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Friezes and tilings

Thorsten Holm

Friezes have occured as architectural ornaments for
many centuries. In this snapshot, we consider the
mathematical analogue of friezes as introduced in the
1970s by Conway and Coxeter. Recently, infinite ver-
sions of such friezes have appeared in current research.
We are going to describe them and explain how they
can be classified using some nice geometric pictures.

1 Friezes

Friezes have been used since antiquity as stylistic ornaments in architecture and
decorative art. Figure 1 shows some examples of drawings of such friezes.
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Figure 1: Friezes as decorative elements.

In this snapshot, we want to investigate mathematical versions of these
ornaments, called frieze patterns, which are built up from numbers. These
go back to the famous mathematicians John Horton Conway (born 1937) and



Figure 2: John Horton Conway (left) (born 1937) and Harold Scott MacDonald
Coxeter (right) (1907 — 2003).

Harold Scott MacDonald Coxeter (1907 — 2003) (see Figure 2), who intro-
duced and studied them in the early 1970s [5]. Before we are going to define
frieze patterns properly, you might want to have a look at some first exam-
ples in Figure 3 (the green [italic] and red [bold] colours will be explained later).

(b) A more complicated frieze pattern.

Figure 3: First examples of frieze patterns.



Similar to the architectural ornaments above, frieze patterns are infinite
horizontal arrays; they consist of a finite number of rows of positive integers and
they are bounded by two rows of 1’s. The crucial condition for a frieze pattern
is that every diamond-shaped set of four adjacent numbers within the pattern
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satisfies the relation ad —bc = 1. We call it the determinant condition for now

With the concept and some first examples at hand (you are invited to find
some more frieze patterns yourself!), a mathematician would be tempted to try
to get an overview over all such objects, if possible. In fact, a main result from
Conway and Coxeter’s research states that every frieze pattern can be obtained
geometrically via triangulations of polygons.

A triangulation of a regular n-gon is a collection of diagonals (straight lines
between two non-neighbouring vertices) which do not cross, such that the inte-
rior of the n-gon is divided into triangles. In Figure 4, you find an example of a
triangulation of a regular octagon. It is not hard to see that each triangulation
of an n-gon contains n — 3 diagonals and divides the n-gon into n — 2 triangles.
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Figure 4: A triangulation of the octagon.

If you are familiar with determinants you might have noticed that this just says that the
determinant of the 2 x 2-matrix (Z Z) equals 1.

A polygon is a geometrical figure in the plane bounded by a closed chain of line segments
(sides or edges of the polygon) such as a triangle, a square, etc. The points, where the edges
meet are called corners or vertices. An n-gon is a polygon with exactly n vertices. A polygon
is said to be regular if all edges have the same length.



How could one produce a frieze pattern from such a triangulation? There
is the following simple recipe (see [4]), which uses nothing more difficult than
primary school mathematics.

The primary school algorithm: Pick a vertex of the polygon, and assign
the value 0 to it. Next, assign the value 1 to each vertex sharing a triangle
with the given vertex. Then, inductively, whenever two vertices of a triangle
have already been assigned numbers a and b, say, the third vertex gets
assigned their sum a + b.

Consider the triangulation of the regular octagon in Figure 4. In the middle
and on the right we have computed the numbers as above, starting with the
top two vertices.

Now, reading the non-zero numbers counter-clockwise gives a diagonal in the
corresponding Conway-Coxeter frieze pattern; and putting the diagonals for the
n vertices next to each other (in subsequent order, and repeated after every n
steps), indeed gives a frieze pattern. In our example in Figure 4, we obtain the
green [italic] and red [bold] slice in the above Conway-Coxeter frieze pattern
shown in Figure 3b.

Indeed, as Conway and Coxeter found out, every frieze pattern stems from a
triangulation of a regular polygon in this way, and vice versa. This fact hence
provides a nice classification of all frieze patterns through geometric objects
and simultaneously links frieze patterns to various other mathematical objects
which are related to triangulations; for more details see [6, p. 96-100].

Also, if we are able to count the number of triangulations of an n-gon,
Conway and Coxeter’s result tells us immediately how many frieze patterns
with n — 1 rows exist. So let’s count polygon triangulations:

e for a triangle there is only one triangulation (namely the ’empty one’ with
no diagonal);
we can find two triangulations for a quadrilateral;
a pentagon has five possible triangulations;
for a hexagon there already exist 14 different triangulations! (Can you find
them all?)

