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Abstract. Mixed-integer nonlinear programming (MINLP) is concerned
with finding optimal solutions to mathematical formulations of optimization
problems combining discrete and nonlinear phenomena. The scientific pro-
gram was organized around three areas: convex envelopes and relaxation
hierarchies, mixed-integer optimal control, and current trends. These topics
were addressed with a variety of tutorials, talks, and short research announce-
ments.

Mathematics Subject Classification (2020): 90-06, 90C11, 90C22, 90C26, 90C30.

Introduction by the Organizers

This report refers to the third edition of the workshop Mixed-Integer Nonlinear
Optimization: A Hatchery for Modern Mathematics organized at Oberwolfach
by Leo Liberti (Palaiseau), Sebastian Sager (Magdeburg), and Angelika Wiegele
(Klagenfurt). There were 46 participants at the MFO and additional 5 participants
taking the opportunity to attend online.

The workshop was organized in 4 tutorial talks (one each day from Monday
to Thursday, one hour long, including 15 minutes for questions), 19 “normal”
talks (45 minutes long, including 15 minutes for questions), and 15 short research
announcements (SRA – 15 minutes long, including 5 minutes for questions). The
discussion after practically all talks was lively and filled with questions, remarks
and suggestions from many attendees. As Oberwolfach tradition warrants, we
spent wednesday afternoon hiking to St. Roman, a little more than 7 km away
from the Institute.
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1. Participants

The 51 participants are from 11 countries, distributed as follows:

DE US AT FR NL IT SE BR CA UK CH
21 12 4 3 3 2 2 1 1 1 1

The participants have affiliations not only with mathematics departments, but
also with computer science and engineering departments. This exhibits a notable
attraction towards a diverse array of cultures.

Gender balance. Genderwise, this workshop attracted 15 women (29% of the
total number of participants), 9 of which gave talks (in particular, two tutorials
and seven normal talks were given by women). We received a particularly large
number of cancellations from female colleagues at this workshop, which is probably
due to the fact that it was during the vacation season.

2. Scientific Areas

Many relevant practical decision problems in energy, engineering, economics,
medicine, and systems biology can be formulated as a MINLP. But it is also a
research area that by its very nature touches many areas of mathematics. The
links are bidirectional: many of the advances in MINLP stem from neighboring
mathematical areas. And the research in MINLP theory and algorithms, as well
as the application of MINLP software to mathematical problems, may yield deep
mathematical insights.

The scientific organization of this workshop was divided into three main areas.
I) Convex envelopes and relaxation hierarchies; II) Mixed-integer optimal control;
and III) Current trends.

2.1. Convex envelopes and relaxation hierarchies. Convex envelopes of ever
more complicated mixed-integer nonlinear sets provide the foundation of most solu-
tion algorithms for MINLP. Relaxation hierarchies were introduced to study finite
dimensional nonlinearity by means of infinitely-dimensional but linear entities:
they are now mature enough to be be computationally viable. Convex envelopes
and relaxation hierarchies are related insofar as both provide relaxations of the
original MINLP, giving rise to a plethora of algorithmic tools for solving MINLP
(from starting points to provable bounds).

2.2. Mixed-integer optimal control. MINLP has historically many links to
systems engineering and optimal control. Finding optimal control strategies for
nonlinear processes is often difficult due to high dimensions resulting from fine
control discretizations. Deriving efficient algorithms from theoretical arguments
in weak topologies has resulted in a research boost that we want to continue
supporting, with many open questions and opportunities for the future.
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2.3. Current trends. We identified new, exciting, and promising MINLP re-
search areas, most of which are still too young to be promoted to “topic”, yet
too important to be ignored: (a) The growing link between MINLP and Machine
Learning (ML); (b) The long-awaited attack on bi-level MINLP (problems where
one constraint requires some first-level variables to belong to the set of optima of a
second-level MINLP), a problem class of formidable difficulty; (c) Computational
complexity and (in)approximability; (d) Challenges arising from applications in
power flow.

3. Short Research Announcements

There were three sessions of Short Research Announcements, one on Tuesday and
two on Thursday.

• Amir Ali Ahmadi presented results on the complexity of finding local min-
ima in polynomial optimization, including a representation theorem about
the set of local minima of any cubic polynomial is a semidefinite set. He
also presented work on higher-order Newton methods with polynomials.

• Dominik Cebulla demonstrated that applying mixed-integer optimal con-
trol for chromatography can reduce the batch-cycle time significantly.

• Julius Martensen talked about automated model discovery and presented
a MINLP formulation for symbolic regression.

• Second-order partial outer convexification for switched dynamical systems
was presented by Christoph Plate.

• A lot of questions and discussion arose after Ruth Misener’s presentation
about optimizing over trained graph neural networks.

• Sven Leyffer’s short research announcement was titled “Beyond Mixed-
Integer Nonlinear Optimization” and was about applications with massive
nonlinear MIPs and data analytics for large gamma-ray spectrometers.

• Volker Kaibel proved a connection between the diameter of the polyhedron
of feasible solutions and the complexity of a linear program.

• Diane Puges introduced strong SDP based bounds on the cutwidth of a
graph as well as a cutting-plane algorithm to compute these bounds.

• Using Copositive Duality for the Discrete Energy Market has been ad-
dressed by Merve Bodur.

• Daniel Brosch asked the question “Is the Set of Trees Convex?” where
he extends Razborov’s flag algebras, allowing the application of sums-of-
squares and moment techniques to tackle this question.

• Nick Sahinidis reported about the status of the BARON project.
• Jan Schwiddessen presented his work on machine learning, namely how
to use semidefinite programming for semi-supervised support vector ma-
chines.

• Driven by an application from chromatography, Jan Rolfes exhibits a safe
approximation of distributionally robust optimization depending on uni-
variate indicator functions.
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• Marc Pfetsch talked about solving Mixed-Integer Semidefinite Programs
and presented numerical results on using SCIP-SDP, an open-source solver
for mixed-integer semidefinite programs.

• Finally, Florian Rösel talked dabout Optimality Certificates for Convex
MINLPs.

4. The Future

This is the third edition of MINLP workshops at Oberwolfach. Again, the partici-
pants were enthusiastic and expressed curiosity regarding potential future editions.
While there exist various MINLP workshops organized by different members of our
community, the Oberwolfach workshops stand out for their strong mathematical
relevance. Our intention is to continue applying for MINLP workshops at Oberwol-
fach and hope that this will be acknowledged by the MFO Scientific Committee.

Leo Liberti volunteered to step down from the organizing committee. We are
grateful to Jon Lee for agreeing to take his place, as well as for helping to organize
the 2023 edition of the workshop.
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O. Schneider, K. Sharma, S. Tschuppik)
Data-driven distributional robustness over time: How to learn
uncertainties with robust decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2003

Bram Bekker (joint with Olga Kuryatnikova, FernandoMário de Oliveira Filho,
Juan C. Vera)
SDP hierarchies for distance-avoiding sets on compact spaces . . . . . . . . . 2004

Jeff Linderoth (joint with Oktay Günlük, James Luedtke, Andrea Lodi)
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Abstracts

A Walk Through the ACOPF World

Merve Bodur

In this survey-type talk, we overview the developments around the alternating cur-
rent optimal power flow problem (ACOPF). Starting with the basic concepts about
the power flow, we go over the main components of ACOPF formulations, then
detail the commonly studied convex relaxations as well as approximations, briefly
mention techniques to generate feasible solutions along with available software,
and lastly mention some extensions of the problem.

1. Basic concepts

ACOPF models rely on adequately representing the actual power flow physics. In
that regard, the power law, Ohm’s law, Kirchhoff’s circuit laws can be deemed
as the most important aspects. Power is the product of current and voltage,
which are respectively defined as the rate at which charge (i.e., the basic entity
of electricity) is flowing and the difference in charge (potential energy) between
two points in a circuit. Ohm’s law defines voltage as the product of current and
resistance, whereas Kirchhoff provides two circuit laws: (i) total current entering a
junction is exactly equal to the current leaving the node, and (ii) in any closed-loop
network, the sum of voltage drops around the loop is equal to zero.

A power system consists of generators, transmission system, and loads. A
transmission system is modelled as a directed graph with a node for each bus of
the system, which may be a load as well as host generators, and with links for
transmission lines (a pair of anti-parallel arcs for each line).

2. Formulations

ACOPF aims to generate sufficient power to satisfy demand at minimum cost,
deciding on power generation amounts and power flow on the network that abide
by the laws of physics.

Due to the use of alternating current, stemming from the magnetic field gen-
erated by a magnetic wheel rotation, the voltage, current, and accordingly power
over time are represented by sinusoidal curves. Given the frequency, amplitude
and rotation angle of such a curve, the instantaneous value at any time can be sim-
ply calculated using the curve defining formula. However, solving ACOPF models
using such time-dependent decision variables would be computationally infeasible
for practical cases. As an acceptable compromise, the ACOPF literature considers
time-independent but complex decision variables. The use of complex variable form
for all the current, voltage, and power decisions yields a very good representation
of the actual power flow. More specifically, all the important laws of physics still
apply, the steady-state average power can be readily calculated as the real part of
the complex power variables (called real power, which is the actual quantity used
by the load), and the reactive power (which is essential for the power system to
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run, and need to be managed to maximize the throughput of active power of the
system) is captured by the imaginary part of the complex power variables.

ACOPF formulations are based on the two fundamental characteristics: (i)
power law that links power to voltage and current variables, and (ii) relationship
between voltage and current variables. For the latter, a linear relationship is
employed, where the coefficients in the associated equations are obtained through
the admittance matrix, a complex-valued matrix constructed using the electrical
parameters and network topology (where a Π-circuit model is commonly used for
each transmission line).

The main components of ACOPF formulations are the objective function usu-
ally minimizing power generation cost, bounds on most of the decision variables
(e.g., voltage magnitudes, difference of voltage angles between adjacent buses,
maximum power magnitudes injected on lines, and generated power), explicit con-
straints on power balance at each bus and the two aforementioned fundamental
characteristics (i) and (ii), and other technical constraints (including the voltage
angle fixing for a reference bus). The feasible space of ACOPF models is usually
highly non-convex, and the practical cases mostly have multiple local optima, as
such ACOPF is a very challenging problem to solve.

There are various ACOPF formulations in the literature. They are usually
classified with respect to the use of bus or line power injection, the choice of the
coordinate system for the decision variables (namely, rectangular or polar), and
the existance of the current variables in addition to the voltage variables. (The
literature presents some special treatment to the radial, i.e., tree-based, network
cases.) Based on the class of the formulation, different complexities are involved
in the models, e.g., different sources and forms of nonlinearity and existence of
trigonometric functions. Many of the distinctions among ACOPF relaxations and
approximations are related to various mechanisms for exploiting these different
mathematical features.

3. Convex relaxations

ACOPF relaxations are typically chosen to be convex to leverage the existing
convex optimization tools. By design, relaxations provide valid bounds on the
optimal objective value of the problem. Moreover, the literature provides some
sufficient conditions for certifying global optimality of relaxation solutions.

Commonly studied relaxations fall into the following three classes:

(1) Semidefinite programming (SDP) relaxations: Shor relaxation,
moment/sum-of-square relaxation hierarchies, some other hierarchies

(2) Second-order cone programming (SOCP) relaxations: Jabr’s relaxation,
strong SOCP relaxation, quadratic convex (QC) relaxation

(3) Linear programming (LP) relaxations

Dominance (or its lack of) among different relaxations has been established in
the literature. For computational efficiency, relaxations are often further strength-
ened by applying bound tightening and adding valid inequalities (or cuts in a
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cutting-plane framework). Moreover, for further tractability, sparsity of power
networks has also been leveraged.

4. Approximations

Approximations assume specific quantities for certain decisions to simplify the
ACOPF model. However, those quantities are usually chosen inspired by typical
operating conditions for power systems, as such practically useful solutions can be
obtained based on approximation models. Approximations based on SOCP and
LP are most commonly proposed in the literature.

5. Feasible Solutions

In practice, locally optimal solutions are often acceptable. There exist many ap-
proaches to generate feasible solutions, including SDP-based, SCOP-based, convex
restriction based, and practically most efficient ones as local solution techniques,
most notably interior point methods. Local solution algorithms can benefit from
the outputs resulting from problem relaxations and approximations (e.g., using
the decision variable values and the set of binding constraints for initialization).

6. Software and Extensions

For interior point methods, Knitro and IPOPT have been some excellent choices.
There also exist some specialized tools such as MATPOWER and PowerModels.jl.
Recently, Gurobi released a new module called OptiMods including ACOPF re-
lated content.

There is a vast (in particular) recent literature considering extensions related to
ACOPF, some of which adding integer decision variables such as the reactive OPF
(which considers switchable shunts and adjustable tap ratios) and transmission
switching (which considers turning off some lines). Security constraints consti-
tute an important aspect to ensure solution robustness. Integration of ACOPF
with other decision-making problems such as unit commitment yields further chal-
lenges to be addressed in the literature. Furthermore, incorporation of uncertainty
and efficient implementations (e.g., by means of parallelization or with the help
of GPUs) have been considered as valuable directions. Lastly, ARPA-E Grid
Optimization Competitions have been pushing researchers to incorporate many
interesting practical features to optimization models.

References
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power flow equations. Foundations and Trends in Electric Energy Systems, 4(1-2), 1–221.
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Perfect graphs and algebraic certificates of nonnegativity

Amir Ali Ahmadi

(joint work with Cemil Dibek)

In this talk, we present a precise connection between the notion of “perfectness” in
graph theory, and the notion of a “sum of squares” decomposition in the study of
nonnegative polynomials. We also discuss some consequences of this connection.

A graph is perfect if for each of its induced subgraphs, the chromatic num-
ber equals the cardinality of a largest clique. Perfect graphs, introduced by
Berge in 1960, have elegant theoretical properties and curious connections with
linear, integer, and semidefinite programming. For instance, perfect graphs ap-
pear in the study of exactness of linear programming relaxations of integer pro-
grams. As an example, for a matrix A ∈ {0, 1}m×n, all vertices of the polytope
{x ∈ Rn : Ax ≤ 1, x ≥ 0} are integral if and only if the undominated rows of
A are the incidence vectors of the maximal cliques of a perfect graph. Moreover,
several combinatorial problems that are NP-hard on general graphs can be solved
efficiently on perfect graphs using semidefinite programming. Examples include
the maximum independent set and the minimum clique cover problems. More gen-
erally, perfect graphs have been the subject of much research in recent decades due
to the fact that they are at the crossroad of several mathematical disciplines, in-
cluding graph theory, information theory, combinatorial optimization, polyhedral
and convex geometry, and semidefinite programming.

The second notion of interest to this work is that of sum of squares polynomials.
A polynomial is a sum of squares (sos) if it can be written as a sum of squares
of some other polynomials. There has been a growing interest in sos polynomials
recently due to the fact that they provide semidefinite programming-based suffi-
cient conditions for problems involving nonnegative polynomials. It is well known
that several important problems in applied and computational mathematics can
be formulated as optimization problems over the set of nonnegative polynomials.
Although these problems are generally intractable to solve exactly, they can be ef-
ficiently approximated by replacing nonnegativity constraints with sum of squares
requirements. By connecting ideas from real algebraic geometry and semidefi-
nite programming, sum of squares polynomials have significantly impacted both
discrete and continuous optimization over the last two decades.

