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RANDOM DYNAMICS OF TRANSCENDENTAL FUNCTIONS

VOLKER MAYER AND MARIUSZ URBAŃSKI

Abstract. This work concerns random dynamics of hyperbolic entire and meromor-
phic functions of finite order and whose derivative satisfies some growth condition
at infinity. This class contains most of the classical families of transcendental func-
tions and goes much beyond. Based on uniform versions of Nevanlinna’s value
distribution theory we first build a thermodynamical formalism which, in particular,
produces unique geometric and fiberwise invariant Gibbs states. Moreover, spectral
gap property for the associated transfer operator along with exponential decay of
correlations and a central limit theorem are shown. This part relies on our construc-
tion of new positive invariant cones that are adapted to the setting of unbounded
phase spaces. This setting rules out the use of Hilbert’s metric along with the usual
contraction principle. However these cones allow us to apply a contraction argument
stemming from Bowen’s initial approach.

Random dynamics is actually a quite active field. An overview can be found in
Arnold’s book [1] and in Kifer and Liu’s chapter in [14]. The first work on random
rational functions is due to Fornaess and Sibony [8]. Related to this is Rugh’s
paper on random repellers [25] and Sumi’s work on rational semi-groups (see for
example [28, 29]). A complete picture including thermodynamics and spectral gap is
contained in [16] which concerns a much wider class of distance expanding random
maps, a class originally introduced by Ruelle [24]. Recently random dynamics of
countable infinite Markov shifts [6, 27] and graph directed Markov systems [23] have
been treated. Here we extend the picture to a situation where the maps are also
countable infinite – to – one, where the phase space is not compact and where in
addition there is no Markov structure.

Given a probability space (X,F , m) along with an invertible ergodic transforma-
tion θ : X → X, we consider the dynamics of

f n
x = fθn−1(x) ◦ ... ◦ fx , n ≥ 1

where fx : C → Ĉ, x ∈ X, is a family of transcendental functions depending
measurably on x ∈ X. Like in the deterministic case, the normal family behaviour
of ( f n

x )n splits the plane into two parts and one is interested in the chaotic part Jx,
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2 VOLKER MAYER AND MARIUSZ URBAŃSKI

called random Julia set. Quite general transcendental random systems fx : Jx → Jθ(x),
x ∈ X, are considered in this paper and, as already has been mentioned among the
major difficulties one encounters is that the phase space Jx is unbounded and the
functions are of infinite degree.

In the deterministic case, this difficulty has been overcome in [19] for a very
general class of functions, so called balanced meromorphic functions. They contain
most classical families like all periodic functions (tangent, sine, exponential and
elliptic), functions with polynomial Schwarzian derivative, the cosine-root family and
many more (all these examples are discussed in detail in [19]). The key point there
was to replace the Euclidean metric by a metric having an appropriate singularity at
infinity. Once this is done, one can use Nevanlinna’s value distribution theory to
show that the corresponding transfer operator is well defined and bounded. The
present paper treats random dynamics of the families of functions considered in
[19]. Again we start with an appropriated choice of metric in order to be able to
control the transfer operator. This time we make use of the uniform versions of
Nevanlinna’s theorems in Cherry-Ye’s book [4] (all needed details of this theory are
in the Appendix 7).

Then, since we are dealing with random dynamics, measurability of all involved
operators, measures and functions has to be checked. This point has sometimes
been neglected in the literature (see the discussion in [13]) or is the reason for
additional assumptions. Here we take advantage of Crauel’s framework [5] and
treat measurability very carefully. Moreover, this allows us to have a global, in
terms of skew product, approach which, for example, produces directly measur-
able families of conditional measures (see Section 3.2). This is in contrast to [16]
where these objects are constructed fiberwise and then later proven to be measurable.

Having then good behaving transfer operators and measurability, we can proceed
with building the thermodynamical formalism. As the result, we prove the existence
and uniqueness of fiberwise conformal measures and the existence and uniqueness
of invariant densities. This gives rise to the existence and uniqueness of fiberwise
invariant measures absolutely continuous with respect to the conformal ones (see
Theorem 3.1 and Theorem 5.1 (1)).

