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Abstract. In recent years it has become clear that, contrary to traditional
statistical beliefs, methods that interpolate (fit exactly) the noisy training
data, can still be statistically optimal. In particular, this phenomenon of “be-
nign overfitting” or “harmless interpolation” seems to be close to the practical
regimes of modern deep learning systems, and, arguably, underlies many of
their behaviors. This workshop brought together experts on the emerging
theory of interpolation in statistical methods, its theoretical foundations and
applications to machine learning and deep learning.
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Introduction by the Organizers

This mini-workshop was attended by a group of researchers who work on several
topics related to benign overfitting such as harmless interpolation for linear mod-
els and neural networks, implicit bias of first-order algorithms on shallow neural
networks and transformers, and other topics. The participants presented novel
optimization guarantees and statistical theory for interpolating solutions when
training overparameterized models, as well as recent advancements in analyzing
the expressivity and learnability of different problem classes by transformer ar-
chitectures. As a result of the talks, several technical discussions ensued between
researchers who had not collaborated before, for example, on extending tight be-
nign overfitting results towards non-Gaussian distributions and proving implicit
biases for different architectures and imbalanced data. We expect that many of
these discussions will lead to future publications. In total, the workshop program
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included 12 talks and a longer discussion session led by Misha Belkin. The lively
discussion was centered around the key ingredient behind and the relevance of the
existing theory for understanding deep learning. The discussion revealed differ-
ent opinions, one being that finding the appropriate low-dimensional structure in
language would be the key to understanding Large Language Models vs. other
alternative concepts not based on linearity and low dimensionality. The debate
led to follow-up interactions that are on-going after the workshop. A discussion
group that arose from the debate is working on redefining the theory to certify the
reliability of neural networks.
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Abstracts

A geometrical viewpoint on the benign overfitting phenomenon

Guillaume Lecué

(joint work with Zong Shang)

In the linear regression model, the minimum ℓ2-norm interpolant estimator has
received much attention since it was proved to be consistent even though it fits
noisy data perfectly under some condition on the covariance matrix of the input
vector and the signal. This phenomenon is now known as benign overfitting. Even
matching upper and lower bounds for the estimator error of this estimator have
been obtained, hence leading to necessary and sufficient conditions for benign
overfitting for this estimator.

Motivated by this phenomenon, the study of the generalization property of
minimum norm interpolant estimators for other norms have been obtained. They
are however limited by some restrictive assumptions on the design and the sig-
nal such as the Gaussian assumption on the design or the signal being 1-sparse.
Theirs proofs are based on the Convex Gaussian Minmmax Theorem that seems
to be difficult to extend beyond the Gaussian case and that lack of some geomet-
rical understanding. There is therefore again a lot to do for the understanding
and identification of necessary and sufficient conditions for benign overfitting of
minimum norm interpolant estimator for any norm.

In this talk, two geometrical tools are introduced that should be useful to solve
this open problem: the Dvoretsky-Milman theorem and isomorphic and restricted
isomorphic properties. It is possible to use these tools to get matching upper and
lower bounds for the minimum ℓ2-norm interpolant estimator and it looks like they
should play a role for other norms than the ℓ2 one.

We provide a first analysis of the minimum norm interpolant estimator for
some general norm based on these two tools. However the result is not sharp
enough to match any lower bound since it does not prove the consistency of the
minimum norm interpolant estimator. The main two reasons why this approach
is not optimal are: 1) we need to use the independence between the noise and the
design; 2) we need to base our analysis on a splitting of the features space into an
overfitting part and an estimation part.

Planted regression forests

Enno Mammen

(joint work with Munir Hiabu, Joseph Meyer)

In this talk we discuss a novel interpretable tree based algorithm for prediction in
a regression setting, see [1]. Our motivation is to estimate the unknown regres-
sion function from a functional decomposition perspective in which the functional
components correspond to lower order interaction terms. The idea is to modify
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the random forest algorithm by keeping certain leaves after they are split instead
of deleting them. This leads to non-binary trees which we refer to as planted trees.
An extension to a forest leads to our random planted forest algorithm. Addition-
ally, the maximum number of covariates which can interact within a leaf can be
bounded. If we set this interaction bound to one, the resulting estimator is a sum
of one-dimensional functions. In the other extreme case, if we do not set a limit,
the resulting estimator and corresponding model place no restrictions on the form
of the regression function.

