
Snapshots of modern mathematics
from Oberwolfach

№1/2016

Swarming robots

Magnus Egerstedt

When lots of robots come together to form shapes,
spread in an area, or move in one direction, their
motion has to be planned carefully. We discuss how
mathematicians devise strategies to help swarms of
robots behave like an experienced, coordinated team.

1 Lots of robots

Swarm robotics is the study of how lots of robots can solve tasks together. This
is tricky because each robot has to make decisions, but can access only limited
information. The individual robot’s decisions should result in elegant and useful
team-level behaviors, like in schooling fish or swarming insects.

In a number of current and future applications it makes sense to deploy large
teams of robots working together. For example, after natural disasters a swarm
of robots could search for survivors. Similarly, on the manufacturing floor, on
farm fields, or even in space, many robots could work together to cover a wider
area, accomplish more tasks, and become more robust to failures: if one robot
breaks down, it is no big deal.

We call the desired movement patterns of the robots swarming behaviors.
When designing them, one first needs a model of what information different
robots have access to. Say we have a team of N robots, and we place Robot 1 at
position p1, Robot 2 at position p2, and so forth. A typical robot can find out
where other, near-by robots are, but it cannot determine the position of robots
at a large distance. We denote the set of all robots whose position Robot i can
determine by Ni, the neighborhood of Robot i.

1

In Figure 1, three robots are drawn as circles and their neighborhood sets
indicate that Robots 1 and 3 can only determine where Robot 2 is, while Robot 2
can “see” both Robots 1 and 3.

Robot 1 Robot 2 Robot 3

p1 p2 p3

N1 = {2} N2 = {1, 3} N3 = {2}

Figure 1: Three robots arranged on a line, such that Robot 2 can see both
Robots 1 and 3, but those two robots cannot see each other.

The mathematical question now is how to make the robots move intelligently,
given the limited information they have. But such motion algorithms have to
follow four very clear guidelines:

1. The algorithms have to be local in the sense that each robot can only move
based on the information locally available. For example, in Figure 1, Robot 1
can base its decisions on the position of Robot 2, but not on the position of
Robot 3.

2. The algorithms have to be scalable: when more and more robots join the
team, the individual robots should not have to keep track of more and
more information, because having to deal with a large amount of complex
information could overwhelm them.

3. Whatever the robots do, they have to be safe: they are not allowed to collide
with each other or with obstacles in the environment.

4. Lastly, the algorithms that describe the individual robot’s moves must result
in emergent (that is, team-level) behaviors. If the robots just end up doing
uncoordinated things, then they are not very useful. Instead, we need to
know in advance what the team will do.

A big part of swarm robotics research is devoted to a question related to the last
requirement on the list: how can we ensure that the desired global behaviors
emerge from local motion algorithms?

2 Let ’s meet!

One example of a task swarm robotics can solve is the rendezvous problem,
where the robots have to move in such a way that they eventually all meet at
the same location [1]. But, to make matters worse, the robots are not allowed to

2

p1

p2

p2 � p1

(a) Robot 1 aims towards
Robot 2.

p1

p2

p3

p4

1

3
(p2 � p1 + p3 � p1 + p4 � p1)

(b) The center of N1 relative to Robot 1 is given by a
combination of the vectors from Robot 1 to the other
robots.

Figure 2: The rendezvous problem with two and four robots.

communicate or decide in advance where to meet – this has to be decided while
the robots are moving around. Moreover, all they can determine is the relative
position of neighboring robots. That means that even if Robot 1 is a neighbor of
Robot 2, Robot 1 cannot determine p2. Instead, it can only determine p2 − p1,
the position of Robot 2 relative to Robot 1. This is illustrated in Figure 2a,
where Robot 1 can determine the vector from itself to Robot 2, given by p2− p1.

If Robots 1 and 2 in Figure 2a are to meet, it seems completely reasonable
that they should aim towards each other. If we denote the next position of
Robot 1 by pnext

1 , the motion algorithm takes the following form:

pnext
1 = p1 + γ (p2 − p1)
pnext

2 = p2 + γ (p1 − p2) ,

where γ is a positive number that tells us how large of a step the robot takes.
If γ is small, the steps are smaller, while with a larger γ the robots move faster.

If we have more than two robots, it makes sense to use a similar strategy by
making each robot “aim” towards the center of its neighborhood. For instance,
if Robot 1 has three neighbors (Robots 2, 3, and 4), its neighborhood center is
given by

1
3(p2 + p3 + p4).

