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HÖLDER-DIFFERENTIABILITY OF GIBBS DISTRIBUTION FUNCTIONS

MARC KESSEBÖHMER AND BERND O. STRATMANN

ABSTRACT. In this paper we give non-trivial applications of the thermodynamic formalism
to the theory of distribution functions of Gibbs measures (devil’s staircases) supported on
limit sets of finitely generated conformal iterated function systems in R. For a large class
of these Gibbs states we determine the Hausdorff dimension of the set of points at which
the distribution function of these measures is not α-Hölder-differentiable. The obtained
results give significant extensions of recent work by Darst, Dekking, Falconer, Li, Morris,
and Xiao. In particular, our results clearly show that the results of these authors have their
natural home within thermodynamic formalism.

1. INTRODUCTION

In this paper we study the limit set L of an iterated function system generated by
a finite set of conformal contractions { fa : a ∈ A} in R satisfying the strong separation
condition. It is well known that each suitably chosen potential function ψ on L gives
rise to a Gibbs measure νψ supported on L . For instance, for the geometric potential
ϕ (x) := log f ′a

(
f−1
a (x)

)
for x ∈ fa (L ), and with δ referring to the Hausdorff dimension of

L , we have that the Gibbs measure νδϕ is in the same measure class as the δ -dimensional
Hausdorff measure on L . In this paper we concentrate on Gibbs measures νψ associated
with Hölder-continuous potential functions ψ for which P(ψ) = 0 and ϕ < ψ < 0. Here, P
refers to the usual pressure function associated with L (see Section 2 for the definition).
For potentials of this type, we consider the set Λα

ψ of points at which the α-Hölder derivative
of the distribution function Fψ of νψ does not exist in the generalized sense (note, Fψ is an
‘ordinary devil’s staircase’). That is, for α ∈ R+ we consider the set

Λ
α
ψ := {ξ ∈L :

(
Dα Fψ

)
(ξ ) does neither exist nor is equal to infinity},

where Dα refers to the α-Hölder derivative defined for functions F on L by (given that the
limit exists)

(Dα F)(ξ ) := lim
η→ξ

|F (ξ )−F (η)|
|ξ −η |α

, for ξ ∈ R.

We show that for suitable values of α the Hausdorff dimension dimH(Λα
ψ) of Λα

ψ can be
determined by employing the thermodynamic formalism. The main results of the paper are
summarized in the following theorem.

Main Theorem. Let L and ψ be given as above. For all α ∈ R+ such that ψ > αϕ , we
then have that the Hausdorff dimension of Λα

ψ is given by

(1) dimH(Λα
ψ) = s,

where s is the unique solution of the equation

(2) βα(s)+ s ·min{ϕ(i)/ψ(i) : i ∈ {0,1}}= 0.

Here, βα is determined implicitly by the pressure equation

(3) P((t−αβα(t))ϕ +βα(t)ψ) = 0 for t ∈ R,
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2 MARC KESSEBÖHMER AND BERND O. STRATMANN

and the symbol i = 0 (1 resp.) refers to the letter in the alphabet used to code the utter left
(right resp.) interval in the geometric representation of the iterated function system, and i
denotes the infinite word which exclusively contains the letter i.

Remarks.
I. Let us remark that our Main Theorem generalizes recent work in [Dar95, DL03, Fal04,
LXD02, Li07, Mo02]. In comparison to the approaches of these authors, with the slight
exception of [Fal04] who at least employed multifractal analysis in his study of the Ahlfors
regular case, in this paper we develop a completely different and much more general
approach which gives these results their natural home within the conceptionally wider
frame of the thermodynamical formalism. In fact, we combine certain techniques from this
formalism (see Section 2 for the details) with certain other techniques which have their
origins in metric Diophantine analysis. By the latter we mean those techniques which were
derived through generalizations of results by Jarník [Jar29] and Besicovitch [Bes34] on
well-approximable irrational numbers to cuspital excursions on hyperbolic manifolds (see
e.g. [Str95, HV98, Str99]), and to Julia sets of parabolic rational maps (see e.g. [SU02]).

II. Let us also remark that the results in this paper can be expressed in terms of so called
‘ordinary devil’s staircases’ as follows. For this recall that the distribution function of a
non-atomic positive finite Borel measure µ on a compact interval in R is a non-increasing
continuous function which is constant on the complement of supp(µ), the support of µ .
Such a distribution function is called an ordinary devil’s staircase if the 1-dimensional
Lebesgue measure λ (supp(µ)) of supp(µ) vanishes. Obviously, the distribution functions
Fψ which we consider in this paper are ordinary devil’s staircases. Interesting sets for devil’s
staircases are the set ∆0 of points where the staircase has derivative equal to zero, the set ∆∞

where the derivative is equal to infinity, and the set ∆∼ where the derivative does not exist.
Clearly, for the type of staircases in this paper we trivially have that λ -almost every point is
in ∆0, and hence dimH(∆0) = 1 (in fact, this also holds for the slippery devil’s staircases
below (see e.g. [Bil79, section 31])). Also, combining our Main Theorem and Corollary
2.4 in this paper, we (almost) immediately have dimH(∆∞) = dimH(L ). Therefore, for the
type of ordinary devil’s staircases in this paper we have

(4) dimH(∆∼) < dimH(∆∞) < dimH(∆0) = 1.