In [1] a theory for an idealized version of random planted forests is developed in
cases where the interaction bound is low. In [1] we show that if it is smaller than
three, the idealized version achieves asymptotically optimal convergence rates up
to a logarithmic factor. In the talk we explain this result by looking at the case
that the model contains no interaction terms and that thus the model is an additive
model. We explain that then the trees of the random planted forests can be inter-
preted as a modification of the smooth backfitting estimator where the additive
components are estimated by iterative updates given by integral transforms. The
updates differ from smooth backfitting estimators by replacing two-dimensional
smooth kernel density estimators by piecewise constant histogram type estimators.
When the tree estimators are averaged to get the forest estimator the discrete na-
ture of the histogram estimators is smoothed out resulting in a forest estimator
that is comparable to smooth backfitting estimators in additive models. This fact
can be used to explain the near optimal rates of random panted forests in additive
models. It also motivates that related results hold in models with higher order
interaction terms.

References

[1] Munir Hiabu, Enno Mammen, and Joseph T. Meyer. Random Planted Forest: a directly
interpretable tree ensemble. arXiv preprint arXiv:2012.14563 (stat).

Surprising behaviors of sparse min-norm and max-margin

interpolators

Konstantin Donhauser

(joint work with Fanny Yang, Guillaume Wang, Michael Aerni, Marco Milanta,
Stefan Stojanovic and Nicolo Ruggeri)

Modern machine learning has uncovered an interesting observation: large over
parameterized models can achieve good generalization performance despite inter-
polating noisy training data. In this talk, we study high-dimensional linear models
and show how interpolators can achieve fast statistical rates when their structural
bias is moderate. More concretely, while minimum-ℓ2-norm interpolators cannot
recover the signal in high dimensions, minimum-ℓ1-norm interpolators with strong
sparsity bias are much more sensitive to noise. In fact, we show that even though
they are asymptotically consistent, minimum-ℓ1-norm interpolators converge with
a logarithmic rate much slower than the O(1/n) rate of regularized estimators. In
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contrast, minimum-ℓp-norm interpolators with 1 ≤ p ≤ 2 can trade off these two
competing trends to yield polynomial rates close to O(1/n).

References

[1] Guillaume Wang, Konstantin Donhauser, and Fanny Yang. Tight bounds for minimum ℓ1-
norm interpolation of noisy data. AISTATS, volume 151, pages 10572-10602, 2022.

[2] Konstantin Donhauser, Nicolo Ruggeri, Stefan Stojanovic, and Fanny Yang. Fast rates for
noisy interpolation require rethinking the effect of inductive bias. ICML, volume 162, pages
5397-5428, 2022.

[3] Michael Aerni, Marco Milanta, Konstantin Donhauser, and Fanny Yang. Strong inductive
biases provably prevent harmless interpolation. ICLR, 2023.

[4] Stefan Stojanovic, Konstantin Donhauser, and Fanny Yang. Tight bounds for maximum
ℓ1-margin classifiers. arXiv preprint arXiv:2212.03783, 2022.

Interpolation Learning with Short Programs and Shallow Neural

Networks

Nathan Srebro

Classical theory, conventional wisdom, and all textbooks, tell us to avoid reaching
zero training error and overfitting the noise, and instead balance model fit and
complexity. Yet, recent empirical and theoretical results suggest that in many
cases overfitting is benign, and even interpolating the training data can lead to
good generalization. Can we characterize and understand when overfitting is in-
deed benign, and when it is catastrophic as classic theory suggests? And can
existing theoretical approaches be used to study and explain benign overfitting
and the “double descent” curve? I will discuss interpolation learning in linear
(and kernel) methods, deep learning, as well as using the universal “minimum
description length” or “shortest program” learning rule.

