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Over the last two centuries mathematicians have de-
veloped an elegant abstract framework to study the
natural idea of symmetry. The aim of this snapshot
is to gently guide the interested reader through these
ideas. In particular, we introduce finite groups and
their representations and try to indicate their central
role in understanding symmetry.

1 Symmetry

Everyday our brains use symmetry when processing and understanding the
natural world around us; often without us even noticing. For example, studies
have shown that we are more likely to find a person attractive if their facial
features are symmetric [11]. In science, symmetry plays an active role for many
reasons. One reason in particular is that the existence of symmetry can be used
to simplify problems.

Consider the problem of counting all the red dots in Figure 1. If we observe
that the diagram has a reflection symmetry in the dashed line then our work is
cut in half! Indeed, with this symmetry we know that the total number of red
dots in Figure 1 is precisely twice the number of red dots lying to the left, or
right, of the dashed line.

There are, in fact, two other notable symmetries contained in Figure 1; can
you find them 1 ?

1 Hint: It suffices to count 29 of the red dots to determine the total number.
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Figure 1: Coloured dots with a reflection symmetry.

This idea may seem simple but it can be extremely powerful. For instance, in
chemistry, similar applications of symmetry are used to count the total number
of chemical compounds that can be made from a given collection of elements
[9]. Recent research in biology has shown that symmetry can be used to predict
and model the RNA structure of emerging viruses [10] and in particle physics,
symmetry forms the key framework for the standard model [1]. For the fledgling
scientist, one thing is abundantly clear: never underestimate symmetry!

2 Group theory

At the beginning of the 19th century the French mathematician Évariste Galois 2

introduced a set of ideas which paved the way for the systematic study of
symmetry in a rigorous mathematical framework. The branch of mathematics
born from the work of Galois, and developed immediately afterwards by Cauchy,
is now known as group theory.

One of the most important achievements of this new mathematical language
was the introduction of the concept of an indivisible component of a symmetric
object. The ancient Greeks were aware that every natural number can be
expressed as the product of some smaller indivisible constituents, the prime
numbers. Group theory showed that, analogous to the natural numbers, every
symmetric object (group) can be decomposed into smaller indivisible symmetric
objects (simple groups).

Let us consider an example. Recall that a regular polygon is a shape, all of
whose sides have the same length and all of whose interior angles are equal. Now
consider the regular polygon with 15 sides 3 in Figure 2. It is easy to check that
every rotation symmetry of this polygon can be obtained by combining rotation
symmetries of the blue triangle and red pentagon which it contains. Exactly as 3

2 Who sadly only lived until the age of 20 (1811–1832).
3 This is called a pendedecagon.
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Figure 2: A regular pendedecagon, pentagon and triangle.

and 5 are prime numbers, the rotations of the triangle and pentagon correspond
to distinct simple groups of symmetries. As soon as it became clear that every
group was obtained by gluing together distinct simple groups, mathematicians
started dreaming about the possibility of writing down a complete periodic table
of symmetry, recording all simple groups.

The enormous effort and innovative ideas of many researchers in the last
century finally led to the completion of the desired Classification of Finite
Simple Groups in the early 1980s. The proof is spread over roughly 10,000
pages and is considered by many to be one of the finest achievements of 20th
century mathematics. It marks a major milestone towards our goal of trying to
understand the initially simple concept of symmetry. However, we are still very
far from completing this ambitious goal!

This snapshot will be a guided tour of the main ideas that led mathematicians
to such important discoveries. As we will see, these ideas provide us with as
many questions as they do answers. The first thing we need to do, before
discussing symmetry, is to understand what a group is. To arrive at this we
will consider a more familiar idea.

In high school one of the first things we learn about is multiplication; it forms
a basic tool of our everyday lives. However, when developing rigorous new ideas
mathematicians question everything. For example, they ask questions such as:
Is multiplication special to numbers? Can other things be “multiplied”? What
should “multiplication” mean for other objects?

The formal answer to these questions is the notion of a group, which is a
pair (G, ?) consisting of a set G and a “multiplication rule” ? on G such that:

• we have an identity element, usually denoted by e, such that e?a = a?e = a
for all a ∈ G,

• every g ∈ G has an inverse, usually denoted by g−1, satisfying the condition
g ? g−1 = g−1 ? g = e,

• the multiplication is associative, so that a?(b?c) = (a?b)?c for all a, b, c ∈ G.

This last condition is a natural condition that will be satisfied by all our
examples; we will not mention it further in this snapshot.
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We explain this by way of example. Let Q× be the set of all rational numbers
a/b, with a and b non-zero integers, then the pair (Q×,×) is a group where ×
is the usual multiplication rule given by

a

b
× c

d
= ac

bd
.