Here the question arises of how the Hausdorff dimension dimH(νψ) of the measure νψ fits
into this picture. In fact, for the Morris self-similar case (see Remark III. below) we found
numerically that there are cases in which dimH(νψ) > dimH(∆∼) (cf. Fig. 1) as well as
cases where dimH(νψ) < dimH(∆∼) (cf. Fig. 2) . Therefore, there is no hope to include
dimH(νψ) into the hierarchy of dimensions in (4) in general.
Note that these results are in slight contrast to our results for a certain slippery devil’s
staircase in [KS07]. For a slippery devil’s staircase we have that although the underlying
measure is still singular with respect to λ , the support of the measure is equal to an interval.
As was shown in [KS07], the measure of maximal entropy mU for the Farey map U has a
distribution function which is a slippery devil’s staircase. In fact, this distribution function is
equal to Minkowski’s Question Mark Function. More precisely, the main results in [KS07]
for this particular slippery devil’s staircase are, and the reader is asked to compare these
with the outcome for ordinary devil’s staircases in (4),

dimH(mU ) < dimH(Λ∼) = dimH (Λ∞) < dimH (Λ0) = 1.

III. Let us end this introduction with a brief discussion of three special cases of our Main
Theorem, namely the case in which νψ is an Ahlfors regular measure, as well as two cases
considered by Morris and Li in which νψ is a self-similar measure.

The Ahlfors regular case. Recall that a measure µ is called t-Ahlfors regular if and only
if µ(B(ξ ,r)) � rt , for all 0 < r < r0 and for all ξ in the support of µ , for some fixed
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FIGURE 1. The graph of βα for the Morris case with a0 = 0.1 and
a1 = 0.5 and α = 1. In this case dimH

(
νψ

)
> dimH

(
Λ1

ψ

)
(cf. Main

Theorem and Proposition 2.1).

r0, t > 0. In the situation of the Main Theorem, it is well-known that if the Gibbs measure
νψ is t-Ahlfors regular, then t is equal to the Hausdorff dimension δ of L and ψ = δϕ .
In this case, the Hausdorff dimension s of Λα

ψ can be calculated explicitly for α > δ as
follows. Namely, here (3) implies P((s+(δ −α)βα (s))ϕ) = 0, which immediately gives
s+(δ −α)βα (s) = δ , and hence,

βα (s) =
δ − s
δ −α

.

Inserting this into (2), we obtain s + δ (δ − s)/(δ −α) = 0. Solving the latter for s, one
rediscovers Falconer’s result [Fal04] on the Hausdorff dimension of Λα

δϕ
, namely

dimH(Λα

δϕ
) =

δ 2

α
, for all α > δ .(5)

Let us point out that, as also noted in [Fal04], the equality in (5) remains to be true for
α = δ . However, this case requires some additional care, such as for instance the use of
ergodicity of the measure νδϕ or alternatively some Khintchine-type argument, and hence
let us not go into the details here. Also, note that (5) in particular includes the result of
Darst [Dar93], who only considered the case α = 1 for Cantor sets and showed that in this
special linear situation one has

dimH(Λ1
δϕ

) = δ
2.
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FIGURE 2. The graph of βα for the Morris case with a0 = 0.01, a1 = 0.8
and α = 1. In this case dimH

(
νψ

)
< dimH

(
Λ1

ψ

)
(cf. Main Theorem and

Proposition 2.1).

The Morris self-similar case. Here, only the case α = 1 has previously been considered
in the literature. For instance, in his studies of Cantor sets Morris [Mo02] considered self-
similar measures with probabilities p1 := c1/(c1 + c2) and p2 := c2/(c1 + c2), where c1
and c2 refer to the contraction rates of the two similarities generating the underlying Cantor
set. This Morris scenario is contained as a special case in our Main Theorem. Namely, here
the fa are linear contractions and the potential function ψ is equal to ϕ−P(ϕ). We then
have that the Hausdorff dimension s of Λ1

δϕ
and β1(s) can be calculated explicitly. Indeed,

here (3) implies P(sϕ−β1(s)P(ϕ)) = 0, which gives

β1 (s) =
P(sϕ)
P(ϕ)

.

Inserting this into (2) gives that s is the unique solution of the pressure equation

sP(ϕ) = P(sϕ)
(

P(ϕ)
min{ϕ(i) : i ∈ {0,1}}

−1
)

.

