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This snapshot looks at educational aspects of the de-
sign of curricula in mathematics. In particular, we
examine choices textbook authors have made when
introducing the concept of the completness of the real
numbers. Can significant choices really be made? Do
these choices have an effect on how people learn, and,
if so, can we understand what they are?

1 Introduct ion

Theory in mathematics education is rather different from theory in mathematics.
One of the goals of educational theory is to try to find patterns of behaviours
amongst the complex ways people behave and so understand the obstacles these
people have in learning mathematics. A theory in mathematics is crystalline,
clean, and austere. A theory in education is more organic and often empirical. A
particular individual may act as a mathematician or as an educational researcher,
or indeed both. Whereas for a mathematician the subject matter itself is most
prominent, for the educator it is the student learning. However, it doesn’t make
sense to dwell on specifying this distinction. Instead, this snapshot looks at an
aspect of educational work where both minds meet: the design of curricula.

Designing a curriculum involves carefully specifying the topics and the order
in which they will be taught. It also takes account of what we expect the
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students to know at the start and how people learn. This is investigated both
in general and more specifically in so-called local instruction theories. They are
called local since they deal with the teaching and learning of a particular topic
within mathematics, in contrast to what we could call a global instruction theory,
studying mathematics education in general. Selections need to be made at a
range of levels of granularity, from the big ordering choices, to the individual
examples.

A curriculum also says something about what we think mathematics is.
Is mathematics the collection of definitions, theorems, proofs, and examples,
or does it also include the process of going about solving problems in that
particular area? That is an additional philosophical question and many areas of
mathematics, in pure, in applied mathematics, and in statistics, have important
if subtle differences in the ways problems are posed, investigated, and solved.
Curricula sometimes go beyond just specifying topics to include these processes.

Generally speaking, there are choices to be made and these have an important
effect on what we believe the nature of the subject is and how people learn.

2 Curr iculum studies: analysis and the completeness of
the real numbers

To illustrate these choices I have chosen the completeness of the real numbers.
What is the essential difference between the real numbers and the rational
numbers? Rational numbers are those which can be written as a ratio or
fraction p

q , where p and q are integers and q 6= 0. The first task is to convince
you that not all numbers are rational.

Take, for example, the graph of y = 2x, shown in Figure 1. This graph looks
continuous and smooth. It appears to cut the horizontal line y = 3 just once.
What value of x gives 2x = 3? Could this be a rational number? Well, if x = p

q
then

2x = 3⇔ 2
p
q = 3⇔ 2p = 3q.

Can we find whole numbers p and q so that 2p = 3q? For any p, 2p is even, but
for any q, 3q is odd. Therefore they can never be equal! The number x cannot
be a rational number.

Those people who have already studied real analysis will probably, by now,
be jumping up and down and raising all sorts of objections to this argument.
For example, I’ve assumed that 2x is a continuous curve. How do we know that
there isn’t a “gap” (however small) through which the line y = 3 slips, missing
the points on the curve? A central question in real analysis is precisely to pin
down what we mean by completeness and continuity. There is a fundamental
difference between the real numbers and the rational numbers and we need an
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Figure 1: The graph of y = 2x and the line y = 3.

axiom (i.e. a basic starting assumption) to capture this difference. What should
we take as our “completeness axiom” to separate rational from real numbers?

In real analysis there are five really large topics: real sequences (seq), con-
vergence of series (ser), continuity (C), differentiability (D), and integration
theory (I). These are all theoretical topics, rather than more practical calculus
methods. Other topics may also be included, such as sequences of functions.
Table 1 contains a small selection of real analysis books and lists the order in
which topics are taught, and what each book states as the completeness axiom.
Notice there is really a very significant variety amongst the books.

The first author in Table 1, [11], puts continuous functions first. He then talks
about differentiation before moving to sequences and series, leaving integration
until last. Along the way he introduces three “propositions”, which are used in
key places to prove major theorems.

1. Existence of a least upper bound.
2. The intermediate value property for a continuous function.
3. Continuous functions on a closed bounded interval are bounded.

These three propositions turn out to be closely related. Unusually for a real
analysis textbook, there is a discussion of these three propositions. Real numbers
are eventually defined using Dedekind cuts, and from this it can be proved that
all three “propositions” hold for real numbers but fail for rational numbers.
Contrast this approach with [3], who puts Dedekind’s axiom at the beginning,
and works with sequences first. This ensures nothing is used before it is formally
defined, but it is sometimes hard to understand why a definition is really
necessary until it has been used. Many educators, such as [4], question the
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Book Order of topics Completeness Axiom
Quadling [11] C, D, seq, ser, I p. 9: If E is any set of numbers which is

bounded above, then of all possible upper
bounds there is a least one.