In this work, we introduce and study the notion of sos-perfectness, a notion that
brings together perfect graphs and sos polynomials. For a graph G = (V,E) with
clique number ω(G), we define the following quartic (homogeneous) polynomial in
the variables x = (x1, . . . , x|V (G)|)

T :

(1) pG(x) = −2ω(G)
∑

ij∈E(G)

x2i x
2
j + (ω(G)− 1)

(

∑|V (G)|

i=1
x2i

)2

.

It turns out that for every graph G, the polynomial pG(x) is nonnegative by
construction. We say that a graph G is sos-perfect if pH(x) is sos for every induced
subgraph H of G. We prove the following theorem.
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Theorem 1. A graph is perfect if and only if it is sos-perfect.

We remark that our proof of this theorem does not rely on the celebrated strong
perfect graph theorem (which states that a graph is perfect if and only if it does
not contain an odd hole or an odd antihole).

In 1888, Hilbert proved the existence of nonnegative polynomials that are not
sums of squares. The first examples of such polynomials were constructed by
Motzkin and Robinson many decades later. Understanding the distinction between
nonnegative polynomials and sos polynomials continues to be an active area of
research today. In relatively low degrees and dimensions, constructing examples
of nonnegative polynomials that are not sos seems to be a nontrivial task.

In this work, we use Theorem 1 to explicitly construct several infinite families
of nonnegative polynomials that are not sos. These polynomials come from special
families of non-perfect graphs such as powers of cycles, Paley graphs, and Mycielski
graphs. We also show that certain graph operations—adding edges or verticies
without increasing the clique number, strong graph products, and graph joins—
can be used to generate even more nonnegative polynomials that are not sos.

We end by noting that by Theorem 1, the following is an algebraic reformulation
of the strong perfect graph theorem:

If a graph G does not contain an odd hole or an odd antihole, then the (non-
negative) form pG(x) defined in (1) is a sum of squares.

It would be interesting to find an algebraic proof of the strong perfect graph
theorem based on this reformulation. The interested reader can find more details
in [1].

References

[1] A.A. Ahmadi and C. Dibek, A sum of squares characterization of perfect graphs, SIAM
Journal on Applied Algebra and Geometry (2023).

On the convex hull of convex quadratic optimization problems

with indicators

Simge Küçükyavuz

(joint work with Linchuan Wei, Alper Atamtürk, Andrés Gómez)

Given a symmetric positive semidefinite matrix Q ∈ Rn×n, and set Z ⊂ {0, 1}n,
we consider the mixed-integer nonconvex set

X =
{

(x, z, t) ∈ Rn × Z × R : t ≥ x⊤Qx, xi(1− zi) = 0, ∀i = 1, . . . , n
}

.

Set X is associated with the mixed-integer convex quadratic optimization problem
with indicator variables (MIQO) where the objective function is a convex quadratic
function, and there is an indicator variable zi, i = 1, . . . , n that turn ”on/off” the
associated continuous variable xi. MIQO finds various applications in statistical
learning with sparsity, portfolio optimization, electricity power production, and
so on. A critical step toward solving MIQO is to convexify the set X . Indeed,
MIQO is equivalent to minimizing a linear objective function over the closure of the
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convex hull of X (clconv(X)). However, MIQO is NP-hard even if Z = {0, 1}n
[1]. Thus, a simple description of clconv(X) is, in general, not possible unless
NP = Co−NP .

An important class of convex relaxation of X that has received attention in

the literature is obtained by decomposing matrix Q =
∑ℓ

i=1 Γi + R, where Γi,
i = 1, . . . , ℓ are “simple” and R and Γi’s are positive semidefinite (psd) matrices.
Then

(1) t ≥ x⊤Qx⇐⇒ t ≥
ℓ

∑

i=1

τi + x⊤Rx, and τi ≥ x⊤Γix, ∀i ∈ {1, . . . , ℓ},

and each constraint τi ≥ x⊤Γix is replaced with a system of inequalities describing
the convex hull of the associated mixed-integer set. This idea was originally used in
[3] where ℓ = n, Γi’s are diagonal matrices, and constraints τi ≥ dix

2
i are strength-

ened using the perspective relaxation [2], i.e., reformulated as τi ≥ di
x2
i

zi
. A gener-

alization of the above approach is rank-one decomposition, which lets Γi = hih
⊤
i

be a rank-one matrix [7, 8, 9]. Alternative generalizations of perspective relaxation
that have been considered in the literature include exploiting substructures based
on 2×2 matrices [4, 5] or tridiagonal [6]. In this work, we show that clconv(X) can
be described in a compact extended formulation with O(n2) additional variables
with linear constraints and a single positive semidefiniteness constraint. We also
characterize clconv(X) in the original space of variables.

Given a matrix W ∈ Rp×q, its Moore-Penrose inverse is denoted as W †, and
WS is the submatrix of W induced by S for some S ⊂ {1, . . . , n}. Let ŴS ∈ Rn×n

be the n × n matrix obtained from WS by filling the missing entries with zeros.
We first provide a representation of clconv(X) under the assumption that Q is

positive definite. Given Q positive definite, define the polytope P ⊂ Rn+n2

as

P =

(

{

(êS , Q̂
†
S)
}

êS∈Z

)

,

where e denotes the vector of all ones.

Theorem 1. Let Q be a positive definite matrix. Then

clconv(X) = {(z, x, t) ∈ [0, 1]n × R
n+1 | ∃W ∈ R

n×n
s.t.

(

W x

x⊤ t

)

� 0, (z,W ) ∈ P}.

When Q is positive semidefinite, there exists some F ∈ Rn×k such that Q =
FF⊤. Define FS ∈ RS×k as the submatrix of F corresponding to the rows indexed
by S, and let F̂S ∈ Rn×k be the matrix obtained by filling the missing entries with

zeros. Define the polytope PF ⊂ Rn+k2

as

PF = conv

(

{

(êS , F̂
†
S F̂S)

}

êS∈Z

)

·

Let πS : Rn → RS be the projection onto the subspace indexed by S and col(W )
denote the column space of W .
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Theorem 2. Let Q = FF⊤, where F ∈ Rn×k is a full-column rank matrix satis-
fying col(F ) =

⋂

êS∈Z π
−1
S (col(FS)). Then

clconv(X) = {(z, x, t) ∈ [0, 1]n × R
n+1 | ∃W ∈ R

k×k
,

(

W F⊤x

x⊤F t

)

� 0, (z,W ) ∈ PF }.

An immediate consequence of Theorem 2 is that if Q is rank-deficient, i.e., k <
n, then the extended formulation describing clconv(X) is simpler than the full rank
case, i.e., it has fewer additional variables and a lower-dimensional semidefiniteness
constraint.

We now turn our attention to describing clconv(X) in the original space of
variables. The main task is projecting out the matrix variable W in the extended
formulation of clconv(X) given in Theorem 1 for Q positive definite. Identical
arguments hold for the representation in Theorem 2 for low-rank matrices.

Suppose that a minimal description of polyhedron P is given by the facet-
defining inequalities

〈Γi,W 〉 − γ⊤i z ≤ βi, i = 1, . . . ,m1,

and equalities
〈Γi,W 〉 − γ⊤i z = βi, i = m1 + 1, . . . ,m,

where Γi ∈ Rn×n, βi ∈ R and γi ∈ Rn. We define a set Y as

Y =

{

y ∈ R
m1

+ × Rm−m1 :
m
∑

i=1

Γiyi � 0,
m
∑

i=1

Tr(Γi)yi ≤ 1

}

.

Theorem 3. If Q is positive definite, point (x, z, t) ∈ clconv(X) if and only if
z ∈ conv(Z), t ≥ 0 and

t ≥ x⊤ (
∑m

i=1 Γiyi)x

y⊤β + (
∑m

i=1 yiγi)
⊤
z
, ∀y ∈ Y,(2)

or equivalently,

t ≥ max
y∈Y

x⊤ (
∑m

i=1 Γiyi)x

y⊤β + (
∑m

i=1 yiγi)
⊤
z
·(3)

An analogous result holds for low-rank matrices, where (Γi, γi, βi), i ∈ {1, ...,m}
defines PF .

From Theorem 3, we see that clconv(X) can be described by an infinite number
of fractional quadratic/affine inequalities. More importantly, the convex hull is
finitely generated: the infinite number of quadratic and affine functions are ob-
tained from conic combinations of a finite number of base matrices Γi and vectors
(γi, βi), which correspond precisely to the minimal description of P .
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Utilising Deep Neural Networks in Mixed Integer

Programming Problems

Shudian Zhao

(joint work with Jan Kronqvist, Boda Li, Calvin Tsay, Jan Rolfes)

This work presents a common way of encoding a Deep Neural Network (DNN) by
mixed-integer programming techniques and two applications solved by algorithms
based on this technique. This talk starts with a brief introduction to the applica-
tion of DNNs in image classification and the architecture of a common example.
Then, the technique of encoding DNNs with mixed-integer programming with the
big-M formulation is illustrated.

The first part of the talk presents the results from the paper “Model-based
feature selection for neural networks: A mixed-integer programming approach”,
which is co-authored with Jan Kronqvist and Calvin Tsay. In this paper, we
develop a novel input feature selection framework for ReLU-based DNNs, which
builds upon a mixed-integer optimization approach. While the method is gener-
ally applicable to various classification tasks, we focus on finding input features for
image classification for clarity of presentation. The idea is to use a trained DNN,
or an ensemble of trained DNNs, to identify the salient input features. The input
feature selection is formulated as a sequence of mixed-integer linear programming
(MILP) problems that find sets of sparse inputs that maximize the classification
confidence of each category. These “inverse” problems are regularized by the num-
ber of inputs selected for each category and by distribution constraints. Numerical
results on the well-known MNIST and FashionMNIST datasets show that the pro-
posed input feature selection allows us to drastically reduce the input size to ∼15%
while maintaining a good classification accuracy. This allows us to design DNNs
with significantly fewer connections, reducing computational effort and producing
DNNs that are more robust toward adversarial attacks.
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In the next part, this talk presents the method that is introduced in “Alter-
nating mixed-integer programming and neural network training for approximating
stochastic two-stage problems”, which is co-authored with Jan Kronqvist, Boda Li,
and Jan Rolfes. In this paper, the presented work addresses two-stage stochastic
programs (2SPs), a broadly applicable model to capture optimization problems
subject to uncertain parameters with adjustable decision variables. In case the
adjustable or second-stage variables contain discrete decisions, the corresponding
2SPs are known to be NP-complete. The standard approach of forming a single-
stage deterministic equivalent problem can be computationally challenging even for
small instances, as the number of variables and constraints scales with the number
of scenarios. To avoid forming a potentially huge MILP problem, we build upon
an approach of approximating the expected value of the second-stage problem by
a neural network (NN) and encoding the resulting NN into the first-stage problem.
The proposed algorithm alternates between optimizing the first-stage variables and
retraining the NN. We demonstrate the value of our approach with the example
of computing operating points in power systems by showing that the alternat-
ing approach provides improved first-stage decisions and a tighter approximation
between the expected objective and its neural network approximation.

This talk concludes with a discussion about advanced formulations for encoding
DNNs with mixed-integer programming and generalizing the techniques in solving
other optimization problems such as Capacitated Facility location, Investment,
Stochastic server location, and pooling problems.

Branch-and-bound for D-Optimality with fast local search and

variable-bound tightening

Marcia Fampa

(joint work with Jon Lee, Gabriel Ponte)

We develop a branch-and-bound algorithm for the D-optimality problem, a central
problem in statistical design theory, based on two convex relaxations, employing
variable-bound tightening and fast local-search procedures, testing our ideas on
randomly-generated test problems.

The D-Optimality problem is formulated as

z := max
{

ldet
∑

ℓ∈N xℓvℓv
T

ℓ : eTx = s, l ≤ x ≤ u, x ∈ Zn
}

(D-Opt)

= max
{

ldet
(
∑

ℓ∈N lℓvℓv
T

ℓ +
∑

ℓ∈N xℓvℓv
T

ℓ

)

:

eTx = s− eTl , 0 ≤ x ≤ u− l, x ∈ Zn
}

,

where vℓ ∈ Rm, for ℓ ∈ N := {1, . . . , n}, with m ≤ s < n natural numbers,
and 0 ≤ l < u ∈ Zn, with eTl ≤ s ≤ eTu. It will be very useful to define
A := (v1, v2, . . . , vn)

T (which we always assume has full column rank), and so we
have

∑

ℓ∈N xℓvℓv
T

ℓ = AT Diag(x)A.
D-Opt is a fundamental problem in statistics, in the area of “experimental

designs” (see [23], for example). Ideally we would be considering the least-squares
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regression problem minθ∈Rm ‖Auθ − bu‖2 , where Au ∈ Re
Tu×m has vT

ℓ repeated

uℓ times, and bu ∈ Re
Tu is a corresponding response vector. But we consider

a situation where each vℓ corresponds to a costly experiment, which should be
carried out between lℓ and uℓ times. Overall, we have a budget to carry out a
total of s(≥ m) experiments, and so we model the choices by x (in D-Opt). For a
given feasible solution x̃, we define Ax̃ to be a matrix that has vT

ℓ repeated x̃ℓ times
as its rows, with bx̃ as the associated response vector. This leads to the (reduced)

least-squares problem minθ∈Rm ‖Ax̃θ − bx̃‖2 , with solution θ̂ := (AT

x̃Ax̃)
−1AT

x̃bx̃.

The squared volume of a standard ellipsoidal confidence region (centered at θ̂) for
the true θ is inversely proportional to det

∑

ℓ∈N x̃ℓvℓv
T

ℓ . So D-Opt corresponds to
picking the set of allowable experiments to minimize the volume of the confidence
region for θ.

The design criterion of D-optimality was first suggested by A. Wald (see [27]).
The term “D-optimality” was coined by J. Kiefer (see [11]). Also see [12, 26, 8],
for example.

There is a large literature on heuristic algorithms for D-Opt and its variations.
See [25] and [20] for approximation algorithms with guarantees. [28] was the first to
approach D-Opt with an exact branch-and-bound (B&B) algorithm, employing a
bound based on Hadamard’s inequality and another based on continuous relaxation
(apparently without using state-of-the art NLP solvers of that time). [14, 13]
proposed a spectral bound and analytically compared it with the Hadamard bound;
also see [17]. [18] applied a local-search procedure and an exact algorithm to the
Data-Fusion problem, a particular case of the D-optimality problem where the
positive definite

∑

ℓ∈N lℓvℓv
T

ℓ is known as the “existing Fisher Information Matrix
(FIM)”. Moreover, the Data-Fusion problem consider only the case where the
variables are binary, i.e., l = 0 and u = e. Although the Data-Fusion and the
D-optimality problems have similarities, most techniques used in [18] rely on the
positive definiteness of the existing FIM and cannot be applied to our problem.