Contrary to Ionescu Tulcea-Marinescu’s theorem [12] (or its generalization by
Hennion’s [11]), the method introduced by Birkhoff [2] and developed further by
Liverani [15], based on positive cones and the Hilbert distance, can be employed in
random dynamics. It especially permits us to obtain the spectral gap property. But
this only does work if the phase spaces are compact. In the present paper this is not
the case and so the Hilbert distance is of much less use. Indeed, cones of functions
of finite distance are too small since all of its members must be comparable near
infinity. Fortunately there is a very nice contraction lemma in Bowen’s manuscript
[3]. In order to be able to adapt it to the present setting, we first produce, via a
delicate construction, non-standard appropriate invariant cones. Once this is done,
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the Bowen-like argument is quite elementary. In this sense, the present work, inci-
dentally, simplifies the deterministic work [19] which uses Marinescu-Ionescu-Tulcea
Theorem.

In conclusion, we get the spectral gap property of Theorem 5.1 (2). It then almost
immediately implies the version of exponential decay of correlations in Theorem 6.1
and the Central Limit Theorem 6.2.

1. Transcendental random systems

We consider random dynamics generated by a quite general class of transcendental
entire or meromorphic functions of finite order. As in Arnold [1], the randomness is
modeled by a measure preserving dynamical system (X,F , m, θ), where (X,F , m) is
a complete probability space and θ : X → X an invertible measure preserving ergodic
transformation. We do not assume the σ–algebra F to be countably generated. To
every x ∈ X associated is an entire or meromorphic function

fx : C→ Ĉ.

The order of this function is supposed to be finite and is denoted by ρ( fx). For every
given z ∈ C, the map x 7→ fx(z) is assumed to be (at least) measurable as a map
from (X,F ) to (C,B) where B is the Borel σ–algebra of C. We will often call

( fx : C→ Ĉ)x∈X

a system or, more fully, a transcendental random system or even a transcendental random
dynamical system if it satisfies the following four natural conditions.

Condition 1 (Common growth of characteristic function). There are two constants
ρ, Cρ > 0 and an increasing function ω : [0, ∞)→ [0, ∞) satisfying limr→∞ log r/ω(r) =
0 such that

ω(r) ≤ T̊x(r) ≤ Cρrρ for all r > 0 and all x ∈ X .

Here, following the standard notation in Nevanlinna theory we denoted by T̊x(r) =
T̊( fx, r) the spherical characteristic function of fx. All necessary details on Nevan-
linna theory and his fundamental main theorems, in the form most convenient for
us, are collected in 7. Appendix. Notice that the right hand side inequality of this
condition implies that the orders ρ( fx) ≤ ρ whereas the left hand side is simply a
quantitative way of saying that the functions fx are transcendental (T̊f (r) = O(log r)
means that f is a rational function).

In order to study the behavior of the orbits z 7→ fx(z) 7→ fθ(x)( fx(z)) 7→ ... it is
natural to use the notation

f n
x := fθn−1(x) ◦ ... ◦ fθ(x) ◦ fx , n ≥ 1 .
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The random Fatou set Fx, x ∈ X, is the set of all points z ∈ C for which there exists
a neighborhood U of z on which all the iterates f n

x are well defined and form a
normal family. The complements in the plane,

Jx := C \ Fx,

are called the random Julia sets. Sometimes, they will be also be denoted by J ( fx),
x ∈ X. We impose the following normalization which mainly signifies that the Julia
set does not accumulate at infinity. Here and throughout the whole paper we will
use the notation

DT = D(0, T)
for the open Euclidean disk centered at the origin with radius equal to T.

Condition 2. There exists T > 0 such that(
Jx ∩DT

)
∩ f−1

x

(
Jθ(x) ∩DT

)
6= ∅ , x ∈ X .

Let zx ∈ Jx ∩DT ∩ f−1
x

(
Jθ(x) ∩DT

)
. We will see in Lemma 3.3) that these points

can be chosen in a measurable way. Consider then the translations Tx(z) = z + zx,
x ∈ X . They conjugate ( fx)x∈X to a new system, say (gx)x∈X which again does
depend measurably on x and such that

0 ∈ J (gx) and |gx(0)| ≤ 2T , x ∈ X.

Notice that the family of translations (Tx)x∈X and the family of its inverses are
equicontinuous since |zx| ≤ T, x ∈ X. In [17] such families of conjugations are
called bi-equicontinuous and they are important since such conjugations preserve
the dynamics. In particular they preserve corresponding Julia sets whereas general
conjugations do not, as can be seen from Example 2.3 in [17]). In conclusion, up to
such a conjugation and by replacing the constant T by 2T if necessary, we can use
the following normalizing requirement instead of Condition 2:

(1.1) 0 = zx ∈ Jx and | fx(0)| ≤ T , x ∈ X.

A straightforward generalization of the notion of hyperbolicity used in [18, 19] to
the random setting is the following.

