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What does “>” real ly mean?

Bruce Reznick

This Snapshot 1 is about the generalization of “>”
from ordinary numbers to so-called fields. At the
end, I will touch on some ideas in recent research.

1 General iz ing the reals

One of the favorite serious games of mathematicians is to take a familiar idea
in a familiar situation, extract its essence, and then try to apply it in a broader
environment.

One example is the concept of fields. It is inspired by the properties of
R, the set of real numbers. A field is a set of objects which can be added,
subtracted, multiplied, and divided within the field, 2 in accordance with the
usual calculation rules (commutativity, associativity, and distributivity). To
be more precise, mathematicians also require that there exist neutral elements
(called 0 and 1, much like in the case of real numbers) with respect to addition
and multiplication. 3 Instead of saying that division must be possible, we might

1 The author thanks Cynthia Vinzant and the editors for their careful reading of an earlier
version, and useful suggestions.
2 meaning that the product, sum, etc. of two elements of the field must itself be an element
of the field,
3 That is, there should be elements 0 and 1 such that x + 0 = x and x · 1 = x for every
element x of the field. The neutral element of the addition 0 is somewhat special in that one
does not divide by 0 – just as we know it from the real numbers.
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as well require that for every x 6= 0 in the field there is a reciprocal 1
x , because

division by an element is the same as multiplication with its reciprocal: x
y = x · 1

y .
What other fields do we know? One familiar field is Q, the set of rational

numbers: a rational number is any quotient of two integers (where of course the
denominator must be non-zero), such as − 3

4 ,
22
7 , 0 = 0

5 , or 2 = 2
1 .

What about Z, the set of integers? This is not a field, because you usually
can’t divide two integers and stay in Z: 22

7 is a number, but it isn’t an integer. 4

Another field you may know is C, the set of complex numbers. A complex
number is an object of the form a + ib, where a and b are real numbers, and i

is something else. 5 If you multiply two complex numbers, you get a complex
number. Here’s an example to show how it’s done:

(1 + 2i)(3 + 4i) = 3 + 4i + 6i + 8i2 = 3 + 10i− 8 = −5 + 10i.

The neutral element of the addition in C is 0 = 0 + 0 · i, the neutral element of
the multiplication is 1 = 1 + 0 · i. What about taking reciprocals? If neither
a nor b is 0, then (a + ib)(a− ib) = a2 − i2b2 = a2 − (−1)b2 = a2 + b2, so the
reciprocal 1

a+ib of the complex number a + ib is a
a2+b2 + i −ba2+b2 , again a complex

number. 6

You might know from Euclid’s famous proof that
√

2 isn’t a rational number,
that is, that there are no two integers a and b such that

√
2 = a

b . We now use
this knowledge to define a new field called Q(

√
2): it consists of all numbers of

the form a + b
√

2, where a and b are elements of Q. Addition, multiplication
and so work as in the field of real numbers R. Is Q(

√
2) really a field? It’s

easy to check most of the usual rules, but reciprocals need a trick. Suppose
neither a nor b are zero. Then (a + b

√
2)(a − b

√
2) = a2 − 2b2, so it follows

that the reciprocal 1
a+b
√

2 of a + b
√

2 is given by a
a2−2b2 + −b

a2−2b2 ·
√

2, again

4 To an English speaker, the letters “Q” and “Z” may seem strange, but they stand for the
German words “Quotient” (meaning – not surprisingly – “quotient") and “Zahlen” (meaning
“numbers"). This choice seems to have been made by the French mathematical collective
Nicolas Bourbaki in the 1930s and is universally used in mathematics.
5 You sometimes see that i =

√
−1, but this is very confusing for several reasons: The

square root symbol in
√
−1 does not denote the same thing as the familiar square root from

R, and there’s no way to distinguish i from −i as the square root of −1. It’s better to think
of i as something specific with the property that i2 = −1. Once you’ve picked i, −i has the
same property, but it’s defined in terms of i.
6 This was the hardest part of checking that C is truly a field – why not have fun trying to
check the rest of the requirements on your own!
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an element of Q(
√

2). This will work as long as the denominator a2 − 2b2 isn’t
zero. Conveniently, a2 − 2b2 = 0 if and only if 2 =

(
a
b

)2, and this is the case if
and only if

√
2 = ±ab , which, as was earlier noted, is impossible by Euclid. 7

Here’s another way to make more complicated fields. Real polynomials 8

behave much like integers: they obey the algebraic rules of the real numbers,
but you can’t necessarily divide them. We say that R(x), the field of rational
functions over R, is the set of quotients of real polynomials in x. 9 Here are
some examples of rational functions: p(x) = 1 + 2x, p(x) = 1

x , p(x) = 1+2x
3+πx ,

and p(x) = 1+x1000

17−3x6 . This idea also works for polynomials with more than one
variable. Here are some examples of rational functions in R(x, y), R(x1, x2, x3),
and R(x1, . . . , xn) for any integer n: p(x, y) = 1+x2+y2

1+x4+7y100 , p(x1, x2, x3) =
x7

1 + x7
2 − 13x5

3, p(x1, . . . , xn) = (1+x1+...+xn)6

π2+x2
1+...+x2

n
.

