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Model ing communicat ion and
movement: f rom cel ls to animals

and humans

Raluca Eft imie

Communication forms the basis of biological inter-
actions. While the use of a single communication
mechanism (for example visual communication) by a
species is quite well understood, in nature the major-
ity of species communicate via multiple mechanisms.
Here, I review some mathematical results on the un-
expected behaviors that can be observed in biologi-
cal aggregations where individuals interact with each
other via multiple communication mechanisms.

1 Communicat ion in biological aggregat ions

Communication forms the basis of any type of biological interaction: for cells,
bacteria, animals and even humans to interact, they first need to communicate
with each other. Most generally speaking, we define communication to be the
process of exchanging information between members of the same species or of
different species. In animals and humans, this information exchange occurs via
visual, auditory, olfactory, and tactile signals. In cells, communication occurs
via signaling pathways that involve signaling proteins and other chemicals.
Depending on the type of signals used, communication can be local (for example
via short-range tactile signals) or nonlocal (for example via long-range sound or
visual signals).
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When only one method of communication is used (for example one type of
chemical signal), we speak of single communication or single signaling pathway.
The use and effects of signaling mechanisms in cells, bacteria, and animals has
been studied intensively over the past fifty years and it is currently quite well
understood. If, however, multiple communication mechanisms are used, the
interplay between them affects the interactions of an individual (possibly a cell or
bacterium) with its neighbors – and it is not fully understood how. Solving this
problem has implications to both ecology (to understand how aggregations of
bacteria, insects, or animals emerge and persist) and cell biology (to understand,
for example, how cells aggregate to form tissues during morphogenesis, or how
cancerous aggregations of cells evolve and form solid tumours).

(      diffusing left)

signals

visualauditory

signals

visual 

signals

(b)

x−sx x+s x x+s

x x+s

signals

tactile, chemical

signals

(d)

x−s x x+s

(c)

(a)

right−moving individual left−moving individual

x−s

x−s

mechanism I mechanism II

mechanism III mechanism III’

chemical particle

Figure 1: Examples of possible inter-individual interactions via visual, auditory,
and tactile communication signals. Shown here are different ways
a reference individual positioned at a point in space x can perceive
its neighbors: (a) perception, via visual signals, of the neighbors
positioned ahead, at x+ s; (b) perception, via visual and auditory
signals, of neighbors positioned ahead (at x+s) and behind (at x−s);
(c) perception, via tactile signals, of only those neighbors positioned
ahead at x + s and moving towards the reference individual (This
can be observed in Myxobacteria organisms, a kind of bacteria that
typically travel in swarms.) (d) In Dictyostelium Discoideum (a
species of amoeba more widely known as slime mold), a reference
individual (that is, a cell) can perceive a chemical gradient of cAMP
(produced by neighboring cells) that moves towards it.
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2 Mathematical approaches

Mathematical models have been used for almost a century to formulate hypothe-
ses regarding the biological mechanisms behind various cell-cell and animal-
animal interactions. They are currently used to investigate (among other things)
the effect of cell or animal communication mechanisms on the formation, move-
ment, and spatial structure of cell or animal aggregations [4, 2]. This involves
methods of mathematical analysis and computer simulations of the solutions of
the model.

Mathematical models that describe the transport and movement of cells and
animals through a domain can incorporate basic aspects of communication,
such as the directionality of communication signals emitted and perceived by
neighbors (which can give information about the number of these neighbors
and their movement direction). The general form of such models of so-called
“hyperbolic” and “kinetic” type that describe movement in one spatial dimension
(that is, they apply to domains much longer than wide) is the following (see
also [4]):

∂u+

∂t
+ ∂

∂x
(Γ(u+, u−)u+) = −λ+(u+, u−)u+ + λ−(u+, u−)u−, (1a)

∂u−

∂t
− ∂

∂x
(Γ(u+, u−)u+) = λ+(u+, u−)u+ − λ−(u+, u−)u−. (1b)

The functions u+ and u− describe the density of right-moving and left-
moving cells or animals, respectively. They depend on the position x and the
time t; their partial derivatives with respect to time, ∂u+

∂t and ∂u−

∂t , describe
their change in time. These cells or animals move with velocity Γ, which can
depend on the interactions with right- and left-moving neighbors, that is, on
u+ and u−. There are usually three types of social interactions incorporated
into these mathematical models: repulsion from neighbors at close distances,
attraction towards neighbors at large distances, and alignment with neighbors
at intermediate distances. Thus, individuals can speed up to approach other
neighbors further away, or can slow down to avoid colliding with neighbors close
by.