Definition 1.1. A transcendental random system ( fx)x∈X is called
(1) topologically hyperbolic if there exists 0 < δ0 ≤ 1

4 such that for every x ∈ X,
n ≥ 1 and w ∈ Jθn(x) all holomorphic inverse branches of f n

x are well defined on
D(w, 2δ0).

(2) expanding if there exists c > 0 and γ > 1 such that

|( f n
x )
′(z)| ≥ cγn

for every z ∈ Jx \ f−n
x (∞) and every x ∈ X. a

(3) hyperbolic if it is both topologically hyperbolic and expanding.
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As in the papers [18, 19], dealing with deterministic systems, we will consider
hyperbolic systems for which one has some more information about derivatives.

Condition 3 (Balanced growth condition). There are α2 > max{0,−α1} and κ ≥ 1
such that for every x ∈ X and every z ∈ Jx \ f−1

x (∞),

(1.2) κ−1(1 + |z|)α1(1 + | fx(z)|)α2 ≤ | f ′x(z)| ≤ κ(1 + |z|)α1(1 + | fx(z)|)α2 .

Condition 4. For every R > 0 and N ≥ 1 there exists CR,N such that

|
(

f N
x

)′
(z)| ≤ CR,N for all z ∈ DR ∩ f−N

x
(
DR
)

and x ∈ X .

Remark 1.2. As it is explained in [18, 19], many families naturally satisfy the balanced
growth condition. All other conditions, i.e. Conditions 1, 2 and 4, are automatically satisfied
in the deterministic case. 1 Therefore, the present setting is a straightforward generalisation
of the deterministic situation, the only difference being that α2 in Condition 3 is constant
whereas it is allowed to be a bounded function in [19].

Throughout this section and also in the rest of this paper we use some standard
notations. For example, a � b means that a ≤ cb for some constant c which does not
depend on the involved variables. We also use Vδ(K) for the δ–neighborhood of K
in Hausdorff distance generated by the standard Euclidean metric.

1.1. Mixing. We shall prove the following mixing property.

Lemma 1.3. Let ( fx)x∈X be a hyperbolic transcendental random system. Then, for all r > 0
and R > 0 there exists N = N(r, R) such that

f n
x (D(z, r)) ⊃ DR ∩ Jθn(x) for every n ≥ N, z ∈ Jx ∩DR and x ∈ X .

Proof. Suppose to the contrary that there exist r, R > 0 and arbitrarily large integers
n ≥ N such that for some xn ∈ X and zn ∈ Jxn ∩DR there exists a point

wn ∈
(

DR ∩ Jθn(xn)

)
\ f n

xn
(D(zn, r)).

Define then ϕn : D→ Ĉ by ϕn(ξ) = f n
xn
(zn + rξ)−wn. Note that the family (ϕn)n is

not normal at the origin. Consequently, there exist arbitrarily large integers n such
that

ϕn (D(0, 1/2)) ∩D(0, δ) 6= ∅ .

But then, it follows from hyperbolicity and, in particular, from the expanding
property that

f−n
xn

(D(wn, δ)) ⊂ D(zn, r)

1For some very special examples, the lower bound in Condition 1 can fail. Notice however that, if f
is not a rational function, then T̊ growths faster than log r and this is exactly the property we really
need.
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provided that n ≥ q is sufficiently large, where f−n
xn

is a appropriated holomorphic
inverse branch of f n

xn
defined on D(wn, δ). But this contradicts the fact that wn 6∈

f n
xn
(D(zn, r)). �

2. Transfer operators

Let Cb(Jx) be the space of continuous bounded real–valued functions on Jx and
C0(Jx) its subspace consisting of all functions converging to 0 at ∞. Let ( fx)x∈X be a
hyperbolic system and define:

Lxg(w) = ∑
fx(z)=w

eϕx(z)g(z) , w ∈ Jθ(x) and g ∈ Cb(Jx).

This is the associated family of transfer operators with potential ϕx : Jx → R.
A natural choice for the potentials is eϕx = | f ′x|−t since usually one can choose
the parameter t such that these potentials encode the geometric properties of the
dynamical system. However, since fx is of infinite degree, Lx is in general not well–
defined for such a potential. One might replace it by its spherical version. Then, at
least for t = 2, Lx would be well-defined but the new obstacle would then arise, that,
excepted for some special cases, Lx would not be a bounded operator; to see it the
reader is invited just to try and write it down for the exponential family. However,
using Nevanlinna theory, we showed in [18, 19], still for the deterministic case, that
there is a Riemannian metric, somehow in between the Euclidean and spherical one,
conformally equivalent to any of them, such that the transfer operator has all the
properties needed for developing the thermodynamic formalism and that this holds
for the values of parameter t in a sufficiently large domain, containing in particular
the hyperbolic dimension. This method does work as soon as the derivative growth
condition is satisfied.