Tempered and benign overfitting in neural networks and kernels

Ohad Shamir

(joint work with Guy Kornowski, Gilad Yehudai, Daniel Barzilai)

Overparameterized neural networks (NNs) are observed to generalize well even
when trained to perfectly fit noisy data. This phenomenon motivated a large
body of work on “benign overfitting”, where interpolating predictors achieve near-
optimal performance. Recently, it was conjectured and empirically observed that
the behavior of NNs is often better described as “tempered overfitting”, where the
performance is non-optimal yet also non-trivial, and degrades as a function of the
noise level. However, a theoretical justification of this claim for non-linear NNs
has been lacking so far. In this talk, we provide several results that aim at bridging
these complementing views. We study a simple classification setting with 2-layer
ReLU NNs, and prove that under various assumptions, the type of overfitting
transitions from tempered in the extreme case of one-dimensional data, to benign
in high dimensions. Thus, we show that the input dimension has a crucial role
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on the type of overfitting in this setting, which we also validate empirically for
intermediate dimensions. In addition, we also discuss some upcoming results on
benign and tempered overfitting in kernel regression learning, which is surprisingly
not well-understood under realistic assumptions.

Representational strengths and limitations of transformers

Daniel Hsu

(joint work with Clayton Sanford and Matus Telgarsky)

Attention layers, as commonly used in transformers, form the backbone of mod-
ern deep learning, yet there is no mathematical description of their benefits and
deficiencies as compared with other architectures. This talk presents positive and
negative results on the representation power of attention layers, with a focus on
relevant complexity parameters such as width, depth, and embedding dimension.
The main results establish separations between attention layers and other tradi-
tional neural network architectures such as recurrent neural networks, as well as
separations between different transformer architectures.

References

[1] Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Representational Strengths and Limi-
tations of Transformers. arXiv preprint arXiv:2306.02896, 2023.

Transformers and Associative Memories

Alberto Bietti

The goal of the work [1] is to provide a simple data model that illustrates how
transformer language models can develop basic “in-context reasoning” capabil-
ities during training. In particular, we consider a Markov (bigram) model of
discrete sequences that uses both global bigrams/transitions πb(z

′|z) as well as
local/sequence-specific ones, p(z′|z = qk) = 1{z′ = ok} that override the global
transitions on a few specific trigger tokens z = qk to output a given output to-
ken z′ = ok that is always the same within a given sequence, but is randomly
chosen in each different sequence.

Two-layer transformers trained on such a data model develop an “induction
head” mechanism [2], whereby the first attention layer attends to previous tokens,
while the second layer attends to previous occurrences of the output token. In
order to understand how gradient dynamics lead to such a behavior, we view
weight matrices as associative memories of the form

W =
∑

(i,j)∈M

αijvju
⊤
i ∈ R

d×d,

where (ui)i and (vj)j are collections of nearly-orthonormal input and output em-
bedding vectors (e.g., random vectors in high dimension), andM is a set of relevant
pairwise associations. We show the following:



Interpolation and Over-parameterization in Statistics and Machine Learning 2367

• the induction head mechanism can be implemented with a two-layer trans-
former with all weights at random initialization, except for three weight
matrices (the key-query matrices at both layers, and output-value matrix
at the second layer) that have specific associative-memory forms;

• empirically, training these three matrices with SGD recovers these asso-
ciative memory behaviors

• theoretically, such outer-product associative memory behavior can be re-
covered with population gradient steps on each layer, in a top-down order.

In the follow-up work [3], we study statistical rates for such associative memories
with finite samples and finite dimension, in the presence of heavy-tailed input data.
We illustrate the role of the dimension d and of different optimization algorithms
for improving the obtained rates.

References

[1] Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth
of a Transformer: A Memory Viewpoint. NeurIPS, 2023.