The identity element in this case is e = 1, as a shorthand for 1/1, and the inverse
of a/b is (a/b)−1 = b/a. Note that the multiplication rule does not always have
to be multiplication as we think of it. For example, let Z be the set of all
integers, including 0, then the pair (Z,+) is a group with the multiplication
rule given by addition. In this case the identity element is e = 0 and the inverse
of n is n−1 = −n.

The groups we have listed are examples of infinite groups, in the sense that
they contain infinitely many elements. However, we will be interested in finite
groups. These are groups (G, ?) such that G contains finitely many elements.
In this situation it will be helpful to denote by |G| the number of elements
contained in G.

3 Groups of symmetr ies

To describe how symmetries fit in to the language of groups let us consider
the set D8 of symmetries of the square, as described in Figure 3. We want to
show that this has a group structure, so we need to define a multiplication
rule on these objects. However, we have a natural multiplication rule given by
composition. For example, reading from right to left we have

90◦
◦ =

Or, in other words, reflecting in the vertical line then rotating clockwise
through 90◦ is the same as reflecting in the diagonal. As drawing pictures is not
very efficient, we label these symmetries σ and τ and denote their composition
by σ ◦ τ . In Figure 3 we have described all the symmetries of the square by
composing σ and τ in various ways, where σ2 = σ ◦σ, σ3 = σ ◦σ ◦σ, . . . and so
on. You should check that these are correct and that we did not overlook any.

To show that the pair (D8, ◦) is a group we need to know that there is an
identity element and that every element has an inverse. The identity element
here is denoted by e and is simply the symmetry that does nothing.

Now let us consider inverses. For instance, is there an element satisfying the
following equation
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? ◦
90◦

=
90◦

◦ ? =

The answer is yes, namely the clockwise rotation through 270◦. Hence, the
inverse of σ is σ−1 = σ3. It is easy to check that every element in Figure 3 has
an inverse.

1 2

34
90◦

4 1

23
180◦

3 4

12
270◦

2 3

41

e σ σ2 σ3

2 1

43

3 2

14

4 3

21

1 4

32

τ σ ◦ τ σ2 ◦ τ σ3 ◦ τ

Figure 3: The symmetries of a square.

Let us note here that there is a stark difference between (D8, ◦) and the
arithmetic examples such as (Q×,×) we gave in the previous section 4 . Namely,
in Q× we have all elements commute, in the sense that a× b = b× a for all a,
b ∈ Q×. However, this is certainly not the case for D8! For example, in D8 we
have τ ◦ σ = σ3 ◦ τ and σ3 ◦ τ 6= σ ◦ τ , which is easily checked using Figure 3.

The group D8 fits into an infinite family of finite groups known as the dihedral
groups. For any integer n > 3 we define D2n to be the symmetries of the regular
polygon with n sides; we call D2n the dihedral group of order 2n. The set D2n is
again a group with the multiplication rule given by composition. If we define τ
to be any reflection symmetry of the n-gon and σ to be the clockwise rotation
through (360/n)◦ then we have

D2n = {e, σ, σ2, . . . , σn−1, τ, σ ◦ τ, σ2 ◦ τ, . . . , σn−1 ◦ τ}.

The subscript 2n denotes that the set D2n contains 2n elements.
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Figure 4: The 6 permutations of {1, 2, 3}.

4 The symmetr ic group and permutat ion characters

The principal example of a finite group is the symmetric group Sn. This is
the set consisting of all permutations f : {1, . . . , n} → {1, . . . , n}, which are
functions such that f(1), . . . , f(n) is simply the list 1, . . . , n but in a different
order. We may visualise a permutation by writing 1, . . . , n as two vertical lists
and drawing an arrow f(i)← i. All the permutations of {1, 2, 3} are described
in this way in Figure 4.

We can define a multiplication rule ◦ on Sn by composition of functions.
In other words, given any two permutations f, g ∈ Sn we denote by g ◦ f the
permutation given by (g ◦ f)(i) = g(f(i)). In this case, the identity element is
the permutation mapping i to i. If we think of permutations as diagrams, as
in Figure 4, then this multiplication rule is simply given by concatenating and
collapsing diagrams. For example, in S3 we have

1

2

3

1

2

3

◦

1

2

3

1

2

3

=

1

2

3

1

2

3

1

2

3

=

1

2

3

1

2

3

.

This explains why we draw the arrows from right to left because composition of
functions is read from right to left.

