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The Kadison-Singer problem

Alain Valette

In quantum mechanics, unlike in classical mechanics,
one cannot make precise predictions about how a sys-
tem will behave. Instead, one is concerned with mere
probabilities. Consequently, it is a very important
task to determine the basic probabilities associated
with a given system. In this snapshot we will present
a recent uniqueness result concerning these probabil-
ities.

1 The mathematical formulation of quantum mechanics

Before the invention of quantum mechanics by Erwin Schrédinger (1887 — 1961)
and Werner Heisenberg (1901 — 1976), physicists were describing motion by
means of classical mechanics.2 In that framework, the state of a particle at a
given instant of time is completely described by its position (given by 3 spatial
coordinates) and its momentum (3 more coordinates). So, from a classical point
of view, all information you can possibly have about a particle is represented
by a point in a 6-dimensional vector space, the so-called phase space. If you
are interested in, say, the position of the particle, you just have to take all
the information available and “forget” the momentum of the particle, that
is, you project the 6-dimensional phase space onto a 3-dimensional subspace.

The following formulation of classical mechanics was developed by the Anglo-Irish physicist,
astronomer, and mathematician Sir William Rowan Hamilton (1805 — 1865).



Mathematically, such a projection is a so-called linear opemtor. In the context
of physics, it is called an observable (quantity). In the classical perspective,
there is in principle no obstacle to measuring both position and momentum
very precisely.

In quantum mechanics, however, we view things differently. The information
about a system is usually represented by a point in an infinite-dimensional
vector space! The observables are still linear operators, which we now require
to be “self-adjoint” (that is, they fulfil a certain symmetry property) 4 Some
of these observables are still compatible, meaning that they can be measured
simultaneously arbitrarily precisely (remember that in the classical scenario
all our observables were compatible). Others, however, are not, for example
position and momentum: if you want to make simultaneous predictions about
position and momentum, the more precise your results for the position of a
point mass are, the less precise get your results for its momentum, and vice
versa. This is known as Heisenberg’s Uncertainty Principle. It was named after
the German physicist and Nobel laureate Werner Heisenberg (1901 — 1976) and
limits in a fundamental way the precision with which observables like position
and momentum of a particle can be known simultaneously.

How is this encoded in the mathematics of the model? Mathematically,
compatibility of observables means that the linear operators commute (that is,
it does not matter which operator you apply first to your set of data), while
operators of incompatible observables do not commute (you get different results
if you reverse the order in which you apply the two linear operators).

Does this mean that it is impossible to come to grips with a system in
quantum mechanics? No, but quantum mechanics is probabilistic in nature,
meaning that what actually can be measured are probabilities! That is, while
you might not be able to predict the outcome of a measurement of an observable,
you can calculate the probability that the observable is in a certain “quantum
state”.

More about linear operators can be found in the following snapshot: Greg Knese, Operator
theory and the singular value decomposition, Snapshots of modern mathematics (2014), no. 9,
1-7.

Of course the precision of your measurement is limited by the precision of the instruments
you use. But this is a different matter.

If you are familiar with matrices, you may think of the operators as infinite-dimensional
matrices. A self-adjoint operator is then a symmetric matrix.

In terms of matrices, commutativity means A- B = B - A.



2 An extension problem...

How can we determine the basic probabilities associated with the quantum
states of a system? The British physicist Paul Dirac (1902 — 1984) addressed
this question in Section 18 of his book [1]. He explicitely gives a procedure:

Start with a commuting set of observables.
Enlarge it to a maximal set of commuting observables. Nowadays, we call
this a MASAL.

e Specify the probability distributions associated to the commuting observables
in the MASA. That is, for each observable in the MASA you need to
choose how likely it should be to measure a given value for the observable.
Mathematically, this amounts to defining a linear functional™ on the MASA
that satisfies some positivity properties; such a functional is called a pure
state.

e Extend this pure state to all observables.

The last step is the interesting one. An extension of a pure state to all
observables is always possible, but can there be different extensions? It seems
that Dirac was convinced that this final step could be done in a unique way.
At the end of the 1950s, it was realized that this was not obvious, and in 1959
Richard Kadison and Isadore Singer tackled the mathematical question whether
the extension of a pure state from a MASA to all observables is unique [2].B] As
it turns out, the answer depends on what the MASA is like. If, for example, the
set of operators you start with contains only projections onto one-dimensional
subspaces, then the MASA you obtain is not very large; we call it atomic?
There are also (in a certain sense) more complicated MASAs called diffuse.
Kadison and Singer showed that if the MASA is diffuse, there are pure states
not extending uniquely to all observables, thus proving Dirac’s intuition to be
wrong. For atomic MASAs, however, they left the question open.

The question “Does any pure state of an atomic MASA extend uniquely to
all observables?” became known as the Kadison-Singer problem. Over the years,
it was proved to be equivalent to a number of other open questions in various
fields of mathematics: linear algebra, harmonic analysis, signal theory...

[6] This is short for “maximal abelian self-adjoint algebra of observables”.

A linear functional is a linear function on a vector space whose values are (real or complex)
numbers.

This pertains the study of so-called C*-algebras.

£l Thinking of matrices, you may imagine an atomic MASA as containing only diagonal
matrices.

Names to be quoted here are C. A. Akemann, J. Anderson, N. Weaver, P. Casazza and
collaborators.



3 ... and its solution!

By an interesting twist in history, the Kadison-Singer problem was solved in June
2013... by three computer scientists [3]! Actually, the Kadison-Singer problem
has a positive answer! Adam Marcus, Dan Spielman and Nikhil Srivastavall
proved an equivalent form of the Kadison-Singer problem, which involves only
basic linear algebra:

Given a > 0 and vectors vi,...,v, € R™ satisfying > i (v;,z)? =1 for
every ||z|| = 1 and ||vi||? < «, there exists a partition Ty U Ty of {1,2,...,m}
satisfying

Z(vi,x>2 — % <5Va

i€l

for every ||z|| =1 and j =1, 2.

The proof that this statement is equivalent to a positive answer to the
Kadison-Singer problem is due to Nik Weaver, see [4]. Marcus, Spielman, and
Srivastava actually prove that if you choose the partition in a certain random

way, then the probability that ‘ZieT]_ (vi, z)% — %’ < 5y/a for every |jz| =1
and j = 1,2 is larger than zero. So there must exist a partition that fulfils
the desired inequality. They deduce Weaver’s statement from results on the
characteristic polynomial (viewed as a random polynomial) of the sum of m
independent random variables taking values in rank 1 matrices.

It is remarkable that their proof only involves linear algebra, elementary
probability theory, differential calculus in several variables and (at one place) a
dash of complex analysis.

Summarizing, we know that Dirac’s intuition was wrong about diffuse MASAs
in general but right for atomic ones.

Marcus is working four days a week doing R&D in a software company, and one day per
week at Yale University. Spielman is a professor for theoretical computer science at Yale and
a Nevanlinna laureate. Srivastava is working for Microsoft India, and will present the solution
of the Kadison-Singer problem at ICM 2014 in Seoul.
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