[2] N. Elhage, N. Nanda, C. Olsson, et al. A Mathematical Framework for Transformer Circuits.
Transformer Circuits Thread, 2021.

[3] Vivien Cabannes, Elvis Dohmatob, and Alberto Bietti. Scaling Laws for Associative Mem-
ories. arXiv preprint arXiv:2310.02984, 2023.

Benign Calibration

Matus Telgarsky

The goal of this work was both to study benign overfitting for the logistic loss
in as similar a way to the squared loss setting, and and secondly to verify and
further investigate the correspondence between benign overfitting and empirical
observations. In a bit more detail:

(1) The first task is to study the behavior of gradient descent on the logistic
loss with data following standard benign overfitting settings (with appro-
priate modifications to the label distribution). By contrast with prior work
studying benign overfitting in classification settings, the goal here is not to
achieve good zero-one loss, but rather to achieve good population logistic
risk, with some desire to be closer to an apples-to-applies comparison to
the regression setting. Since minimizing the logistic loss for correctly spec-
ified models also implies minimization of calibration error (using logistic
link), these results also imply good calibration, giving rise to the title.

(2) The second task is to revisit the experimental basis for benign overfitting
and see if there are any different phenomena in the logistic loss case, and
as much as possible seek out further phenomena, as the present work also
considers gradient descent. The two main observations were that (a) there
is an early “uniform convergence” phase where the training error is close to
the test error, and moreover the latter is optimal, and (b) early stopping is
necessary, since the solutions are off at infinity. Preliminary work further
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empirically dissecting 2-layer ReLU networks and their correspondence to
the benign overfitting setting are ongoing.

The work is ongoing and incomplete. When the data matrix exhibits a clear
signal-to-noise ratio, a new set of margin maximization techniques were able to
show that the max margin direction is found essentially instantly (whereas all
existing analyses have a long burn-in phase), which clarified a few settings but not
the “uniform convergence” phase in general. This latter phase is part of ongoing
work, all of which will hopefully appear soon in a conference; the author of this
section is grateful to the Oberwolfach participants, staff, and general environment
for the many educational conversations and overall pleasant setting.

Classification versus regression with ℓ2-minimizing solutions: A tale of

two loss functions

Vidya Muthukumar

(joint work with Mikhail Belkin, Daniel Hsu, Adhyyan Narang, Anant Sahai,
Vignesh Subramanian)

In this talk we compare the classification 0 − 1 test error of the max-margin
support-vector-machine (SVM) and the regression test mean-squared-error of the
minimum-ℓ2-norm interpolator (MNI) under identical models for the data covari-
ance. We show the presence of high-dimensional regimes under which the SVM
achieves consistency for classification tasks, but the MNI does not. These results
are achieved by providing novel tight upper and lower bounds on the classification
test error of the SVM through a two-step proof technique: a) showing a high-
probability equivalence between the SVM and MNI under sufficiently (effectively)
high-dimensional covariates [1], b) a sharp classification test error analysis of the
MNI [2]. Notably, our consistency result for the SVM cannot be obtained through
any known data-dependent generalization bound, even with zero label noise.

Formulation. We consider i.i.d. high-dimensional covariates {Xi ∈ R
d}ni=1 where

d > n and binary labels {Yi ∈ {−1,+1}}ni=1. Our focus is the max-margin linear
support-vector-machine (SVM) classifier, which takes the form

θ̂SVM := argmin‖θ‖2 subject to Yi〈Xi, θ〉 ≥ 1 for all i ∈ [n].(1)

We make a mild assumption of full-rank on the training data matrix, which ensures
not only that the separability constraints in (1) are feasible, but also that we can
interpolate the training data, i.e. we can achieve 〈Xi, θ〉 = Yi for all i ∈ [n].