They also turn from left to right at rate λ−, and from right to left at rate
λ+. These turning rates can depend on interactions with neighbors. (Animals
may, for example, turn around to approach neighbors positioned behind them.)
Generally, interactions with neighbors occur only if individuals can perceive their
neighbors. Figure 1 shows examples of possible communication (perception)
mechanisms between animals (mechanisms I–III) or cells (mechanism III’). The
models in Figure 1 and equations 1a and 1b can be generalized to describe
movement in two spatial dimensions (see [5]).
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3 Resul ts

Using these mathematical models, my collaborators and I have shown that many
of the spatial and spatio-temporal patterns displayed by biological aggregations
(such as stationary aggregations, aggregations travelling in a linear manner,
or zigzagging aggregations) can be explained by the interplay between the
repulsive/alignment/attractive interactions between individuals (cells, bacteria,
animals, etc.) and the different biological mechanisms employed to perceive these
individuals (via visual, auditory, tactile, or chemical stimuli, or combinations of
these stimuli) [4].

Moreover, we have shown that the movement of aggregations formed of
individuals that use only one communication mechanism is generally periodic,
that is, there is a repeating pattern. In contrast, the movement of biological
aggregations formed of individuals that use different communication mechanisms
could be chaotic [3] – see, for example, the periodic and chaotic zigzagging
behaviors shown in Figure 2(a) and (b), respectively. The use of multiple
communication mechanisms by individuals in the same community can also
lead to the spatial segregation of these aggregations (see Figure 2(c)-(d)).

In addition, the use of different communication mechanisms by different
members of the aggregation can lead to behaviors that cannot be obtained
when all individuals communicate with their neighbors in the same way. For
example, when all individuals use one communication mechanism (like solely
mechanism I or mechanism II in Figure 1), it is possible to obtain no spatial
patterns – that is, individuals can be evenly spread over the whole domain.
When some individuals in the community communicate via mechanism I while
other individuals communicate via mechanism II, however, it is possible to
obtain moving aggregations [3].

Once we have determined these aggregation patterns (with the help of
mathematical software), two of the most interesting questions are: “What
mathematical mechanisms lead to the formation of the patterns, and what
mechanisms govern the transitions between different patterns?” Using a mathe-
matical method called “weakly nonlinear analysis”, we have been able to show
that many of the aggregation patterns do not persist for very long times – they
are unstable [1]. Moreover, these patterns can co-exist for the same parameter
values. This implies that one can observe transitions between the patterns (for
example between stationary and moving aggregations) without any change in
the parameters that describe individual movement, such as speed and turning
rates.

This field is a great opportunity for the use of mathematical modeling and
analysis techniques to reproduce and investigate aggregation patterns observed
in various species: from flocks of birds, schools of fish, and swarms of insects
to various cellular and bacteria aggregations. Moreover, when there are no
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experimental tools available, these models (and the mathematical tools used to
analyze them) can be used to propose hypotheses about the role of cell or animal
communication on the formation and structure of biological aggregations.
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Figure 2: Example of zigzagging patterns and the structure of the aggregations
when some individuals in the population can perceive only those
neighbors ahead of them (mechanism I in Figure 1(a)) and other
individuals can perceive neighbors positioned both behind and ahead
of them (mechanism II in Figure 1(b)). Figure 2 shows the total
population density u = u+ + u− at various points in space x ∈ [0, 10]
and at various points in time t. (a) Periodic zigzags; (b) chaotic
zigzags; (c) spatial structure of periodic zigzag aggregations from
panel (a) (at t = 1100, when the aggregation is moving to the left);
(d) spatial structure of chaotic zigzag aggregations from panel (b) (at
t = 1100, when the aggregation is moving to the right). In Panels (c)
and (d), the population that uses communication mechanism II is
positioned towards the front end of the aggregation (with respect to
its current moving direction).
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