ẋ = u

O(e –1/τ)

Figure 1. Geometry of the BOM dynamics. From [3].

Results from dedicated field [3, 4] and laboratory [5] experiments provided sup-
port of the validity of the BOM equation. A critical aspect that contributed to the
success of the BOM equation has been its ability to correctly describing windage,
as measured by α(δ). Figure 2 shows theoretical α(δ) curves along the values
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Figure 2. As a function of buoyancy, estimated (circles and
squares) and theoretical (curves) windage factor. The solid curve
corresponds to the BOM prediction and dashed and dot-dashed
curves are buoyancy-dependent windage models derived by [7] and
[6], respectively. The estimates were made in an air–water flume
facility. Figure from [5].

(circles and squares) estimated during laboratory experiments involving the de-
ployment of balloons filled with water up to different levels in an air–stream flume
[5]. The BOM equation prediction (solid) is accompanied by other models pro-
posed in the search-and-rescue at sea literature [7, 6]. The BOM’s α(δ) compares
very well with the measured data, outperforming other models.

The BOM equation has now been extended to model the motion of elastic net-
works of floating inertial particles that simulate rafts of Sargassum [8], which have
inundated the Intra-American Seas, particularly the Caribbean Sea, since early
2010s during the spring and summer months. Further extensions are currently
underway to better represent Sargassum raft motion. These include the incorpo-
ration of nonlinear elastic interactions and changes to the raft geometry due to
physiological transformations experienced by Sargassum during its life cycle.
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Network-based analysis of Lagrangian transport and mixing

Kathrin Padberg-Gehle

Lagrangian transport and mixing in fluids have been studied extensively in the
last two decades based on different concepts from nonlinear dynamics and ergodic
theory. Neglecting molecular diffusion, the motion of passive fluid particles is
described by the ordinary differential equation

(1) Ẋ = u(X, t),

where u(X, t) is a sufficiently smooth time-dependent velocity field with stateX ∈
Rd (d = 2 or 3), and time t ∈ R. Trajectories are obtained as solutions X(t) of this
differential equation (1). Coherence can then be described in terms of the manner
in which groups of such particle trajectories behave. Our focus is on probabilistic
approaches that aim to identify full-volume finite-time coherent sets that minimally
mix with the surrounding phase space. Originally introduced by means of transfer
operators [1], recent research has targeted a data-based identification of coherent
sets directly from trajectories.

Suppose we are given N trajectories Xi (t), i = 1 . . .N , at discrete time in-
stances t ∈ T = {0, . . . , T }, such as obtained by a numerical solution of (1) or
by experimental measurements (particle tracking). We construct an undirected
network with these particle trajectories serving as network nodes. A link is es-
tablished between two nodes if the respective trajectories are “close” or “similar”.
There are different definitions of the distance between two trajectories and thus of
“closeness”. In [2] an unweighted network was considered with an adjacency ma-

trix A ∈ {0, 1}N×N
, where Aij = 1 if mint∈T ‖Xi (t)−Xj (t)‖ < ε for i 6= j and

Aij = 0 otherwise. Here, ε > 0 is some given threshold. In [3, 4] the number of ε-
close encounters was further included as link weights by first constructing instanta-

neous adjacency matrices At ∈ {0, 1}N×N
where Aij,t = 1 if ‖Xi (t)−Xj (t)‖ < ε

for i 6= j and Aij,t = 0 otherwise, and then forming the network weight matrix
W =

∑
t∈T

At. Here Wij is large if Xi and Xj are close on T in the sense that
they have many ε-close encounters.

To identify coherent sets from the weighted trajectory network, one can make
use of spectral clustering with the weight matrix W serving as a similarity matrix
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[5, 6]. Moreover, local network measures such as the node degree can be used
to identify dynamically distinct regions in the flow [2, 7]. We have applied this
framework to geophysical flows (Antarctic polar vortex [2], Agulhas rings [7]),
turbulent Rayleigh-Bénard convection flows (e.g. [8, 9]), and recently to a stirred
tank reactor from chemical engineering [4].

In [3], the network-based approach was extended to study the evolution of large-
scale coherent sets in turbulent flows over long time spans. The evolving cluster
approach is based on the preserving cluster membership framework proposed in
[11]. Let Wt denote the time-dependent weight matrices that are now computed
over a shorter observation window of length τ ≪ T and centered around some
time t ∈ T. As a spectral relaxation to a k-way normalized cut problem [5, 6], for
each t, we consider the cost function

(2) CostNCut, t = k − Tr
[
V T
t ŴtVt

]

Following [11] this is minimized by Vt ∈ R
N×k, where Vt contains the eigenvectors

corresponding to the k largest eigenvalues of the matrix

(3) Ŵt = αD
−1/2
t WtD

−1/2
t + (1− α)Vt−∆tV

T
t−∆t.

Here Vt−∆t represent the eigenvectors obtained from the clustering at the previous
time instance t − ∆t, where ∆t describes the time shift of the observation win-
dow. The parameter α regulates the importance of the current connectivity of the
graph compared to the previous clustering. To extract k coherent sets from these
coordinates in eigenspace, we can make use of a simple k-means clustering or soft
clustering by means of a sparse eigenbasis approximation [12].