First result: Equivalence to interpolation. We wish to sharply analyze the
classification test error of the max-margin SVM (1) in high-dimensional settings.
A core challenge in doing so is that, unlike minimum-norm-interpolation in linear
regression, the SVM does not in general have a closed-form expression. We first
show a key structural result: the SVM and the minimum-ℓ2-norm interpolation of

the binary labels {Yi}
n
i=1, (i.e. θ̂MNI := argmin‖θ‖2 subject to 〈Xi, θ〉 = Yi for all

i ∈ [n]) exactly coincide with high probability in very high-dimensional settings.
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More formally, we assume that the covariates {Xi}
n
i=1 are centered and comprised

of independent, 1-sub-Gaussian entries; thus, the covariance matrix Σ = E[XiX
⊤
i ]

is a diagonal matrix with entries denoted by λ ∈ R
d. Then, we are able to show

in [1] that θ̂SVM = θ̂MNI with probability tending to 1 as n → ∞ as long as

d∞ := ‖λ‖1

‖λ‖∞

≫ n logn and d2 :=
‖λ‖2

1

‖λ‖2

2

≫ n. Note that d∞, d2 are essentially

effective dimensions ; for isotropic covariance we have d∞ = d2 = d and so the
equivalence holds w.h.p. as long as d ≫ n logn.

We prove this result by analyzing the feasibility of the MNI’s dual certificate
in conjunction with high-dimensional vector and matrix concentration phenomena
that arise when d2, d∞ ≫ n. This result implies an interesting equivalence of
training the squared loss or logistic/hinge loss in ultra-high-dimensional regimes
of possible independent interest.

Second result: Classification-vs-regression. We next sharply analyzed the

classification test error of the MNI θ̂MNI, noting from the above result that all

conclusions about test error directly carry over to θ̂SVM (whp). We assume that
Yi = 1 with probability g(〈Xi, θ

∗〉) where we assume θ∗ = êt to be 1-sparse with
1 ≤ t ≤ k ≪ n, and g(·) to be any monotonic link function satisfying E[g(Xi)Yi] ≥
c > 0 for some universal constant c. Notably, even for this very simple signal model
the ultra-high-dimensional-regime of interest (i.e. d∞ ≫ n logn, d2 ≫ n) can be
shown to prohibit consistency in regression [3]. The core problem is not overfitting

of noise but attenuation of the signal θ∗; in fact, θ̂t → 0 as n, d → ∞! This implies
that the MNI would be inconsistent even on noiseless data; equivalently, even
optimally tuned ridge regression would be inconsistent.

Despite signal attenuation we show that the classification task is much more
benign (due to being evaluated by the 0-1 loss function) and can be shown to be
consistent as n, d → ∞. The main result, contained in [2], is a sharp 0-1 error

analysis of θ̂MNI under the generative model assumed above. The analysis shows
that classification-consistency is achieved iff the ratio of a certain contamination

term (denoted by CN :=
√∑

j 6=t λj θ̂2j ) that measures the energy of components

orthogonal to the signal that were recovered) and signal attenuation (denoted by

SU := θ̂t
θ∗

t

) tends to 0. Coneretely, we have 0-1 error ≍ CN

SU
, which means that the

problematic phenomenon of attenuation (SU → 0) can be compensated if CN → 0
at an even faster rate (which turns out to be a byproduct of the benign overfitting
phenomenon on pure noise). An easily interpretable example is that of bilevel
covariance where the first k entries of λ are equal to λH and the other d − k
entries of λ are equal to λL < λH . Here, a corollary of our result is that regression
consistency holds iff R := λH/λL ≫ d/n, while classification consistency holds iff

R ≫
√
d/n; since d ≫ n, the latter is clearly a much weaker condition. Our result

can also show consistency separations for other covariance models,e.g. the case of
polynomially decaying eigenvalues.

Discussion and open problems. We have generalized this pair of results to
multiclass classification, kernel methods, and training loss functions beyond the
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exponentially-tailed family. Several open problems that I am intrigued by are
summarized below:

• An ambitious open problem is showing the implication of training losses

for shallow neural networks. Some differences may manifest, notably, the
presence or absence of neural-tangent-kernel behavior; however, an even-
tual equivalence to some type of exact interpolation is plausible.