In general, an abstract finite group is a very complicated and difficult thing
to understand. To get a snapshot of what a finite group looks like we ask in
what ways it can act on different objects. For example, we already know that
the dihedral group D8 acts on the whole square via rotations and reflections.
However, is this the only thing it can act on?

Well, we could restrict our attention just to the vertices of the square. If we
number the vertices of the square, as in Figure 3, then to each element of the
dihedral group D8 we obtain a well-defined permutation of the set {1, 2, 3, 4}.
Hence, we have a well-defined map ρ : D8 → S4 assigning to each element of D8
the permutation just described. For example, using the diagrammatic notation
of Figure 4 we have

4 Aside from one being finite and one being infinite.
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ρ(τ) =

1

2

3

4

1

2

3

4

and ρ(σ) =

1

2

3

4

1

2

3

4

.

What does it mean to say that D8 acts on the vertices of the square as
permutations? Intuitively we do not simply mean that each element of D8
determines a permutation but that it does so in a way which is compatible with
the multiplication rule. For instance, using the diagrams in Figure 3 we see that

ρ(σ ◦ τ) =

1

2

3

4

1

2

3

4

=

1

2

3

4

1

2

3

4

1

2

3

4

= ρ(σ)◦ρ(τ) .

In fact, it is easy to see using the diagrams in Figure 3 that we have ρ(a ◦ b) =
ρ(a) ◦ ρ(b) for all a, b ∈ D8.

Now assume (G, ?) is any finite group then, inspired by this, we say a map
ρ : G→ Sn is a permutation representation of G if

ρ(g ? h) = ρ(g) ◦ ρ(h) for all g, h ∈ G. (1)

In other words, giving a permutation representation is the same as giving an
action of G on the set {1, . . . , n} via permutations.

Why do we care about permutation representations? Firstly, they can be used
to give us information about our finite group and secondly, from a computational
perspective, they are much simpler! In general, given any finite group (G, ?) it
is difficult to get a computer to perform calculations with the multiplication
rule ?. However, people have worked hard to develop very efficient algorithms
for computing with permutations in symmetric groups. Many of these are
implemented in the freely available computer algebra system GAP [4], which is
an indispensable tool in the study of finite groups.

An amazing idea, which was introduced by Frobenius in 1896 [3], is that we
can encapsulate most of the information contained in ρ : G→ Sn through an
associated function χρ : G→ Z called the permutation character of ρ. For each
g ∈ G we define χρ(g) to be the number of integers i ∈ {1, . . . , n} fixed by ρ(g),
that is, the number of integers i for which ρ(g)(i) = i holds. For example, if
ρ : D8 → S4 is the permutation representation given above then the values of
the corresponding permutation character are given in Table 1.
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e σ σ2 σ3 τ σ ◦ τ σ2 ◦ τ σ3 ◦ τ

χρ 4 0 0 0 0 2 0 2

Table 1: The values of the permutation character of ρ : D8 → S4.

We give an example of how this simple numerical function can be used
to give information about ρ: The action of G on {1, . . . , n} defined by ρ is
called transitive if for any i, j ∈ {1, . . . , n} there exists an element g ∈ G such
that ρ(g)(i) = j. It is easily seen that D8 acts transitively on the vertices of
the square. Indeed, try picking any two vertices of the square and use the
symmetries described in Figure 3 to get from one to the other; you can always
do this! It turns out that the action of a finite group G given by ρ : G→ Sn is
transitive if and only if

1
|G|

∑
g∈G

χρ(g) = 1 (2)

(this is a special case of what is usually called Burnside’s Lemma).
Let us check this in the case of the permutation representation ρ : D8 → S4

considered above. We already know that the corresponding action is transitive
so the number on the left hand side of Equation 2 should be 1. Using the values
of χρ given in Table 1 we see that

1
|D8|

∑
g∈D8

χρ(g) = 1
8(4 + 0 + 0 + 0 + 0 + 2 + 0 + 2) = 1.

Using the elements of D8 try and construct groups which do not act transitively
on the vertices of the square. (Hint: These groups should contain 2 elements.)
For each such group compute the left hand side of Equation 2 and check it is
not 1. Using what you have computed can you guess what the left hand side of
Equation 2 counts in general?

5 The character table of a f in i te group

Looking at the values in Table 1 we see there is a lot of repetition. This is
because many of the symmetries of the square are similar. For instance, consider
the reflections τ and σ2 ◦ τ in the vertical and horizontal lines. If we allow
ourselves to tilt our heads by 90◦ then these symmetries are essentially the
same. A more precise way to say this is that τ = σ−1 ◦ (σ2 ◦ τ) ◦ σ. In general,
if (G, ?) is a finite group then we say h ∈ G is conjugate to g ∈ G if

g = a−1 ? h ? a for some a ∈ G.
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This generalises our intuitive notion of being similar. Using this notion we can
break up our group G into smaller disjoint subsets called conjugacy classes.
These are sets (g) obtained by starting with an element g ∈ G and computing
a−1 ? g ? a for all a ∈ G. For example, in D8 we have the conjugacy classes

{e}, {σ, σ3}, {σ2}, {τ, σ2 ◦ τ}, {σ ◦ τ, σ3 ◦ τ}.

You should check that these are correct! Looking at Table 1 we see that the
permutation character χρ is constant on conjugacy classes, in the sense that
χρ(g) = χρ(h) whenever g, h ∈ G are conjugate. In fact, any permutation
character of a finite group has this property. Can you see why?

The study of permutation characters of a finite group fits into the wider
picture of class functions. These are complex-valued functions χ : G → C 5

which are constant on conjugacy classes. A class function χ : G→ C is called
an irreducible character if the following property holds

1
|G|

∑
g∈G

χ(g)χ(g−1) = 1.

Every class function can be broken up as a unique linear combination of
irreducible characters and, just like the permutation characters, every irreducible
character arises from the action of G on some “hidden” geometric object. The
irreducible characters form the atomic constituents for studying how a group
can act on a given object via symmetries.

An important basic fact in this theory is that the number of irreducible
characters, which we denote by k, is the same as the number of conjugacy
classes. Therefore we can record the values of all irreducible characters in a
k × k square matrix, known as the character table, with rows labelled by the
irreducible characters and columns labelled by the conjugacy classes of G.

The character table of a finite group G encodes an impressive amount of
information about its algebraic structure. For example, the sum of the squares
of the entries in the column labelled by (e) is the same as the number of the
elements |G| in the group. You can check this fact for D8 by using the character
table given in Table 2. Notice also that the permutation character χρ, described
in Table 1, can be obtained as a linear combination of irreducible characters.
Again just by inspecting the character table we deduce that

χρ = χ1 + χ2 + χ5.

The irreducible character χ5 is obtained from the natural action of the dihedral
group D8 on the square.

5 By extension of the (one-dimensional) line of real numbers to two dimensions we arrive
at the complex plane consisting of all complex numbers C. If you like, have a look at Bruce
Reznick’s Snapshot 4/2014 What does “>” really mean? for a brief introduction to C.
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(e) (σ) (σ2) (τ) (σ ◦ τ)
χ1 1 1 1 1 1
χ2 1 −1 1 −1 1
χ3 1 −1 1 1 −1
χ4 1 1 1 −1 −1
χ5 2 0 −2 0 0

Table 2: The character table of D8.

The study of character tables and more generally character theory has had a
huge impact on the study of finite groups. In particular, the use of character
theoretic arguments was crucial in achieving the Classification of Finite Simple
Groups (CFSG), which we discussed in Section 2. For instance, the character
tables of all 26 ‘sporadic’ simple groups have been computed and are contained
in the Atlas of finite groups [2]. However it is an open and difficult problem to
determine the character tables of all finite simple groups.

Over the last 50 years some simple to state, yet beautiful and deep conjectures,
have been proposed about the irreducible characters of finite groups. In recent
years amazing new progress has been made using the CFSG. A highlight at the
last Oberwolfach workshop on representations of finite groups in April 2015
has been the announcement, by Malle and Späth, of a proof of the McKay
conjecture for p = 2 [8], formulated in 1972. This is based on the landmark
paper by Isaacs–Malle–Navarro [5] which reduces this problem to questions
about finite simple groups.

The strategy of using the CFSG to solve the above mentioned conjectures
has shone a light on the problem of determining the character tables of finite
simple groups and more generally determining explicit information about the
irreducible characters of these groups. This problem turns out to have many
fascinating relationships with other branches of mathematics such as number
theory, algebraic geometry and algebraic topology [7].

Over the next couple of years, hundreds of mathematicians from around the
world will meet at the Bernoulli centre [6] in Lausanne, Switzerland, and the
Mathematical Sciences Research Institute [12] in Berkeley, California, USA, for
two six month long research programs to intensely study these problems. It is
hoped that these meetings will culminate in substantial breakthroughs in the
study of finite groups. At such a moment in our history, it is interesting to think
what questions mathematicians will be asking about finite groups over the next
50 or 100 years as part of our long term endeavour to understand symmetry.
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