The evolutionary network approach has been applied to study the long-term
evolution of coherent sets in turbulent Rayleigh-Bénard convection [3, 13], includ-
ing splits and mergers, and their role in the global heat transport. The coherent
sets identified by evolutionary clustering are no longer material objects, but parti-
cles may leave and enter the time-dependent flow features. A systematic study of
these structures, their time scales and their dependence on the parameter α, that
weights current and historical costs in (3), is underway. Future work will address
the relevant problem of having to deal with very sparse data, measured by sensors
or drifters that do not exactly follow the flow.
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Swell refraction by oceanic currents and multiscale stochastic closures

Valentin Resseguier

(joint work with Erwan Hascoet, Bertrand Chapron)

Swell systems are composed of nearly collimated wave groups traveling rapidly
across oceanic basins. Along this propagation, wave groups can be refracted, de-
pending upon strengths of oceanic currents gradients. Small-scale structures of
these currents may then become key players but are hardly known, properly sim-
ulated or observed by satellite. For this reason, several stochastic closures can be
proposed to simulate the dynamics of waves propagating in such a randommedium,
to eventually facilitate future ensemble-based data assimilation algorithms.

For the submesoscale upper ocean dynamics, < O(30) km, slow-fast time sepa-
rations [6, 5] – e.g., dynamics under Location Uncertainty (LU) [3] or Stochastic
Advection by Lie Transport (SALT) [2] – apply in the wave frame [4]. The wave
dynamics can then be described within a Markovian framework.

This is not the case to model unobserved mesoscale, > O(30) km, ocean surface
currents. Classical statistical simplifications do not necessarily apply and are often
incorrect. To cope with such a difficulty, we consider a new stochastic closure
for the wave dynamics. This framework is non-Markovian, multi-scale and still
provides low-CPU version to obtain robust results. Considering a kinetic energy
spectrum, possibly estimated by self-similarity arguments, a velocity characteristic
time τ(k) can be defined for each wave vector k [1]. From the spatial Fourier

transform of a vector of spatio-temporal white noise, dŴ (k, t)/dt, one can thus
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generate the Fourier transform of a random velocity field, v̂′, multi-scale in space
and time:

(1) dv̂′(k, t) = − 1

τ(k)
v̂′(k, t)dt+

1√
τ(k)

ik × f(k)‖k‖−γdŴ (k, t),

where × is the cross product, γ is estimated from the self-similarity assumption
and f is a high-pass filter. Using stochastic calculus, an analytical formula can
then be derived to describe the probability distribution of wave properties (wave
vector, frequency and amplitude) at long time. Specifically, it can be shown that
the equation of evolution along the ray, dK/dt = −∇(v + v′)TK, of the wave
vector K = κ(cos θ, sin θ) is equivalent to the following pair of equations:

(2) d ln κ(t′) = (α2 − sin ζ(t′))dt′ + αdB(1)(t′),

(3) dζ(t′) = −∂V
∂ζ

(ζ(t))dt′ + (
√
12α)dB(2)(t′),

where ζ = 2θ − π/2, V (ζ) = rζ − sin ζ is a potential, r is the ratio between
the vorticity and the strain rate of the resolved velocity v, α2 = 3

2E‖∇(v′)T ‖22dt
quantifies the amplitude of unresolved submesoscale gradients and B(1) and B(2)

are two independent Brownian motions. It is then possible to solve the stationary
Fokker-Planck equation for ζ, and to deduce the distribution of the wavenumber
growth rate d lnκ.
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Stochastic effects on the movement of small solid particles in fluid
flows with application to microplastics in oceanic flows with

small-scale turbulence

Mason Rogers

(joint work with Irina Rypina)

Because of their different sizes, shapes, rigidities, and densities, marine microplas-
tic particles do not follow the same trajectories as fluid parcels. The motion of
spherical particles in a flow is described by the Maxey-Riley equations, which
depend on the velocity of the fluid in which the particles are immersed. Fluid
velocities in the ocean often have a strong small-scale turbulent component which
is difficult to observe or model, presenting a challenge to predicting marine mi-
croplastic dynamics. To overcome this challenge, we assume that the turbulent
velocity acts as a random force on particles and consider a stochastic analogue of
the Maxey-Riley equations. By performing a perturbation analysis of the stochas-
tic equations, we obtain a simple and accurate partial differential equation for the
number density distribution of an ensemble of plastic particles which handles the
uncertainty introduced by unresolved flow features. Numerical test cases demon-
strate the agreement between distributions obtained from our reduced model and
sample distributions obtained from Monte-Carlo simulations of large numbers of
particle trajectories. An additional example integrating our model equation into
a high-resolution simulation of the Gulf Stream with the MIT general circulation
model begins to explore the interplay between stochastic and inertial effects on
particle motion.
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Analysis of the large-scale flow dynamics in a confined convection flow

Jörg Schumacher

(joint work with Priyanka Maity, Andreas Bittracher, Péter Koltai)

Complex nonlinear systems typically incorporate orders of magnitude of relevant
dynamical scales. Examples at the macroscopic deterministic level are turbulent
flows in confined geometries or extended layers with differently ordered large-
scale spatial patterns which are visited for longer lasting transients in a long-term
evolution. The rapid crossover from one configuration to another is then triggered
by fluctuations of secondary flow structures, smaller eddies, shear layers or plumes.
This switches can affect the turbulent transport of heat or momentum. The state or
phase space of macroscopic flows is infinite– or at least extremely high–dimensional
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and typically requires drastic dimensionality reductions to model the observed
large-scale dynamics effectively.