But this information is not available to Robot 1, since it can only determine
relative displacements! Fortunately, we can rewrite this equation as

1
3(p2 + p3 + p4) = p1 + 1

3 ((p2 − p1) + (p3 − p1) + (p4 − p1)) .

This is much better, because Robot 1 can indeed determine the expression

3

inside the parenthesis (the neighborhood center relative to Robot 1), as shown
in Figure 2b.

In general, the neighborhood center relative to Robot i is given by

1
|Ni|

∑
j∈Ni

(pj − pi).

Here |Ni| means the number of neighbors in the neighborhood set Ni. The
motion algorithm thus becomes

pnext
i = pi + γ

∑
j∈Ni

(pj − pi).

This equation tells us that the next position of Robot i should be its previous
position plus a step (we replaced 1/|Ni| with γ as the step size) towards the
center of its neighborhood set.

Figure 3: Five robots meet. They all aim towards the centers of their
neighborhoods.

It turns out that this simple strategy works [3, 5, 6, 7], as shown in Figure
3, where 5 robots get together. Hence, the algorithm has the desired emergent
property. And since the robots only rely on locally available information (the
relative position of neighboring robots), the algorithm is local. Moreover, only
neighboring robots are taken into account, so the algorithm is indeed also
scalable. Sadly, it is certainly not safe, since the robots are actually designed to
crash into each other. So, even though this gives us a simple yet powerful swarm
algorithm, we need to improve it somehow to enable the robots to execute it in
a safe manner.

3 Robots moving together

The main problem with the algorithm that makes the robots meet is that it
works too well, with the result that the robots collide. But what if we add a
term to the algorithm that ensures the robots never get too close to each other?
For example, if there are only two robots in the swarm (as in Figure 2a), we

4

could add a weight to the motion algorithm to stop the robots once the distance
between them is small enough. If they are too close, they should instead move
away from each other [5].

We use ‖p1− p2‖ to denote the distance between Robot 1 and Robot 2 1 . If
we want this distance to be d, we need a weight function w with the following
property:

w(‖p1 − p2‖)


> 0 if ‖p1 − p2‖ > d

= 0 if ‖p1 − p2‖ = 0
< 0 if ‖p1 − p2‖ < d.

A simple example of such a weight function is w(‖p1 − p2‖) := ‖p1 − p2‖ − d,
shown in Figure 4.

kp1 � p2k
0

w kp1 � p2k � d

d

Figure 4: A weight function that helps the robots meet without crashing into
each other.

The new, safe algorithm becomes

pnext
1 = p1 + γ · w (‖p1 − p2‖) · (p2 − p1),
pnext

2 = p2 + γ · w (‖p1 − p2‖) · (p1 − p2),
or more generally,

pnext
i = pi + γ ·

∑
j∈Ni

[w (‖pi − pj‖) · (pj − pi)] .

This type of construction has been used for a lot of different swarming robot
applications. The trick then is to find useful weight function [2, 5, 7].

1 The notation ‖ · ‖ is used in mathematics to denote the norm or length of something. For

the vector p =
(

x
y

)
in the plane, a common norm is ‖p‖ :=

√
x2 + y2.

5

Examples include

• Formation control: form a particular shape
• Coverage control: spread out and cover an area
• Flocking: move in the same direction
• Boundary protection: move along the boundary of a given area
• Multi-robot pursuit: follow each other in some geometrically meaningful

manner.

When we solved the rendezvous problem in a safe way, we used our intuition
to find a useful weight function. But when the robots have to do something more
complex than just meeting in one place, intuition might not suffice anymore.
Fortunately, with just a little more mathematics we can generate weight functions
in a systematic manner: we define an energy function E over the entire team,

E :=
N∑

i=1

∑
j∈Ni

Eij(‖pi − pj‖).

