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Minimizing energy

Chr ist ine Breiner

What is the most efficient way to fence land when
you’ve only got so many metres of fence? Or, to put
it differently, what is the largest area bounded by a
simple closed planar curve of fixed length?
We consider the answer to this question and oth-

ers like it, making note of recent results in the same
spirit.

1 A model problem

The question posed in the abstract is an optimization problem. We are given a
fixed length of curve and are trying to maximize enclosed area. Equivalently,
one could fix the enclosed area, and try to minimize the length of a closed curve
bounding a region with the specified area. The planar isoperimetric inequality
answers both forms of this question:

We consider a simple closed curve C in the plane. 1 Let LC denote the length
of the curve C, and let AC denote the area of the region enclosed by the curve
C. The isoperimetric inequality states that the area enclosed by the curve times
4π cannot exceed the square of the length of the curve, that is,

4πAC ≤ L2
C .

In addition, the area enclosed by a curve of fixed length is the largest possible
(that is, 4πAC = L2

C) if and only if the curve is a circle. Notice that stating the

1 By a simple curve we mean a curve that does not cross itself.
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inequality is the same thing as saying that the circle maximizes enclosed area
for a fixed perimeter and minimizes perimeter for a given enclosed area.

We sketch a few of the simple ideas behind the proof of such an inequality.
First notice that given a circle with radius r, its circumference L is given as
L = 2πr, and its area is A = πr2. So

4πA = 4π2r2 = (2πr)2 = L2.

Thus, 4πAC = L2
C if C is a circle with circumference L.

We now consider a simple, closed planar curve C of length LC . One way to
demonstrate that the inequality holds is to show that if the curve C is not a
circle, then we can find a way to increase the enclosed area. In other words,
the enclosed area for a curve of length L is always less than or equal to the
enclosed area for a circle of circumference L.

A2

Figure 1: Both solid curves have length L, but the curve on the right bounds a
region of larger area.

We first show that if the curve C does not bound a convex region, then
the area can be increased without changing the curve’s length LC . Consider
Figure 1. The region on the left has area A1 but is not a convex region. After
reflection across the red line segment, the region on the right that is bounded
by the solid curve has area A1 + 2A2. Moreover, the length of the solid curve
remains L. As long as the region on the right is not convex, one may repeat
the process, reflecting part of the curve over a new line segment, to get a new
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curve of length L bounding a region with greater area than previously. One
can continue this process until the region is convex. 2

We next show that if a convex curve C does not possess a certain type of
symmetry, then the area can also be increased without changing the length
LC . Let P,Q be points on C such that P and Q divide C into two curves of
length L/2. 3 If C is not symmetric about the line segment connecting P and
Q, we can increase the area by reflecting the region with the larger area over
the line segment PQ, see Figure 2. If we consider the red (lighter, if you read
this in black and white) curve and the reflection of this curve over PQ, the area
enclosed is larger than the original area bounded by the blue (darker) curve.
One can repeat this reflection process for any points P,Q that divide the curve
as specified. This procedure can only stop when one reaches a circle. 4

P

Q

A A21

Figure 2: The region bounded by the segment PQ and the red curve has larger
area (A2) than the region bounded by PQ and the portion of the
blue curve to the left of PQ (A1).

To sum up, given a simple closed curve of length L, we have sketched the
following string of inequalities:

Area of a non-convex region bounded by curve of length L
≤ Area of a convex region bounded by a curve of length L
≤ Area of a circle with circumference L.

Notice that we neglected a great deal of detail, especially in arriving at the

2 This procedure involves taking limits of infinite sequences of curves, which is a delicate
issue not to be addressed here.
3 Notice that if C were not convex, the curve could possibly cross the segment P Q.
4 Note that again we haven’t explained how we pass to the limit of the possibly infinitely
many intermediate curves constructed in this way.
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final inequality; we have neither shown that an area-maximizing curve indeed
exists nor that it is unique. A similar problem the reader might consider is how
to prove that the largest area enclosed by a convex curve of length L/2 with
endpoints on a line is a semi-circle.

2 A surface minimizing area

In three dimensions, the analogous question to the model problem can be
considered from a physical point of view. Indeed, one might ask, “What is the
shape of a soap bubble?” 5 The soap bubble, like every mechanical system, tries
to reach a state of minimal potential (or tension) energy. Its tension energy is
proportional to its surface area, so area minimizing soap bubbles are the same
thing as tension energy minimizing soap bubbles. We only consider bubbles with
a given enclosed volume (the air cannot escape the bubble nor be compressed).
The answer to our question is the one we should expect – a soap bubble has the
shape of a round sphere. The rigorous proof for this can be found in an area
of mathematics called calculus of variations, and the word calculus should not
come as a surprise. While the problem is much more complicated than those
seen in a calculus class, at the core we are trying to minimize one quantity
(surface area/tension energy) with another quantity (enclosed volume) acting
as a constraint. Whereas in calculus one usually varies one variable (or possibly
two or more variables) and asks questions like “For which value of this variable
does the function under consideration attain a minimum (if at all)?”, in calculus
of variations we vary shapes of surfaces (and other more abstract “variables”).
One can view calculus of variations as a kind of infinite-dimensional calculus.