Next, we highlight our contributions:
• a new upper bound for the binary D-optimality problem, which we call the
Γ-bound. We prove that the Γ-bound is a generalization for the binary D-
optimality problem of the “M-DDF-complementary bound” for the Data-
Fusion problem presented in [18]. We note that we can reformulate D-Opt
as a binary D-optimality problem by repeating row ℓ of A uℓ − lℓ times;

• numerical and theoretical results showing some relations between different
bounds for binary D-optimality problem and the Data-Fusion problem,
including the Γ-bound and other bounds from the literature, specifically
the so-called spectral bound, Hadamard bound, “M-DDF bound”, “M-
DDF-complementary bound”, and natural bound;

• three local-search heuristics for D-Opt considering different neighborhoods
of the current point to visit at each iteration;

• five algorithms to construct initial solutions for the local-search proce-
dures;



Mixed-integer Nonlinear Optimization 1969

• how we compute the determinant of a rank-one update of a given matrix,
knowing the determinant of the matrix. This procedure is essential to the
successful application of the local-search procedures;

• different strategies to compute the direction to move at each iteration of
the local-search procedures;

• variable-bound tightening (VBT) inequalities, which are constructed based
on a lower bound for D-Opt and on the knowledge of a feasible solution
for the Lagrangian dual of its continuous relaxation;

• a B&B algorithm based on a convex mixed-integer nonlinear programming
formulation of D-Opt. We investigate possible methodologies to accelerate
the convergence of the B&B algorithm, by combining the use of the VBT
inequalities, local-search procedures, and the use of different upper bounds;

We note that although [28], in 1982, already considered the application of a
B&B algorithm for D-optimality, that work did not have access to our new Γ-
bound, and did not use variable tightening based on convex optimization, nor
discussed the linear algebra of doing a fast local search.

A similar solution approach has been successfully applied to the related max-
imum-entropy sampling problem (MESP) (see [3, 1, 2, 6]), where given the co-
variance matrix C of a Gaussian random n-vector, one searches for a subset of
s random variables that maximizes the “information” (measured by Shannon’s
“differential entropy”) (see [24, 4, 16, 6], for example).
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Lasserre hierarchy for mixed-integer nonlinear optimization

Matteo Tacchi

Mixed-Integer NonLinear Programming (MINLP) involves optimization problems
with nonconvex integer constraints. A common strategy to handle such problems
consists in relaxing them into convex problems, that are as close as possible to
the original one. Among such convex relaxation techniques, one can cite the class
of lift-and-project methods, which are based on two steps: (1) a lifting operation
that recasts the nonconvex problem at hand under the form of a convex cone

https://doi.org/10.1287/opre.2023.2488
https://proceedings.science/proceedings/100311/_papers/157447/download/fulltext_file2
https://proceedings.science/proceedings/100311/_papers/157447/download/fulltext_file2
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programming problem in a higher dimensional space and (2) a projection of the
resulting optimal solutions back onto the decision space of the original problem.

The integer programming literature contains various examples of lift-and-project
methods such as the Lovasz-Schrijver and Sherali-Adams hierarchies, as well as
Lasserre’s moment-SoS hierarchy [4, 6]. The idea of leveraging convex or linear
structures by adding degrees of freedom to a problem is common to various tech-
niques such as support vector machines, kernel methods or Koopman operators.
In this talk, we intend to give a general overview on Lasserre’s hierarchy for poly-
nomial optimization, and to interpret it as a two-levels lift-and-project framework.

Consider the polynomial mixed 0–1 program

(1) f⋆ := min{f(x) | x = (x̂, x̄) ∈ Rn̂ × {0, 1}n̄ ∧ g(x) ≥ 0}
where f, g are polynomials (g can be vector-valued, then inequality constraints are
interpreted component-wise), and such that K := {x ∈ Rn̂ ×{0, 1}n̄ | g(x) ≥ 0} is
compact. Noticing that x̄ ∈ {0, 1}n̄ is equivalent to the set of polynomial inequality
constraints ∀i ∈ [n̄], x̄2i (1−x̄i)2 ≤ 0,K can be described as a semialgebraic setK =
{x ∈ Rn | h(x) ≥ 0} (with appropriate polynomial h and n = n̂+ n̄) and (1) can
be recast under the general form of a Polynomial Optimization Problem (POP):

(2) f⋆ = min{f(x) | x ∈ K} = min{f(x) | x ∈ Rn ∧ h(x) ≥ 0}.
Then, the moment-SoS hierarchy consists of three steps. The first step is an
infinite dimensional lifting: the finite dimensional variable x is recast into a ran-
dom variable X of law µ ∈ M(K)+ (M(K)+ denotes the cone of Radon measures
supported on K, dual to the cone C(K)+ of nonnegative continuous functions):

(3) f⋆
∞ := min

{

Eµ[f(X)] =

∫

f dµ

∣

∣

∣

∣

µ ∈ M(K)+ ∧
∫

1 dµ = 1

}

.

For any random variable X , Eµ[f(X)] ≥ f⋆, hence f⋆
∞ ≥ f⋆. Then, if f⋆ = f(x⋆),

setting Pµ(X = x⋆) = 1 yields f⋆
∞ ≤ Eµ[f(X)] = f(x⋆) = f⋆, hence f⋆

∞ = f⋆.
Then, problem (3) is equivalent to problem (2); however, while (2) is a noncon-

vex finite dimensional optimization problem, (3) is an infinite dimensional linear
program. Another linear programming formulation can be derived from (2), using
the definition of the minimum as the largest possible lower bound:

(4) f ′
∞ := max

{

γ ∈ R

∣

∣

∣
∀x ∈ K, γ ≤ f(x)

}

= max
{

γ ∈ R

∣

∣

∣
f − γ ∈ C(K)+

}

,

which is in lagrangian duality with (3). Then, weak duality holds: f ′
∞ ≤ f⋆

∞;
moreover, here γ = f⋆ is feasible for (4), so that strong duality holds: f ′

∞ = f⋆
∞.

Problems (3) and (4) are actually instances of the Generalized Moment Problem
(GMP) and its dual:

(5a) v⋆ := inf

{
∫

f dµ

∣

∣

∣

∣

µ ∈ M(K)+ ∧ Aµ = b ∈ Γ′
}

(5b) v′ := sup
{

〈γ, b〉Γ
∣

∣

∣
f −A′ γ ∈ C(K)+ ∧ γ ∈ Γ

}
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where Γ is an appropriate normed vector space of polynomials (recall that R is
the space of degree 0 polynomials) with topological dual Γ′ and duality 〈·, ·〉Γ,
A : M(K) −→ Γ′ is linear and bounded for the operator norms of M(K) and Γ′

and A′ is the adjoint of A such that ∀µ ∈ M(K)+, γ ∈ Γ, 〈γ,Aµ〉Γ =
∫

A′ γ dµ.
Notice that problems (5a) and (5b) are in duality through the Lagrange functional

(6) L(µ, γ) =

∫

f dµ+ 〈γ, b−Aµ〉 = 〈γ, b〉Γ +

∫

(f −A′ γ) dµ.

This GMP natuarlly extends to multiple Radon measures µ1, . . . , µM on various
euclidean spaces. In general, only weak duality is guaranteed: v′ ≤ v⋆, the question
of strong duality often being nontrivial.

The second step of the moment-sum-of-squares (moment-SoS) hierarchy con-
sists in solving finite dimensional projections of (3)–(4), using Putinar’s theorem.

Theorem 1 ([9]). Consider the space R[x] of polynomials in n variables and the
convex cone Σ := {p21+. . .+p2N | N ∈ N, p1, . . . pN ∈ R[x]} of SoS polynomials. Let
h = (h1, . . . , hm) ∈ R[x]m and consider the quadratic module Q(h) := {σ0+σ1 h1+
. . .+σm hm | σ0, . . . , σm ∈ Σ} and the semialgebraic set K = {x ∈ Rn | h(x) ≥ 0}.

Suppose that Q(h) is archimedean, that is ∃R > 0 ; R2 − x⊤x ∈ Q(h). Let
y ∈ R[x]′ (continuous linear form). The following statements are equivalent:

(1) y is a moment operator i.e. ∃µ ∈ M(K)+ ; ∀p ∈ R[x], 〈p, y〉R[x] =
∫

p dµ

(2) y is in the dual cone Q(h)′ of Q(h) i.e. ∀q ∈ Q(h), 〈q, y〉R[x] ≥ 0

Notice that any q ∈ Q(h) is nonnegative on K, so that Q(h) being archimedean
implies compactness of K. This theorem has a dual formulation:

Theorem 2 (Positivstellensatz [9]). Using the same notation as in Theorem 1:

if p ∈ R[x] is positive on K, then p ∈ Q(h).

Proof. If p /∈ Q(h) then one can use the separation theorem to build a y ∈ R[x]′

s.t. 〈p, y〉R[x] < 0 and ∀q ∈ Q(h), 〈q, y〉R[x] ≥ 0. From Theorem 1, ∃µ ∈ M(K)+;

0 > 〈p, y〉R[x] =
∫

p dµ ≥ 0 since p is positive on K, which is a contradiction. �

Notice that Theorem 2 is very similar to Farkas’ lemma1. Next, Theorems 1

and 2 can be used to replace C(K)+ with Q(h) and M(K)+ with Q(h)′ in prob-
lems (3)–(5), without changing their oprimal values. The announced projection
then consists in restricting the degrees of the σi in the description of Q(h), defining
the bounded degree quadratic module, for k ∈ N:

(7) Q(h)k := {σ0 + σ1 h1 + . . .+ σm hm ∈ Q(h) | ∀i ∈ [m], σ0, σi hi ∈ R[x]2k}
Where R[x]d denotes the space of degree at most d polynomials. This yields

(8a) f⋆
k := min

{

〈f, y〉R[x]′
2k

∣

∣

∣
y ∈ Q(h)′k ∧ 〈1, y〉R[x] = 1

}

1case where p and h are linear; then the σi are nonnegative scalars and the result still holds
when p vanishes on K.
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(8b) f ′
k := max

{

γ ∈ R

∣

∣

∣
f − γ ∈ Q(h)k

}

.

Problems (8a) and (8b) are equivalent to convex, finite dimensional SDP that are in
duality (hence ∀k, f ′

k ≤ f⋆
k ), and can be solved numerically using softwares such as

SeDuMi or Mosek [5], generating sequences of optimal solutions (y⋆k)k ∈ R[x]′. The
power of Theorem 1 (resp. 2) is that it yields lim f⋆

k = f⋆
∞ (resp. lim f ′

k = f ′
∞).

In the POP setting, a third step complements this hierarchy: generically (but
not always, see [8] for finite convergence conditions), there is a k ∈ N such that
f⋆
k = f ′

k = f⋆ (in 0–1 programming such k always exists with k ≤ n, see e.g. [4, 6]).
It is then possible to extract the actual minimizers of (2) from the optimal solution
y⋆k of (8a) (see [2, 5]): this is the final projection onto the original decision space.

Lasserre’s hierarchy usually comes with three questions: (1) does strong duality
hold for the GMP and its relaxations? (2) Does (y⋆k) converge to an optimal
solution µ⋆ of (5a)? (3) What is the convergence rate of the relaxations? In the
POP setting, strong duality was proved in [3], [5, Section 4.10.1] contains a proof
of convergence of (y⋆k)k and the latest convergence rates for (f⋆

k )k can be found
in [1]. In the general case, sufficient conditions for positively answering (1) and (2)
have been given in [10], and a general methodology is under study for computing
convergence rates based on [1] and function approximation theorems.
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Recent advances in the relaxation approach to mixed-integer

optimal control

Christian Kirches

(joint work with Felix Bestehorn, Paul Manns)

Mixed-integer nonlinear optimization problems constrained by ordinary differential
equations (mixed-integer optimal control, short MIOCP) or by partial differential
equations (mixed-integer PDE-constrained optimization, short MIPDECO) have
attracted significant uptake over the past decade. This is true for research in
solution and approximation theory as well as for applications in diverse areas such
as automotive control, biochemistry, energy, process control, pharmaceutics, or
security. In the most simple form, we consider the problem class

min
y,v

J(y(T )) + C(v)

s.t E(y) = f(y(t), v(t)) a.e. t ∈ [0, T ]

0 ≤ c(y(t), v(t)) a.e. t ∈ [0, T ](MIOCP)

v(t) ∈ {v1, . . . , vM} a.e. t ∈ [0, T ],

wherein a state y depends on the control v via a differential equation specified by
the operator E and the right hand side f . The goal is to minimize a cost functional
J and a general switch cost term C subject to mixed state-control constraints c.
The point of interest here is that the free variable v is a distributed and discrete-
valued control function. When discretizing (MIOCP) using a direct or indirect
approach, v becomes a mesh-dependent degree of freedom.

We review a variety of solution approaches to variants of (MIOCP). In a di-
rect approach to optimal control, direct transscription of (MIOCP) to a finite-
dimensional problem results in a non-convex mixed-integer nonlinear program
(MINLP). Tailored strategies for node selection and branching [1] that exploit the
“arrow of time” help global MINLP solvers to perform better on such instances
than general-purpose MINLP strategies. Under additional convexity assumptions,
state elimination techniques sometimes permit to entirely remove the dependent
variable y, which results in a smaller convex MINLP to which outer approxima-
tion can be applied with great efficiency [2, 3]. If rigorous global solutions are
not important, mode insertion gradients can be computed to gradually improve a
reference control up to near stationarity. Once the sequence of mode choices for v
has been fixed, switching time optimization, a continuous optimization technique,
may be applied to refine the switching time grid [4]. Besides MINLP techniques,
relaxation approaches to (MIOCP) have proven powerful to approximately solve
real-world instances. [5] describes a variable time transformation approach, and
[4, 6, 7] develop a convexification and relaxation approach. The latter decomposes
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(MIOCP) into a continuous relaxation

min
y,α

J(y(T ))

s.t E(y) =
∑M

i=1 αi(t)f(y(t), v
i) a.e. t ∈ [0, T ]

0 ≤ αi(t)c(y(t), v
i) a.e. t ∈ [0, T ](RC)

α(t) ∈ [0, 1]M ,
∑M

i=1 αi(t) = 1 a.e. t ∈ [0, T ],

and a combinatorial integral approximation (CIA) problem, cf. [9], to reconstruct

v(t) =
∑M

i=1 ωj,iv
i on t ∈ (tj , tj+1) from a discretized relaxed solution α∗. Given

α∗, sum-up rounding algorithms [4, 7] produce a sequence (ωN ) of binary feasible
controls on ever finer grids as N → ∞. For these, tight approximation bounds
are known, cf. [7], and induce weak-*-convergence in the space of controls v as
well as norm convergence in the space of states y under suitable assumptions
on the spaces, the differential operator E, and the function f , c.f. [4, 10] for
MIOCPs. For semilinear hyperbolic MIPDECOS, this has been developed in [8].
Space-filling curves admit an extension of sum-up rounding procedures also to
higher-dimensional domains, e.g. [11] for elliptic MIPDECOs.