Arranging these numbers in a series, we obtain: 1,2,5,14.... Enter these
four numbers into an internet search engine — you’ll be immediately pointed to
a well-known sequence of integers, the so-called Catalan numbers.

Of course, the observation that triangulations of n-gons are counted by
the Catalan numbers for the four smallest n = 3,4,5,6 suggests that one
could extend our list above even for larger numbers n. In fact, this is true for



arbitrary n. For a proof of this conjecture and if you are interested in other
mathematical contexts where Catalan numbers appear, see Richard Stanley’s
book [8], or the additional material provided on his web page [9].

2 Tilings

We now come to very recent research topics which were inspired by the Conway-
Coxeter frieze patterns. Actually, it needs nothing more than a simple removal
of the condition of having limiting rows of 1’s in frieze patterns to obtain new
and interesting mathematical objects. These are called tilings.

A tiling is a pattern of infinitely many rows of infinitely many positive
integers, satisfying the determinant condition for every adjacent diamond of
numbers 2! just like above. The notion of tilings thus naturally extends that
of Conway-Coxeter frieze patterns from finite to infinite (when considering the
number of rows). In the literature on tilings, it is customary to arrange the
entries of rows into columns. In other words, contrary to the frieze patterns
shown in Figure 3, we write the numbers on top of each other, in order to be
consistent with the literature. In Figure 5, you find an example of such a tiling.

Note that the entries in this example are given by every second one of the
famous Fibonacci numbers. The Fibonacci numbers are defined by Fy = 0,
Fy=1,and F,,41 = F,_1 + F,, for all n > 1; the determinant condition for

1597 610 233 89 34 13 5

2 1
610 233 89 34135 2 1 1
233 89 34 135 2 1 1 2
8 34 13 5 2 1 1 2 5
34 13 5 211 2 5 13 -
13 5 2 1 1 2 5 13 34
5 2 1 1 2 513 34 §9
2 1 1 2 5 1334 89 233
1 1 2 5

13 34 89 233 610

Figure 5: A simple tiling, involving Fibonacci numbers.

Of course, after rearranging the rows into columns as in Figure 5, the diamonds become
ordinary squares.



the tiling in Figure 5 then reads F, 1 2F,,_2 — F2 = 1 for odd m. That this
identity is indeed true follows directly from the Cassini (or Catalan) identity,
one of the many properties Fibonacci numbers satisfy.

Tilings as described in the above paragraphs were recently introduced by
Ibrahim Assem, Christophe Reutenauer, and David Smith [1] by the name of
SLo-tilings. They appeared in their work on the fascinating new theory of
cluster algebras and turned out to be useful for developing certain formulas in
this research area. For some background on cluster algebras we refer to the
article [10] by Andrei Zelevinsky.

While the Fibonacci number tiling of Figure 5 was a rather simple example,
more complicated examples of tilings can be constructed, see for instance Figure
6 (again the meaning of the colouring [bold print] will be explained later).
You are invited to produce more tilings yourself!

265 218 171 124 77 107 137 167 197
203 167 131 95 59 82 105 128 151
141 116 91 66 41 57 73 89 105
79 65 51 37 23 32 41 50 59
17 14 11 8 5 7 9 11 13 ---
o7 47 37 27 17 24 31 38 45
154 127 100 73 46 65 84 103 122
405 334 263 192 121 171 221 271 321

Figure 6: A more complicated tiling.

A mathematician would now immediately ask whether there is a nice and
structured way to find and describe all of them, that is, he or she would try
to classify all tilings. This is actually the same question we asked for the
frieze patterns; there we learned that triangulating polygons produces all frieze
patterns.

And indeed, YES, also tilings can be classified, as shown recently in joint
work with Christine Bessenrodt and Peter Jgrgensen [3]. It turns out that, as
for Conway-Coxeter frieze patterns, one can produce all tilings by triangulating
certain geometrical objects — not polygons but more complicated ones — still
using the same primary school algorithm.



We now describe those new mathematical objects, see Figure 7a: We take
a circle, and mark four distinguished points on it; they divide the circle into
four regions. In each of these regions we insert a set of infinitely many vertices,
indexed by the integers. For the top and bottom region these vertices are named

., T_1,%0,%1,...and ..., y_1,¥Y0,Y1,- -, respectively, in Figure 7a.

