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How many prime numbers are there? How are they
distributed among other numbers? These are ques-
tions that have intrigued mathematicians since an-
cient times. However, many questions in this area
have remained unsolved, and seemingly unsolvable
in the forseeable future.
In this snapshot, we will discuss one such problem,

the Twin Prime Conjecture, and a quantitative ver-
sion of it known as the Hardy–Littlewood Conjecture.
We will also see that these and other questions about
prime numbers can be extended to questions about
function fields, and discuss recent progress which has
been made to answer them in this context.

1 The Pr ime Number Theorem

For any number x, we use π(x) to denote #{p ≤ x}, the number of prime
numbers p up to x. Euclid’s Theorem (c. 300 BC) asserts that there are infinitely
many prime numbers, that is

lim
x→∞

π(x) =∞.

It took more than 2000 years and the development of complex analysis to obtain
a quantitative version of Euclid’s theorem, that is, a statement of just how fast
π(x) grows.
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The Prime Number Theorem, which was conjectured by Gauß and proved
independently by Hadamard and by de la Vallée-Poussin in 1896, 1 asserts that

π(x) ∼ x

log x, x→∞.

Here f(x) ∼ g(x) means that lim
x→∞

f(x)/g(x) = 1.
It will be convenient for our discussion to adopt a more statistical or proba-

bilistic point of view. The expectation of a function f on a finite set A, which
can be thought of either as its average value, or as the typical value f(a) one
would expect if one repeatedly picked a at random from A, is computed by:

〈f(a)〉a∈A = 1
#A

∑
a∈A

f(a).

We define the prime characteristic function, χ, so that χ(n) = 1 if n is prime
and χ(n) = 0 if n is not prime. Using this function, and observing that there
are approximately x natural numbers n in the interval [1, x], we can write the
Prime Number Theorem in the (statistical) form:

〈χ(n)〉n∈[1,x] ∼
1

log x, x→∞. (1)

2 The Hardy–Li t t lewood Pr ime Tuple Conjecture

Twin primes are pairs (n, n+2) such that both n and n+2 are prime; e.g., (3, 5),
(101, 103), and (30089, 30091). The Twin Prime Conjecture — which remains an
open question — asserts that there are infinitely many twin primes. There is a
quantitative version of this conjecture, called the Hardy–Littlewood Conjecture,
that predicts the auto-correlation of the prime characteristic function χ:

〈χ(n)χ(n+ 2)〉n∈[1,x] ∼ S2〈χ(n)〉2n∈[1,x] ∼ S2
1

(log x)2 , (2)

as x→∞, where S2 ≈ 1.32 is an absolute constant.
This Conjecture has two interesting corollaries:

1. Since x · 〈χ(n)χ(n+ 2)〉n∈[1,x] asymptotically equals the number of n ≤ x
such that n and n+ 2 are both primes, (2) implies that the number of twin
primes is asymptotically proportional to x

(log x)2 and in particular tends to
infinity. So (2) implies the Twin Prime Conjecture.

1 Carl Friedrich Gauß (1777–1855); Jacques Salomon Hadamard (1865–1963); Charles-Jean
Étienne Gustave le Vieux de la Vallée-Poussin (1866–1962)

2



2. The statistical interpretation of (2) is that the events of n being a prime and
of n+ 2 being a prime are asymptotically independent, up to the correlation
factor S2. That is, if S2 were exactly 1, we would know that these events are
getting closer to being independent the larger n gets. Since S2 ≈ 1.32 > 1,
the events depend on each other; so, if n is prime, the probability that n+ 2
is a prime is bigger than the probability that a random number (in [1, x]) is
a prime. This make sense, since, if n > 2 is a prime, it is odd, hence n+ 2
is odd, thus more likely to be a prime than a random number.

Though we have not encountered much trouble to state them, the Hardy–
Littlewood and the Twin Prime Conjectures turn out to be some of the most
difficult problems in mathematics.

3 The Funct ion Field Sett ing

Up till now, we have considered integers. Now we introduce an ancient analogy
between the integers and polynomials over a finite field. A finite field is a finite
set with the four operations of addition, multiplication, subtraction, and division.
Note that addition and multiplication determine the other two operations. The
smallest finite field has 2 elements, and is denoted F2 = {0, 1}. The operations
are given by

0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 0,
0 · 0 = 0, 0 · 1 = 0, 1 · 1 = 1,

Slightly more generally, if p is a prime, then the set of residues modulo p,
denoted by Fp = {0, 1, . . . , p− 1}, with operations modulo p is also a finite field
(here the division function is given by Euclid’s algorithm, which says that for
each 1 ≤ x ≤ p− 1 there exist a, b so that ax+ bp = 1, and so a is the inverse
of x modulo p). The general theory of finite fields says that for every power of
a prime number q = pk, there exists a unique (up to isomorphism) finite field
Fq with q elements, and that there are no others. These finite fields play key
role in many theories; e.g., coding theory, cryptography, and most notably in
our setting, in number theory.