Sum-up rounding controls provide converging but sub-optimal integer control
reconstructions, and do not take the switch cost term C(w) into account. Hence,
optimal reconstruction procedures are reviewed next. One example is the mixed-
integer linear program (MILP)

min
ω

C(ω)

s.t maxj∈[N−1]

∣

∣

∣

∑

i∈[M ](tj+1 − tj)(α
∗
j,i − ωj,i)

∣

∣

∣
≤ θ ∀ i ∈ [M ](MILP)

ω ∈ {0, 1}(N−1)×M ,
∑

i∈[M ] ωj,i = 1 ∀ j ∈ [N − 1],

which minimizes the switch cost subject to a maximum integral control devia-
tion approximation bound θ. We review further reconstruction problems, such as
optimizing the sum-up rounding gap and dwell-time restrictions [12], the penalty-
ADM method [13] for coupling the effect of reconstruction decisions to the state
space, rounding via matching [14] for sequence independent switch cost terms,
and rounding via shortest paths [15] on exponential graphs for sequence depen-
dent ones.
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Computing lower bounds for the maximum perimeter of

small polygons

Andreas Potschka

(joint work with Bernd Mulansky)

A small polygon is defined as a convex polygon in the plane with diameter not
greater than one. Remarkably, for over a century the problem of finding small
n-gons with maximum perimeter has not been solved completely. In 1922, Karl
Reinhardt [12] published a geometric construction based on Reuleaux polygons
(polygons whose facets are bent outwards to form circular arcs of constant radius).
The construction allowed Reinhardt to derive an upper bound of 2n sin

(

π
2n

)

on the
perimeter and to solve the problem for all n ≥ 3 that possess an odd divisor d 6= 1.
The regular n-gon belongs to the solutions if and only if n is odd. There are (often)
multiple solutions, which take the form of equilateral n-gons whose vertices lie on
the boundary of some regular Reuleaux polygon with an odd number of sides.

The case n = 2s is solved for n = 4 [14] and n = 8 [1] but remains an open
problem for larger n. We present a novel mixed-integer nonlinear programming
(MINLP) formulation of the problem based on zonogons (point-symmetric poly-
gons) with 2n vertices. We argue that excellent local solutions to the MINLP
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can be found by solving a subset-sum problem (SSP) and a numerical homotopy
approach using arbitrary precision arithmetic.

We confirm a known example for n = 16 and present new examples for the cases
n = 32 and n = 64, which improve existing numerical lower bounds.

1. Related work

A good point of entry is [10]. The solution for the case n = 8 can be found in [1] and
a recent survey in [6]. The case n 6= 2s has been further investigated in [8, 9] leading
to additional solutions. Asymptotic lower bounds on the maximal perimeter have

been provided and continuously improved in [11, 5, 3, 4] to π9

8n8 +O(n−10). These
bounds, however, are not sharp (e.g, for n = 64, the difference to the upper
bound amounts to π9/(8 · 648) ≈ 1.3 · 10−11, while we know of local solutions
with a distance of 2.8 · 10−23). In [4], Couenne [2] was used to solve the problem
for n ≤ 32 and a candidate for n = 64 with a difference of 3.56 · 10−23 to the
upper bound was provided, which is 26% worse than the best solution we could
compute. Ideas for symmetrization and constructions with zonogons have already
been considered in the Russian literature [7].

2. Zonogon Mixed-Integer Nonlinear Program

We apply a construction based on zonogons, which leads to the MINLP

(1)

max
n
∑

k=1

2 sin
ϕk − ϕk−1

2

s.t.

n
∑

k=1

ck(cosϕk − cosϕk−1) = 0,

n
∑

k=1

ck(sinϕk − sinϕk−1) = 0,

0 = ϕ0 ≤ ϕ1 ≤ . . . ≤ ϕn = π, ck ∈ {±1}, k = 1, . . . , n

with n− 1 real variables, n “binary” variables, and two nonlinear inequality con-
straints. The integer vector c is called a code. It is possible to enumerate all codes
for n ≤ 32 using fast algorithms such as [13]. Computational evidence suggests
that there is only one local maximum of ϕ for each fixed code c.

We compute excellent feasible points of (1) with a two-step strategy, which is
based on the observation that the code c only enters in the nonlinear equality
constraints and that Reinhardt’s upper bound would be attained by equidistantly
spaced ϕk: Assuming Mossinghoff’s conjecture [10] that optimal polygons are ax-
ially symmetric, we can restrict our search in step 1 to symmetric codes via a
(often difficult to solve) SSP, while keeping ϕ fixed at the supersymmetric configu-
ration. In step 2, corresponding angles ϕ can be found using an arbitrary precision
(inexact) Newton method in a homotopy approach (1).
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3. Numerical results

Using 100 digits of accuracy and after symmetry reduction, we obtain the results
presented in Fig. 1 and Tab. 1.

Figure 1. Computed polygons with large perimeter for n = 2s,
s = 2, . . . , 6.

n distance to u.b. perimeter
4 2.619 · 10−2 3.0352761804100830493955953504961933133962756052

797220552560128292602278989952079876894718978
8 2.980 · 10−4 3.1211471340598313538646595036380865309095421664

697601224524789123816403490428894959252350336
16 7.741 · 10−7 3.1365477164866073860859670319412282272981367658

092326927892182035777457554738176289058573615
32 1.335 · 10−13 3.1403311569546193658254013805774586723120530983

395218699104148559468837774634543964164383685
64 2.836 · 10−23 3.1412772509327728680619914155024682979562620963

080964111750773439718362183509788657317267603

Table 1. Perimeters and their corresponding distance to the up-
per bound 2n sin π

2n of the polygons in Fig. 1.
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The Robust Bilevel Selection Problem

Dorothee Henke

In bilevel optimization problems, two players, the leader and the follower, make
their decisions in a hierarchy, and both decisions influence each other; see, e.g, [5]
for an introduction to bilevel optimization. Usually one assumes that both players
have full knowledge also of the other player’s data. In a more realistic model,
uncertainty can be quantified, e.g., using the robust optimization approach: As-
sume that the leader does not know the follower’s objective function precisely, but
only knows an uncertainty set of potential follower’s objectives, and her aim is to
optimize the worst case of the corresponding scenarios. We refer to the survey [1]
for an overview of different uncertainty concepts in bilevel optimization. While
bilevel optimization problems without uncertainty are often already NP-hard or
even Σp

2-hard [6], now the question arises how the computational complexity of
these problems changes under the additional complications of uncertainty.

We make a step towards answering this question by examining an easy bilevel
problem. In the Bilevel Selection Problem, we are given finite leader’s and
follower’s item sets El and Ef , respectively, a number b ∈ {0, . . . , |El ∪ Ef |}, and
leader’s and follower’s item values c : El ∪ Ef → Q and d : Ef → Q, respectively.
The problem can then be written as follows:

max
X

c(X ∪ Y )

s. t. X ⊆ El
Y ∈ argmax

Y ′

d(Y ′)

s. t. Y ′ ⊆ Ef \X
|X ∪ Y ′| = b

For the sake of simplicity, we assume that all follower’s item values are distinct
such that the optimum follower’s solution Y is always unique. Observe that the
follower’s problem, for a fixed feasible leader’s solution X , is a single-level Selec-
tion Problem that can be solved by a simple greedy approach, i.e., an optimum
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solution is given by the best b− |X | items from Ef \X according to the follower’s
item values d. The leader’s problem can be solved as follows: Enumerate all pos-
sible numbers bl of items that the leader can select. For each bl, greedily select
bl items from El according to the leader’s item values c, and solve the corresponding
follower’s problem greedily as well. Return the solution that has the best overall
leader’s value. In case the sets El and Ef are disjoint, it is easy to see that this
algorithm is correct. But also in the general case, this can be proven to be true.
Hence, the Bilevel Selection Problem is a bilevel problem that is solvable in
polynomial time.

We now investigate the complexity of its robust version. Here, we are given
an uncertainty set U of possible follower’s objectives d : Ef → Q and write the
problem as follows:

max
X⊆El

min
d∈U

c(X ∪ Y )

s. t. Y ∈ argmax
Y ′

d(Y ′)

s. t. Y ′ ⊆ Ef \X
|X ∪ Y ′| = b

The uncertainty can be seen as a third player, an adversary of the leader, who
chooses a follower’s objective d ∈ U after the leader has selected an item set X ,
but before the follower finally selects the additional items Y according to the
values d chosen by the adversary. From the follower’s perspective, the problem is
still a single-level Selection Problem that can be solved greedily. We now study
the complexity of the adversary’s problem, which is the evaluation of the leader’s
objective function, and of the leader’s problem for different types of uncertainty
sets that are often used in robust optimization; see, e.g., [4]. Our focus here lies
on discrete and interval uncertainty.

In case of a discrete uncertainty set U , i.e., a finite set of scenarios that are
explicitly given in the input, the adversary’s problem can simply be solved by
enumerating all scenarios and solving the follower’s problem for each of them.
This implies a polynomial-time algorithm also for the leader’s problem in case of
disjoint sets El and Ef , similarly to the problem without uncertainty. For general
sets El and Ef however, the robust problem with discrete uncertainty can be shown
to be NP-hard. Hence, the uncertainty indeed increases the complexity of the
underlying bilevel problem here.

If the uncertainty is given by an interval of possible values for each of the items,
i.e., an interval uncertainty set U =

∏

e∈Ef
[d−(e), d+(e)] with d−, d+ : Ef → Q,

then the adversary’s problem can again be solved in polynomial time. However,
more effort is required than in classical robust optimization with interval uncer-
tainty where often each of the intervals can trivially be replaced by one of its
endpoints [4]. Our algorithm makes use of the fact that the optimum follower’s
solutions in the different scenarios can be described as prefixes of an interval order
derived from the uncertainty set and and is based on an idea from [7]. As above,
this algorithm for the adversary’s problem leads to a polynomial-time algorithm
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also for the leader’s problem in case of disjoint sets El and Ef . In the general case,
the complexity of the robust version of the Bilevel Selection Problem under
interval uncertainty is still open.

Similar results were obtained for a robust bilevel continuous knapsack problem
in [2]. The complexity of more general bilevel optimization problems under robust
uncertainty regarding the follower’s objective from the leader’s point of view was
studied in [3]. In particular, also interval uncertainty has been shown to increase
the complexity of a bilevel optimization problem significantly in general.
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An exact projection-based algorithm for a class of bilevel MINLPs

Maximilian Merkert

(joint work with Galina Orlinskaya, Dieter Weninger)

Bilevel optimization problems model hierarchical decision-making of two agents,
called leader and follower. Solving bilevel mixed-integer problems with lower-level
integer variables to global optimality is extremely challenging as a single-level
reformulation that is suitable for MINLP solvers is usually not available. Relying
on a (hypothetical) exact single-level solver, we present an algorithmic framework
that is capable of solving certain bilevel MINLPs to exact global optimality. Our
method is an enhancement of an approximative projection-based algorithm by
Yue, Gao, Zeng and You [1], which was designed for linear mixed-integer bilevel
problems. We extend it to a problem class involving nonlinearities and show that
one can get rid of an explicit ǫ approximation in the algorithm from [1] under one
additional assumption (see Assumption (4) below).

Problem class and assumptions. We consider bilevel MINLPs with discrete
and continuous variables on both levels, using the optimistic assumption and the
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value-function reformulation

max
xu,yu,xl,yl

F (xu, yu, xl, yl)(BL-MINLP)

s.t. G(xu, yu, xl, yl) ≤ 0

g(yu, xl, yl) ≤ 0

f(xu, yu, xl, yl) ≥ θ (xu, yu)

xu ∈ R
mR

+ , yu ∈ Z
mZ

+ , xl ∈ R
nR

+ , yl ∈ Z
nZ

+ .

xu, yu denote upper-level continuous and discrete variables, respectively, xl, yl sim-
ilarly denote lower-level variables. Objective and constraint functions of the upper
level are denoted by F and G, respectively, while the corresponding lower-case let-
ters f and g are used for the lower-level problem. Moreover,

θ (xu, yu) = max
xl∈R

nR
+

,yl∈Z
nZ

{

f(xu, yu, xl, yl) : g(yu, xl, yl) ≤ 0
}

denotes the optimal-value function. Dropping the value-function constraint from
(BL-MINLP) yields the so-called high point relaxation (HPR).

We work with the following set of assumptions:

(1) Boundedness, continuity All variables have finite bounds in the HPR
and follower problem, respectively. F,G, f and g are continuous.

(2) Follower optimality conditions For any fixed upper-level decisions x̄u

and ȳu, and lower-level integer decisions ȳl, the follower problem is convex
and in case of feasibility satisfies Slater’s condition. Functions f and g are
continuously differentiable.

(3) Solvability of master problemsWe can solve the HPR of (BL-MINLP)
together with the necessary and sufficient optimality conditions for the
lower level as assumed in Assumption (2) to global optimality.

(4) Restriction on continuous leader variables Lower-level constraints
do not contain any continuous upper-level variables.

Algorithmic concept. We follow the general iterative framework from [1].

• Start with the High Point Relaxation as the initial master problem.
• In each iteration:

(1) Solve the master problem. Since it is a relaxation of (BL-MINLP),
this yields a dual bound (upper bound for maximization problems).

(2) For the obtained upper-level decisions (x̄u, ȳu), solve two subprob-
lems for first computing θ (x̄u, ȳu) and then checking whether there
is (x̄l, ȳl) that extends (x̄u, ȳu) to a bilevel-feasible solution. If suc-
cessful, this gives a new primal bound (lower bound).

(3) Add conditions to the master problem that essentially make the leader
anticipate any follower response involving the optimal ȳl from the
previous step.

• Terminate as soon as lower and upper bounds agree.
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In step (3) of the loop we iteratively add constraints to the master problem that
can be formally written as

(1)
[

yu ∈ Proj(yu)P
(

ȳl
)

]

=⇒
[

f(xu, yu, xl, yl) ≥ θ
(

xu, yu, ȳl
)]

,

where
P
(

ȳl
)

=
{(

yu, xl
)

: g(yu, xl, ȳl) ≤ 0
}

and thus
Proj(yu)P

(

ȳl
)

=
{

yu : ∃xl with
(

yu, xl
)

∈ P
(

ȳl
)}

denotes the set obtained by projecting out xl from the lower-level feasible set.
These constraints state that any master problem solution must leave the follower
with an objective value at least as good as the best-possible had they played ȳl, if
ȳl is playable. Note that we extend the notation for the optimal-value function in
a natural way to include fixing yl to ȳl.

It can be shown that the procedure eventually terminates with an optimal
solution under the above assumptions. Details can be found in [2]. However,
constraints (1), which we call projections implications, are difficult to model.

An exact realization of the framework. Let Y L denote the set of all ȳl for
which a projection implication shall exist. First, we use a binary variable ψk for
every yl,k ∈ Y L to split the projection implication into two:

[

yu ∈ Proj(yu)P
(

yl,k
)

]

=⇒
[

ψk = 1
]

(2a)
[

ψk = 1
]

=⇒
[

f(xu, yu, xl, yl) ≥ θ
(

xu, yu, yl,k
)]

.(2b)

The first implication (2a) is equivalent to the disjunction

[

yu /∈ Proj(yu)P
(

yl,k
)

]

∨
[

ψk = 1
]

.

However, for linearly relaxed yu the set on which this disjunction is true is not
necessarily closed, causing modeling problems. In [1] this issue is dealt with by
effectively considering a slightly larger set in place of Proj(yu)P

(

yl,k
)

. However,
this comes at the cost of introducing an ǫ constant and that the result is only an
approximation.