We now have an object with vertices which allows us to perform a triangula-
tion on it by drawing lines between the vertices — just as for the polygons before.
This is illustrated in Figure 7b for the example tiling shown in Figure 6.

On any such triangulation, we perform the primary school algorithm between
the vertices in the top and the bottom regions of the circle. That is, we start
from any vertex in the top region and assign a 0 to it. We then read off all
the numbers from the vertices in the bottom region produced by the algorithm.
In the triangulation of Figure 7b, the red [bold] numbers at the bottom are
obtained from the primary school algorithm and they indeed give the red [bold]
row of the tiling in Figure 6. The other rows of the tiling in Figure 6 are then
obtained by performing the same algorithm, starting with every other vertex in
the top region of the circle.
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(a) A circle with four disinguished points. 1411 579 11

(b) The primary school algorithm per-
formed on a triangulation.

Figure 7

Note that in Figure 7b, the triangles now of course do no longer look like ordinary triangles
with straight edges.



It mainly follows from classical Conway-Coxeter theory that starting from
the vertices at the top, the numbers you obtain in the bottom region indeed give
the rows of a tiling. The hard part of our result is to show that, conversely, for
every tiling one can indeed find a suitable triangulation of the circle with four
distinguished points which produces the given tiling using the familiar primary
school algorithm.

The proof of this fact is constructive: the diagonals of the triangulation to
be found can be read off from the entries of the given tiling (in a rather subtle
and non-obvious way, though). The methods used in the proof are completely
different for the cases where the tiling contains 1’s and the much harder case
where it does not. For the latter case, a crucial observation for getting started
is that any tiling without 1’s has the property that its minimal entry appears
exactly once; see for instance the tiling in Figure 6 where indeed there is the
unique minimal entry 5.

3 Concluding remarks

As is often the case in mathematics, the work on solving one problem creates
new questions and inspires future research also here. In the theory of frieze
patterns and tilings there are several variations and generalisations which are
currently being studied.

One obvious generalisation is to relax the condition allowing only positive
integers as entries. Interesting frieze patterns and tilings with arbitrary integer
entries exist and research in this direction has just begun, see for instance [7].

Another area of current research are the so-called SLj-tilings, introduced
in [2]. These are arrays of positive integers such that each adjacent k x k-
determinant equals 1. The tilings considered in this snapshot arise as the special
case k = 2. For SLj-tilings, a nice geometric description like the one given
above for S La-tilings is not yet known.

From all these contexts, one can expect that new and interesting mathematical
objects and combinatorial methods might wait to be discovered, and hopefully
also some surprising new connections to other areas of mathematics.



Image credits

Figure 1 top left image; “Laufender Hund”. Author: Roland Bergmann. Li-
censed under Creative Commons Attribution-Share Alike 3.0 via Wikime-
dia Commons, http://commons.wikimedia.org/wiki/File%3ALaufender
Hund.png [Online; accessed 09-December-2014]

Figure 1 top right image; “M&ander”. Author: Roland Bergmann. Licensed
under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Com-
mons, http://commons.wikimedia.org/wiki/File%3AM%C3%A4ander.png
[Online; accessed 09-December-2014]

Figure 1 bottom image; “Rautenfries”. Author: Roland Bergmann. Licensed
under Creative Commons Attribution-Share Alike 3.0 via Wikimedia
Commons, http://commons.wikimedia.org/wiki/File%3ARautenfries.png
[Online; accessed 09-December-2014]

Figure 2 left image; “John H Conway 2005”. Author: Thane Plambeck. Li-
censed under Creative Commons Attribution 2.0 Generic via Wikime-
dia Commons, http://commons.wikimedia.org/wiki/File%3AJohn_H__
Conway__2005.jpg, [Online; accessed 09-December-2014]

Figure 2 right image; “H. Coxeter (1970)”, from the Oberwolfach Photo Col-
lection, Photo ID 738. Author: Konrad Jacobs. Licensed under Cre-
ative Commons Attribution-Share Alike 2.0 Germany. Size reduced by
cutting. http://owpdb.mfo.de/detail?photo 1d=738, [Online; accessed
16-December-2014]
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