2 General iz ing “>”

Two mathematicians working in the 1920s, Emil Artin (1898 – 1962) and Otto
Schreier (1901 – 1929) generalized “>” to fields. Since “a > b” is the same thing
as “a − b > 0”, defining “>" is the same as saying which elements should be
positive. When you add or multiply positives the result should be positive, and
you want decisiveness: if a 6= 0, then either a is positive or a is negative (that
is, −a is positive), but not both.

Formally, an order on a field F is a set P (the “positive” elements in F ) so
that

(1) if x ∈ F , exactly one of these statements is true: x = 0 or x ∈ P or −x ∈ P ,
(2) if x, y ∈ P , then x + y ∈ P ,
(3) if x, y ∈ P , then xy ∈ P .

Artin and Schreier also found a very useful property which follows from (1)-(3):

(4) if x ∈ F and x 6= 0, then x2 ∈ P ; if x1, ..., xn ∈ F and every xi 6= 0, then
x2

1 + . . . + x2
n ∈ P .

7 We can similarly define Q(
√
n) for any integer n which isn’t a “perfect square".

8 that is, polynomials with real numbers as coefficients
9 It’s okay for the denominator to be 1, so a polynomial is a rational function too.
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Proof of (4): If x 6= 0, then either x ∈ P or −x ∈ P . But x2 = x · x =
(−x) · (−x), so (3) implies that x2 ∈ P in either case, and if each x2

i is in P (for
i = 1, . . . , n), then so is x2

1 + . . . x2
n. How would we know that we have a good

definition? The simplest requirement is that it should lead back to the familiar
“>” when F = R. Fortunately, this is the case:

Suppose P is an order on R. If a ∈ R and a > 0 (">" meaning the usual
order on R), then we have no way of knowing whether a ∈ P directly. But
we already know that we can define the real number x =

√
a, and it follows

from (4) that a = x2 ∈ P . From (1), if a < 0, then −a > 0, hence −a ∈ P ,
and this classifies all the elements of R as to whether they belong to P . We
have shown that P = {a ∈ R : a > 0}. This is the only possibility for P . We
don’t get anything new, but this is precisely what we wanted – it just means
our definition seems robust. 10

What about C? It turns out that it is impossible to define an order on C!
The reason is that if P were an order in C, then since i 6= 0, condition (4) would
imply that 0 = 1− 1 = 12 + i2 ∈ P , which is impossible. 11

More surprises occur in Q(
√

2). There are exactly two different ways to
define an order on Q(

√
2), one in which

√
2 ∈ P and one in which −

√
2 ∈ P .

The proofs need more space than I’ve been allowed. Call those two orders P1

and P2. We have a + b
√

2 ∈ P1 exactly when a + b
√

2 > 0, and a + b
√

2 ∈ P2

exactly when a− b
√

2 > 0. 12

What about the field of rational functions R(x)? There are infinitely many
orders! The proof is a little tricky, but here is the main idea: For each real
number r ∈ R, we want to define a specific order Pr depending on r. For each
f = p

q (where p and q are both polynomials), we need to decide whether f

should be called positive. First try the rule that f ∈ Pr if f(r) > 0. This makes
(2) and (3) work, but (1) fails: what if p(r) = 0 or q(r) = 0? So we modify our
definition to say that f ∈ Pr if f(x) > 0 for every x just a little to the right

10 You can also try to prove that every order P on Q is the usual order. It is not possible to
use the last proof because we can’t always take square roots in Q, as we saw with “2”. Hint:
first try to prove that 1 is in P , then prove that positive integers are in P . Then try to write
a fraction m

n
as the product of a positive integer and a square.

11 If you know anything about finite fields, the same argument shows that they have no
orders either.
12 To an algebraist, there is no fundamental difference between

√
2 and −

√
2 (or i and −i.)
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of r. 13 If f(x) ≥ 0 for every x ∈ R, then f will belong to Pr for every r. Are
the orders Ps and Pr really different for every r 6= s? First of all, note that
if f(r) > 0 and f(s) < 0, then f ∈ Pr and −f ∈ Ps. We need to find such
a rational function f for each pair r, s. To simplify things, we may assume
that r < s. If we set t = r+s

2 , then −(x − t) ∈ Pr and (x − t) ∈ Ps; that is,
the polynomial x− t is negative in Pr and positive in Ps. This is true for any
such r and s, so R(x) has (at least) as many orders as there are real numbers –
infinitely many! Things get even more complicated when you look at R(x, y) or
R(x1, . . . , xn), but the same ideas can be made to work.