So, suppose that ( fx)x∈X satisfies the Condition 3. Then, α = α1 + α2 > 0. Given
any t > ρ

α there is τ ∈ (0, α2) such that

(2.1) t >
ρ

τ̂
>

ρ

α
where τ̂ = α1 + τ .

Remark 2.1. Notice that here τ can be chosen individually for each t > ρ
α . In particular, we

may suppose that α2 − τ > 0 is arbitrarily small.

Consider then the Riemannian metric

dστ(z) =
|dz|

(1 + |z|)τ
.

We denote by | f ′x|τ the derivative of fx with respect to this metric, and, using
Condition 3, we have,

| f ′x(z)|τ = | f ′x(z)|
(1 + |z|)τ

(1 + | fx(z)|)τ
� (1 + | fx(z)|)α2−τ(1 + |z|)τ̂
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for every z ∈ Jx \ f−1
x (∞). Consequently, for all w ∈ Jθ(x) we have,

(2.2) Lx11(w) = Lx,t11(w) = ∑
fx(z)=w

| f ′x(z)|−t
τ ≤

κt

(1 + |w|)(α2−τ)t ∑
fx(z)=w

(
1 + |z|

)−tτ̂ .

Remark 2.2. Hyperbolicity of the functions fx implies that, increasing κ if necessary, (2.2)
does hold for all w in the δ0–neighborhoods Vδ0(Jθ(x)) of the Julia sets provided δ0 > 0 has
been chosen sufficiently small.

Since the factor with w, appearing in the right hand side of (2.2), converges to zero
as |w| → ∞, and applying also Nevanlinna theory (similarly as in [19], details can be
found in 7 of Appendix)), we see that the series in (2.2) can be uniformly bounded
from above. We therefore obtain the following good behavior of these operators Lx.

Proposition 2.3. For every t > ρ
τ̂ > ρ

α there exists M0 = M0(t, τ) > 0 such that for every
x ∈ X, we have

(1) ∑
fx(z)=w

(
1 + |z|

)−tτ̂ ≤ M0 for every w ∈ Jθ(x),

(2) ‖Lx‖∞ ≤ M0 and
(3) Lx11(w) ≤ M0 (1 + |w|)−(α2−τ)t −→ 0 as |w| → ∞.

2.1. Distortion and Hölder functions. Koebe’s Distortion Theorem (see Theorem
1.3 in [22]) and elementary calculus give:

Lemma 2.4. Given t, τ > 0 as in (2.1), there exists K = Kt,τ > 0 such that, for every
x ∈ X, every integer n ≥ 1 and every ψ, an inverse branch of f n

x defined on some disk
D(w, 2δ0), w ∈ Jθn(x), we have that

|ψ′(w1)|tτ
|ψ′(w2)|tτ

≤ 1 + K|w1 − w2|, w1, w2 ∈ D(w, δ0) .

Remark 2.5. It is reasonable to require that 1/2 ≤ τ ≤ 2. This would then imply that the
constant K does depend only on the parameter t.

A Straightforward application of Lemma 2.4 gives (remember that δ0 ≤ 1/4):

Lemma 2.6. There exists K = Kt,τ such that, for every x ∈ X, every integer n ≥ 1, and
every w ∈ Jθn(x), we have that

Ln
x11(w1)

Ln
x11(w2)

≤ 1 + K|w1 − w2| for all w1, w2 ∈ D(w, δ0) .

In particular,

Ln
x11(w1) ≤ KLn

x11(w2) for all w1, w2 ∈ D(w, δ0) .
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Let Hβ(Jx) be the set of real-valued bounded β–Hölder functions defined on Jx.
The β–variation of a function g ∈ Hβ(Jx) is defined to be

(2.3) vβ(g) := sup
0<|w1−w2|≤δ0

{
|g(w1)− g(w2)|
|w1 − w2|β

}
and

‖g‖β := vβ(g) + ‖g‖∞

is the corresponding β–Hölder norm on Hβ(Jx). The good distortion behavior
established in Lemma 2.4 implies the following two-norm inequality which, in
particular, yields invariance of Hölder spaces Hβ(Jx).