Our approach instead considers a slightly smaller set U ⊂ Proj(yu)P
(

yl,k
)

for

which the implication [yu ∈ U ] =⇒
[

ψk = 1
]

can be modeled in an exact way
using duality theory due to Assumption 2. The remaining requirement

[

yu ∈
(

Proj(yu)

(

P
(

yl,k
))

\ U
)]

=⇒
[

ψk = 1
]

is modeled via no-good cuts, so U should be chosen as large as possible. For details
on how to choose U and model the resulting implication in a MINLP, the reader
is referred to [2].
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Discussion and further considerations. The result shows that solvers for
bilevel MINLPs of the considered type do not need to explicitly introduce sources
of inexactness (“epsilons”) besides the ones implicitly rooted in the single-level
solver. It also proves that a bilevel optimum is attained for the considered class of
problems. The main limiting assumptions are that the follower problem is convex
in its continuous variables and that g does not depend on xu. Although an exact
MINLP solver assumed in Assumption (3) is purely hypothetical, the result is not
only of theoretical relevance: Computational experiments (see [2]) on modified li-
brary instances show that the number of no-good cuts needed is usually moderate,
and suggest that the method could form the basis for a practical solver implemen-
tation. It is worth noting that the framework implicitly makes use of all advanced
features of MINLP solvers and will benefit from any future improvements. Our
prototype implementation may of course also be improved by features tailored to-
wards the specific framework. Besides specialized cutting planes, a candidate is
projection branching: Instead of modeling the implications (2a) and (2b), which
involves big-M constraints, we can branch on whether yu ∈ Proj(yu)P

(

yl,k
)

and
add the corresponding constraints for either case. This avoids big-M constraints
altogether. Details and possible further advantages, both theoretical and compu-
tational, are the topic of ongoing research.

This is an extended abstract on results published in [2].
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Extended Formulations for Binary Optimal Control Problems

Christoph Buchheim

(joint work with Alexandra Grütering, Maja Hügging, Christian Meyer)

Extended formulations are an important tool in polyhedral combinatorics. Many
combinatorial optimization problems require an exponential number of inequalities
when modelled as a linear program in the natural space of variables. However, by
adding artificial variables, one can often find a compact linear formulation, i.e.,
one containing a polynomial number of variables and constraints, such that the
projection to the original space of variables yields the exact linear formulation.

We propose to use the same approach for binary optimal control problems where
the controls may be chosen from a set D ⊆ BV (0, T, {0, 1}). We assume that the
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latter satisfies the following conditions:

D is a bounded set in BV (0, T,R) ,(D1)

D is closed in L1(0, T,R) .(D2)

Condition (D1) implies that there exists a common bound σmax ∈ N0 such that all
controls u ∈ D have at most σmax switching points. In the following, we assume
for sake of simplicity that the switch starts being switched off. More precisely,
when the switch is on at t = 0, we already count this as one switching.

We now define an extended formulation of D as a set Dext ⊆ BV (0, T,R)d+1,
for some d ∈ N0, such that the projection of Dext to the first coordinate agrees
with conv(D), where the closure is taken in L1(0, T,R). Moreover, we require
that the formulation is linear and compact, i.e., contains a polynomial number of
controls and a polynomial number of linear constraints. Finally, we require that
the extended formulation is compatible with discretization.

On the positive side, motivated by a result in [2], we devise an extended for-
mulation for the case where the only condition in D is that the switch changes at
most σmax times. For even σmax, the extended model is

{

u ∈ BV (0, T, [0, 1]), z ∈ BV (0, T, [0, σmax

2 ]) : Dz ≥ Du, Dz ≥ 0
}

.

For odd σmax, a similar model can be derived. We also propose an extended for-
mulation for the so-called dwell time constraints that is motivated by the extended
formulation of Rajan and Takriti in the discrete case [3].

On the negative side, we show that such extended formulations cannot exist for
general linear switching constraints, i.e., for sets D(A, b) consisting of all controls
having σmax switching points (t1, . . . , tσmax

) satisfying At ≤ b; the latter condition
generalizes the dwell-time constraints. We show this by proving that, in general,
it is NP-complete to decide whether a discretization of D(A, b) contains a feasible
control or not. This is even true when the number of grid cells is not part of the
input, meaning that the hardness of the problem does not disappear when the
discretization grid is refined.
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Modelling Guide for Mixed-Integer Semidefinite Programming

Renata Sotirov

(joint work with Frank de Meijer)

Mixed-integer semidefinite programming can be viewed as a generalization of
mixed-integer programming where the vector of variables is replaced by mixed-
integer positive semidefinite matrix variables.

In this talk we show that many optimization problems may be modeled as
mixed-integer semidefinite programs (MISDPs), either by a generic approach for
certain large problem classes, or by a more problem-specific approach. Based
on a comprehensive study on discrete positive semidefinite matrices, we intro-
duce a generic approach to derive MISDP for quadratically constrained quadratic
programs and quadratic matrix programs. We also provide a combinatorial, poly-
hedral, set-completely positive and integer hull description of the set of positive
semidefinite binary matrices bounded by a certain rank. By applying a problem-
specific approach, we derive a compact MISDP of the quadratic assignment prob-
lem (QAP). To the best of our knowledge, our MISDP-QAP formulation provides
the most compact convex mixed-integer formulation of the problem in the lit-
erature. Complementary to the recent advances on algorithmic aspects related
to MISDP, our work opens new perspectives on solution approaches for the here
considered problems.

In the second part of the talk we present a formulation of the elementary clo-
sure of spectrahedra that relies on the data matrices of the integer semidefinte
program (ISDP) and positive semidefinite matrices. Our formulation provides a
constructive description of the elementary closure of spectrahedra rather than the
implicit description that is known for general convex sets. Equivalent to the case
of polyhedra, the elementary closure operation can be repeated, leading to a hi-
erarchy of stronger approximations of the integer hull of the spectrahedron. Our
explicit formulation of the elementary closure of spectrahedra enables us to intro-
duce Chvátal-Gomory (CG) cuts for integer semidefinite programs. The CG cuts
are introduced by Chvátal [1] and Gomory [2] and it is considered to be among
the most celebrated results in integer programming.

In the third part of the talk, we first show how to derive ISDP for the the
quadratic traveling salesman problem (QTSP) by exploiting the algebraic con-
nectivity of the directed Hamiltonian cycle. The QTSP is the problem of finding a
Hamiltonian cycle in a graph that minimizes the total interaction costs among con-
secutive arcs. Then, we show that the CG cuts resulting from these formulations
contain several well-known families of cutting planes. Numerical results verify the
practical strength of the CG cuts in our branch-and-cut algorithm, which out-
performs alternative ISDP solvers and is able to solve large QTSP instances to
optimality.

For the details on the first part of the talk see [3], and for the details on the
remaining part of the talk see [4].
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Strong cutting planes for convex mixed-integer programming

Jan Kronqvist

Outer approximation-based algorithms remain computationally more efficient than
pure nonlinear branch and bound [1]. The main reasons behind this is the com-
putational efficiency and robustness of LP solvers, i.e., we can explore nodes ef-
ficiently with LP relaxations, but also due to the mature technology of cutting
planes in MILP. The combinatorial challenges are then to some extent passed on
to the MIP subsolvers which employ a variety of cutting planes. However, the MIP
subsolver will not be aware of the actual nonlinear constraints which can prevent
the subsolver from utilizing this information to derive stronger cuts.

Deriving valid inequalities from convex nonlinear inequalities is trivial as any
gradient cut (first-order Taylor Series expansion) results in a valid inequality. The
simplest approach for generating an outer approximation of the feasible set is to
solve a mixed-integer linear relaxation to obtain a trial solution xk, and generate
the cuts

gi(x
k) +∇gi(xk)⊤(x− xk) ≤ 0 ∀i : gi(xk) ≥ 0,

to improve the mixed-integer linear relaxation. These cuts are often referred to as
gradient cuts. Unfortunately, the gradient cuts can be quite weak. Unless xk is on
the boundary of the feasible set, the gradient cut may not even form a supporting
hyperplane to the continuously relaxed feasible set. Several strategies for for ob-
taining stronger gradient cuts have been proposed, for example by projecting the
trial solution xk onto the continuously relaxed feasible set [2]. Keep in mind, that
a supporting hyperplane to the continuous relaxation may still be a weak inequal-
ity in relation to the convex hull of the feasible set intersected with the integer
lattice. The main shortcoming of classic outer approximation based methods is,
thus, that nonlinearly and integrality are dealt with separately, leading to more
iterations and unnecessarily big branch-and-bound trees.

The lift-and-project framework can also be applied to convex MINLP [3], but
solving the resulting nonlinear cut generation problems is not computationally
trivial. Furthermore, we illustrate by a simple example that one may want to
consider multi-branch split disjuncts in order to get a stronger cut, which results
in larger and computationally more expensive cut generation problems. In the
talk, we discuss a simple, yet effective, cut-strengthening procedure that utilizes
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disjunctive structures to derive cuts that consider both nonlinearity and integral-
ity to generate a stronger cut. This disjunctive cut strengthening technique was
presented by Kronqvist and Misener [4], and assumes the problem contains at least
one constraint of the form

∑

i∈ID

xi = 1,

where ID contains indices of binary variables. Then starting from a valid cut
α⊤x ≤ β, the technique produces a strengthened cut of the form

α⊤x ≤
∑

i∈ID

bixi,

where each bi ≤ β.
Compared to lift-and-project cuts, the cut-strengthening technique has the ad-

vantage that the cut is obtained by solving |ID| independent subproblems in-
stead of a single large cut-generating subproblem. The effectiveness of the cut-
strengthening is clearly demonstrated by a numerical study.
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Time-Domain Decomposition for Mixed-Integer Optimal

Control Problems

Falk M. Hante

(joint work with Richard Krug, Martin Schmidt)

We consider optimal control problems of the form

min ϕ0(x(t0)) + ϕf(x(tf))(1a)

s.t. ẋ(t) = f(x(t), u(t)) a. e. in [t0, tf ],(1b)

χj(x(t0)) = 0, j = 1, . . . , p,(1c)

ψj(x(tf)) = 0, j = 1, . . . , q,(1d)

u(t) ∈ U a. e. in [t0, tf ],(1e)

where [t0, tf ] is a fixed and finite time interval, x : [t0, tf ] → Rn is a state function,
and u : [t0, tf ] → Rm is a control function. In Problem (1), χj , ψj : Rn → R

model constraints on the initial and terminal state, and ϕ0, ϕf : Rn → R model
initial and terminal costs; U ⊂ Rm models control constraints, e.g. integrality
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of certain components; and the minimum is taken over all absolutely continuous
functions x(·) and over all measurable and essentially bounded functions u(·). Such
problems appear for example in context of optimizing physical network flow with
applications such as gas transportation [4].

In the case of (partially) discrete control sets U , direct transcription methods
such as collocation or Runge–Kutta discretizations lead to mixed-integer non-linear
programs (MINLPs). The limit behavior of such approximations for MIOCPs are
discussed in [2], but typical step-sizing in such discretizations make these problems
often large-scale and computationally intracktable.

We therefore consider computing Pontryagin-minima of (1), i.e., admissible
state-control points (x, u), such that for any constantN there exists an ε = ε(N) >
0 with the properties that for any admissible point (x′, u′) satisfying

‖x− x′‖C0([t0,tf ];Rn) < ε, ‖u− u′‖L1(t0,tf ;Rm) < ε, ‖u− u′‖L∞(t0,tf ;Rm) ≤ N,

it holds ϕ0(x(t0)) + ϕf(x(tf )) ≤ ϕ0(x
′(t0)) + ϕf(x

′(tf)).
By Pontryagin’s principle, and under certain regularity conditions but for arbi-

trary U , a Pontryagin-minimum satisfies

(2)

ẋ = f(x, u) a. e. in (t0, tf),

χj(x(t0)) = 0, j = 1, . . . , p,

ψj(x(tf)) = 0, j = 1, . . . , q,

u(t) ∈ U a. e. in [t0, tf ],

λ̇ = −λ⊤fx(x, u) a. e. in (t0, tf),

λ(t0) = ϕ′
0(x(t0)) +

∑p
j=1 βjχ

′
j(x(t0)),

λ(tf ) = −ϕ′
f(x(tf))−

∑q
j=1 βp+jψ

′
j(x(tf)),

max
u∈U

H(λ(t), x(t), u) = H(λ(t), x(t), u(t)) a. e. in (t0, tf).

The remarkable fact that the pointwise maximization is global motivates a MINLP
approach for solving (2), but direct transcription alone would not bring any ad-
vantage over applying this to the original problem (1).

We therefore consider a non-overlapping and iteratively decoupled decompo-
sition of (2) given by a sequence of so-called virtual control problems with fixed
parameters γ > 0 and ε ∈ (0, 1), and subintervals (tk, tk+1), k = 0, . . . ,K. For
k = 0, the problem reads

min
x0,u0

ϕ0(x0(t0)) +
1

2γ
‖x0(t1)− φℓ−1

0,1 ‖2

s.t. ẋ0 = f(x0, u0) a. e. in (t0, t1),

χj(x0(t0)) = 0,

u0(t) ∈ U a. e. in [t0, t1],
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For k = K, the problem reads

min
xK ,uK ,hK

1

2γ
‖hK‖2 + ϕf(xK(tf))

s.t. ẋK = f(xK , uK) a. e. in (tK , tK+1),

xK(tK) = φℓ−1
K,K−1 + hK ,

ψj(xK(tf)) = 0,

hK ∈ Rn, uK(t) ∈ U a. e. in [tK , tK+1].

And for the inner time sub-intervals k = 1, . . . ,K − 1, the problems read

min
xk,uk,hk

1

2γ
‖hk‖2 +

1

2γ
‖xk(tk+1)− φℓ−1

k,k+1‖2

s.t. ẋk = f(xk, uk) a. e. in (tk, tk+1),

xk(tk) = φℓ−1
k,k−1 + hk,

hk ∈ Rn, uk(t) ∈ U a. e. in [tk, tk+1].

The values φℓk,k+1 and φℓk,k−1 are updated using

φℓ−1
k,k+1 = (1− ε)

(

xℓ−1
k+1(tk+1) + γλℓ−1

k+1(tk+1)
)

+ ε
(

xℓ−1
k (tk+1) + γλℓ−1

k (tk+1)
)

,

φℓ−1
k,k−1 = (1− ε)

(

xℓ−1
k−1(tk)− γλℓ−1

k−1(tk)
)

+ ε
(

xℓ−1
k (tk)− γλℓ−1

k (tk)
)

.

The Pontryagin optimality conditions of these subproblems can be seen to match
exactly the time-decomposition of (2) if the iterates converge.

A direct transcription of these subproblems then yields a sequence of K but
in dimension typically smaller MINLPs to be solved together with the update
step above. For linear dynamics with quadratic costs and under certain technical
conditions, we can prove convergence in error, i.e., the iterates (xℓk, λ

ℓ
k) satisfy

xℓk(tk+1)− xℓk+1(tk+1) → 0,

λℓk(tk+1)− λℓk+1(tk+1) → 0

for all k = 0, . . . ,K − 1 as ℓ→ ∞.
As in [1], we demonstrate on numerical examples that this procedure can provide

significant computational advantages compared to solving the direct discretization
of the original problem on the entire time horizon. We also discuss the choice of
additional parameters of the proposed algorithm. Typical convergence rates are
shown in Figure 1.