3 Ser ious mathematics

In 1888, the great mathematician David Hilbert (1862 – 1943) proved that
there exists a polynomial p in two variables with the property that p(x, y) ≥ 0
for all x, y ∈ R that at the same time can’t be written in the form p(x, y) =
h1(x, y)2 + . . . + hk(x, y)2 for any k and any polynomials h1, . . . , hk, see [2].
Interestingly, Hilbert never found an explicit example. The first such example
was discovered in 1967 by Theodore S. Motzkin (1908 – 1970); it is p(x, y) =
x4y2 + x2y4 + 1− 3x2y2.

In 1893, Hilbert proved that for polynomials p in two variables, if p(x, y) ≥ 0
for all x, y ∈ R, then there must exist polynomials f1(x, y), . . . , fk(x, y) and
g1(x, y) 6= 0, . . . , gk(x, y) 6= 0 so that p(x, y) =

(
f1(x,y)
g1(x,y)

)2
+ . . . +

(
fk(x,y)
gk(x,y)

)2
, see

[3]. It’s important that if p is a sum of squares of rational functions in this way,
then necessarily p(x, y) ≥ 0 for every x and y, so a representation of p as a
sums of squares gives a “certificate” that p takes only non-negative values. In
conclusion: for a polynomial p, taking only non-negative values is equivalent to
being a sum of squares of rational functions.

Does the same thing hold for polynomials in more than two variables? In
1900, Hilbert gave his famous list of 23 questions which he expected to occupy

13 Technically, we choose ε > 0 small enough that f(x) > 0 for every x ∈ (r, r + ε). It can be
proved that if f 6= 0, there exists an ε > 0 so that either f(x) > 0 for every x ∈ (r, r + ε) or
−f(x) > 0 for every x ∈ (r, r + ε).
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mathematicians for the 20th century, and the following question is known as
Hilbert’s 17th Problem [4]:

If p is a real polynomial and p(x1, . . . , xn) ≥ 0 for all real numbers
x1, . . . , xn, must there exist polynomials f1, . . . , fk and g1, . . . , gk so that

p(x1, . . . xn) =
(
f1(x1,...,xn)
g1(x1,...,xn)

)2
+ . . . +

(
fr(x1,...,xn)
gr(x1,...,xn)

)2
?

Hilbert’s problem was solved by Artin in the 1920s, using the following
beautiful and hard theorem about ordered fields [1]:

Suppose F is a field.

(1) If there exist nonzero elements x1, . . . , xk ∈ F such that x2
1 + . . . + x2

k = 0,
then F has no order.

(2) If there are no nonzero elements x1, . . . , xk ∈ F such that x2
1 + . . . + x2

k = 0,
then F has at least one order P . Furthermore, x belongs to every possible
order on F if and only if x is a sum of squares in F . 14

Artin then solved Hilbert’s 17th Problem – the answer is “yes”! He showed
that if p(x1, . . . , xn) ≥ 0 for all x1, . . . , xn and P is an order on R(x1, . . . , xn),
then p ∈ P . It follows by (2) that p is a sum of squares of elements of
R(x1, . . . , xn) (There’s a lot of work hidden in these sentences!). Unfortunately,
there’s no known non-numerical algorithm 15 for finding f1, . . . , fk and g1, . . . , gk.

Mathematicians, both pure and applied, are extremely interested in determin-
ing the circumstances under which a real polynomial only takes non-negative
values. This is a very hard problem, both theoretically and in practice, so
certificates are valuable. If p =

(
f1
g1

)2
+ . . . +

(
fk

gk

)2
, we can clear the denom-

inator and find H so that H2p is a sum of squares of polynomials. If H2p

only takes non-negative values, then so does p. Finding such an H for p leads
to a certificate. There now are algorithms (from an area called “semidefinite
programming”) which make it easy to check numerically whether any polynomial
is a sum of squares of polynomials. Many mathematicians around the world
have worked hard in recent years on the questions discussed in this section. I
am one of them, and this has been my Snapshot.

14 For fun, note that 17 + 12
√

2 ≈ 33.9706 and 17− 12
√

2 ≈ .0294, so x = 17 + 12
√

2 is in
both P1 and P2 for Q(

√
2). Try to write x = x2

1 + . . . + x2
k for x1, . . . , xk ∈ Q(

√
2). Hint:

start with x1 = q + 6
q

√
2 for the “right” q = m

n
∈ Q.

15 meaning there are only algorithms which give an approximation, not an exact solution
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