Proposition 2.7. Let c, γ > 0 be the expanding constants from Definition 1.1. Then, for
every x ∈ X, every integer n ≥ 1, and every g ∈ Hβ(Jx), we have, with some K = Kt,τ > 0
that

vβ(Ln
x g) ≤ ‖Ln

x‖∞

(
‖g‖∞ + K(cγn)−βvβ(g))

)
.

Proof. Let x ∈ X, n ≥ 1, g ∈ Hβ(Jx) and let w1, w2 ∈ Jθn(x) with |w1 − w2| ≤ δ0.
The points z1, z2 are said to form a pairing if they are respectively preimages of w1
and w2 by the same holomorphic inverse branch of f n

x . With this convention,

|Ln
x g(w1)−Ln

x g(w2)| ≤ I + I I,

where

I I =: ∑
z1,z2 pairing

|( f n
x )
′(z2)|−t

τ |g(z1)− g(z2)| ≤ ‖Ln
x‖∞vβ(g)(cγn)−βKβ|w1 − w2|β

and

I = ∑
z1,z2 pairing

∣∣∣|( f n
x )
′(z1)|−t

τ − |( f n
x )
′(z2)|−t

τ

∣∣∣g(z1)

≤‖g‖∞ ∑
z1,z2 pairing

|( f n
x )
′(z1)|−t

τ

∣∣∣∣1− |( f n
x )
′(z2)|−t

τ

|( f n
x )
′(z1)|−t

τ

∣∣∣∣
≤‖g‖∞‖Ln

x‖∞K|w1 − w2|,

where the last inequality results from Lemma 2.4. It suffices now to combine the
above estimates of both terms I and I I. �

3. Random Gibbs states

In this section we establish the following key result which the rest of the paper
relies on.
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Theorem 3.1. Let ( fx)x∈X be a hyperbolic transcendental random dynamical system sat-
isfying Conditions 1-4. Fix t > ρ/α. Then there exists a random Gibbs measure ν with
disintegrations νx ∈ PM(Jx), x ∈ X, and a measurable function λ : X → (0, ∞) such
that

(3.1) L∗xνθ(x) = λxνx for m a.e. x ∈ X .

Moreover, there exists a constant C ≥ 1 such that C−1 ≤ λx ≤ C for m–a.e. x ∈ X.

Yes, we have not defined random measures yet. Roughly speaking, this concept
means that the family of probability measures (νx)x∈X is measurable. In order to get
measurability of λ and ν, unlike to the previous sections, it is much better now to
consider the global skew product map

(x, z)
f7−−→ (θ(x), fx(z)),

the global transfer operator, and the associated global Julia set

(3.2) J =
⋃

x∈X

{x} × Jx ⊂ X×C,

along with the measurable structure of J induced by the σ–algebra F ⊗B of X×C

where B is the Borel σ–algebra of C. The advantage is that then one can use the
framework described by Crauel in [5]. We now first present this framework along
with some applications, and then prove Theorem 3.1.

3.1. Random observables and measures. Let us recall first that F is an arbitrary
complete σ–algebra on X. Proposition 2.4 of [5] implies then that any measurable
set C ⊂ F ⊗ B, whose fibers Cx = C ∩ ({x} ×C) are closed, is a closed random set.
We will take this characterization as a definition.

A particularly important feature of closed random sets is that they allow us to
use a Measurable Selection Theorem, namely Theorem 2.6 in [5]. This theorem
asserts that for any closed random set C ⊂ F ⊗B there exists a countable family of
measurable functions (cn : X → C)n≥0 such that for m–a. e. x ∈ X,

(3.3) Cx = {cn(x) : n ≥ 0}.
We shall prove the following.

Lemma 3.2. The global Julia set J is a closed random set.

Proof. For every x ∈ X denote by C fx the set of all critical points of fx, i.e.

C fx = {z ∈ C : f ′x(z) = 0}.
Set

O+
n,x = f n

x (C fx) ∪ f n−1
θ(x) (C fθ(x)

) ∪ ...∪ fθn−1(x)(C f
θn−1(x)

).

and then
Px =

⋃
n≥1

O+
n,θ−n(x) ∩C .
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Since each set C fx is countable and its elements vary measurably with x ∈ X,
Proposition 2.9 in [5] assures us that P =

⋃
x∈X{x} × Px is a closed random set.

Hence, still by Proposition 2.4 in [5], P δ =
⋃

x∈X{x} × Vδ(Px) is also a closed
random set, where δ = δ0/2. It now follows from Proposition 2.9 in [5] that
C =

⋃
x∈X{x} × Cx, with Cx = C \ Vδ(Px), is a closed random set. The Measurable

Selection Theorem, Theorem 2.6 in [5], thus applies, and, as Vδ(Jx) ⊂ Cx for all
x ∈ X by hyperbolicity of ( fx)x, this theorem yields measurable maps (ck : X →
C)k≥0 such that ck(x) ∈ Vδ(Jx) for every k ≥ 0, and moreover, for m–a.e. x ∈ X,
{ck(x) : k ≥ 0} ⊃ Vδ(Jx). By definition of C, all holomorphic inverse branches of f n

x
are well–defined in the δ0 neighborhoods of all points cθn(x). Fix 1 < η < γ where γ
is the expanding constant coming from Definition 1.1. We call a holomorphic inverse
branch f−n

x,∗ of f n
x , defined on D(cθn(x), δ), shrinking, if |( f−n

x,∗ )
′(cθn(x))| ≤ η−n. It is

now easy to check that

Jx =
⋂
N

⋃
n≥N

⋃
∗ shrinking

f−n
x,∗ ({ck(θn(x) : k ≥ 0}).

This shows that J is a closed random set. �

Lemma 3.3. If Condition 2 holds, then there is a measurable choice

x 7→ zx ∈ Jx ∩DT ∩ f−1
x

(
Jθ(x) ∩DT

)
.

Proof. Since, by Lemma 3.2, J is a closed random set, the sets with fibers Jx ∩DT
and f−1

x (Jθ(x) ∩DT) are both closed random sets. The intersection of these closed
random sets is again a closed random set, and Condition 2 implies that every fiber of
this intersection is not empty. Therefore, again by the Measurable Selection Theorem,
there exist a measurable map z such that zx ∈ Jx ∩DT ∩ f−1

x

(
Jθ(x) ∩DT

)
for e.e.

x ∈ X. �

We now introduce random observables. We recall from [5] that a function g : J →
R, (x, z) 7→ gx(z), is called random continuous if gx ∈ Cb(Jx) for all x ∈ X, the
function x 7→ ‖gx‖∞ is measurable and, moreover, m–integrable. The vector space of
all such functions is denoted by Cb(J ). It becomes a Banach space when equipped
with the norm

|g| =
∫

X
‖gx‖∞ dm(x).

We need more special functions.

Definition 3.4. A random continuous function g : J → R, (x, z) 7→ gx(z), is said to
vanish at infinity if

lim
z→∞

gx(z) = 0

for m-a.e. x ∈ X. The vector space of all such functions is denoted by C0(J ). It is a closed
subspace of Cb(J ) and inherits the norm | · | from Cb(J ). Thus, it becomes a Banach space
on its own.
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Definition 3.5. Random β–Hölder observables are defined to be all the functions g ∈ Cb(J )
such that gx ∈ Hβ(Jx) and such that x 7→ ‖gx‖β is integrable. This space is denoted by
Hβ(J ) and equipped with the norm

|g|β =
∫

X
‖gx‖β dm(x) .

Consider now the global transfer operator L defined by

(Lg)x(w) = Lθ−1(x)gθ−1(x)(w) , (x, w) ∈ J .

Lemma 3.6. If g ∈ Cb(J ), then Lg is measurable.

Proof. First of all, it suffices to establish measurability of Lg restricted to measurable
sets of the form

Ew = J ∩ (X×D(w, δ/2)) , w ∈ Jx , x ∈ X .

So, let (x, w) ∈ J . Since J is a closed random set, it follows from Proposition 2.4 in
[5]) that the set

Y = {y ∈ X : Jy ∩D(w, δ/2) 6= ∅}
is measurable. Notice that, by definition of Y and by hyperbolicity of ( fx)x, the
function Lg is in fact well defined on Y×D(w, δ/2). Therefore, we can consider the
map h : X×D(w, δ/2)→ R defined by

hy(z) =

{
(Lg)y(z) if y ∈ Y
0 if y 6∈ Y.