Our computational experiments show that this advantage also pays off for the
case of nonlinear problems if the procedure converges. For other than the linear-
quadratic case however, a convergence theory or convergence enhancing mecha-
nisms are still to be investigated.

These findings motivate to explore special mixed-integer nonlinear/quadratic
programming technics to efficiently solve a sequence of similarly structured prob-
lems of low or moderate dimension. Moreover, they motivate to explore the con-
vergence properties if additional constraints or more challenging dynamics are to



Mixed-integer Nonlinear Optimization 1991

Figure 1. Convergence in error for a linear quadratic test prob-
lem from [1] over the iterates k.

be considered. Finally, it would also be desireable to replace technical assump-
tions such as the existence of optimal solutions to a less restictive setting based
on convex relaxations as in [3] and the references given therein.
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A Sequential Mixed-Integer Quadratic Programming Algorithm for

Solving MINLP Arising in Optimal Control

Moritz Diehl

(joint work with Andrea Ghezzi, Sebastian Sager, Wim Van Roy)

The aim of the presented Sequential Mixed-Integer Quadratic Programming (S-
MIQP) algorithm is to address nonconvex mixed-integer nonlinear programs
(MINLP)

(1)

min
x ∈ X, y ∈ Y

f(x, y)

s.t. g(x, y) ≤ 0,

h(x, y) = 0,

where Y = Zny ∩ Ȳ , both X ⊂ Rnx and Ȳ ⊂ Rny are convex polyhedral sets, and
functions f : Rnx ×Rny → R, g : Rnx ×Rny → Rng , h : Rnx ×Rny → Rnh are once
continuously differentiable. When an MINLP arises from the discretization of a
nonlinear mixed integer optimal control problem, the equality constraints h(x, y) =
0 are nonlinear and thus render the integer relaxation of the MINLP nonconvex.
However, we formulate the following optional convexity assumption: Function
h is affine, functions f and g are convex on X× Ȳ , and the integer set Y is finite.
While the S-MIQP algorithm is designed to work independently of this assumption,
it is be guaranteed to find the global solution if accidentally applied to a MINLP
that satisfies this assumption.

For notational compactness, we denote the first-order Taylor series of any non-
linear differentiable function h : Rnx × Rny → Rnh at a linearization point (x̄, ȳ)
by hL(x, y; x̄, ȳ) := h(x̄, ȳ) + ∂h

∂x (x̄, ȳ)(x − x̄) + ∂h
∂y (x̄, ȳ)(y − ȳ). For any function

F : Rnx → RnF we define ∇F (x) := ∂F
∂x (x)

⊤.
The above MINLP (1) can conceptionally be formulated as a pure integer op-

timization problem miny∈Y J(y) by use of the value function J(y) that is defined
via the following nonlinear program (NLP):

(2)

J(y) := min
x ∈ X

f(x, y)

s.t. g(x, y) ≤ 0,

h(x, y) = 0.

The MIQP approximation of the MINLP will be based on a function

JQP(y; x̄, ȳ, B) ≈ J(y)

that depends on the chosen linearization point (x̄, ȳ) and Hessian matrix B � 0
and is defined by the following parametric quadratic program (QP):

(3)

JQP(y; x̄, ȳ, B) := min
x ∈ X

fL(x, y; x̄, ȳ) +
1

2

(

x− x̄
y − ȳ

)⊤
B

(

x− x̄
y − ȳ

)

s.t. gL(x, y; x̄, ȳ) ≤ 0,

hL(x, y; x̄, ȳ) = 0.
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To focus on the main algorithmic idea, we make an optimistic feasibility as-

sumption: The NLP problem (2) and the QP problem (3) are feasible for any
y, ȳ ∈ Ȳ , x̄ ∈ X̄, B � 0, and admit a minimizer with finite objective value. This
property can e.g. be achieved by the use of L1 penalized slack variables for poten-
tially infeasible constraints in the original problem formulation (1).

Note that, if B = 0 and under the convexity assumption, the piecewise linear
convex function JQP is an underestimator of J , i.e., JQP(y; x̄, ȳ, 0) ≤ J(y) for all
y ∈ Ȳ , as in outer approximation. For B ≻ 0 no such guarantee exists, though
we expect the quadratic approximation to often be better than the linear one. A
favourable choice for least squares objectives f(x, y) = ‖F (x, y)‖22 is the Gauss-
Newton Hessian BGN=2∇F (x̄, ȳ)∇F (x̄, ȳ)⊤ which makes the QP objective equal
to ‖FL(x, y; x̄, ȳ)‖22.

First Version of the S-MIQP Algorithm. The S-MIQP algorithm iterates in
the integer space starting with an initial guess y0 ∈ Y . At iteration k, with a given
integer candidate yk, it first evaluates the NLP (2) giving both the value J(yk)
and a subgradient ∇J(yk) that can be computed as in Generalized Benders De-
composition [3]. It stores the current NLP solution tuple (k, xk, yk, J(yk),∇J(yk))
in a growing data structure Dk. Now, after having evaluated the auxiliary NLP
already at k integer points, giving J(y1), . . . , J(yk) along with their subgradients,
we linearize the full problem at the best point found so far, the incumbent solution
yb(k). Here, for uniqueness, b(k) ≤ k denotes the lowest index that achieves the
minimal objective J(yb(k)) = mini∈{0,1,...,k} J(yi). Crucially, we impose additional
linear level constraints that exclude all non-optimal points among the other visited
points, yi with i ∈ Ik := {0, 1, . . . , k} \ {b(k)}. Thus, with some choice of Hessian
Bk � 0, we solve the following MIQP in each iteration:

(4)

(xQP
k , yQP

k ) := arg min
x∈X, y∈Y

fL(x, y;xb(k), yb(k)) +
1

2

(

x−xb(k)
y−yb(k)

)⊤
Bk

(

x−xb(k)
y−yb(k)

)

s.t. gL(x, y;xb(k), yb(k)) ≤ 0,

hL(x, y;xb(k), yb(k)) = 0,

J(yi)+∇J(yi)⊤(y − yi) ≤ J(yb(k)), i ∈ Ik.

The level constraints form a polyhedral Benders region Bk := {y ∈ Rny |J(yi)+
∇J(yi)⊤(y − yi) ≤ J(yb(k)), i ∈ Ik} in integer space that excludes all points y
for which we have an approximate certificate - that is exact in the convex case -
that they are worse than the incumbent solution. Conversely, the Benders region
does not exclude any point for which we do not have a non-optimality certificate
in the convex case. This second property is preserved in the final version of the
algorithm. Note that the Voronoi-based region used in a preliminary version of
the sequential MIQP algorithm as proposed in [4] does not have this property and
is inferior from both a theoretical and a practical perspective.

In some iterations, we also solve a mixed integer linear program (MILP) which
helps us to generate a lower bound LBk, to check if termination is possible and
to potentially deliver a new trial point. The MILP is solved in two cases: either
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if J(yk) = J(yb(k−1)), which can be detected before any MIQP solution, or if the

MIQP solution yQP
k equals one of the previously found points y0, . . . , yk (which

can only be one of the previously optimal points due to the level constraints). The
MILP is formulated as follows.

(5)

(ηLBk , xLBk , yLBk ) := arg min
η∈R, x∈X, y∈Y

η

s.t. η ≥ fL(x, y;xb(k), yb(k)),

0 ≥ gL(x, y;xb(k), yb(k)),

0 = hL(x, y;xb(k), yb(k)),

η ≥ J(yi) +∇J(yi)⊤(y − yi), i ∈ Ik.

It is interesting to remark that this MILP is a mix of Outer Approximation [2] at
the best point and Generalized Benders Decomposition for all other points, which
ensures that linearized equality constraints appear only once. The MILP solution
gives a new lower bound LBk := ηLBk , and the algorithm stops if the solution yLBk

of the MILP equals one of the previously found optimal points, as in this case
holds J(yb(k)) = LBk. Otherwise, the algorithm continues by setting yk+1 := yLBk

for the next candidate solution to be explored in the next iteration. In case that

no MILP had to be solved, the algorithm sets yk+1 := yQP
k . One can show that the

algorithm is well defined and stops after finitely many iterations at the globally
optimal solution, if the convexity assumption holds.

Final S-MIQP Algorithm with Gradient Correction. In the general non-
convex case, the algorithm presented so far would not always be well defined:
it can happen that the incumbent solution yb(k) is excluded from the feasible
set of the MIQP if it violates, for some i ∈ Ik, the level inequality J(yi) +
∇J(yi)⊤(yb(k) − yi) ≤ J(yb(k)). To avoid this problem, we replace ∇J(yi) by
a corrected gradient gcorr(i,k) that minimizes the weighted distance to ∇J(yi) (with

weighting matrix W ≻ 0), within the set of admissible gradients G(i,k) := {g ∈
Rny | J(yi) + g⊤(yb(k) − yi) ≤ J(yb(k))} as follows:

(6)
gcorr(i,k) := arg min

g ∈ G(i,k)

‖g −∇J(yi)‖2W .

It is easy to see that, under the convexity assumption, in iteration k holds that
gcorr(i,k) = ∇J(yi) for all i ∈ Ik. Thus, gradient correction does not impair the

algorithm’s capability to find the globally optimal solution in the convex case.
However, in practice, the gradient correction alone might lead to very small regions
Bk due to the minimality of the correction. In order to enlarge Bk, we introduce

a constant value ρ ≥ 1 to amplify all gradients as gampl
(i,k,ρ)

:= ρ · gcorr(i,k). One can

show that gradient amplification can only increase the Benders region Bk in the
MIQP and can only reduce the value of the lower bound in the MILP. Thus,
the final nonconvex version of the S-MIQP algorithm replaces, in iteration k, the

gradients ∇J(yi) by gampl
(i,k,ρ) in all level inequalities, i.e., in both the MIQP and

the MILP. Under the convexity assumption, for any fixed ρ ≥ 1, one can show
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that the algorithm will stop at a globally optimal solution. Without the convexity
assumption, one can only show that the algorithm will never revisit a previously
visited point, such that it stops after finitely many iterations if the integer set Y
is finite.

Additional Practical Considerations. In practice, the generation of tight
lower bounds can take many MILP solutions that do not improve the incum-
bent solution. Thus, one might want to stop much earlier than until the certificate
J(yb(k)) = LBk is obtained, which is anyway not an exact certificate in the non-
convex case. In particular, in case of MINLP problems with least squares objec-
tives that enable the use of a Gauss-Newton (GN) Hessian in the MIQP, a useful
heuristic stopping criterion might be to stop when the MIQP solution equals the

incumbent solution, i.e., when yQP
k = yb(k).

Another important topic is the choice of the initial guess y0 ∈ Y . One option is
to use the following two-step procedure. First, one uses an NLP solver to find the
solution (x̄, ȳ) of the relaxed MINLP. In compact notation, this is equivalent to
setting ȳ := argminy∈Ȳ J(y). Second, one chooses a Hessian B - ideally the GN-
Hessian - and formulates and solves the MIQP (4) without level constraints. In
compact notation, this amounts to setting y0 := argminy∈Y JQP(y; x̄, ȳ, B). The
integer solution found by this procedure, i.e., by solving a Gauss-Newton MIQP
obtained by linearization at the relaxed solution, was proposed in [1] and found
to be of very good heuristic value in challenging mixed integer optimal control
problems arising from the control of thermal energy systems in buildings.
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A new lower bounding approach for the double row facility

layout problem

Anja Fischer

(joint work with Frank Fischer, Angelika Wiegele)

In the Double Row Facility Layout Problem (DRFLP) one is given a set of n
departments, their lengths ℓi, i ∈ [n] := {1, . . . , n}, (all widths are the same)
and pairwise weights wij = wji, i, j ∈ [n], i < j, between them. One looks for a
non-overlapping arrangement of the departments along two sides of a path such
that the weighted sum of the pairwise center-to-center distances is minimized.
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It has applications in factory planning, in the design of office buildings and in
semiconductor design, see, e. g. [3]. The DRFLP is an extension of the well-studied
Single Row Facility Layout Problem (SRFLP) where the input is the same, but all
departments are arranged on exactly one side of a path. For the SRFLP medium-
sized to large instances can be solved to optimality and one can derive good lower
bounds for very large instances rather fast [1, 7]. The integer-programming as
well as the semi-definite programming models for the SRFLP exploit the fact
that, given non-negative weights, there always exists an optimal solution without
spaces between neighboring departments and so one looks for a best permutation
of these [1, 7]. In contrast to this, it seems to be much more challenging to
derive high-quality lower bounds quickly or to even solve the DRFLP exactly. One
reason for this is that an optimal DRFLP solution may contain free space between
adjacent departments in the same row. So, in the solution of the DRFLP we do
not only have to determine the row assignment of the departments, the orders of
the departments in both rows but the precise positions of the departments in each
row as well. In the literature, often big-M-type models are used to couple the
row and order information with the positions, see, e. g. [2, 3, 8]. Unfortunately,
the linear relaxations of these big-M-type models are rather weak. Apart from
this, it is challenging to determine good DRFLP lower bounds because due to
the double row structure the distance between two departments might be zero.
In [4] some non-trivial lower bounds on the optimal DRFLP solution values are
derived exploiting the relation of the DRFLP to certain scheduling problems. The
best exact approach for the DRFLP in [5] is able to solve instances with up to 16
departments in less than 12 hours.

In this talk we present a new approach to combine the most successful models
for the SRFLP with models to handle the local arrangements of adjacent depart-
ments including their free spaces. Indeed, we combine the well-known betweenness
model by Amaral [1], where the variables are related to linearized products of or-
dering variables, with position variables and several further ones. The betweenness
variables xijk ∈ {0, 1}, i, j, k ∈ [n], |{i, j, k}| = 3, express here whether the center
of department j lies between the centers of departments i and k. Apart from this
we use two types of distance variables. The standard distance variables express
the pairwise distances of the departments which are important for the calculation
of the objective function. Indeed, we somehow underestimate the true distances
by not taking free spaces into account. But the hope is that the betweenness
model describes the global distance structure of the departments sufficiently well.
One challenge in the calculation of the distance between two departments using
betweenness variables is that there are usually departments in both rows that lie
completely between two departments, but also few departments that are only par-
tially in between. Unfortunately this might lead to large (relative) errors in the
calculation of distances of departments which are close. In order to get good lower
bounds on the local distances we set up small subproblems. These contain only
a small number of the departments, indeed D ⊂ [n] where in our test we use
|D| = {3, 4}. Using a big-M-type model we can calculate the exact distances of
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the departments in D given a specific configuration. Then each of these subprob-
lems provides a lower bound on certain local distances and the best lower bounds
are then combined in a Lagrangian relaxation approach. Solving the Lagrangian
relaxation leads to a non-smooth convex optimization problem. Deriving a solu-
tion value and an associated subgradient requires the solution of a large extended
betweenness model and a possibly huge number of the small local subproblems.
Since it is well-known that for larger instances even solving the linear relaxation of
the betweenness model is challenging but gives strong bounds and exactly solving
these problems is time-consuming and since we are mainly interested in deriving
lower bounds, we neglect the integrality here and only solve the other subprob-
lems exactly. As a solution method for the convex optimization problem we use
the asynchronous parallel proximal bundle method presented in [6] which is sum-
marized in the talk as well. Using this method has the advantage that we can
fully exploit modern computer architectures. Indeed, in classic synchronous al-
gorithms the slowest computation time of a subproblem determines the overall
running time, which typically is the betweenness model in our case. In contrast,
the new method can proceed without waiting for and knowing the solutions of all
subproblems, reducing the slow-down due to synchronization significantly. At the
end we present preliminary, but encouraging computational results.
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Convex envelopes of bounded monomials on two-variable cones

Pietro Belotti

We consider a function f : Rn
+ → R+ defined as f(x) =

∏

i∈N xai

i where N =
{1, 2, . . . , n}, n > 1, ai > 0∀i ∈ N , a closed compact set D ⊆ Rn

+, and a scalar
interval [ℓ, u], with 0 < ℓ < u < +∞. We seek the convex hull of the set F (D) =
{(x, z) ∈ (X ∩ D)× R : z = f(x)}, where

X = {x ∈ Rn
+ : ℓ ≤ f(x) ≤ u}.