The functions Eij indicate how far away ‖pi−pj‖ is from a desired value. They
can be imagined as a “cost” or “penalty” that occurs when robots i and j are
not at the desired distance from each other. For example, if the goal is to have
all robots at a distance d from each other, we can use

Eij(‖pi − pj‖) := 1
2 (‖pi − pj‖ − d)2

,

because this “penalty” is minimal when ‖pi − pj‖ = d. Now our goal is to move
each Robot in such a way that E decreases. To that end, we calculate, for each
robot i, the gradient of E with respect to pi, denoted by ∂E

∂pi
. This provides

us with a direction with the desired property: the “penalty” E decreases if we
move robot i “a little bit” in the direction indicated by the negative gradient.
As above, we use γ to denote the size of the step that each robot takes. With
this notation, a general movement algorithm is

pnext
i = pi − γ

∂E

∂pi
= pi − γ

∑
j∈Ni

∂Eij

∂pi
,

where we plugged in the definition of E to obtain the second identity.
This general algorithm has exactly the same form as the aforementioned, safe

algorithm. The way one would mathematically prove that this algorithm achieves
the desired outcomes is by studying the stability properties of the underlying
dynamical system and, in particular, show that the desired configuration is an
asymptotically stable equilibrium point to the robot team.

6

As an example, six robots are using a formation control algorithm to form a
circle in Figure 5. To see similar robots moving, take a look at the video [4].
This video was made by Edward Macdonald as part of his Masters thesis on
the assignment problem, which is the question of what robot should go where
in a specific formation.

Figure 5: Six robots are forming a circle by executing a formation control
strategy.

The study of swarm robotics has only begun and there are a number of
things we do not, as of yet, know how to do. In fact, looking at the natural
world around us, we are pretty far from making robots as elegant, adaptive,
and generally awesome as schooling fish, flocking birds, or swarming insects.

7

Image credi ts

All images were created by the author.

References

[1] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita, Distributed memoryless
point convergence algorithm for mobile robots with limited visibility, IEEE
Transactions on Robotics and Automation 15 (1999), no. 5, 818–828.

[2] F. Bullo, J. Cortes, and S. Martinez, Distributed control of robotic networks.
A mathematical approach to motion coordination algorithms, Princeton
University Press, 2009.

[3] A. Jadbabaie, J. Lin, and A. S. Morse, Coordination of groups of mobile
autonomous agents using nearest neighbor rules, IEEE Transactions on
Automatic Control 48 (2003), no. 6, 988–1001.

[4] E. Macdonald and M. Egerstedt, Multi-Robot Assignment and Formation
Control, 2011, https://www.youtube.com/watch?v=se318w2LXD0, visited
on December 10, 2015.

[5] M. Mesbahi and M. Egerstedt, Graph theoretic methods for multiagent
networks, Princeton University Press, 2010.

[6] R. Olfati-Saber, J. A. Fax, and R.M. Murray, Consensus and cooperation in
networked multi-agent systems, Proceedings of the IEEE 95 (2004), no. 1,
215–233.

[7] W. Ren and R.W. Beard, Distributed consensus in multi-vehicle cooperative
control, Springer-Verlag, 2008.

8

https://www.youtube.com/watch?v=se318w2LXD0

Magnus Egerstedt is a professor of
robot ics at the Georgia Inst i tute of
Technology.

Mathematical subjects
Numer ics and Scient i f ic Comput ing,
Analysis

Connect ions to other f ie lds
Engineer ing and Technology, Computer
Science

License
Creat ive Commons BY-NC-SA 4.0

DOI
10.14760/SNAP-2016-001-EN

Snapshots of modern mathematics from Oberwolfach are written by participants in
the scientific program of the Mathematisches Forschungsinstitut Oberwolfach (MFO).
The snapshot project is designed to promote the understanding and appreciation
of modern mathematics and mathematical research in the general public worldwide.
It started as part of the project “Oberwolfach meets IMAGINARY” in 2013 with a
grant by the Klaus Tschira Foundation. The project has also been supported by the
Oberwolfach Foundation and the MFO. All snapshots can be found on
www.imaginary.org/snapshots and on www.mfo.de/snapshots.

Junior Edi tor
Johannes Niediek
junior- edi tors@mfo.de

Senior Edi tor
Car la Cederbaum
senior- edi tor@mfo.de

Mathematisches Forschungsinst i tut
Oberwolfach gGmbH
Schwarzwaldstr. 9 –11
77709 Oberwolfach
Germany

Director
Gerhard Huisken

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://dx.doi.org/10.14760/SNAP-2016-001-EN
http://www.imaginary.org/snapshots
http://www.mfo.de/snapshots
mailto://junior-editors@mfo.de
mailto://senior-editor@mfo.de

	Lots of robots
	Let's meet!
	Robots moving together