Obviously, to show that Lg|Ew is measurable, it suffices to establish measurability of
h. Also, since Y is measurable and h ≡ 0 on Yc ×D(w, δ/2) it suffices to show that h
restricted to Y×D(w, δ/2) is measurable and, by virtue of Lemma 1.1 in [5], in order
to prove this, it suffices to show that for every y ∈ Y the map D(w, δ/2)z 7→ hy(z)
is continuous and that the map Yy 7→ hy(z) is measurable for every z ∈ D(w, δ/2).
The continuity for fixed y ∈ Y is obvious. So we are left to show measurability of

Yy 7→ hy(z) = (Lg)y(z) = Lθ−1(y)gθ−1(y)(z)

for every fixed z ∈ D(w, δ/2). Let z ∈ D(w, δ/2). Then the set C =
⋃

y∈Y{y} ×
f−1
θ−1(y)(z) is a closed random set with discrete fibers. Therefore, the Selection

Theorem yields the existence of countably measurable functions (cn :)∞
n=1 such that

{cn(y) : n ≥ 1} = f−1
θ−1(y)(z) for m–a.e. y ∈ Y. Consequently,

hy(z) = Lθ−1(y)gθ−1(y)(z) = ∑
n≥1
| f ′θ−1(y)(cn(y))|−t

τ gθ−1(y)(cn(y)) for m− a.e. y ∈ Y.

This proves the desired measurability. �

Combining Lemma 3.6 with Proposition 2.3 leads to the following.

Proposition 3.7. L acts continuously on both Cb(J ) and C0(J ).
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LetM(J ) be the space of all measures ν on J such that if (νx)x∈X is the disin-
tegration of ν, then x 7→ |νx| is in L∞(X), i.e. ess supx|νx| < +∞, where |νx| is the
total variation of νx. These measures can be identified with continuous functionals
on Cb(J ):

g 7→ ν(g) =
∫

X

∫
Jx

gx dνxdm(x) and |ν(g)| ≤ ess supx|νx| |g| , g ∈ Cb(J ) .

We want to single out one particular subspace of M(J ). This subspace will be
essential in the sequel. In its definition, stated below, πX : J → X is the usual
projection πx(x, z) = x.

Definition 3.8. A measure ν ∈ M(J ) with marginal m, i.e. ν ◦ π−1
X (ν) = m, or,

equivalently, whose disintegrations νx belong to the space P(Jx) of probability measures on
Jx for all x ∈ X is called random measure. The subspace ofM(J ) consisting of all random
measures will be denoted by P(J ).

Random measures, as defined in Crauel’s book [5], are measures on the set X×C.
But here we are only interested in the subclasses P(J ) andM(J ) and they are the
measures ofM(X×C) with support in J .

Clearly P(J ) is a convex subspace and, most importantly, we have the following
compactness result (Theorem 4.4 in [5]).

Theorem 3.9 (Crauel’s Prohorov Compactness Theorem). Suppose thatM⊂ P(J ).
Then the setM is tight if and only ifM is relatively compact with respect to the narrow
topology. In this case,M is also relatively sequentially compact.

Tightness ofM means here that for every ε > 0 there exists R > 0 such that

ν(X×DR) ≥ 1− ε for every ν ∈ M .

Finally, a sequence of measures (νn)n converges to ν in the narrow topology of
M(J ) if

lim
n→∞

νn(g) = ν(g)

for every g ∈ Cb(J ).

3.2. Random Gibbs states. The aim of this section is to prove Theorem 3.1 and to
provide some useful estimates. Concerning the measures (νx)x∈X from Theorem 3.1
we will refer to them as both Gibbs states or conformal measures.

From the invariance relation (3.1) follows that λx =
∫
Lx11 dνθ(x) and so we look

for measures (νx)x∈X that are invariant under the map Φ : P(J ) → P(J ) whose
fiber maps Φx : PM(Jθ(x))→ PM(Jx) are defined by

(3.4) Φx(νθ(x)) =
L∗xνθ(x)

L∗xνθ(x)(11)
=
L∗xνθ(x)

νθ(x)(Lx11)
.

We want to obtain these measures in the usual way by employing Schauder–
Tychonoff’s fixed point theorem. But, since the sets Jx are unbounded, this can
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be done only if a convex compact and Φ–invariant space of probability measures
is found, and if in addition Φ acts continuously on this space. Towards this end,
consider

(3.5) M =M(R0, ε) :=
{

ν = (νx)x∈X ∈ P(J ) : (a) and (b) hold
}

, where

(a) νx(DR0) ≥ 1
2 and

(b) νx(D
c
R) ≤ 1

Rε for every R ≥ R0

are required to hold for m–a.e. x ∈ X.

For any x ∈ X, define further

Mx = {νx : (a) and (b) hold}.

Clearly, property (b) implies (a) with some R0 sufficiently large. The significance of
(a) is to specify some radius R0. Obviously, we have the following.

Lemma 3.10. The setM is convex and tight, hence compact.

We shall prove the following.