• I am interested in investigating whether separations between classification

and regression tasks exist for nonparametric interpolating methods, as well
as beyond the case of 1-sparse signal.

• Finally, the implications of the mentioned signal attenuation for robustness

remain relatively unexplored. Our preprint [4] provides an initial investi-
gation into the (lack of) adversarial robustness in this regime for special
Fourier and polynomial feature maps.
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Implicit Geometries through the Imbalance Lens

Christos Thrampoulidis

(joint work with Ganesh Ramachandra Kini, Tina Behnia, Vala Vakilian)

The talk discusses the following questions: What are the unique structural prop-
erties of models learned by deep-net classifiers? Is there an implicit bias towards
solutions of a certain geometry and how does this vary across architectures and
data? Specifically, how does this implicit geometry change under label imbalances,
and is it possible to use this information to design better loss functions for learning
with imbalances?

We first discuss the Neural Collapse phenomenon, which refers to the remarkable
structural properties characterizing the geometry of class embeddings and classifier
weights, found by deep nets when trained beyond zero training error. We remark
that this characterization only holds for balanced data; hence, we ask whether it
can be made invariant to class imbalances.

We present an affirmative answer. Firstly, we overview a theoretical abstraction
of deep-learning training that assumes unconstrained optimization of the last-layer
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embeddings and classifiers. For this, we prove that cross-entropy loss with van-
ishing regularization finds embeddings and classifiers that: (i) always interpolate
a simplex-encoded label matrix, and (ii) form a geometry, which we call Simplex-
Encoded-Labels Interpolation (SELI) geometry, that is determined by the SVD
factors of this same label matrix. Secondly, we present extensive experiments on
real imbalanced datasets that confirm convergence to the SELI geometry and thus
verify its invariance to the label distribution. We caution that convergence worsens
with increasing imbalances and support this finding theoretically by showing that
unlike the balanced case, when minorities are present, ridge-regularization plays a
critical role in tweaking the geometry. This defines new questions and motivates
further investigations into the impact of class imbalances on the rates at which
first-order methods converge to their asymptotically preferred solutions.

We then delve into how this newfound structural insight into embeddings’ ge-
ometry can be harnessed to engineer loss functions for enhanced performance when
training with imbalanced data. We review various logit-adjusted parameterizations
of cross-entropy (CE) loss, which have been proposed as alternatives to weighted
CE for training large models on label-imbalanced data beyond zero training er-
ror. These parameterizations are driven by the theory of implicit bias, which has
been successful for linear models in inducing bias favoring minority classes. Ex-
tending this theory to non-linear models, we characterize the implicit geometry
of classifiers and embeddings that are learned by different CE parameterizations.
Specifically, we derive closed-form formulas for the angles and norms of classi-
fiers and embeddings as a function of the number of classes, the imbalance and
the minority ratios, and the loss hyperparameters. Using these, we show that
logit-adjusted parameterizations can be appropriately tuned to learn symmetric
geometries irrespective of the imbalance ratio. We present experiments and an
empirical study of convergence accuracy in deep-nets to verify our findings.

Some statistical insights into PINNs

Claire Boyer

(joint work with Gérard Biau, Nathan Doumèche)

Physics-informed neural networks (PINNs) combine the expressiveness of neural
networks with the interpretability of physical modeling. Their good practical per-
formance has been demonstrated both in the context of solving partial differential
equations and in the context of hybrid modeling, which consists of combining an
imperfect physical model with noisy observations. As in classical regression anal-
ysis, we are interested in estimating an unknown regression function u⋆ such that
Y = u⋆(X) + ε, for some random noise ε that satisfies E(ε|X) = 0. What makes
the problem original is that the function u⋆ is assumed to satisfy (at least approx-
imately) a collection of M PDE-type constraints of order at most K, denoted in a
standard form by Fk(u

⋆, x) ≃ 0 for x ∈ Ω and 1 ≤ k ≤ M . Moreover, there exists
some subset E ⊆ ∂Ω and an boundary/initial condition function h : E → R

d2 such



2372 Oberwolfach Report 41/2023

that, for all x ∈ E, u⋆(x) ≃ h(x). These constraints model some a priori physi-
cal information about u⋆. However, this knowledge may be incomplete (e.g., the
PDE system may be ill-posed and have no or multiple solutions) and/or imperfect
(i.e., there is some modeling error, that is, Fk(u

⋆, x) 6= 0 and u⋆|E 6= h). This
again emphasizes that u⋆ is not necessarily a solution of the system of differential
equations.

In order to estimate u⋆, we assume to have at hand three sets of data:

(i) A collection of i.i.d. random variables (X1, Y1), . . . , (Xn, Yn) distributed as
(X,Y ) ∈ Ω× R

d2 , the distribution of which is unknown;

(ii) A collection of i.i.d. random variables X
(e)
1 , . . . , X

(e)
ne

distributed according
to some known distribution µE on E;

(iii) A sample of i.i.d. random variables X
(r)
1 , . . . , X

(r)
nr

uniformly distributed

on Ω.

The function u⋆ is then estimated by minimizing the empirical risk function

Rn,ne,nr
(uθ) =

λd

n

n∑

i=1

‖uθ(Xi)− Yi‖
2
2 +

λe

ne

ne∑

j=1

‖uθ(X
(e)
j )− h(X

(e)
j )‖22

+
1

nr

M∑

k=1

nr∑

ℓ=1

Fk(uθ, X
(r)
ℓ )2(1)

over the class NNH(D) of neural networks with H hidden layers of constant width
D.

We exhibit that the classical training of PINNs can suffer from systematic over-
fitting when dealing with polynomial PDE priors: we explicitly construct mini-
mizing sequences of the empirical risk, for which the theoretical risk explodes. To
overcome this issue, we suggest to resort to a ridge regularization (implemented
in most standard DL libraries), theoretically shown to be sufficient to ensure risk-
consistency of empirical risk minimizers.

Then, we discuss how risk-consistency is not enough to ensure a strong con-
vergence of the PINN estimate towards u⋆ (in L2 for instance). To this end, we
propose to use an additive Sobolev regularization during training, which is fully
compatible with the hybrid modeling paradigm. The resulting doubly-regularized
PINN estimate is shown to enjoy a strong convergence property towards u⋆ for
the class of linear PDEs.

In-context learning linear models with transformers

Peter Bartlett

(joint work with Ruiqi Zhang, Spencer Frei)

Attention-based neural networks such as transformers have demonstrated a re-
markable ability to exhibit in-context learning (ICL): Given a short prompt se-
quence of tokens from an unseen task, they can formulate relevant per-token and
next-token predictions without any parameter updates. By embedding a sequence
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of labeled training data and unlabeled test data as a prompt, this allows for trans-
formers to behave like supervised learning algorithms. Indeed, recent work has
shown that when training transformer architectures over random instances of lin-
ear regression problems, these models’ predictions mimic those of ordinary least
squares. Towards understanding the mechanisms underlying this phenomenon, we
investigate the dynamics of ICL in transformers with a single linear self-attention
layer trained by gradient flow on linear regression tasks. We show that despite
non-convexity, gradient flow with a suitable random initialization finds a global
minimum of the objective function. At this global minimum, when given a test
prompt of labeled examples from a new prediction task, the transformer achieves
prediction error competitive with the best linear predictor over the test prompt dis-
tribution. We additionally characterize the robustness of the trained transformer
to a variety of distribution shifts and show that although a number of shifts are
tolerated, shifts in the covariate distribution of the prompts are not. Motivated by
this, we consider a generalized ICL setting where the covariate distributions can
vary across prompts. We show that although gradient flow succeeds at finding a
global minimum in this setting, the trained transformer is still brittle under mild
covariate shifts. We complement this finding with experiments on large, nonlinear
transformer architectures, which we show are more robust under covariate shifts.

Reporter: Konstantin Donhauser
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