The Li self-similar case. The self-similar case was investigated also by Li [Li07] in greater
generality. Li considered an affine iterated function system { fa : x 7→ cax+da |a ∈ A}
fulfilling the strong separation condition, together with a self-similar measure µ given by a
probability vector (p1, . . . , pcard(A)) for which pa > ca, for all a ∈ A. In terms of our paper
here, we then have ϕ ((x1x2 . . .)) = logcx1 and ψ ((x1x2 . . .)) = log px1 . In this situation our
Main Theorem then immediately gives that the value of βα (t) is uniquely determined by
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the Hutchinson like formula

∑
a∈A

pβα (t)
a c t−α·βα (t)

a = 1,

for each α > 0 such that cα
a < pa for all a ∈ A.

Acknowledgement: We would like to thank the Mathematische Forschungsinstitut
Oberwolfach for its support and for the excellent research enviroment. We began with the
work towards this paper during our two weeks Research-in-Pairs visit to Oberwolfach from
September 2 to 15, 2007.

2. PRELIMINARIES

2.1. Thermodynamic formalism for iterated function systems. Throughout, we will
consider the following type of conformal iterated function systems F . For some compact
connected set X ⊂ R and with A := {0,1, . . . ,d}, let F = { fa : a ∈ A} be generated by
differentiable contractions fa : X → IntX such that the following two conditions hold.

Strong separation condition. fa(Int(X))⊂ Int(X) for all a ∈ A, and fa(X)∩ fb(X) = /0, for
each pair of distinct a,b ∈ A.

Hölder condition. There exists ε > 0 and an open interval Y ⊃ X such that fa has a
C1+ε−continuation f̃a to Y for which f̃a (Y )⊂ Y and f̃a : Y → f̃a (Y ) is a diffeomorphism,
for each a ∈ A.

Note that the Hölder condition immediately implies the bounded distortion property. That
is, we in particular have that F has the following property.

Bounded distortion property. For each ω ∈ An,n ∈ N and ξ ,η ∈ X , we have

| f ′ω(ξ )| � | f ′ω(η)|.

Here we have used the notation fω := fx1 ◦ fx2 ◦ . . .◦ fxn for ω = x1x2 . . .xn ∈ An. Without
loss of generality, we will always assume that the intervals { fa(X) : a ∈ A} are labeled
as follows. If ξ ∈ f0(X) and η ∈ fa(X) for some a ∈ A \ {0}, then ξ < η . Likewise,
if ξ ∈ f1(X) and η ∈ fa(X) for some a ∈ A \ {1}, then ξ > η . In other words, f0(X)
( f1(X) resp.) is assumed to be the utter left (right resp.) interval in the first iteration level
{ fa(X) : a ∈ A} of F .
Recall that the limit set L of F is the unique non-empty compact subset of R which
satisfies L =

⋃
a∈A fa(L ). Equivalently, L is given by

L :=
⋂

n∈N

⋃
ω∈An

fω(X).

Clearly, the latter description of L immediately shows that each element of L can be
coded in a unique way by an infinite word with letters chosen from the alphabet A. That is,
there is a bijective coding map Φ : AN→L , which is given by

Φ : (x1x2 . . .) 7→
⋂

n∈N
fx1...xn(X).

For ease of exposition, we will make no explicit distinction between (x1x2 . . .) ∈ AN and
ξ := Φ((x1x2 . . .)) ∈L . Also, throughout we assume that the reader is familiar with the
following basic concepts of the thermodynamic formalism (see e.g. [Bow75], [Den05],
[Pes97], [Rue78]), where we use the common notation for cylinder sets [x1 . . .xn] := {y =
(y1y2 . . .) ∈L : yi = xi, for all i ∈ {1, . . . ,n}}, as well as the notation for Birkhoff sums
Sng := ∑

n−1
k=0 g◦σ k with σ referring to the usual left-shift map on AN.



6 MARC KESSEBÖHMER AND BERND O. STRATMANN

• The canonical geometric potential ϕ : L → R associated with F is given by

ϕ(ξ ) := log f ′x1

(
f−1
x1

(ξ )
)
, for all ξ = (x1x2 . . .) ∈L .

Note that, since F satisfies the Hölder condition, ϕ is Hölder-continuous.
• The pressure function P : C (L ,R)→R is given for continuous potential functions

g : L → R by

P(g) := lim
n→∞

1
n

log ∑
ω∈An

exp( sup
ξ∈[ω]

Sng(ξ )).

• Throughout, let ψ ∈ C (L ,R) refer to a given Hölder-continuous function for
which ψ < 0, P(ψ) = 0, and ψ > αϕ . Then it is well-known that there is a Gibbs
measure νψ associated with ψ such that

νψ([ω])� eSnψ(ξ ), for all ξ ∈ [ω],ω ∈ An,n ∈ N.

• Also, throughout we let χα := ψ−αϕ > 0, for some α ∈R, and then consider the
potential function

sϕ + tχα , for s, t ∈ R.

By standard thermodynamic formalism, there then exists a strictly increasing,
concave, and real-analytic function βα : R→ R such that

P(sϕ +βα(s)χα) = 0, for all s ∈ R.

