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Mathematicians are very interested in prime numbers.
In this snapshot, we will discuss some problems con-
cerning the distribution of primes and introduce some
special infinite series in order to study them.

1 Convergent Ser ies

A series is a sequence of terms added together, e.g.

1 + 2 + 3 + . . .+ 100,

a series with 100 terms. 2 Series may have a finite number of terms, in which case
one wants to find a formula that gives the sum, either exactly or approximately;
or they may be what we call an infinite series, which means they have an infinite
number of terms. We use the notation an for the nth term in a series, so we
shall be considering series of the form

a1 + a2 + a3 + . . . . (1)

How can one make sense of (1)? How can one sum an infinite number of terms?
Consider the example an = 1

2n . This gives the series

1
2 + 1

4 + 1
8 + 1

16 + . . . . (2)

1 Partially supported by National Science Foundation Grant DMS 1300280
2 This particular sum was supposedly given to Carl Friedrich Gauß (1777–1855) as a
schoolboy to keep him occupied; but he found a clever way to find the sum quickly. Can you
see how to find it without too much work?
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Imagine you have a stick of height 1 stuck in the ground. Now you pile up
bricks beside it. The first one has height 1

2 , the second one height 1
22 , the third

height 1
23 , and so on. You see that each time you add a brick, you raise the

total height of the stack exactly half the remaining distance to the top of the
stick. So if you go on forever, the stack of bricks will never be higher than 1.
On the other hand, for any height less than 1, the stack of bricks will eventually
be higher than it. So we say the series (2) converges to the value 1. This means
that if you take enough terms, you can get as close to 1 as you want, though
you never quite reach it. 3

2 Divergent Ser ies

But not all infinite series converge. For example, the series 1 + 1 + 1 + . . . clearly
grows without bound; we say then that this series diverges. More subtly, the
harmonic series, which is given by 1 + 1

2 + 1
3 + . . ., also diverges. We can see

this by grouping:

1 + 1
2 +

(
1
3 + 1

4

)
+

(
1
5 + 1

6 + 1
7 + 1

8

)
+ . . .

≥ 1 + 1
2 +

(
1
4 + 1

4

)
+

(
1
8 + 1

8 + 1
8 + 1

8

)
+ . . .

= 1 + 1
2 +

(
1
2

)
+

(
1
2

)
+ . . .

= ∞.

The series 12 + 1
22 + 1

32 + . . . converges; we can see this by showing that it is
term by term smaller than another series, whose sum we can compute and is
finite. We have, for every natural number n ≥ 2:

1 + 1
22 + 1

32 + 1
42 + . . .+ 1

n2

< 1 + 1
(1)(2) + 1

(2)(3) + 1
(3)(4) + . . .+ 1

(n− 1)(n) (3)

= 1 +
(

1− 1
2

)
+

(
1
2 −

1
3

)
+

(
1
3 −

1
4

)
+ . . .+

(
1

n− 1 −
1
n

)
= 1 + 1 − 1

n
(4)

≤ 2.

3 What does 1
3 + 1

32 + 1
33 + . . . converge to?
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We get (4) by observing that in the previous line there is a lot of cancellation —
the term − 1

2 cancels with + 1
2 , the term − 1

3 cancels with + 1
3 , and so on until in

the second to last term there is a − 1
n−1 that cancels with 1

n−1 in the last term.
Such a sum is called a telescoping series, as it resembles the act of pushing
together a telescope, leaving only the first and the last term.

It follows that the infinite series 12 + 1
22 + 1

32 + . . . must converge, and
moreover that it converges to some number that is less than 2.

Leonhard Euler (1707–1783) calculated the sum exactly in the year 1735. He
showed that

12 + 1
22 + 1

32 + . . . = π2

6 . (5)

He also showed that
14 + 1

24 + 1
34 + . . . = π4

90 . (6)

The Riemann zeta function, named in honor of Bernhard Riemann (1826–1866),
is defined for all s > 1 by

ζ(s) = 1 + 1
2s

+ 1
3s

+ . . . .

Euler found a formula for ζ(s) whenever s is an even positive number. He
showed that it is always a rational number times πs, just as in equations (5)
and (6). This raises a natural question: is ζ(3), the sum of the reciprocals of
the cubes, a rational number times π3? Nobody knows.

3 Dir ichlet Ser ies

The Riemann zeta function is the first and most important example of what
is now called a Dirichlet series, named after the mathematician Johann Peter
Gustav Lejeune Dirichlet (1805–1859). A Dirichlet series is obtained by choosing
a sequence a1, a2, a3, . . . , and then considering the function f defined by the
infinite series

f(s) = a1 + a2

2s
+ a3

3s
+ . . . .

The Riemann zeta function is the Dirichlet series for the sequence a1 =
1, a2 = 1, a3 = 1, . . ..

Dirichlet series arise when studying the distribution of prime numbers. Euclid
gave a proof 2300 years ago that there are an infinite number of primes. As 2
is the only even prime, there must be an infinite number of odd primes. But
are there an infinite number whose remainder is 1 when you divide them by 3?
Dirichlet in 1837 used the theory of what we now call Dirichlet series, which he
invented to solve this and similar problems, to prove that if n is any natural
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number bigger than 1, and r is any number between 1 and n− 1 that has no
factor (except 1) in common with n, then there are an infinite number of prime
numbers whose remainder, when divided by n, is r. In formulas, this reads that
for any r ∈ {1, . . . , n− 1} with gcd(r, n) = 1, there are infinitely many primes
p such that

p ≡ r mod n,

where gcd(r, n) stands for the greatest common divisor of r and n.
We would like to know, when x is a large number, how many primes there are

that are smaller than x. The prime number theorem, which was conjectured by
Gauß in 1793 and proved by Jaques Hadamard (1865–1963) and Charles-Jean de
la Vallée-Poussin (1866–1962) in 1896, says that this number is approximately

x
ln x , where ln x is the natural logarithm of x.

How good is this approximation? This is one of the greatest unsolved prob-
lems in mathematics. It is known that the accuracy of the approximation
depends on properties of the Riemann zeta function. The Riemann hypothesis,
conjectured by Riemann in 1859, would state that in some sense the approx-
imation is very good. However, despite dedicated efforts of mathematicians
all over the world for nearly two centuries, we still don’t know if the Riemann
hypothesis is true.
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