Variational questions are frequently in one of the following forms:

• In a particular class of surfaces (determined by certain restrictions), does a
minimizer to a specified energy 6 exist?

• If a minimizer exists, is it the only one? In other words, is there a unique
minimizer?

Notice that the model problem we considered in Section 1 can be framed in
exactly this way: “For a fixed number A, what is the smallest possible length
of a simple, closed planar curve enclosing an area of A square units? If a curve
exists that minimizes the length, what is the shape of such a curve?” The
restrictions are the fixed enclosed area and the condition that the curve is simple

5 For more on this and similar questions see the vivid presentations in [3] (available only in
German).
6 In analogy to tension energy and surface area, other quantities that appear in variational
problems are frequently called energies. In our comparison to calculus, the energy is the
function we want to minimize.
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and planar, the length is the energy, and we already know the solution by the
previous proof.

When we consider the problem in three dimensions, a surface takes the place
of the curve, the surface’s area takes the place of the curve’s length, and the
volume of the enclosed area takes the place of the area of the enclosed region.
It is helpful to add a topological condition to any optimization question – that
is, we restrict our attentions to objects of a certain rubber shape (distorting the
object by stretching and squeezing is allowed, but no cutting or gluing). An
important surface is the sphere. When we attach a handle to a sphere (and allow
for some stretching and squeezing), we obtain a torus, a donut-shaped surface.
Attaching more handles leads to different surfaces, see Figure 3. We might ask,
given a fixed volume V > 0, what surfaces with zero, one, or two handles have
the least surface area enclosing a volume V ? In 1955, Hopf showed that among

Figure 3: A zero-handled, one-handled, and two-handled surface: also known
as a sphere, a torus, and a two-torus.

all zero-handled surfaces, the round sphere 7 has least area for a fixed enclosed
volume [4]. In fact, Hopf proved an even stronger result. As any good calculus
student knows, not every critical point 8 of a function is a minimizer (possibly
not even a local minimizer). In the calculus of variations, mathematicians are
not only interested in minimizers of an energy but also in critical points for
the energy. Notice that the class of surfaces that are critical for an energy also
contains all minimizers for that energy and is thus a potentially larger class.
Hopf’s result shows that the only zero-handled surface that is critical for surface
area (with fixed enclosed volume) is the round sphere.

7 By round, we mean the zero handled surface with constant radius. Note that the surface
of the earth is zero handled, but not round because of the mountains and valleys.
8 A critical point of a function is a point where the first derivative is zero.
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In 1958, Alexandrov answered a slightly different question about the same
energy [1]. He demonstrated that for any number of handles allowed, as long as
the surface doesn’t pass through itself (or self-intersect), the only surface that is
critical for this energy is again the round sphere. In particular, no surface with
handles has area less than or equal to the area of the round sphere (presuming
fixed enclosed volume). The proofs of these two results were quite different
and introduced new and very powerful techniques that provided inspiration to
mathematicians in the years to come.

3 Recent breakthroughs

In recent years, a number of long-standing open questions have been answered.
We mention a few of these results, which are similar in spirit to the ideas
outlined above.

In 1970, Lawson conjectured that there is a unique one-handled surface
without self-intersection in the three-dimensional sphere S3 that minimizes
surface area [6]. 9 In 2012, Brendle used a sophisticated analytical principle
argument, involving partial differential equations and the so-called maximum
principle, to verify the conjecture [2].

The round sphere is not just a minimizer for the energy described in the
previous section. Among all surfaces, the round sphere also minimizes another
energy, which relates to the curvature of a surface, the so-called Willmore energy.
This energy is also known as the bending energy of a surface – it describes how
much energy you would need to shape a thin membrane into the form of the
surface by bending the membrane. It has applications in cell biology and image
processing.

In 1965, Willmore conjectured that the Willmore energy for one-handled
surfaces (tori) is always at least 2π2 [7]. Many mathematicians proved this
conjecture under extra hypotheses. In 2012, Marques and Neves verified the
conjecture in full generality [5]. One major step of their argument was to
determine that there exists a unique one-handled surface without self-intersection
in S3 that minimizes the Willmore energy. In fact, the one-handled surface that
minimizes Willmore energy in R3 is directly related to the one-handled surface
that minimizes surface area in S3!

9 Instead of looking at curves in the plane, we could have considered curves on a two-
dimensional sphere S2 in the first example and asked similar questions. Similarly, instead of
considering surfaces in the three-dimensional space R3 one can also consider surfaces in the
three-dimensional sphere S3.
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