The Gibbs measure associated with the potential function sϕ + βα(s)χα will be
denoted by µs. Note that the measure µs satisfies

µs([ω])� esSnϕ(ξ )+βα (s)Snχα (ξ ), for all ξ ∈ [ω],ω ∈ An,n ∈ N.

The following proposition in particular shows in which way the values of δ and dimH(νψ)
can be obtained from the graph of the function βα . We refer to Fig. 1 and Fig. 2 for
illustrations of this proposition for the special case α = 1.

Proposition 2.1. We have that the unique zero of βα is at δ and that βα (α) = 1. Moreover,
dimH

(
νψ

)
is the point of intersection of the x–axis with the tangent of the graph of βα at

the point (α,1).

Proof. Since P(δϕ +0χα) = P(δϕ) = 0, we necessarily have βα (δ ) = 0. Also, since
P(αϕ + χα) = P(αϕ +ψ−αϕ) = P(ψ) = 0, we necessarily have that βα (α) = 1. There-
fore, by employing well-known identities from the thermodynamic formalism (see e.g.
[Den05]), it follows

β
′
α (1) =−

∫
ϕ dνψ∫
χα dνψ

=
1

α−
∫

ψ dνψ/
∫

ϕ dνψ

=
1

α−dimH
(
νψ

) .
This shows that the tangent L(α,1) of the graph of βα at (α,1) ∈ R2 is given by

L(α,1)(x) :=
1

α−dimH
(
νψ

)x− α

α−dimH
(
νψ

) +1.

By solving the equation L(α,1)(x) = 0 for x, the assertion of the proposition follows. �

2.2. The derivative of the Gibbs distribution function. As noted in the introduction, let

Fψ : R→ [0,1], x 7→ νψ((−∞,x]),

refer to the distribution function of the Gibbs measure νψ associated with the iterated
function system F and the potential function ψ . We always assume that F and ψ are
chosen as specified in the previous section. Also, define

E := {(x1x2 . . .) ∈L : there exist i ∈ {0,1},n ∈ N such that xk = i forallk ≥ n},
and let L ∗ := L \E refer to the limit set of F without the countable set of ‘end points’
whose code eventually has only either 0’s or 1’s.
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Lemma 2.2. For the upper α-Hölder derivative of Fψ we have

limsup
η→ξ

|Fψ(ξ )−Fψ(η)|
|ξ −η |α

= ∞, for all ξ ∈L ∗.

Proof. Let ξ = (x1x2 . . .) ∈L ∗ be given. We then have ξ ∈ [x1 . . .xn], for each n ∈N. Also,
since ξ is not in E , there exists (nm)m∈N such that xnm+1 6= 1, for all m ∈N. In this situation
we then have ξ /∈ [x1 . . .xnm1]. Moreover, note that νψ([x1 . . .xnm1]) � νψ([x1 . . .xnm ]).
Using this and the bounded distortion property, it follows, with ηm referring to the right
endpoint of [x1 . . .xnm ], that is ηm := (x1 . . .xnm1) ∈ E ,

|Fψ(ξ )−Fψ(ηm)|
|ξ −ηm|α

≥
νψ([x1 . . .xnm1])

diam([x1 . . .xnm ])α
�

νψ([x1 . . .xnm ])
diam([x1 . . .xnm ])α

� exp(Snmψ(ξ ))
exp(Snmαϕ(ξ ))

= eSnm χα (ξ ) ≥ enm infη∈L χα (η).

Since χα > 0, the result follows. �

Definition. Let us say that ξ = (x1x2 . . .) ∈L has an i-block of length k at the n-th level,
for n,k ∈ N and i ∈ {0,1}, if xn,xn+k+1 ∈ A\{i} and xn+m = i, for all m ∈ {1, . . . ,k}.

Proposition 2.3. If for i ∈ {0,1} we have that ξ = (x1x2 . . .) ∈L has an i-block of length
k at the n-th level, then there exists η ∈L such that |ξ −η | � exp(Snϕ(ξ )), and

|Fψ(ξ )−Fψ(η)|
|ξ −η |α

� eSnχα (ξ ) · ekψ(i).

Proof. Let ξ = (x1x2 . . .) ∈ L be given as stated in the lemma. Let us only consider
the case i = 1. The case i = 0 can be dealt with in a similar way, and this is left to the
reader. We then have that there exists j ∈ A such that the interval J bounded by the points
η := (x1 . . .xn−1 j0) ∈ E and η̂ := (x1 . . .xn1) ∈ E is a ‘gap interval’ in the construction
of L such that J ∩L ∗ = /0 (that is, J denotes the gap interval in the construction of L
separating [x1 . . .xn] and its right neighbour in the n-th level). Using the bounded distortion
property and the strong separation condition, we then have

|ξ −η | � diam(J)� diam([x1 . . .xn])� eSnϕ(ξ ).