If ℓ and u are infinite and D is a bounding box over x, the convex envelope
is polyhedral [9]. For example, if n = 2 we have B = {(x1, x2, z) ∈ R3

+ : z =
x1x2, (x1, x2) ∈ [λ1, µ1]× [λ2, µ2]}; then the following four inequalities [6]

(1)
z ≥ λ2x1 + λ1x2 − λ2λ1 z ≥ µ2x1 + µ1x2 − µ2µ1

z ≤ λ2x1 + µ1x2 − λ2µ1 z ≤ µ2x1 + λ1x2 − µ2λ1

form the convex hull of B [2]. An extension to the case n = 3 has also been studied
[7]. The convex hull is, in general, not polyhedral when z has finite lower and/or
upper bounds ℓ, u. In the bilinear case, i.e., n = 2, a1 = a2 = 1, the convex hull of

B′ = {(x1, x2, z) ∈ B : ℓ ≤ z ≤ u}
is tighter than (1) if the bounds on z are tighter than those on x1 and x2, i.e.,
ℓ > λ1λ2 or u < µ1µ2. A family of infinitely many linear inequalities has been
developed for this case [3], and it has been proven [1] that the convex hull of B′ is
the union of three sets, all second-order cone representable. The cases a1 = 1 ≤ a2
(convex hull) and a1, a2 ≥ 1 (lower envelope) have also been studied [8].

The main focus of this abstract is the convex hull of F (D) with

(2) D =Wij := {x ∈ Rn
+ : pxi ≤ xj ≤ qxi},

with 0 < p < q, for two indices i, j ∈ N . The proofs can be found at [4].

Convex hull of F (Rn
+). Denote β =

∑

i∈N ai, then for z0, γ ∈ R define the cone

K =
{

(x, z) ∈ Rn
+ × R : (z − z0)

β ≤ γ
∏

i∈N xai

i

}

.

The vertex of K is (0, z0). Also define F (D)≤ := {(x, z) ∈ (X∩D)×R : z ≤ f(x)}.
If β = 1 then F (D)≤ is a convex cone intersected with S := {(x, z) ∈ Rn

+ × R :
ℓ ≤ z ≤ u} = Rn

+ × [ℓ, u]. For a tight relaxation, parameters z0 and γ must satisfy

{(x, z) ∈ F (D)≤ : z = ℓ} = {(x, z) ∈ K : z = ℓ};
{(x, z) ∈ F (D)≤ : z = u} = {(x, z) ∈ K : z = u},

and therefore z0 = u
1
β ℓ−ℓ

1
β u

u
1
β −ℓ

1
β

and γ =

(

u−ℓ

u
1
β −ℓ

1
β

)β

. Note that β ≥ 1 ⇔ (z0 ≤ 0, γ ≥
1). Also, if β = 1, z0 = 0, γ = 1, and it is easy to verify that K ∩ S ≡ F (Rn

+)
≤,

while ℓ = 0 implies z0 = 0, i.e., the vertex of K is the origin.

Lemma 1. F (Rn
+) ⊆ K if and only if β ≥ 1.
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The structure of both upper envelope and lower envelope of f over X ∩ D
discussed here changes radically at β = 1. For instance, F (Rn

+)
≤ is convex for

β ≤ 1 and nonconvex for β > 1.

Proposition 1. If β ≥ 1, then conv(F (Rn
+)) = K ∩ S.

If β ≤ 1, then conv(F (Rn
+)) = F (Rn

+)
≤.

Upper envelope over X ∩Wij . From now on, we consider D = Wij defined in
(2); the above result on the upper envelope is substantially unchanged, save an
extra inequality for n = 2.

Proposition 2. If β ≥ 1 and n > 2, the upper envelope of f over X ∩Wij is

H = {(x, z) ∈ Rn
+ × R : z ≤ u, pxi ≤ xj ≤ qxi,

∏

k∈N xak

k ≥ ℓ,

(z − z0)
β ≤ γ

∏

k∈N xak

k }.
Proposition 3. If β ≤ 1 and n > 2, the upper envelope of f over X ∩Wij is

H = {(x, z) ∈ Rn
+ × R : z ≤ u, pxi ≤ xj ≤ qxi,

∏

k∈N xak

k ≥ ℓ

z ≤ ∏

k∈N xak

k }.
Lower envelope over X∩Wij . We build on a property of the monomial function
f for general n ≥ 2 to derive a few results leading to the lower envelope of f over
X∩Wij for n = 2. Define the level set Cξ = {x ∈ Rn

+ : f(x) = ξ} and the two sets
Pij = {x ∈ Rn

+ : xj = pxi} and Qij = {x ∈ Rn
+ : xj = qxi}. There is a bijection

from Cξ ∩ Pij to Cξ ∩Qij that joins all pairs of points by parallel lines.
It is easy to show that for n = 2 and a1 = a2 = 1, Cξ ∩ Pij = {x̌} and

Cξ ∩Qij = {x̂} where

x̌ =

(

√

pξ,

√

1

p
ξ

)

, x̂ =

(

√

qξ,

√

1

q
ξ

)

.

The line through x̌ and x̂ has slope
1/

√
p−1/

√
q√

p−√
q = −(pq)−

1
2 , independent of ξ. This

holds for general positive exponents (a1, a2) 6= (1, 1), in which case the coefficients

of x1 and x2 are proportional to ξ
1
β rather than

√
ξ. This generalizes to n ≥ 2.

Lemma 2. Given a ∈ Rn
+, i, j ∈ N , ξ ∈ R, p, q ∈ R+ with i 6= j and 0 < p < q,

there exist di < 0 and dj > 0 such that for any x̌ that satisfies x̌j = px̌i and
∏

i∈N x̌ai

i = ξ, there exists a unique solution (s̄, x̄) ∈ R+ × Rn
+ to the system

x̄j = qx̄i (x̄i, x̄j) = (x̌i + s̄di, x̌j + s̄dj)
x̄k = x̌k ∀k /∈ {i, j} ∏

i∈N x̄ai

i = ξ.

Although s̄ does depend on x̌, the key fact is that direction (di, dj) defines a
bijection from Pij to Qij by joining pairs of points that have same value of the
function

∏

i∈N xai

i . This suggests that on a direction orthogonal to (di, dj), i.e.,
(dj ,−di), we can define a lower-bounding function that matches the values on Pij

and Qij and that, for n = 2, is the lower envelope of f(x).

Proposition 4. The function f ′
ℓ(x) = λ(djxi − dixj)

ai+aj
∏

k∈N\{i,j} x
ak

k , with

λ = paj/ (dj − dip)
ai+aj ,
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Figure 1. Upper envelope f ′
u(x) and lower envelope f ′

ℓ(x) of
function f(x) = xa1

1 x
a2

2 for β ≥ 1; and lower envelope f ′′
ℓ (x).

(1) matches the value of f(x) for x ∈ Pij ∪Qij;
(2) is a minorant of f(x) for x ∈ Wij ;
(3) is, for n = 2 and β = a1 + a2 ≥ 1, the lower envelope of f(x) in Wij .

Proposition 5. The function f ′′
ℓ (x) = ζ(djxi − dixj)

ai+aj
β

(

∏

k∈N\{i,j} x
ak

k

)
1
β

+

z0, for β ≤ 1 and with ζ = λ1/β u−ℓ
u1/β−ℓ1/β

and z0 as defined above,

(1) matches f(x) at (Pij ∪Qij) ∩ (Cℓ ∪Cu);
(2) is a minorant of f in X ∩Wij ;
(3) is the lower envelope of f over conv((Pij ∪Qij) ∩ (Cℓ ∪Cu)) for n = 2.

The above results give the convex envelope of set F (D) in n = 2 dimensions.
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A Complete characterization of the multilinear polytope of acyclic

hypergraphs

Aida Khajavirad

(joint work with Alberto Del Pia)

We consider the multilinear polytope defined as the convex hull of the set of binary
points z, satisfying a collection of equations of the form ze =

∏

v∈e zv for all
e ∈ E. The complexity of the facial structure of the multilinear polytope is closely
related to the acyclicity degree of the underlying hypergraph. We characterize the
classes of acyclic hypergraphs for which the corresponding multilinear polyope has
a polynomial-size extended formulation.

A hypergraph G is a pair (V,E), where V is a finite set of nodes and E is a set
of edges, which are subsets of V of cardinality at least two. With any hypergraph
G = (V,E) we associate the multilinear set :

SG :=
{

z ∈ {0, 1}V+E : ze =
∏

v∈e

zv, ∀e ∈ E
}

,

and we refer to its convex hull, as the multilinear polytope and denote it by MPG.
Unlike graphs, the notions of cycles and acyclicity in hypergraphs are not unique.
The most well-known types of acyclic hypergraphs, in increasing order of general-
ity, are Berge-acyclic, γ-acyclic, β-acyclic, and α-acyclic hypergraphs.

In [1], we prove that MPG coincides with its standard linearization, if and only
if the hypergraph G is Berge-acyclic. This in turn implies that if G is Berge-
acyclic, then MPG is defined by |V |+ (r+2)|E| inequalities in the original space.
In [1], we introduce flower inequalities, a class of facet-defining inequalities for
the multilinear polytope, and show that the polytope obtained by adding all such
inequalities to the standard linearization coincides with MPG if and only if the
hypergraph G is γ-acyclic. This result implies that if G is γ-acyclic, then MPG

has a polynomial-size extended formulation with at most |V |+ 2|E| variables and
at most |V | + (r + 2)|E| inequalities. Subsequently, in [2], we introduce running
intersection inequalities, a class of facet-defining inequalities for the multilinear
polytope that serve as a generalization of flower inequalities. We prove that for
kite-free β-acyclic hypergraphs, a class that lies between γ-acyclic and β-acyclic
hypergraphs, the polytope obtained by adding all running intersection inequalities
to the standard linearization coincides with MPG, and it admits a polynomial-size
extended formulation with at most |V | + 2|E| variables and at most |V | + (r +
2)|E| inequalities. Finally, in [3], we present present a polynomial-size extended
formulation for the multilinear polytope of β-acyclic hypergraphs with at most
(r − 1)|V |+ |E| variables and at most (3r − 4)|V |+ 4|E| inequalities.

At the other end of the spectrum, in [4], the authors prove that a binary polyno-
mial optimization problem is strongly NP-hard over α-acyclic hypergraphs. This
result implies that, unless P = NP, one cannot construct a polynomial-size ex-
tended formulation for the multilinear polytope of α-acyclic hypergraphs.
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Sensitivity analysis for mixed binary quadratic problems: complexity,

structure, and computation

Santanu S. Dey

(joint work with Diego Cifuentes, Jingye Xu)

A mixed binary quadratic problem (MBQP) is a problem of the form:

f(b) := min x⊤Qx+ c⊤x

s.t. Ax ≤ b

x ∈ {0, 1}n1 × R
n2

+ ,

where Q is a real symmetric n× n matrix, A ∈ Rn×m, c ∈ Rn, and b ∈ Rm.
In many operational applications, it is necessary to routinely find, within a

very limited time window, provably good solutions to challenging MBQPs. An
example is the Security-Constrained Unit Commitment (SCUC) problem, solved
daily to clear the day-ahead electricity markets. In such operational applications,
instances are significantly similar to each other. Specifically, instances typically
share the same size and problem structure, with differences only in right-hand
sides and objective function. This motives the need to conduct sensitivity analysis
on MBQPs.

We first analyze the formal complexity question of conducting sensitivity anal-
ysis for MBQPs. Let δ ∈ Rm and let ∆f(δ) = ‖f(b + δ) − f(b)‖. We want to
approximate ∆f(δ) as a function of δ. Formally, an algorithm is called (α, β)-
approximation for some β ≥ α > 0 if it takes as input: (i) an MBQP instance
(A, b, c,Q, f(b), δ), (ii) the optimal objective value f(b), and (iii) δ ∈ Rm, and
outputs p satisfying:

α ·∆f(δ) ≤ p ≤ β ·∆f(δ).
We prove that it is NP-hard to achieve (α, β)-approximation for any β ≥ α > 0
for general MBQPs.

Next, we leverage Sam Burer’s completely-positive (CPP) reformulation [1] of
MBQPs by examining its dual, the so-called co-positive (COP) problem, and use
this dual to obtain bounds with respect to changing rhs. We show that strong
duality holds between the CPP reformulation and its COP dual if the feasible
region of the MBQP is bounded or if the objective function of the MBQP is
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convex. When the feasible region is unbounded and the objective function is a
non-convex quadratic, we show using examples that strong duality may not hold.

We next show that the dimension of the set of optimal solutions of the COP dual
is at least m, where the original MBQP has m constraints. The choice of optimal
solution of the dual affects the quality of bounds we obtain when changing the rhs.
Finally, we provide an algorithmic approach to find “best values” of optimal dual
solutions and present preliminary computational results on sensitivity analysis for
MBQPs.

References

[1] S. Burer, On the copositive representation of binary and continuous nonconvex quadratic
programs, Mathematical Programming 120 (2009), 479–495.

Data-driven distributional robustness over time: How to learn

uncertainties with robust decisions

Frauke Liers

(joint work with K. Aigner, A. Bärmann, K. Braun, S. Pokutta, O. Schneider,
K. Sharma, S. Tschuppik)

Classical stochastic Optimization (SO) typically requires knowledge about the
probability distribution of uncertain parameters. As the latter is often unknown,
Distributionally Robust Optimization (DRO) provides a strong alternative that
determines the best guaranteed solution over a set of distributions (ambiguity
set).

In this talk, we present a DRO approach that iteratively incorporates such
information over time, [1]. Specifically, we provide an online learning algorithm
that solves DRO problems with limited initial knowledge about the uncertainty,
but which can leverage additional incoming data. This allows the optimal solutions
to adapt to the uncertainty and gradually reduce the cost of protection. To this
end, we use scenario observations arriving as a data stream to construct and update
the ambiguity sets.

The two key differences in our work which distinguish it from regular online
optimization are (i) use of DRO while learning from data and (ii) solving the
DRO problem approximately. The first ensures that our solutions are robust to
uncertainty in the knowledge of the true probability distribution. The second
allows us to obtain robust solutions without solving the DRO problem exactly at
each step. Specifically, the key contributions of our work are:

Online Learning Algorithm for DRO. We provide an online algorithm to solve
the DRO problem. It also learns the uncertainty from scenario observations over
time, shrinking the ambiguity sets. This allows for rapid computation of the DRO
solutions along with their adaptation. Thus, reducing the cost of protection.