Burkill [3] seq, C, D, ser, I p. 12: Dedekind’s axiom. Suppose that
the system of all real numbers is divided
into two classes L, R every member l of L
being less than every member r of R (and
neither class being empty). Then there is
a dividing number ξ with the properties
that every number less than ξ belongs to L
and every number greater than ξ belongs
to R. The number ξ itself may belong
to either L or R. If it is in L, it is the
greatest member of L; if it is in R, it is
the least member of R.

Lang [10] seq, C, D, ser, I p. 27: Archimedean axiom. Every non-
empty set of real numbers which is
bounded from above has a supremum. Ev-
ery non-empty set of real numbers which is
bounded from below has a greatest lower
bound.

Spivak [13] C, D, I, seq, ser p. 113: (P13) The least upper bound prop-
erty. If A is a set of real numbers, A 6= ∅,
and A is bounded above, then A has a
least upper bound.

Ball [2] seq, ser, C, D, I p. 23: A real number is a Dedekind section
of the rationals; i.e. the set of real numbers
is the set of all Dedekind sections.

Reade [12] seq, ser, C, D, I p. 11: Every non-empty set E of real num-
bers which is bounded above has a supre-
mum.

Hart [8] seq, ser, C, D p. 12: Every non-empty set of real num-
bers which is bounded above has a supre-
mum.

Burn [5] seq, ser, C, D, I p. 72: Every infinite decimal is convergent.

Table 1: Curriculum choices in analysis texts.

4



efficacy of “requiring a definition in order to construct proofs when it is only
the proofs that clarify which properties are needed in the definition”. [13] has a
similar ordering of topics, but chooses the first of [11]’s propositions as an axiom.
He discusses the others as two of his “Three Hard Theorems” in Chapter 7 (the
third is that a continuous function on a closed bounded interval achieves its
bound somewhere).

Another popular choice is to take the least upper bound as an axiom and
put sequences and series first. What is an axiom in [12], [8], and others is a
theorem in [3]:

Theorem 1.8. If S is a (not-empty) set of numbers which is
bounded above, then of all the upper bounds there is a least one. [3]

Notice the axiom in [10] has two parts. The second part is a theorem in some
books, e.g. [8, Theorem 1.4.3] and an exercise in [12] (Exercise 7, on p. 16).

It is also intriguing to notice that in almost all these treatments integration
theory comes last. Historically, some of the most important mathematical prob-
lems involve calculating areas and volumes, and these are essentially integration,
see for example [6]. To what extent should a current curriculum respect the
historical development of the subject?

3 The quest ions of educat ional research

It is difficult for someone new to a subject to appreciate the consequences of
these choices and their relative merits. Indeed, most students find real analysis a
challenge the first time they learn it! The point of this snapshot is to argue that
choices have been made. One goal of educational research is to systematically
investigate whether these choices are effective, although scientific controlled
experiments on the curriculum level are very rare (see [1] for one example). As
the author of our last book [5] says “learning or growth in mathematics consists
of a transition from experiences of the particular, through pattern recognition or
problem solving, to perceptions of a generic” [4].

Discussion of why these choices have been made are very rare. There are
longstanding cultural reasons within mathematics why discussions about def-
initions, for example, are hidden particularly from students. One particular
exception is [9]. In his criticism of the argument between Bernoulli and Leibniz
about the “correct” definition of the logarithm of a negative number, Euler
acknowledges this freely:

If at times this disagreement is not expressed strongly the reason is
clearly that people do not want the certainties of pure mathematics in
general to come under suspicion by revealing in public the difficulties
and even contradictions that mathematicians find in this area. [7]
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When choosing what to take as a definition we seek the best class of correct
theorems, while introducing the fewest problem cases. It is helpful to be able to
use the definition simply, and essential not to contradict established results. In
mathematical research definitions often come last. A mathematics educator also
has to mediate these demands with cognitive processes, including pre-existing
intuitive notions from the real world, and our understanding of the particular
social teaching situation. Just as the traces of discovery in mathematics are
obscured, so the reasons for particular curriculum orderings are brushed away.
This essential conundrum lies at the heart of curriculum development in pure
mathematics, and is one which can only be solved through a close collaboration
between mathematicians and educators.
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