Moreover, since νψ(J) = 0, we have

|Fψ(ξ )−Fψ(η)| = νψ((ξ ,η ]) = νψ((ξ , η̂ ])≤ νψ([x1 . . .xn+k])

� eSn+kψ(ξ )� eSnψ(ξ ) · ekψ(1).

Finally, by noting that ξ /∈ [x1 . . .xn+k1] and [x1 . . .xn+k1]⊂ (ξ , η̂ ], we similarly have

|Fψ(ξ )−Fψ(η)|= νψ((ξ , η̂ ])≥ νψ([x1 . . .xn+k1])� eSn+k+1ψ(ξ )� eSnψ(ξ ) · ekψ(1).

Combining these observations, it follows

|Fψ(ξ )−Fψ(η)|
|ξ −η |α

� exp(Snψ(ξ )+ kψ(1))
exp(Snαϕ(ξ ))

= eSnχα (ξ ) · ekψ(1).

�

The following corollary gives a generalization of a classical result of Gilman [Gil32], who
showed for Cantor sets that if the derivative of the Cantor function exists in the generalized
sense at some point in the Cantor set, then it has to be equal to infinity.

Corollary 2.4. If Dα Fψ exists in the generalized sense at ξ ∈L ∗, then (Dα Fψ)(ξ ) = ∞.
On the other hand, there are (plenty of) points in L ∗ at which Dα Fψ does not exist in the
generalized sense.
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Proof. The first assertion is an immediate consequence of Lemma 2.2. For the second
assertion, choose strictly increasing sequences (nm)m∈N and (km)m∈N such that nm+1 >
nm + km, and let ξ be an element of L which has an i-block of length km at the nm-th level.
Moreover, assume that (nm) and (km) are chosen such that exp(Snm χα(ξ )+ kmψ(i))� 1.
Using Lemma 2.3, it follows that there exists (ηm)m∈N such that limm→∞ ηm = ξ and
|Fψ(ξ )−Fψ(ηm)|/|ξ −ηm|α � 1, for all m ∈ N. From this we immediately deduce that
for the lower α-Hölder derivative of Fψ we have

liminf
η→ξ

|Fψ(ξ )−Fψ(η)|
|ξ −η |α

< ∞.

By combining the latter with Lemma 2.2, it follows that (Dα Fψ)(ξ ) does not exist in the
generalized sense. This finishes the proof. �

For later use we also state the following immediate consequence of Proposition 2.3.

Corollary 2.5. Let ξ = (x1x2 . . .) ∈L be given such that for some n,k ∈ N and i ∈ {0,1}
we have xn+m = i, for all m ∈ {1, . . . ,k}. Then there exists η ∈L such that |ξ −η | �
exp(Snϕ(ξ )) and

|Fψ(ξ )−Fψ(η)|
|ξ −η |α

� eSnχα (ξ ) · ekψ(i).

Proposition 2.6. We have that Dα Fψ does not exist in the generalized sense at ξ ∈L ∗ if
and only if there exists i ∈ {0,1} and strictly increasing sequences (nm)m∈N and (km)m∈N
of positive integers such that ξ has an i-block of length km at the nm-th level for each m ∈N,
and

eSnm χα (ξ )+kmψ(i)� 1, for each m ∈ N.

Proof. The ‘if-part’ follows immediately from combining Lemma 2.2 and Proposition 2.3.
For the ‘only-if-part’, assume by way of contradiction that ξ = (x1x2 . . .) ∈L ∗ is given
such that if ξ has a strictly increasing sequences of i-blocks, say of length km at the nm-th
level, for some i ∈ {0,1}, then

liminf
m→∞

eSnm χα (ξ )+kmψ(i) = ∞.

Let (ξm)m∈N be any sequence in X \{ξ} such that limm→∞ ξm = ξ . The aim is to show that
under these assumptions we necessarily have

lim
m→∞

|Fψ(ξ )−Fψ(ξm)|
|ξ −ξm|

= ∞.

For this, first note that we can assume without loss of generality that ξm ∈L . Indeed,
if ξm /∈L , then move ξm away from ξ until one first hits L , say at the point ξ ′m ∈L
(note that by choosing ξm sufficiently close to ξ , we can assume without loss of generality
that such a ξ ′m always exists, since ξ ∈L ∗). Clearly, we then have |Fψ(ξ )−Fψ(ξm)| =
|Fψ(ξ )−Fψ(ξ ′m)| as well as |ξ −ξm| ≤ |ξ −ξ ′m|, and hence,

|Fψ(ξ )−Fψ(ξm)|
|ξ −ξm|α

≥
|Fψ(ξ )−Fψ(ξ ′m)|
|ξ −ξ ′m|α

.

For ease of exposition, let us now only consider the case in which ξm > ξ for all m ∈ N.
The case ξm < ξ can be dealt with in the same way, and this is left to the reader. Now, let
(nm)m∈N be the sequence such that ξm ∈ [x1 . . .xnm−1] and ξm /∈ [x1 . . .xnm−1xnm ]. Then there
are two cases to consider. The first case is that xnm+1 6= 1, and the second case is that ξ has
a 1-block of length km at the nm-th level. For these two cases one argues as follows.

Case 1: Here we have that [x1 . . .xnm1] separates the points ξ and ξm, and hence,

|Fψ(ξ )−Fψ(ξm)|
|ξ −ξm|α

≥
νψ ([x1 . . .xnm1])

diam([x1 . . .xnm−1])
α � eSnm χα (ξ ).
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Case 2: Here we have that
[
x1 . . .xnm1km+1

]
separates the points ξ and ξm, where 1k

refers to the word of length k containing exclusively the letter 1. In this situation
we obtain

|Fψ(ξ )−Fψ(ξm)|
|ξ −ξm|α

≥
νψ

([
x1 . . .xnm1km+1

])
diam([x1 . . .xnm−1])

α � eSnm χα (ξ )+kmψ(1).

In both cases we have that the right hand side is unbounded. This proves that the right
α-Hölder derivative of Fψ at ξ does exist in the generalized sense. By proceeding similarly
for the left α-Hölder derivative of Fψ (where one essentially has to take the ‘mirror image’
of the above argument and to replace 1 by 0), the statement of the proposition follows. �

3. PROOF OF THE MAIN THEOREM

In this section we give the proof of the Main Theorem. We have split the proof up by
first giving the proof for the upper bound of the Hausdorff dimension of Λα

ψ , and this is then
followed by the proof of the lower bound.
Throughout, let us fix for each n ∈ N a partition Cn of L by cylinder sets such that the
following holds.

For each [ω] ∈ Cn and ξ ∈ [ω], we have |S|ω|χα(ξ )−n| � 1,

where |ω| refers to the word length of ω . In the following we also consider the ‘stopping
time’ Tt : L → R, which is defined by

Tt(ξ ) := sup{k ∈ N : Skχα(ξ ) < t}, for all t > 0,ξ ∈L .

Moreover, for i ∈ {0,1} and ε > 0 we define

C
(i)
n (ε) :=

{
[ωinε

] : [ω] ∈ Cn
}

,

where inε
refers to the word of length nε := b−n(1− ε)/ψ(i)c containing exclusively the

letter i.
Finally, for each i ∈ {0,1} let si be the unique solution of the equation

(6) siϕ(i)/ψ(i)+βα(si) = 0.

Throughout, let us always assume without loss of generality that max{s0,s1}= s0. For the
proof of our Main Theorem it is then sufficient to show that

(7) dimH(Λα
ψ) = s0.

Indeed, for this note that (6) has the following interpretation. Namely, si is equal to the x-
coordinate of the point of intersection of the graph of βα with the straight line Li through the
origin of slope −ϕ(i)/ψ(i). Since βα is increasing and βα(t) < 0 for t < δ , the assumption
s0 = max{s0,s1} gives that the slope of L1 has to be less than or equal to the slope of
L0. Hence, since ϕ (i)/ψ (i) > 0, it follows that the minimum of ϕ(i)/ψ(i) is attained
for i = 0. Combining this observation with (6) and assuming that (7) holds, the implicit
characterization of dimH(Λα

ψ) in (2) follows.
Therefore, we are now left with proving the statement in (7), which will be done in the
following two remaining sections.

3.1. The upper bound. In this section we give the proof for the upper bound of the
Hausdorff dimension of Λα

ψ as stated in the Main Theorem. In a nutshell, the idea is to show
that there is a suitable covering of Λα

ψ which allows to apply the Borel-Cantelli Lemma in
order to derive the desired upper bound.

Recall that s0 = max{s0,s1}, and let ε > 0 be given. For κ > 0 such that (1−ε)(s0 +κ)=
s0 + τ , for some τ > 0 (note that by choosing ε sufficiently small, κ can be made arbitrary
small), we then have
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∑
n∈N

∑
C∈C (0)

n (ε)

(diam(C))s0+κ � ∑
n∈N

∑
C∈C (0)

n (ε)

esupξ∈C(s0+κ)STn(ξ )+nε
ϕ(ξ )

� ∑
n∈N

∑
C∈C (0)

n (ε)

esupξ∈C(s0+κ)STn(ξ )+nε
ϕ(ξ )

� ∑
n∈N

e−n(1−ε)(s0+κ)ϕ(0)/ψ(0)
∑

C∈C (0)
n

es0 supξ∈C STn(ξ )ϕ(ξ )

� ∑
n∈N

e−n(1−ε)(s0+κ)ϕ(0)/ψ(0)−nβα (s0)
∑

C∈Cn

esupξ∈C STn(ξ )(s0ϕ(ξ )+βα (s0)χα (ξ ))

� ∑
n∈N

(
e−τϕ(0)/ψ(0)

)n
< ∞.

Here, we have used the Gibbs property ∑C∈Cn exp(supξ∈C STn(ξ ) (s0ϕ(ξ )+βα(s0)χα(ξ )))�
1 of the Gibbs measure µs0 . Similar, one finds (using the fact that (1−ε)(s0 +κ)≥ s1 +τ),

∑
n∈N

∑
C∈C (1)

n (ε)

(diam(C))s0+κ � ∑
n∈N

e−n(1−ε)(s0+κ)ϕ(1)/ψ(1)
∑

C∈Cn

es0 supξ∈C STn(ξ )ϕ(ξ )

� ∑
n∈N

e−n(1−ε)(s0+κ)ϕ(1)/ψ(1)−nβα (s1)
∑

C∈Cn

esupξ∈C STn(ξ )(s1ϕ(ξ )+βα (s1)χα (ξ ))

� ∑
n∈N

e−n(s1+τ)ϕ(1)/ψ(1)−nβα (s1) < ∞.

Here, we have used the Gibbs property ∑C∈Cn exp(supξ∈C STn(ξ ) (s1ϕ(ξ )+βα(s1)χα(ξ )))�
1 of the Gibbs measure µs1 . Therefore, we now have

dimH({ξ ∈ X : ξ ∈
⋃

i=0,1

C
(i)
n (ε) for infinitely many n ∈ N})≤ s0 +κ.

Hence, it remains to show that for all ε > 0,

Λ
α
ψ ⊂

⋃
i=0,1

⋃
n∈N

C
(i)
n (ε) .

For this, let ξ ∈ Λα
ψ be given. By Proposition 2.6, there exists i ∈ {0,1} and strictly

increasing sequences (nm)m∈N and (km)m∈N of positive integers, such that ξ has an i-block
of length km at the nm-th level, for each m ∈ N, and

eSnm χα (ξ )+kmψ(i)� 1, for each m ∈ N.

By setting `(nm) := bSnm χα(ξ )c, it follows exp(km)� exp(−`(nm)/ψ(i)). Hence, for each
ε > 0 and for each m sufficiently large, we have km ≥−`(nm)(1− ε)/ψ(i)). It follows that
ξ ∈ C

(i)
nm (ε), which finishes the proof of the upper bound.

3.2. The lower bound. In this section we give the proof for the lower bound of the
Hausdorff dimension of Λα

ψ as stated in the Main Theorem. For this, we use the usual
strategy and define a probability measure m supported on a certain Cantor-like set M
contained in Λψ . We then show that the Mass Distribution Principle is applicable to (M ,m),
and this will then eventually lead to the desired estimate from below.
For the construction of M , let (nk)k∈N denote a rapidly increasing sequence (to be specified
later) of positive integers. With this sequence at hand, consider the sequences (mk)k∈N and
(Nk)k∈N which are given inductively as follows.
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N1 := n1 and Nk :=

⌊
k

∑
j=1

n j + χα(0)
k−1

∑
j=1

m j

⌋
for all k ≥ 2,

where m j := b−N j/ψ(0)c for all j ∈ N.

Now, consider the Cantor-like set M given by

M := {(x1x2 . . .) ∈L : (x1x2 . . .) = ω10m1
ω20m2

. . . , with ω j ∈ Cn j for all j ∈ N},

where 0m j
refers to the word consisting of m j times the letter 0. In order to see that

M ⊂ Λα
ψ , let ξ = (ω10m1

ω20m2
. . .) ∈M be given. With `k referring to the word length of

ω10m1
. . .ωk, we then have by construction exp(S`k χα(ξ ))� exp(Nk). Therefore, ξ has a

0-block of length mk at the `k-th level for each k ∈ N, and

eS`k
χα (ξ )+mkψ(0) � eNk+b−Nk/ψ(0)cψ(0)� 1.

An application of Lemma 2.6 then gives ξ ∈ Λα
ψ , showing that M ⊂ Λα

ψ .
The next step is to define a measure m on X . This can be done as follows.

(C1): For cylinder sets of the form [ω10m1
. . .ωu−10mu−1

ωu0k] with k < mu and ω j ∈
Cn j for each j ∈ {1, . . . ,u}, put

m([ω10m1
. . .ωu−10mu−1

ωu0k]) :=
u

∏
j=1

µs0([ω j]).

(C2): For cylinder sets of the form [ω10m1
. . .ωu0mu

x1 . . .xl ] with ω j ∈ Cn j for all
j ∈ {1, . . . ,u}, and with [x1 . . .xl ] containing some cylinder set from Cmu+1 , put

m([ω10m1
. . .ωu0mu

x1 . . .xl ]) := µs0([x1 . . .xl) ·
u

∏
j=1

µs0([ω j]).

By Kolmogorov’s Consistency Theorem this defines a measure which strictly speaking is
first only defined on AN. However, we then identify this measure with the push-down to L
via the coding map Φ. One immediately verifies that for the so obtained measure m on L
we have m(M ) = 1. In order to complete the proof for the lower bound, it is now sufficient
to show that m satisfies the ‘Frostman condition’ for cylinder sets of the type in (C1) as
well as for cylinder sets of the type in (C2). For this, first note that for ω ∈ Cn1 ,k ≤m1, and
with ξ referring to some arbitrary element in [ω0m1

], we have the following estimate.

m([ω0k]) = µs0([ω])� es0STn1 (ξ )ϕ(ξ )+n1βα (s0) �
(

eSTn1 (ξ )ϕ(ξ )−n1ϕ(0)/ψ(0)
)s0

�
(

eSTn1 (ξ )ϕ(ξ )−n1ϕ(0)/ψ(0)
)s0
�
(

eSTn1 (ξ )+b−n1/ψ(0)cϕ(ξ )
)s0

� (diam([ω0m1
]))s0 ≤ (diam([ω0k]))

s0 ,

where we have used the fact βα(s0) = −s0ϕ(0)/ψ(0). Using the latter estimate, we can
now check the Frostman condition for each of the two types of cylinder sets (C1) and (C2)
separately as follows.

ad (C1): For cylinder sets as in (C1), we have for each ε > 0 and with c > 0 referring to
some constant (which takes care of the comparability constant in the above estimate for
m([ω0k]) and of the fact that diam([ab])� diam([a]) ·diam([b]), for all a,b ∈ A),
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m([ω10m1
. . .ωu−10mu−1

ωu0k]) =
u

∏
j=1

µs0([ω j])

≤ cu
(

diam([ω10b−n1/ψ(0)c]) . . .diam([ωu0b−nu/ψ(0)c])
)s0

�
cu ·
(
diam([0mu

])
)ε(

diam([0m1+b−m1/ψ(0)c]) . . .diam([0mu−1+b−mu−1/ψ(0)c])
)s0

·
(
diam([ω10m1

. . .ωu0mu
])
)s0−ε

,

where we have used the fact

m j−b−n j/ψ(0)c =

⌊
−

(
j

∑
r=1

nr + χα(0)
j−1

∑
r=1

mr

)
/ψ(0)

⌋
−b−n j/ψ(0)c

= m j−1 + b−m j−1χα(0)/ψ(0)c±1.

Now the announced growth condition for the sequence (nk)n∈N comes into play. Namely,
by choosing this sequence to increase sufficiently fast, one immediately verifies that the first
factor in the above estimate is uniformly bounded from above. Indeed, we have

cu ·
(
diam([0mu

])
)ε(

diam([0m1+b−m1/ψ(0)c]) . . .diam([0mu−1+b−mu−1/ψ(0)c])
)s0

� cueεϕ(0)mue−s0ϕ(0)∑
u−1
r=1 mr(1−1/ψ(0))

= exp

(
ϕ(0)mu

(
ε−
(

(1−1/ψ(0))s0/mu

u−1

∑
r=1

mr−u logc/(ϕ(0)mu)
)))

.

Hence, by choosing (nk)n∈N appropriately, we can make sure that

(1−1/ψ(0))
s0

mu

u−1

∑
r=1

mr−
u logc

ϕ(0)mu
< ε,

and thus,

cu ·
(
diam([0mu

])
)ε(

diam([0m1+b−m1/ψ(0)c]) . . .diam([0mu−1+b−mu−1/ψ(0)c])
)s0
� 1.

Therefore, we have now shown that for each ε > 0 and for all u ∈ N sufficiently large,

m([ω10m1
. . .ωu−10mu−1

ωu0k]) �
(
diam([ω10m1

. . .ωu0mu
])
)s0−ε

≤
(
diam([ω10m1

. . .ωu0k])
)s0−ε

.

This finishes the proof of the ‘Frostman condition’ for cylinder sets of type (C1).

ad (C2): For cylinder sets as in (C2), first note that since βα(s0) < 0 and χα > 0, we have
for all ξ ∈ [x1 . . .xl ],

µs0([x1 . . .xl ])� es0Slϕ(ξ )+βα (s0)Sl χα (ξ ) ≤ es0Slϕ(ξ )� (diam([x1 . . .xl ]))
s0 .

Combining this with the estimate in ‘ad (C1)′ we obtain for each ε > 0 and for all u ∈ N
sufficiently large,

m([ω10m1
. . .ωu0mu

x1 . . .xl ]) = µs0([x1 . . .xl ]) ·
u

∏
j=1

µs0([ω j])

� (diam([x1 . . .xl ]))
s0 ·
(
diam([ω10m1

. . .ωu0mu
])
)s0−ε

≤
(
diam([ω10m1

. . .ωu0mu
x1 . . .xl ])

)s0−ε
.
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By combining the results of ‘ad (C1)’ and ‘ad (C2)’ and using the fact that M is a subset of
Λα

ψ , we have now shown that for each ε > 0,

dimH(Λα
ψ)≥ dimH(M )≥ s0− ε.

This finishes the proof of the lower bound, and hence also the proof of the Main Theorem.
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