Here, we consider the dynamics in a turbulent Rayleigh-Bénard convection flow
in a closed cubic cell which is heated from below and cooled from above. The
turbulent dynamics in this simple configuration is dominated by multiple long-lived
macroscopic circulation states which are visited subsequently by the system. In ref.
[1], we identified 6 discrete large-scale circulation states by means of an orientation
angle of the circulation roll. We then showed that the long-term dynamics of
the flow can be described to a good approximation by a Markov-type hopping
process from one of the 6 large-scale circulation states to another. Therefore, we
constructed a Markov transition matrix A ∈ R6×6 and analysed the corresponding
eigenvalue spectrum.

In ref. [2], we investigated the short-term transition paths between these subse-
quent macroscopic system states. This is done by a data-driven learning algorithm
that extracts the low-dimensional transition manifold and the related new coor-
dinates, which we term collective variables, in the state space of the complex
turbulent flow. We therefore transferred and extended concepts for conforma-
tion transitions in stochastic microscopic systems, such as in the dynamics of
macromolecules, to a deterministic macroscopic flow. In a first reduction step, a
time-lagged independent component analysis was performed to reduce the dimen-
sionality of the data.

Our analysis is based on long-term direct numerical simulation trajectories of
turbulent convection in a closed cubic cell at a Prandtl number Pr = 0.7 and
Rayleigh numbers Ra = 106 and 107 for a time lag of 105 convective free-fall
time units. All 6 faces of the cube satisfy the no-slip condition. The cube is
uniformly heated from below and cooled from above, the side faces are thermally
insulated. The simulations resolve vortices and plumes of all physically relevant
scales, resulting in an original state space spanned by more than 3.5 million degrees
of freedom. The transition dynamics between the large-scale circulation states
can be eventually captured by the transition manifold with only two collective
variables. This implies a reduction of the data dimension by a factor of more than
a million. Our method demonstrates that cessations and subsequent reversals
of the large-scale flow are unlikely in the present setup and thus paves the way
to the development of efficient reduced-order models of the macroscopic complex
nonlinear dynamical system.

This work is supported by the Deutsche Forschungsgemeinschaft. The numeri-
cal simulations have been conducted at the University Computing Centre of Tech-
nische Universität Ilmenau.
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Application of Machine Learning to Subgrid-Flux Parametrization of
Turbulent Models

Ilya Timofeyev

(joint work with Jeric Alcala)

In this talk, we consider the problem of stochastic parametrization of subgrid fluxes
in turbulent models of geophysical flows. First, we present a general framework
where we start with a fine-mesh finite-volume discretization of the PDE of interest.
We assume that the fine-scale resolution is sufficient to reproduce all physical
quantities of interest. Next, we define coarse variables as local averages in physical
space and derive equations for coarse variables. However, equations for coarse
variables are not closed since the right-hand side of these equations depends on
the small-scale (subgrid) variables. Therefore, we seek a parametrization of subgrid
fluxes in physical space which is local (involving a small stencil of coarse variables).

First, we compare and contrast the semi-theoretical multiscale approach (joint
work with M. Zacharuk, S. I. Dolaptchiev, and U. Achatz) [2, 3, 4] and applications
of the Machine Learning (ML) approach [1]. Next, we discuss the ML approach
in more detail. In particular, we demonstrate that it is possible to use Genera-
tive Adversarial Networks (GANs) to parametrize subgrid fluxes in the context of
finite-volume discretizations of turbulent PDEs. We would like to point out that
GAN-based parametrizations are ML analogs of stochastic parametrizations since
GANs generate samples from a probability distribution of sub-grid fluxes and,
thus, are inherently random. We also demonstrate that our subgrid model repro-
duces stationary properties of turbulent dynamics, such as spectra and temporal
correlation functions. We demonstrate the applicability of our approach using
two examples - stochastically driven viscous Burger’s equation and 1D Shallow
water equations. We consider both models in a stationary turbulent regime and
demonstrate that subgrid parameterizations are essential for reproducing statisti-
cal features such as spectra and correlation functions.

As final remarks, we discuss that the most promising future directions are in
combining mathematical multiscale techniques, techniques from numerical anal-
ysis, and machine learning. In addition, we also discuss that it is important to
develop methods that would allow us to better understand machine learning tools
and ”extract” useful information such as the structure of subgrid terms.
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