Stochastic Consistency. We also prove that the solution of the DRO problem
converges to the SO problem. Since our online algorithm solves the DRO problem,
thus it too converges to the solution of the SO problem.
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High Probability Regret Bounds. We prove that the cumulative regret between the
solutions generated by our online method and the exact DRO solution at each
time step shrinks at a rate of O(log T/

√
T ) with high probability.

Flexibility of Uncertainty Models. We consider 3 different ambiguity models:

• confidence intervals,
• ℓ2-norm sets
• kernel based ambiguity sets.

These allow our approach to adapt to the application.

Computational Results. We provide a computational study on mixed-integer bench-
mark instances and on real world problem examples. Specifically, we compare on
the MIPLIB and QPLIB libraries and further illustrate our results with two real-
istic applications from telecommunications and routing. We demonstrate that our
online method leads to significantly reduced computation times with only marginal
sacrifices in solution quality.
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SDP hierarchies for distance-avoiding sets on compact spaces

Bram Bekker

(joint work with Olga Kuryatnikova, Fernando Mário de Oliveira Filho,
Juan C. Vera)

Witsenhausen’s problem [6] asks for the largest measurable set on a unit sphere
such that no two points in the set are orthogonal. More precisely, let Sn−1 =
{x ∈ Rn : ‖x‖ = 1} be the n-dimensional unit sphere, ω be the standard surface
measure, and ωn the total measure of the sphere. We define

αn = sup{ω(I)/ωn : I ⊂ Sn−1 does not contain orthogonal pairs}.
The Double Cap Conjecture claims that the largest such set is achieved by

taking the union of two open antipodal spherical caps of angular size π/4, i.e.

{x ∈ Sn−1 : ‖e · x‖ > cos(π/4)},
for some fixed point e ∈ Sn−1. Optimality of this set was conjectured by Kalai [3,
Conjecture 2.8].

We model this problem as an independent set problem on a graph. Let G =
(Sn−1, E) be a graph with vertex set Sn−1. Two points x, y ∈ Sn−1 share an edge
if and only if x · y = 0, i.e. if and only if they are orthogonal. The sets on the
sphere avoiding orthogonal pairs are exactly the independent sets of this graph.
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A popular starting point for finding upper bounds to independent set problems
is the Lovász ϑ-number, is given by

ϑ(G) = sup
∫

Sn−1

∫

Sn−1 A(x, y)dω(x)dω(y)
∫

Sn−1 A(x, x)dω(x) = 1,
A(v, w) = 0 for all (v, w) ∈ E,
A continuous and PSD.

We call a symmetric L2-function A : (Sn−1)2 → R a kernel and denote the set
of kernels by L2

sym(S
n−1), and we call a continuous kernel A positive semidefinite

(PSD) if and only if every finite submatrix of A is positive semidefinite.
The Lovász ϑ-number often gives quite weak bounds, so the question arises how

to strengthen it. We have described a new approach based on results from copos-
itive programming. The discrete setting goes back to the copositive programming
bounds described by de Klerk and Pasechnik [4]. This approach was generalized
to the setting of another type of graph, so-called compact packing graphs, in the
PhD-thesis of Kuryatnikova [5]. We now extend these copositive programming
bounds to the setting of distance-avoiding sets, where the independent sets are no
longer discrete.

Earlier results by DeCorte, Oliveira and Vallentin [2] show that if we replace
the PSD-cone by the completely positive cone

CP(Sn−1) = cc{f ⊗ f : f ∈ L2(Sn−1), f ≥ 0},
where cc denotes the closure of the convex hull, we obtain exactly αn. That is, let

ϑCP(G) = sup
∫

Sn−1

∫

Sn−1 A(x, y)dω(x)dω(y)
∫

Sn−1 A(x, x)dω(x) = 1,
A(v, w) = 0 for all (v, w) ∈ E,
A continuous and A ∈ CP(Sn−1),

then αn = θCP. However, optimizing over the completely positive cone even in
the discrete setting is usually not tractable, and so we have to find tractable
relaxations.

A matrix is completely positive if and only if it is a convex combination of rank
1 matrices of the form xxT, with x ≥ 0. We denote the cone of these matrices by
CP([n]), where [n] is the index set of A. Let COP([n]) be its conic dual, which we
call the cone of copositive matrices. Note that a matrix A is in COP([n]) if and
only if xTAx ≥ 0 for all x ≥ 0.

Pólya’s theorem now claims that xTAx > 0 for all x ≥ 0 if and only if there
exists some r ∈ N such that

(1Tx)rxTAx

has only non-negative coefficients. Using the euclidean inner-product 〈·, ·〉 we can
rewrite this as

(1Tx)rxTAx = 〈A⊗ 1
⊗r, x⊗(r+2)〉

where A⊗ 1
⊗r(v1, . . . , vr+2) = A(v1, v2)1(v3) · · ·1(vr+2) = A(v1, v2), and similar

for x⊗(r+2).
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If we replace the euclidean inner product by the L2-inner product, and let A
be a continuous kernel, the expression on the right-hand side still makes sense.
Because we prefer to work with symmetric functions, we furthermore symmetrize
the function A ⊗ 1

⊗r over all permutations of its r + 2 arguments by using the
operator

RSr+2
(T )(v1, . . . , vr+2) =

1

(r + 2)!

∑

π∈Sr+2

T (vπ−1(1), . . . , vπ−1(r+2)),

where Sr+2 denotes the permutation group on r + 2 items. This leaves the ex-
pression above unchanged. Note that the function RSr+2

(A ⊗ 1
⊗r) holds the

coefficients of the polynomials in the discrete setting, so it makes sense to define
the cones

Cr(V ) = {A ∈ L2
sym(S

n−1) : RSr+2
(A⊗ 1

⊗r) ≥ 0}.

Our L2-version of Pólya’s theorem now becomes

Theorem 1. If A ∈ Lsym(Sn−1) is such that 〈A,Z〉 ≥ 0 for all

Z ∈
⋃

r

Cr(Sn−1),

then A is completely positive.

It turns out that cuts given by Cr(Sn−1) are implementable as positive semi-
definite constraints, and so we obtain a tractable hierarchy

ϑr(G) = sup
∫

Sn−1

∫

Sn−1 A(x, y)dω(x)dω(y)
∫

Sn−1 A(x, x)dω(x) = 1,
A(v, w) = 0 for all (v, w) ∈ E,
A continuous and SDP, A ∈ Cr(S

n−1),

where we still require A to be SDP.
We were able to show that this hierarchy converges to exactly αn as r goes

to ∞. We also extended the Lasserre hierarchy and the k-point bound to this
setting, and showed that both are stronger than this copositive hierarchy, obtaining
convergence results for both. However, neither results in tractable upper bounds.

Using the level r = 1 of the copositive hierarchy, we were able to calculate the
best upper bounds known for Witsenhausen’s problem in dimensions 3 to 8, see
the table below. The lower bound comes from the Double Cap Conjecture, the
percentage gap closed assumes the gap between the previous best upper bounds
and the lower bound is 100%.
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Dimension Lower bound
Previous best
upper bound

New best
upper bound

Percentage gap
closed

3 0.2928 0.3015 0.2977 43%
4 0.1816 0.2168 0.1943 64%
5 0.1161 0.1677 0.1346 64%
6 0.0755 0.1338 0.0981 61%
7 0.0498 0.1174 0.0758 62%
8 0.0331 0.0998 0.0612 58%
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Projected Eigenvector Cuts for Solving Sparse Semidefinite Programs

Jeff Linderoth

(joint work with Oktay Günlük, James Luedtke, Andrea Lodi)

Consider the following semidefinite programming relaxation of a nonconvex qua-
dratically-constrained quadratic program, first proposed by Shor [1].

zP := min
x,X

〈X,Q0〉+ c⊤0 x(P)

s.t. 〈X,Qk〉+ c⊤k x+ dk ≤ 0, k = 1, . . . ,m

Y :=

[

1 x⊤

x X

]

� 0.(1)

We are especially interested in the case where the matrices Qk for k = 0, 1, . . . ,m
are sparse, and we define the set E := {ij : ∃k with Qk

ij 6= 0} as the set of i, j

pairs in which one of the matrices Qk has a nonzero element. We wish to create
a relaxation of our problem (P) in which we introduce decision variables Xij only
for ij ∈ E.

To that end, suppose we have solved a relaxation of (P) where the semidefinite

constraint (1) has not been enforced, and we have a solution Ŷ . Our goal is to
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identify, if possible, a linear inequality

(2) 〈C, Y 〉 ≥ 0

valid for the convex cone of positive semidefinite matrices S+
n+1 which is violated

by Ŷ . The cone of semidefinite matrices S+
n is self-dual, so inequality (2) is valid

for S+
n+1 if and only if the cut coefficients C ∈ S+

n+1. We wish to generate a cut
that has C supported only on E, therefore we obtain the following constrained
separation problem:

(SEP) min
C∈S+

n+1

{〈C, Ŷ 〉 | Tr(C) = 1, Cij = 0 ∀ij /∈ E},

where the constraint Tr(C) = 1 is a normalization condition.
A natural question to ask is what relaxation bound can be obtained using

only projected inequalities coming from repeatedly solving the separation prob-
lem (SEP). The following short lemma establishes that one can obtain the original
Shor bound zP .

Lemma 1. Let

X = (P × Rk) ∩Q
where P ⊂ Rn and Q ⊂ Rn+k. Then,

proj
Rn(X) = P ∩ proj

Rn(Q)

Proof. If x ∈ proj
Rn(X) then for some w ∈ Rk we have (x,w) ∈ P × Rk and

(x,w) ∈ Q. Therefore, x ∈ P and x ∈ proj
Rn

(

Q).

If x ∈ P ∩ proj
Rn(Q), then for some w ∈ Rk we have (x,w) ∈ Q and x ∈ P . As

(x,w) ∈ P × Rk, the claim follows. �

However, to obtain the strength of the Shor bound requires solving a (struc-

tured) semidefinite programming problem for separating a (sparse) point Ŷ from
S+
n+1. To avoid solving an SDP to generate a cut, one can instead solve a sequence

of linear programs that restrict the cut generation search space. Let C1, . . . , Cq be
a given set of PSD matrices. Then a restriction of the separation problem (SEP)
is

min 〈C, Ŷ 〉(LP-SEP)

s.t. Cij =

q
∑

t=1

λtC
t
ij , ∀ij ∈ E

0 =

q
∑

t=1

λtC
t
ij , ∀ij /∈ E

n+1
∑

j=1

Cjj ≤ 1

λt ≥ 0, t = 1, . . . , q.
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The dual (LP-SEP) has the form:

max θ

s.t. Πij = Ŷij ∀ij ∈ E, i 6= j

〈Π, Ct〉 ≥ 0 ∀t = 1, . . . , q

Πjj + θ = Ŷjj ∀j = 1, . . . , n+ 1

θ ≤ 0.

The dual problem can be interpreted as choosing a matrix Π that matches Ŷ
on the entries in E except the diagonals, is valid for all given PSD matrices,
〈Π, Ct〉 ≥ 0 ∀t ∈ [q], and minimizes the maximum amount added to the diagonals
in order to do so.

Suppose the separation problem has been solved and yielded dual solution Π̂.
Thus, if one wishes to generate a new Ct to include in the formulation to improve
the violation of the cut found, one can attempt to find a PSD matrix Ĉ (with no

restrictions on sparsity) with 〈Π̂, Ĉ〉 < 0 and add this to the list of Ct. This could
be done, for example, by doing an eigenvalue decomposition on the matrix Π and
using eigenvectors associated with negative eigenvalues to define the cut (i.e., if
µ is such an eigenvector, C = µµ⊤ would suffice). In the limit of this procedure,

if Π̂ � 0 (so no more such cuts can be found), this yields an exact separation of
the sparse PSD cut. Continuing work will be to implement this computational
procedure, including the consideration of relaxations of the PSD constraint that
enforce the positive-semidefnite condition only on certain k × k minors of Y .
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Convexification techniques for fractional programming

Mohit Tawarmalani

(joint work with Taotao He, Siyue Liu)

Fractional programming problems arise in many optimization models including
those involving consumer choice functions, financial and performance ratios, and
matrix eigenvalues. Luce-type choice functions have been used in feature selection,
assortment optimization, and facility location while financial and performance ra-
tios are used to measure return on investment, performance of restricted properties
and other graph properties such as density and connectedness.

Seminal results in fractional programming have shown techniques to maximize
1+a⊺x
1+b⊺x over a polytope [2] or a combinatorial set [4]. At the same time, it is
known that constructing the concave envelope of a general fractional function over
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a polytope is not tractable. The current relaxation schemes in mixed-integer non-
linear programming create relaxations with a non-zero gap between the relaxation
optimal value and the optimal value of the rational function.

In this talk, which is based on [3] we construct a new class of relaxations for
fractional programming problems that relies on a precise correspondence between
two convex hulls. The first convex hull convexifies functions fi(x) for i ∈ 1, . . . ,m

over x ∈ X while the second convex hull convexifies

(

1,f1(x),...,fm(x)
)

1+
∑

m
i=1 αifi(x)

over the same

domain assuming that the denominator is sign-invariant. This correspondence
describes a formulation for one of the convex hulls given that for the other and
how points can be separated from one set given a separation procedure for the
other. As such, this result generalizes various existing results in the literature.

We discuss applications in various contexts. First, we derive a hierarchy of re-
laxations converging to the convex hull of fractional functions over 0-1 hypercube
using relaxation hierarchies for multilinear polytopes. We show computationally
that, even at the first level, this relaxation is significantly tighter than the tra-
ditional relaxation schemes. Our results also give insights into hardness results
in fractional programming. For example, we provide a simpler proof of the NP-
Hardness of optimizing a linear perturbation of a 0-1 fractional function using the
correspondence with bilinear optimization.

We develop new relaxations for a ratio of quadratic functions over an ellipsoid
using semidefinite programming reproducing an earlier result of [1]. More gener-
ally, we show that copositive programming can be used to minimize a ratio of two
quadratic function over an arbitrary polytope. Finally, we relate the convexifi-
cation of

(

1
x+a1

, . . . , 1
x+am

, x
)

with that the convex hull of (x, . . . , xm−1) over an
interval such that the signs of denominators do not vary. This set has applications
in distillation configuration design and optimizing exergy for separation processes.
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Universitätsplatz 2
39106 Magdeburg
GERMANY

Dr. Aida Khajavirad

Department of Industrial and Systems
Engineering, Lehigh University
200 West Packer ave
Bethlehem 18015
UNITED STATES

Dr. Fatma Kilinc-Karzan

Tepper School of Business
Carnegie Mellon University
Pittsburgh, PA 15213-3890
UNITED STATES



Mixed-integer Nonlinear Optimization 2013

Prof. Dr. Christian Kirches

Institute for Mathematical Optimization
Technische Universität Braunschweig
Universitätsplatz 2
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Universitätsstr. 65-67
9020 Klagenfurt
AUSTRIA

Dr. Jan Rolfes

Analytics and Mixed-Integer
Optimization
Department of Data Science
FAU Erlangen-Nürnberg
91058 Erlangen
GERMANY

Florian Rösel
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