Zur Kurzanzeige

dc.contributor.authorCleyton, Richard
dc.contributor.authorMoroianu, Andrei
dc.contributor.authorSemmelmann, Uwe
dc.date.accessioned2018-07-17T08:37:15Z
dc.date.available2018-07-17T08:37:15Z
dc.date.issued2018-07-16
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1376
dc.description.abstractA geometry with parallel skew-symmetric torsion is a Riemannian manifold carrying a metric connection with parallel skew-symmetric torsion. Besides the trivial case of the Levi-Civita connection, geometries with non-vanishing parallel skew-symmetric torsion arise naturally in several geometric contexts, e.g. on naturally reductive homogeneous spaces, nearly Kähler or nearly parallel G2-manifolds, Sasakian and 3-Sasakian manifolds, or twistor spaces over quaternion-Kähler manifolds with positive scalar curvature. In this paper we study the local structure of Riemannian manifolds carrying a metric connection with parallel skew-symmetric torsion. On every such manifold one can define a natural splitting of the tangent bundle which gives rise to a Riemannian submersion over a geometry with parallel skew-symmetric torsion of smaller dimension endowed with some extra structure. We show how previously known examples of geometries with parallel skew-symmetric torsion fit into this pattern, and construct several new examples. In the particular case where the above Riemannian submersion has the structure of a principal bundle, we give the complete local classification of the corresponding geometries with parallel skew-symmetric torsion.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2018,16
dc.subjectParallel skew-symmetric torsionen_US
dc.subjectNearly Kähler structuresen_US
dc.subjectSasakian structuresen_US
dc.subjectNaturally reductive homogeneous spacesen_US
dc.titleMetric Connections with Parallel Skew-Symmetric Torsionen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2018-16
local.scientificprogramResearch in Pairs 2018en_US
local.series.idOWP-2018-16en_US
local.subject.msc53en_US
dc.identifier.urnurn:nbn:de:101:1-2018072315521923056042
dc.identifier.ppn165468337X


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige