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Abstract
Employing the fact that the geometry of the N -qubit (N ≥ 2) Pauli group is embodied in the struc-
ture of the symplectic polar space W(2N − 1, 2) and using properties of the Lagrangian Grassmannian
LGr(N, 2N) defined over the smallest Galois field, it is demonstrated that there exists a bijection be-
tween the set of maximum sets of mutually commuting elements of the N -qubit Pauli group and a
certain subset of elements of the 2N−1-qubit Pauli group. In order to reveal finer traits of this corre-
spondence, the cases N = 3 (also addressed recently by Lévay, Planat and Saniga (JHEP 09 (2013) 037))
and N = 4 are discussed in detail. As an apt application of our findings, we use the stratification of
the ambient projective space PG(2N − 1, 2) of the 2N−1-qubit Pauli group in terms of G-orbits, where
G ≡ SL(2, 2)× SL(2, 2)× · · · × SL(2, 2)� SN , to decompose π(LGr(N, 2N)) into non-equivalent orbits.
This leads to a partition of LGr(N, 2N) into distinguished classes that can be labeled by elements of the
above-mentioned Pauli groups.

Keywords: Multi-Qubit Pauli Groups – Symplectic Polar Spaces W(2N − 1, 2) – Lagrangian Grass-
mannians LGr(N, 2N) over the smallest Galois field

1 Introduction

Generalized Pauli groups (also known as Weyl-Heisenberg groups) associated with finite-dimensional
Hilbert spaces play an important role in quantum information theory, in particular in quantum tomog-
raphy, dense coding, teleportation, error correction/cryptography, and black-hole–qubit correspondence.
A special class of these groups are the so-called N -qubit Pauli groups, N being a positive integer, whose
elements are simply N -fold tensor products of the famous Pauli matrices and the two-by-two unit ma-
trix. A remarkable property of these particular groups is that their structure can be completely recast
in the language of symplectic polar spaces of rank N and order two, W(2N − 1, 2) (see, for example,
[1]–[7] and references therein). The elements of the group (discarding the identity) answer to the points
of W(2N − 1, 2), a maximum set of pairwise commuting elements has its representative in a maximal
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subspace (also called a generator) PG(N − 1, 2) of W(2N − 1, 2) and, finally, commuting translates into
collinear (or, perpendicular). In the case of the real N -qubit Pauli group, the structure of the corre-
sponding W(2N − 1, 2) can be refined in terms of the orthogonal polar space Q+(2N − 1, 2), that is, a
hyperbolic quadric of the ambient projective space PG(2N − 1, 2), which is the locus accommodating all
symmetric elements of the group [4]. Given this finite-geometrical picture of (real) N -qubit Pauli groups,
one can invoke properties of the Lagrangian Grassmannian LGr(N, 2N) defined over the Galois field of
two elements, GF (2), to establish a very interesting bijection between the generators of W(2N−1, 2) and
points lying on a sub-configuration of W(2N−1, 2) defined by a set of quadratic equations. This furnishes
an intriguing mapping of maximum sets of mutually commuting N -qubit observables into observables of
2N−1-qubits. For N = 3, all essential technicalities of this relation have recently been worked out in
detail in [8]. In this paper, we shall first give a short rigorous proof that this bijection holds for any N .
Then, after a brief addressing of a rather trivial N = 2 case, we shall again discuss in detail the N=3
case using, however, a more “projective-slanted” view to be compared with an “affine” approach of the
latter reference, as well as the N = 4 case to see some novelties and get a feeling of the kind of problems
one can envisage/encounter when addressing higher rank cases.

The paper is organized as follow. In Section 2, we recall the definition of the symplectic polar space
W(2N − 1, 2) and how this space encodes the geometry of the N -Pauli group. In Section 3, we prove our
main result by establishing the existence of a projection which maps bijectively the aggregate of maximum
sets of mutually commuting N -qubit observables into a distinguished subset of 2N−1-qubit observables.
Then, in Section 4, we illustrate our construction forN = 2, 3, and 4 by explicitly computing the equations
defining the image of the projection in PG(2N − 1, 2). In Section 5, one shows how our findings can be
used to partition the set of generators of W(2N − 1, 2). Finally, in Section 6 we point out a relation
between our construction and similar ones done over the field of complex numbers.

Notations

In what follows, we will denote by K the Galois field GF (2) and, if V is a K-vector space, we will use the
symbol P(V ) to represent the corresponding projective space over K; thus, P(KN) will be an alternative
expression for PG(N−1, 2), the projective space of dimension N−1 over GF (2). Given a nonzero vector
v ∈ V , we will denote by [v] ∈ P(V ) the corresponding point in the associated projective space. On the

other hand, for any X ⊂ P(V ), we define the cone over X , X̂ ⊂ V , to be the pre-image of X in V , i. e.
the set of all vectors x ∈ V such that [x] ∈ X . A tensorial basis of (K2)⊗n ≡ K2 ⊗ · · · ⊗ K2 (n factors)
will be denoted by xi1

1 ⊗ xi2
2 ⊗ · · · ⊗ xin

n , where ij ∈ {0, 1}; obviously, {x0
i , x

1
i } is a basis of (K2)i.

Let A = (aij) be an n× n matrix with coefficients in K and let I = {i1, . . . , ik} and J = {j1, . . . , jk}
be subsets of {1, . . . , n}. The symbol ΔI,J will stand for the corresponding k × k minor of A, i. e.
ΔI,J(A) = det((ai,j)i∈I,j∈J ); when I = J , ΔI,I(A) will be called a principal minor of A and simply
referred to as ΔI(A).

2 The symplectic polar space W(2N − 1, 2) and the associated
N-qubit Pauli group

Let K2N be the 2N -dimensional vector space over GF (2) equipped with a non-degenerate symplectic
form σ (which exists because the dimension is even). The symplectic polar space W(2N − 1, 2) is the
space which describes the geometry of the vector space K2N endowed with σ in the following sense: all
non-zero vectors x ∈ K2N are points of W(2N−1, 2), because σ(x, x) = 0 by definition, and moreover two
points x, y ∈ W(2N − 1, 2) will be said to be collinear if and only if σ(x, y) = 0. Recall that a subspace
of K2N is said to be totally isotropic if σ vanishes identically on it. W(2N − 1, 2) is, loosely speaking,
the space of all totally isotropic subspaces of PG(2N − 1, 2). The maximal totally isotropic subspaces of
PG(2N − 1, 2), also called generators of W(2N − 1, 2), have all the same dimension N − 1. The number
of points of the polar space is equal to |PG(2N − 1, 2)| = 22N − 1 = 4N − 1 and the number of generators
amounts to (2 + 1)(22 + 1) . . . (2N + 1).
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The generalized real N -qubit Pauli group, denoted by PN , is generated by N -fold tensor products of
the matrices

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −1
1 0

)
and Z =

(
1 0
0 −1

)
.

Explicitly,
PN = {±A1 ⊗A2 ⊗ · · · ⊗AN : Ai ∈ {I,X, Y, Z}, i = 1, 2, · · · , N}.

The associated factor group PN ≡ PN/Z(PN ), where the center Z(PN ) consists of ±I(1)⊗I(2)⊗· · ·⊗I(N),

features 4N elements. The elements of PN\{I(1) ⊗ I(2) ⊗ · · · ⊗ I(N)} can be bijectively identified with the
same number of points of W(2N − 1, 2) in such a way that two commuting elements of the group will lie
on the same totally isotropic line of this polar space. If one selects a basis of W(2N − 1, 2) in which the
symplectic form σ(x, y) is given by

σ(x, y) = (x1yN+1 − xN+1y1) + (x2yN+2 − xN+2y2) + · · ·+ (xNy2N − x2NyN ), (1)

then this bijection acquires the form:

Ai ↔ (xi, xi+N ), i ∈ {1, 2, 3, 4}, (2)

with the understanding that

I ↔ (0, 0), X ↔ (0, 1), Y ↔ (1, 1), Z ↔ (1, 0); (3)

thus, for example, in W(7, 2) the point having coordinates (0, 1, 1, 0, 0, 1, 0, 1) corresponds to the element
I ⊗ Y ⊗ Z ⊗X ≡ IY ZX .

The elements of the group PN whose square is +I(1)I(2) · · · I(N) (i. e., symmetric elements) lie on a
certain Q+(2N − 1, 2) of the ambient space PG(2N − 1, 2). It follows from the definition of the bijection
that the equation of the Q+(2N − 1, 2) accommodating all symmetric elements must have the following
standard form

Q(x) = x1xN+1 + x2xN+2 + · · ·+ xNx2N = 0. (4)

This can readily be inspected using the fact that the matrix Y is the only skew-symmetric element in the
set {I,X, Y, Z} and, so, any symmetric element of the group must contain an even number of Y s.

It should also be added that generators, of both W(2N − 1, 2) and Q+(2N − 1, 2), correspond to
maximal sets of mutually commuting elements of the group.

3 Mapping LGr(N, 2N) to PG(2N − 1, 2)

Recently, Lévay, Planat and Saniga [8] found and analyzed in detail an explicit bijection between the
set of 135 maximum sets of mutually commuting elements of the three-qubit Pauli group (that is, the
set of generators of W(5, 2)) and the set of 135 symmetric operators of the four-qubit Pauli group (that
is, the set of points lying on a particular Q+(7, 2) of W(7, 2)). Following the spirit of this work, we
will generalize this physically important result and prove the existence of a similar bijection between any
N -qubit and 2N−1-qubit Pauli groups by considering first the Grassmaniann variety Gr(N, 2N), then
its associated Lagrangian Grassmannian LGr(N, 2N) and, finally, using a crucial fact that we work in
characteristic 2.

To this end in view, let us first recall the definition of the variety of N -planes in K2N , i. e. the
Grassmannian variety Gr(N, 2N). An N -plane (respectively an (N − 1)-projective-plane) P , spanned by
N non-zero vectors u1, u2, . . . , uN of K2N (respectively by N points [u1], [u2], . . . , [uN ] of PG(2N − 1, 2))

is a point of the Grassmannian variety Gr(N, 2N) ⊂ P(
∧N

K2N ) = PG(
(
2N
N

)− 1, 2). The embedding of
the Grassmannian variety is given by the so-called Plücker map:

P = span〈u1, u2, . . . , uN〉 
→ [u1 ∧ u2 ∧ · · · ∧ uN ] ∈ Gr(N, 2N) ⊂ P(

N∧
K

2N).
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In other words, the Grassmanian variety is the set of all skew symmetric tensors that can be factorized
(i. e., are separable). The algebraic equations defining Gr(N, 2N) are known as the Plücker equations.

Let (ei)1≤i≤2N be a basis of the vector space K2N and let P ∈ P(
∧N

K2N), i. e.

P =
∑

1≤i1<i2<···<iN≤2N

pi1,i2,...,iN ei1 ∧ ei2 ∧ · · · ∧ eiN .

If P belongs to Gr(N, 2N), then for any two sequences 1 ≤ i1 < · · · < iN−1 ≤ 2N and 1 ≤ j1 < · · · <
jN+1 ≤ 2N , the coordinates of P satisfy the following relations (see [12] page 94)

N+1∑
a=1

(−1)api1,i2,...,iN−1,japj1,j2,...,ĵa,...,jN+1
= 0, (5)

where the symbol ĵa means that the corresponding index is omitted. Equivalently, the coordinates
[p1,2,...,N , . . . , pN,N+1...,2N ] of P ∈ Gr(N, 2N) can be expressed as follow. Let M be an N × 2N matrix
whose rows are coordinates of N vectors that are spanning the N -plane P . Then, we have

pi1,...,iN = Δ{i1,...,iN},{1,...,N}(M) (6)

We are only interested in those (N−1)-planes of PG(2N−1, 2) which are totally isotropic with respect

to our symplectic form σ (i. e., in the generators of W(2N − 1, 2)). The extension of σ to P(
∧N

K2N)
defines (see [9]) linear conditions on the coordinates [p1,...,N , p1,...,N−1,N+1, . . . , pN,...2N ] of P to insure
that P is totally isotropic. These linear conditions define a projective space P(L) whose intersection with
Gr(N, 2N) is a sub-variety of Gr(N, 2N) called the Lagrangian variety,

LGr(N, 2N) = Gr(N, 2N) ∩ P(L).

The Lagrangian variety is thus the variety of all the generators PG(N − 1, 2) of W(2N − 1, 2). We will
now show that over K the variety LGr(N, 2N) can further be projected bijectively to a subset of points
of PG(2N − 1, 2), where PG(2N − 1, 2) is the projective space obtained by eliminating the variables
involved in the linear conditions which define P(L) (i. e., the linear conditions given by the extension of

σ to P(
∧N

K2N)).
Let P = (e1+

∑
j a1,jeN+j)∧(e2+

∑
j a2,jeN+j)∧· · ·∧(eN +

∑
j aN,jeN+j) ∈ Gr(N, 2N). Expanding

this expression, we obtain the local parametrization of Gr(N, 2N):

P = e1 ∧ · · · ∧ eN +

N∑
i=1

N∑
j=1

aije1 ∧ · · · ∧ ei−1 ∧ eN+j ∧ ei+1 ∧ eN

+
∑
i,j

∑
s,t

(aisajt − aitajs)e1 ∧ · · · ∧ ei−1 ∧ eN+s ∧ ei+1 ∧ · · · ∧ ej−1 ∧ eN+t ∧ ej+1 ∧ · · · ∧ eN + · · · .

This shows that locally the coordinates of P can be written as

[1, a11, . . . , aNN , a11a22 − a21a12, . . . ...] = [1,Δ1(A), . . . ,ΔI,J(A), . . . ],

where A = (ai,j). Requiring P to be totally isotropic means that the vectors spanning P must be totally
isotropic. Denoting ui = ei +

∑
j ai,jeN+j, we get σ(us, ut) = ast − ats, which is zero if and only if

A = (aij) is a symmetric matrix. Thus P will be totally isotropic if its coordinates locally correspond to
minors of a symmetric matrix A over K.

The linear conditions defining P(L) correspond locally to the fact that the minors ΔI,J(A) and
ΔJ,I(A) are equal for I �= J . Moreover, these conditions do not involve the coordinates correspond-

ing to principal minors. Thus, we obtain a splitting
∧N

K2N = V +W such that the coordinates defining
V are locally given by minors of type ΔI,J , whereas the coordinates defining W are principal minors
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ΔI(A). But for symmetric matrices over K = GF (2) all off-diagonal entries are completely determined
by the principal minors Δ{i}(A) and Δ{i,j}(A). This fact readily stems from the following equation
aiiajj − a2ij = Δ{i,j}(A), i. e., a2i,j = Δi(A)Δj(A) − Δi,j(A). Thus, all minors ΔI,J (A), with I �= J ,
are (over K) uniquely determined by the principal minors ΔK(A) of A. In other words, once the coor-
dinates in W of a point of LGr(N, 2N) are chosen, the coordinates in V are automatically fixed. If we

consider the cone L̂G(N, 2N) ⊂ ∧N
K2N = V +W , this can be regarded as a graph over mere W and

mapped bijectively to a subset of W . The dimension of W is given by the number of principal minors:∑N
i=0

(
N
i

)
= 2N . Since all principal minors cannot vanish simultaneously, we obtain a well-defined projec-

tive map π : LGr(N, 2N) → P(W ) = PG(2N −1, 2). The map π sends P to p ∈ P(W ), where p is defined
by the coordinates of P not occurring in the equations defining V . All in all, we obtain a bijective map-
ping by projecting LGr(N, 2N) to PG(2N − 1, 2) after eliminating all the variables involved/occurring
in the linear conditions.

4 An explicit construction of the bijection: a few examples

The above-given proof of the existence of the mapping

π : LGr(N, 2N) → PG(2N − 1, 2)

provides us with a recipe of how to obtain the equations of the image

π(LGr(N, 2N) ⊂ PG(2N − 1, 2).

Indeed, following our reasoning one first needs to find the ideal I(Gr(N, 2N)) (i. e., a set of equations)
defining Gr(N, 2N), as well as the linear conditions J = (l1, . . . , lm) induced by the associated symplectic
form. These two sets of equations will then define the ideal of LGr(N, 2N), i. e.,

I(LGr(N, 2N)) = I(Gr(N, 2N)) ∪ J.

Then we calculate the ideal of the projection π(LGr(N, 2N)) by eliminating in I(LGr(N, 2N)) all the
variables appearing in J . The last step can be done by hand when cases are rather simple, or be handled
with the formalism of the Elimination Theory [10] when calculations become more tedious. We shall now
illustrate this approach on the first three cases in the sequence.

4.1 The smallest non-trivial (Gr(2, 4) 
→ LGr(2, 4) � PG(3, 2)) case

The set of lines in PG(3, 2) (or 2-planes in K4) is the first non-trivial Grassmannian variety. From eqs. (5)
it follows that Gr(2, 4) is defined by a single equation,

p12p34 − p13p24 + p14p23 = 0, (7)

representing a quadric surface in PG(
(
4
2

) − 1, 2) = PG(5, 2). Hence, Gr(2, 4) is a variety of dimension
4. The canonical symplectic form (see eq. (1)) σ(x, y) = x1y3 − x3y1 + x2y4 − x4y2 imposes that P (of
projective coordinates [p12 : p13 : p14 : p34 : p24 : p23]) is isotropic if and only if p13 = p24. The linear
conditions stemming from σ tell us that

LGr(2, 4) = Gr(2, 4) ∩ PG(4, 2),

where PG(4, 2) = {[x1 : x2 : x3 : x4 : x5 : x6] ∈ PG(5, 2), x2 = x5}. The variety LGr(2, 4) is of dimension
3, being mapped down to PG(3, 2) when we take into account the projection π : LGr(2, 4) → PG(3, 2)
given by π([x1 : x2 : x3 : x4 : x5 : x6]) = [x1 : x3 : x4 : x6]. It is a one-to-one mapping (because both p13
and p24 are fixed by the other minors), so we have

π(LGr(2, 4)) = PG(3, 2).
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4.2 The ‘Lévay-Planat-Saniga’ (Gr(3, 6) 
→ LGr(3, 6) 
→ Q+(7, 2)) case revisited

For N = 3, eqs. (5) reduce into the following form

4∑
a=1

(−1)api1i2japj1···̂ja···j4 = 0. (8)

For each choice of the pair of indices of {i1, i2} we find eight equations with three terms each and
one equation featuring all four terms. There will be, of course, an overlap and what we get are only
30 independent three-term equations and five four-term ones. We start with {i1, i2} = {1, 2} and for
each subsequent choice of these two indices we list only those equations that have not appeared in the
preceding steps. Each equation of the former set is, apart from the pair i1, i2, characterized by the string
{j1, j2, j3, j4} shown after the equation. The 30 equations read:

{i1, i2} = {1, 2} : {i1, i2} = {1, 3} :
p123p145 + p124p135 + p125p134 = 0, {1, 3, 4, 5}, p134p156 + p135p146 + p136p145 = 0, {1, 4, 5, 6},
p123p146 + p124p136 + p126p134 = 0, {1, 3, 4, 6}, p123p345 + p134p235 + p135p234 = 0, {2, 3, 4, 5},
p123p156 + p125p136 + p126p135 = 0, {1, 3, 5, 6}, p123p346 + p134p236 + p136p234 = 0, {2, 3, 4, 6},
p124p156 + p125p146 + p126p145 = 0, {1, 4, 5, 6}, p123p356 + p135p236 + p136p235 = 0, {2, 3, 5, 6},
p123p245 + p124p235 + p125p234 = 0, {2, 3, 4, 5}, p134p356 + p135p346 + p136p345 = 0, {3, 4, 5, 6},
p123p246 + p124p236 + p126p234 = 0, {2, 3, 4, 6},
p123p256 + p125p236 + p126p235 = 0, {2, 3, 5, 6},
p124p256 + p125p246 + p126p245 = 0, {2, 4, 5, 6},
{i1, i2} = {1, 4} : {i1, i2} = {1, 5} :
p124p345 + p134p245 + p145p234 = 0, {2, 3, 4, 5}, p125p345 + p135p245 + p145p235 = 0, {2, 3, 4, 5},
p124p346 + p134p246 + p146p234 = 0, {2, 3, 4, 6}, p125p356 + p135p256 + p156p235 = 0, {2, 3, 5, 6},
p124p456 + p145p246 + p146p245 = 0, {2, 4, 5, 6}, p125p456 + p145p256 + p156p245 = 0, {2, 4, 5, 6},
p134p456 + p145p346 + p146p345 = 0, {3, 4, 5, 6}, p135p456 + p145p356 + p156p345 = 0, {3, 4, 5, 6},

{i1, i2} = {1, 6} : {i1, i2} = {2, 3} :
p126p346 + p136p246 + p146p236 = 0, {2, 3, 4, 6}, p234p256 + p235p246 + p236p245 = 0, {2, 4, 5, 6},
p126p356 + p136p256 + p156p236 = 0, {2, 3, 5, 6}, p234p356 + p235p346 + p236p345 = 0, {2, 4, 5, 6},
p126p456 + p146p256 + p156p246 = 0, {2, 4, 5, 6}, {i1, i2} = {2, 4} :
p136p456 + p146p356 + p156p346 = 0, {3, 4, 5, 6}, p234p456 + p245p346 + p246p345 = 0, {3, 4, 5, 6},
{i1, i2} = {2, 5} : {i1, i2} = {2, 6} :
p235p456 + p245p356 + p256p345 = 0, {3, 4, 5, 6}, p236p456 + p246p356 + p256p346 = 0 {3, 4, 5, 6}.

The five independent four-term equations (followed by the corresponding pair {i1, i2}) are:
p123p456 + p124p356 + p125p346 + p126p345 = 0, {1, 2},
p123p456 + p134p256 + p135p246 + p136p245 = 0, {1, 3},
p124p356 + p134p256 + p145p236 + p146p235 = 0, {1, 4},
p125p346 + p135p246 + p145p236 + p156p234 = 0, {1, 5},
p126p345 + p136p245 + p146p235 + p156p234 = 0, {1, 6}.

We are only interested in the Lagrangian grassmannian LGr(3, 6), that is in those planes of PG(5, 2)
that are totally isotropic with respect to a given symplectic polarity. Choosing the latter to have again
the ‘canonical’ form (eq. (1)),

(x1y4 − x4y1) + (x2y5 − x5y2) + (x3y6 − x6y3) = 0,

the coordinates of such planes have to meet the following constraints

p125 = p136, p235 = p134, p124 = p236, p245 = p346, p256 = p146, p145 = p356, (9)

which reduce the set of 30 three-term equations into
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p123p356 + p236p135 + p136p235 = 0,
p123p256 + p236p136 + p126p235 = 0,
p236p156 + p136p256 + p126p356 = 0,
p123p346 + p236p235 + p136p234 = 0,
p236p256 + p136p246 + p126p346 = 0,
p235p156 + p135p256 + p136p356 = 0,
p235p356 + p135p346 + p136p345 = 0,
p236p345 + p235p346 + p356p234 = 0,
p236p346 + p235p246 + p256p234 = 0,

p236p456 + p356p246 + p256p346 = 0,
p235p456 + p356p346 + p256p345 = 0,
p136p456 + p356p256 + p156p346 = 0,
p123p156 + p2136 + p126p135 = 0,
p123p246 + p2236 + p126p234 = 0,
p123p345 + p2235 + p135p234 = 0,
p135p456 + p2356 + p156p345 = 0,
p126p456 + p2256 + p156p246 = 0,
p234p456 + p2346 + p246p345 = 0,

and the set of five four-term ones into

p123p456 + p236p356 + p136p346 + p126p345 = 0,
p123p456 + p235p256 + p135p246 + p136p346 = 0,
p136p346 + p135p246 + p356p236 + p156p234 = 0,
p126p345 + p136p346 + p256p235 + p156p234 = 0.

These last four equations are, however, not independent, as each of them is equal to the sum of the
remaining three. Moreover, summing the first of them with the third one, or the second with the fourth,
yields

p123p456 + p126p345 + p135p246 + p156p234 = 0, (10)

which after relabeling the variables as x1 = p123, x2 = p126, x3 = p135, x4 = p156, x5 = p456, x6 = p345,
x7 = p246 and x8 = p234 reads

x1x5 + x2x6 + x3x7 + x4x8 = 0 (11)

and is readily recognized to represent a hyperbolic quadric Q+(7, 2) in a particular subspace PG(7, 2) of
the ambient projective space PG(19, 2) of Gr(3, 6). More precisely, the quadric defined by eq. (10) lives
in the ideal I2(LGr(3, 6)) and it is the only quadric that does not depend on the coordinates p136, p236,
p235, p356, p256, and p346. Thus, if we consider the splitting of the linear space K14 = K8 ⊕K6, where K8

represents the vector space defined by the set of coordinates {p123, p126, p135, p156, p456, p345, p246, p234}
and K6 that defined by {p136, p236, p235, p356, p256, p346}, and employ the fact that each coordinate from
the latter set can be expressed as a linear combination of the coordinates from the former set, then we
can represent L̂Gr(3, 6) ⊂ K

14 as a graph over the quadric Q+(7, 2) defined by eq. (10) in K
8, i. e.,

L̂Gr(3, 6) = {(x, g(x)) ∈ K
14,x ∈ Q̂+(7, 2) ⊂ K

8}.

One thus automatically gets a bijection between LGr(3, 6) and the Q+(7, 2) by taking the projection to
the base of the graph K8 ⊕K6 → K8.

This procedure can be rephrased in algebraic terms in the framework of Elimination Theory [10].
Given an ideal I ⊂ K[x1, . . . , xn], the l-th elimination ideal, with 1 ≤ l ≤ n, is the ideal of K[xl+1, . . . , xn]
defined by

Il = I ∩K[xl+1, . . . , xn].

Let πl be the projection Kn → Kn−l defined by πl(a1, . . . , an) = (al+1, . . . , an). If V (I) = {(a1, . . . , an) ∈
Kn, f(a1, . . . , an) = 0, ∀f ∈ I} is an affine variety corresponding to the ideal I, then π(V (I)) ⊂ V (Il),
i. e., the projection of V (I) is contained in the algebraic variety defined by the elimination ideal (which
is, in fact, the smallest affine variety containing π(V )). Using the notion of Groebner basis, one can
compute the elimination ideal I from the fact that

Gl = G ∩K[xl+1, . . . , xn],

where G is the Groebner basis of I and Gl that of Il. To perform this calculation, it suffices to choose a
monomial order adapted to eliminate the first l variables.
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Going back to the (cone over the) Lagrangian Grassmanian, L̂G(3, 6) ⊂ K14, we know that the ideal
of this variety is defined by the above-given 21 equations of degree 2. This ideal is obtained from the
Plücker relations defining Gr(3, 6) by imposing the six constraints (9), i. e.

I(LGr(3, 6)) = I(Gr(3, 6) ∪ J,

where J = (p125+p136, p235+p134, p124+p236, p245+p346, p256+p146, p145+p356). The Plücker coordinates
appearing in J are exactly those we want to eliminate to project down to K8, because they depend linearly
on the remaining ones. Starting form the ideal I(L̂G(3, 6)), we compute the desired elimination ideal
using Macaulay2:

I(L̂G(3, 6)) ∩K[p123, p126, p135, p156, p456, p345, p246, p234] =

= (p123p456 + p126p345 + p135p246 + p156p234).

Thus, π(L̂G(3, 6)) ⊂ Q̂+(7, 2). Everything holds projectively, as we worked only with homogeneous
polynomials; then π(LGr(3, 6)) ⊂ Q+(7, 2), where π : PG(13, 2)\PG(5, 2) → PG(7, 2).1 Moreover, since
both �π(LGr(3, 6)) = 135 and �Q+(7, 2) = 135 and because π is a bijection (the values of p125, · · · , p356
are completely determined by those of p123, · · · , p234), we finally get

π(LGr(3, 6)) = Q+(7, 2).

4.3 A more intricate (Gr(4, 8) 
→ LGr(4, 8) 
→ Q+(15, 2)) case

We shall follow the same strategy to show that the 2295 maximal subspaces of W(7, 2) are mapped to a
subset of points of a hyperbolic quadric Q+(15, 2). Gr(4, 8) is a variety of the

(
8
4

)− 1 = 69-dimensional
projective space defined by

5∑
a=1

(−1)api1i2i3japj1···̂ja···j5 = 0. (12)

The Lagrangian Grassmannian associated with the following symplectic polarity

(x1y5 − x5y1) + (x2y6 − x6y2) + (x3y7 − x7y3) + (x4y8 − x8y4) = 0,

has to meet 24 constraints of the type

p1345 = p2346, p1245 = p2347, p1235 = p2348, p1246 = p1347, p1236 = p1348, p1237 = p1248,
p1358 = p2368, p1258 = p2378, p1257 = p2478, p1268 = p1378, p1267 = p1478, p1367 = p1468,
p1457 = p2467, p1456 = p3467, p1356 = p3468, p2456 = p3457, p2356 = p3458, p2357 = p2458,
p1578 = p2678, p1568 = p3678, p1567 = p4678, p2568 = p3578, p2567 = p4578, p3567 = p4568,

and three conditions of the type
p1256 + p1357 + p1458 = 0,
p1256 + p2367 + p2468 = 0,
p1357 + p2367 + p3478 = 0.

We thus find 27 independent linear relations; hence, our LGr(4, 8) lives in a subspace of the PG(69, 2)
that is isomorphic to PG(42, 2).

To find the projection π : K70 → K
16 we compute the elimination ideal

I = (I(Gr(4, 8)) ∪ J) ∩K[x1, . . . , x16],

1It is worth mentioning here that the projection map is well defined only outside PG(5, 2) = {p ∈ PG(13, 2), x =
[a1, · · · , a6, 0, . . . , 0]}; however, π|LGr(3,6) is well defined because the variables p123, . . . , p234 do not vanish simultaneously

on LGr(3, 6).
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where J is a homogeneous ideal of degree one generated by the above-given 27 equations and xi’s,
i ∈ {1, 2, · · · , 16} , stand for the following 16 Plücker coordinates that do not appear in the expression
defining J :

x1 = p1234, x2 = p1238, x3 = p1247, x4 = p1278,
x5 = p1346, x6 = p1368, x7 = p1467, x8 = p1678,
x9 = p5678, x10 = p4567, x11 = p3568, x12 = p3456,
x13 = p2578, x14 = p2457, x15 = p2358, x16 = p2345.

Using Macaulay2, we get the ideal

I = (Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,Q10), (13)

where Qi are the following quadratic forms

Q1 = x12x13 + x11x14 + x10x15 + x9x16, Q2 = x1x13 + x2x14 + x3x15 + x4x16,
Q3 = x1x11 + x2x12 + x5x15 + x6x16, Q4 = x4x5 + x3x6 + x2x7 + x1x8,
Q5 = x1x10 + x3x12 + x5x14 + x7x16, Q6 = x5x9 + x6x10 + x7x11 + x8x12,
Q7 = x3x9 + x4x10 + x7x13 + x8x14, Q8 = x2x9 + x4x11 + x6x13 + x8x15,
Q9 = x1x9 + x4x12 + x6x14 + x7x15, Q10 = x2x10 + x3x11 + x5x13 + x8x16.

Moreover, the quadric
Q0 ≡ Q9 +Q10 = 0

is a hyperbolic quadric in PG(15, 2) defined by eq. (4). The ideal I defines a subvariety V (I) of PG(15, 2)
that LGr(4, 8) is mapped to. Moreover, V (I) ⊂ Q+(15, 2) because Q0 ∈ I. Again, by comparing the
number of points of V (I) and LGr(4, 8), we conclude that

π(LGr(4, 8)) = V (I) ⊂ Q+(15, 2).

5 Stratification of PG(2N − 1, 2)

Let us consider the natural action of the group G = SL(2, 2) × SL(2, 2) × . . . ,×SL(2, 2) � SN on
PG(2N − 1, 2). This action partitions the set of points of the projective space in terms of G-orbits and
allows us, thanks to the bijection described in Section 3, to partition LGr(N, 2N) in terms of G-equivalent
classes. Knowing a representative of each orbit, we can use the equations obtained in the previous section
to check whether a particular orbit does or does not belong to π(LGr(N, 2N)). In the following examples,
we use the classification of G-orbits of points of PG(7, 2) and PG(15, 2) obtained by Bremner and Stavrou
[11].

5.1 Two distinguished classes of mutually commuting two-qubit operators

It is well known (see, e. g., [13]) that the projective space PG(3, 2) is the union of two G orbits,

PG(3, 2) = O1 ∪ O2,

with �O1 = 9 and �O2 = 6. The orbit O1, comprising the points lying on a hyperbolic quadric Q+(3, 2),
corresponds to the G-orbit of any separable vector in the tensorial basis (for example, the orbit of x1

1⊗x1
2).

On the other hand, O2, consisting of six off-quadric points, is the orbit corresponding to non-separable
tensors (for example, the orbit of x0

1 ⊗ x0
2 + x1

1 ⊗ x1
2). Our bijection associates the two orbits of PG(3, 2)

with two distinguished classes of maximal sets of mutually commuting two-qubit operators, as described
in Table 1.

The projective line PG(1, 2)a, spanned by 〈XI, IX〉, is obviously mapped to [0 : 0 : 1 : 0] by our
construction. Indeed, according to eqs. (2) and (3), the observables XI and IX correspond to the points
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Orbit Size Representative Observable Set of mutually commuting
two-qubit observables

O1 9 [0 : 0 : 1 : 0] XI PG(1, 2)a
O2 6 [1 : 0 : 1 : 0] Y I PG(1, 2)b

Table 1: Classes of mutually commuting 2-qubits operators; here, PG(1, 2)a = 〈XI, IX〉 and PG(1, 2)b =
〈ZX,XZ〉.

ofW(3, 2) having the coordinates (0, 0, 1, 0) and (0, 0, 0, 1) and these two points define the line represented
by the matrix

Pa =

(
0 0 1 0
0 0 0 1

)
whose Plücker coordinates are [0 : 0 : 1 : 0], i. e., p12 = p14 = p23 = 0 and p34 = 1. Similarly, the line
defined by

Pb =

(
1 0 0 1
0 1 1 0

)
satisfies p12 = p34 = 1 and p14 = p23 = 0, i. e., it is mapped to [1 : 0 : 1 : 0]. This line is spanned by the
points (1, 0, 0, 1) and (0, 1, 1, 0), being thus generated by ZX and XZ.

The partition of PG(3, 2) into two orbits O1 and O2 tells us that we can similarly partition LGr(2, 4)
into two classes of lines; a class of cardinality 9, which is the G-orbit of PG(1, 2)a, and a class of cardinality
6, which is the G-orbit of PG(1, 2)b.

5.2 Three distinguished classes of mutually commuting three-qubit operators

The projective space PG(7, 2) is the union of five G-orbits (see [11, 13]),

PG(7, 2) = O1 ∪ O2 ∪O3 ∪ O4 ∪ O5,

with �O1 = 27, �O2 = 54, �O3 = 108, �O4 = 54 and �O5 = 12. It is also well known (see, e. g., [13]) that

Q+(7, 2) = O1 ∪ O2 ∪O4.

Hence, in light of our main result of Sec. 4.2, the variety π(LGr(3, 6)) is partitioned into three different
G-orbits whose properties are summarized in Table 2; here, we used the explicit expression of π given in
[8] and the representatives of the orbits Oi were taken from [11] (transformed, of course, into our adopted
system of coordinates).

Orbit Size Representative Symmetric Set of mutually commuting
four-qubit observable three-qubit observables

O1 27 [0 : 0 : 0 : 0 : 1 : 0 : 0 : 0] XIII PG(2, 2)a
O2 54 [0 : 0 : 0 : 1 : 0 : 0 : 1 : 0] IIXZ PG(2, 2)b
O4 54 [0 : 0 : 0 : 1 : 0 : 1 : 1 : 0] IXXZ PG(2, 2)c

Table 2: Classes of mutually commuting 3-qubits operators; here, PG(2, 2)a = 〈XII, IXI, IIX〉,
PG(2, 2)b = 〈ZZI,XXI, IIX〉, and PG(2, 2)c = 〈XIX, IXX,ZZZ〉.

To illustrate how we assign a projective plane of order two to a representative of Oi, let us detail the
calculation for the orbit O2. A representative of the second non-trivial orbit in the classification of [11]
is, in the tensorial basis, x0

1 ⊗ x1
2 ⊗ x1

3 + x1
1 ⊗ x0

2 ⊗ x1
3, which in our notation corresponds to x4 = x7 = 1.
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Using the labeling of the Plücker coordinates given in Section 4.2 this means that p156 = p246 = 1, the
remaining coordinates being zero. The 3× 6 matrix satisfying these conditions is of the form⎛

⎝ 1 1 0 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1

⎞
⎠ .

The 3 vectors represented by the rows of the matrix are the coordinates of the three points that span the
PG(2, 2)b, which is obviously mapped to [0 : 0 : 0 : 1 : 0 : 0 : 1 : 0]. A similar partition of LGr(3, 6) into
three different classes is also obvious.

5.3 Six distinguished classes of mutually commuting four-qubit operators

The stratification of PG(15, 2) in terms of 29 G-orbits was also established in [11]. In order to identify the
orbits which partition the variety π(LGr(4, 8)), we checked the representative of each orbit, taken from
Table 5 of [11], and found out that six of them annihilate the polynomials of the ideal I (see eq. (13)).
The results of our calculations are portrayed in Table 3 (here the first non-trivial orbit is denoted O2 to
be compatible with the numbering of [11], which also takes into account the trivial orbit).

Orbit Size Representative Symmetric Set of mut. comm.
8-qubit obs’le 4-qubit obs’les

O2 81 [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0] XIIIIIII PG(3, 2)a
O3 324 [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 1 : 0 : 0 : 0 : 0 : 0] IXXIIIII PG(3, 2)b
O6 648 [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 1 : 0 : 1 : 0 : 0 : 0] IXXIXIII PG(3, 2)c
O14 162 [0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 1 : 1 : 0 : 1 : 0 : 0 : 0] IXXIXIIZ PG(3, 2)d
O17 108 [0 : 0 : 0 : 0 : 0 : 1 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 1 : 0] IIIIIY Y I PG(3, 2)e
O18 972 [0 : 0 : 0 : 0 : 0 : 1 : 1 : 0 : 1 : 0 : 0 : 0 : 0 : 1 : 1 : 0] XIIIIY Y I PG(3, 2)f

Table 3: Classes of mutually commuting 4-qubits operators; here, PG(3, 2)a =
〈XIII, IXII, IIXI, IIIX〉, PG(3, 2)b = 〈XIII, IXII, IIZZ, IIY Y 〉, PG(3, 2)c =
〈XIII, IZZZ, IY Y Z, IY ZY 〉, PG(3, 2)d = 〈ZY Y Y, Y ZY Y, Y Y ZY, Y Y Y Z〉, PG(3, 2)e =
〈XXII, ZZII, IIZZ, IIY Y 〉 and PG(3, 2)f = 〈XIZZ, IXZZ,ZZXI, ZZIX〉.

To identify the PG(3, 2)’s that correspond to the representatives of the orbits we proceed similarly as in
the previous two cases, that is, we create the 4 × 8 matrix whose minors satisfy the conditions implied
by the corresponding representative. LGr(4, 8) is likewise partitioned into six non-equivalent classes.

6 The Lagrangian Grassmannian and the variety of principal
minors

At this point is is worth mentioning several papers [14, 15, 16] that deal with similar problems over the
field of complex numbers and which are deeply related to the construction over GF (2) considered in this
paper.

Let K = C and let ZN ⊂ P(C2 ⊗ · · · ⊗ C
2︸ ︷︷ ︸

N times

) be the image of the following rational map [15]:

φ : P(S2Cn ⊕ C) ��� P((C2)⊗N )

[A, t] 
→ [tn−|I|ΔI(A)X
I ],

with A being a symmetric complex matrix and XI = xi1
1 ⊗ · · · ⊗ xiN

N , ij =

{
0 if j /∈ I
1 if j ∈ I

, a tensorial

basis of (C2)⊗N . ZN is an algebraic variety, called the variety of principal minors of symmetric matrices,
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corresponding to the linear projection of the Lagrangian Grassmannian (over the complex numbers). The
linear projection means that from the set of minors of cardinality

(
2N
N

)
we only keep the set of principal

minors of cardinality 2N , i. e. it is the type of the projection π defined in Section 3 over GF (2). However,
in the complex case this projection is no longer a bijection, that is, the principal minors do not contain
all the information on the Lagrangian Grassmannian.

The motivation for studying ZN in the complex case comes from the Principal Minors Assignment
Problem [17, 16]. This problem asks for necessary and sufficient conditions for a collection of 2N numbers
to arise as the principal minors of an N×N matrix. In the case of a symmetric matrix, a collection of 2N

numbers corresponds to its principal minors if and only of the corresponding point in P((C2)⊗N ) belongs
to the variety ZN . This problem for symmetric matrices was solved by Oeding [14, 15], who successfully
described a set of degree-four polynomials which cut out the variety ZN . In particular, Oeding proved,
using representation theory techniques, that a set of equations defining ZN are obtained by taking the
G = SL2(C)× · · · × SL2(C)� SN orbit of a certain peculiar quartic polynomial (the so-called 2× 2× 2
Cayley hyperdeterminant).

It is, naturally, tempting to rephrase Oeding’s result into the GF (2)-regime and check if one can
recover the equations obtained in Sections 4.2 and 4.3. Over GF (2), the equations provided by Corrolary
1.4 of [15] lead to the SL(2, 2)× · · · × SL(2, 2)� SN orbit of

Q = p1234...Np1234...N + p1234...Np3124...N + p1324...Np2134...N + p1234...Np2314...N ,

where k = N+k. For N = 3, Q = 0 is readily recognized to be identical to eq. (10) defining π(LGr(3, 6)).
For N = 4, the distinguished polynomial Q coincides with our Q8 appearing in the ideal defined by
eq. (13). It can be shown that the G-orbit of Q = Q8 consists of the polynomials Q1,Q2, · · · ,Q8 and
Q0. However, via the repeated action of the generators of G we did not manage to get the remaining
four-term polynomials Q9 and Q10, merely their sum Q0 = Q9+Q10. This case thus features over GF (2)
some subtle properties that have no counterpart over the field of complex numbers. Nevertheless, we are
convinced that the approach developed by Oeding is a very promising one, which can be appropriately
adjusted/modified to be meaningful also over the smallest Galois field.

7 Conclusion

In this paper, we gave, for any N ≥ 2, a rigorous proof of the existence of a bijection between the
set of generators of the symplectic polar space W(2N − 1, 2) and a distinguished subset of points of
W(2N − 1, 2). Physically speaking, we established a one-to-one mapping between the maximal sets of
pairwise commuting operators of the N -qubit Pauli group and a subset of the 2N−1 qubit observables.
Proving this correspondence, we also found a method how to get the defining equations of the image of
the mapping within PG(2N − 1, 2) and explicitly illustrated this method for the cases N = 2, N = 3 and
N = 4.

The image of our mapping is over the complex numbers known as the variety of principal minors of
symmetric matrices [14, 15]. We have also pointed out that the calculations in the GF (2)-regime deserve
a special treatment and are, in general, not the direct translation of the results obtained over the field
of the complex numbers. Since GF (2)-settings have already acquired a firm footing in the context of
Quantum Information Theory, we aim at getting deeper insights into the variety of principal minors of
GF (2)-symmetric matrices employing, if possible, a more coordinate-free approach.
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[13] H. Havlicek, B. Odehnal and M. Saniga, “On Invariant Notions of Segre Varieties in Binary Projective
Spaces”, Des. Codes Crypt. 62 (2012) 343–356.

[14] L. Oeding, “G-varieties and the Principal Minors of Symmetric Matrices”, Ph.D. thesis, Texas A. &
M. University, 2009.

[15] L. Oeding, “Set Theoretic Defining Equations of the Variety of Principal Minors of Symmetric
Matrices ”, Alg. Numb. Theory 5 (2011) 75–109.

[16] S. Lin and B. Sturmfels, “Polynomial Relations among Principal Minors of a 4 × 4-Matrix”, J.
Algebra 322 (2009) 4121–4131.

[17] O. Holtz and H. Schneider, “Open problems on GKK τ -matrices”, Lin. Algebra Appl. 345 (2002)
263–267.

13


	OWP2013_25Deckblatt.pdf
	OWP 2013 - 25
	Frédéric Holweck, Metod Saniga and Péter Lévay
	A Relation Between N-Qubit and 2N-1-Qubit Pauli Groups via Binary LGr(N,2N)

	OWP2013_25Deckblatt.pdf
	OWP 2013 - 25
	Frédéric Holweck, Metod Saniga and Péter Lévay
	A Relation Between N-Qubit and 2N-1-Qubit Pauli Groups via Binary LGr(N,2N)