For a finite field Fq, we consider the set of polynomials over it, denoted Fq[T ].
A polynomial f in Fq[T ] is a formal expression

f(T ) = anT
n + · · · a1T + a0

where T is a formal variable. If an 6= 0, we say that f has degree n (symbolically,
deg(f) = n). We can add and mulitply polynomials in the standard way. Since
at least the 19th century, it has been observed that Fq[T ] is intimately connected

3



with the integers Z; in particular the monic polynomials — those with leading
coefficient an = 1 — play the role the positive integers take in Z. We denote by
Mn,q ⊆ Fq[T ] the set of monic polynomials of degree n.

We call a polynomial P irreducible if it cannot be written as a product of
two polynomials of positive degrees. The irreducible monic polynomials play
the role of prime numbers. So we call a polynomial P ∈ Fq[T ] prime polynomial
if it is irreducible and monic.

In Z, the absolute value of an integer n 6= 0 may be viewed as the number of
residues modulo n. This leads one to define the norm of a nonzero polynomial
f in Fq[T ] as the number of residues modulo f :

|f | = qdeg f .

Let χq be the characteristic function of the prime polynomials; that is,
set χq(f) = 1 if f is a prime polynomial and χq(f) = 0 if f is not a prime
polynomial. The Prime Polynomial Theorem, which is the analogue of the
Prime Number Theorem, asserts that

〈χq(f)〉f∈Mn,q
∼ 1
n
, qn →∞. (3)

It turns out that the proofs involved in establishing (3) are easy, in contrast
to those of (1). There are two things to notice about (3).

1. If we set x = qn, then logq(x) = n, so we see that the form of (3) is in
perfect agreement with (1).

2. The asymptotic formula (3) holds whenever the parameter qn is large. In
fact there are two ways for qn to be large: q could be large, even if n is not,
or n could be large even if q is not. Usually asymptotic formulas behave
differently in these limits, but not (3).

Now we can try to ask for the analogy of twin primes in Fq[T ]. As there is
nothing special about the number 2 in the function field setting, we will consider
pairs (f, f+A), where A ∈ Fq[T ]; or the more general tuples (f+A1, . . . , f+Ak),
with distinct A1, . . . , Ak ∈ Fq[T ].

In light of the above remarks, we will consider the limits q →∞ and n→∞
separately.
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3.1 The l imit q →∞

Recently, the function field version of the Hardy–Littlewood Conjecture was
completely resolved in this limit:

Theorem 1 Let n > 2 and k > 0 be fixed integers. Then〈
k∏

i=1
χq(f +Ai,q)

〉
f∈Mn,q

∼ 1
nk
, q →∞

for any choice of Ai,q ∈ Fq[T ] such that for each q the polynomials A1,q, . . . , Ak,q

are distinct and of degree < n.

Bender and Pollack [3] proved the theorem in the case k = 2 and q odd. The
author [2] used a more general approach to prove the result for any k when q is
odd. Carmon, in his work [4] on the Chowla conjecture in characteristic q = 2
(a different but related problem), developed the necessary tools to extend the
author’s method to even characteristic. Finally, Bank and the author [1] study
a more general problem on simultaneous prime values of linear functions which
in particular allows the Ai,q to be of arbitrary bounded degrees.

The key points in this result are to calculate an algebraic invariant called the
Galois group of a “generic” polynomial F and then to apply a high dimensional
version of Chebotarev’s theorem over finite fields. We will not discuss this any
further here, but we will say that one chooses F =

∏n
i=1(F +Ai), where F is

the monic polynomial of degree n whose coefficients are independent variables,
and its Galois group tend to be a direct product of n copies of the symmetric
group on n letters. 2

3.2 The l imit n→∞

In this limit the Hardy–Littlewood Conjecture is completely open.
In fact, in 2006, Hall [6] showed that for a nonzero A ∈ Fq[T ] with degA = 0

(i.e. A ∈ Fq) there exist infinitely many polynomials f ∈ Fq[T ] with both f
and f + A irreducible (q > 3). However, Hall’s proof gives a sequence of f ’s
with exponentially increasing degrees. In particular, it does not imply that
the auto-correlation is positive. We refer the reader to [8] for a more detailed
exposition of Hall’s result and further developments in this direction.

2 For more on the symmetric group on n letters, see Snapshot N o 5/2016 Symmetry and
Characters of Finite Groups by Eugenio Gianelli and Jay Taylor.
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4 Fur ther works

This snapshot is focused on just one problem in the number theory of function
fields. In fact there is an abundance of recent works in the number theory of
function fields. We refer the interested reader to the survey paper by Rudnick [9]
from International Congress of Mathematicians 2014. 3 Even since this survey
was written, more interesting results have been published. Two examples are:

1. Entin’s work [5] on prime values of polynomials
2. Keating and Roddity-Gershon’s work [7] on the average of the error term

E = 〈χq(f)χq(f +A)〉Mn,q − 1/n2

in Theorem 1 (where A ranges over suitable sets) which implies that E
cannot be too small.
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