Proposition 3.11. There are R0, ε > 0 such thatM =M(R0, ε) is invariant under the
map Φ = (Φx)x∈X defined in (3.4), i.e. Φx(Mθ(x)) ⊂Mx for all x ∈ X.

In order to establish this result we first need two lemmas.

Lemma 3.12. For every 0 < a < τ̂t− ρ there exists Ma such that for all x ∈ X and all
R ≥ 1,

Lx11
D

c
R
(w) ≤ Ma

Ra , w ∈ Jθ(x).

Proof. Given a ∈ (0, τ̂t− ρ), let b = b(a) > 0 such that τ̂t = a + ρ + b. Then,

Lx11
D

c
R
(w) ≤ κt(1 + |w|)−(α2−τ)t ∑

z∈ f−1
x (w)∩D

c
R

(1 + |z|)−tτ̂

≤ κt ∑
z∈ f−1

x (w)∩D
c
R

|z|−a|z|−(ρ+b) ≤ Ma

Ra ,

where, the first inequality was written by (2.2), while the last one, with some constant
Ma < ∞, was written due to Proposition 2.3 with τ̂t replaced by ρ + b. �

Lemma 3.13. There exists R̃0 > 0 and, for every R ≥ R̃0, such that, for some constant
c > 0,

Lx11(w) ≥ cR−(α2−τ)t8 log R r−τ̂t
R for every w ∈ Jθ(x) , |w| ≤ R , x ∈ X

where rR = ω−1(8 log R
)
.
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Proof. This proof relies heavily on Nevanlinna’s theory and especially on Theorem
7.2. The notation used in it is explained in 7’ Appendix. But first we need some
preliminary observations.

Since Condition 2 holds we may assume that 0 ∈ Jx and | fx(0)| ≤ T for all x ∈ X.

Let Ωx be the connected component of f−1
x

(
D( fx(0), δ0)

)
that contains 0. Since

0 ∈ Jx we can use the expanding property of Definition 1.1 along with Condition 4
in order to get

(3.6) cγ ≤ | f ′x(0)| ≤ CT for every x ∈ X .

Koebe’s 1/4–Theorem applies and, together with (3.6), implies that

Ωx ⊃ D

(
0,

1
4
| f ′x(0)|−1δ0

)
⊃ D (0, s) where s =

δ0

4CT
.

Let from now on x ∈ X and w ∈ Jθ(x) with |w| ≤ R.

Case 1: Suppose that f−1
x (D(w, δ0)) ∩Ds 6= ∅, i.e. that there exists z′ ∈ D(0, s) with

w′ = fx(z′) ∈ D(w, δ0). Then

Lx11(w) ≥ 1
K
Lx11(w′) ≥ 1

K
| f ′x(z′)|−t

τ =
| f ′x(z′)|−t

K
(1 + |z′|)−τt

(1 + |w′|)−τt ≥
(KCT)

−t

K
(1 + s)−τt

by Lemma 2.6, Lemma 2.4, and (3.6). Hence, in this case there is a uniform lower
bound for Lx11(w).

Case 2: Suppose that f−1
x (D(w, δ0)) ∩Ds = ∅. Then we have to use the uniform

SMT (Theorem 7.2) and, in order to do so, first to verify its assumptions. It follows
from (3.6) that

cγ

1 + T2 ≤ f #
x (0) =

| f ′x(0)
1 + | fx(0)|2

≤ CT , x ∈ X .

In other words, the assumption (1) of Theorem 7.2 holds with L = max
{

CT, 1+T2

cγ

}
.

Assumption (3) is exactly the uniform growth condition of the characteristic functions
in Condition 1. It remains to choose appropriate points aj. Let a1, a2, a3 ∈ D(w, δ0)

be any points such that |ai − aj| ≥ δ0
3 for i 6= j. Notice that

fx(0) 6∈ {a1, a2, a3} and f−1
x (aj) ∩Ds = ∅ .

We need the following simple estimate:

D̊(a1, a2, a3) = − log ∏
i 6=j

[ai, aj] + 2 log 2 ≤ log
(
1 + |w|2

)
+ log

12
δ0

+ 2 log 2

≤2 log R + log
12
δ0

+ 3 log 2 .
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Theorem 7.2 gives now the following inequality:

3

∑
j=1

N(aj, r) ≥ T̊x(r)− b6 − 6ρ log r− 2 log R− log
12
δ0
− 3 log 2

= T̊x(r)− b̃6 − 6ρ log r− 2 log R

= T̊x(r)
(

1− b̃6 + 6ρ log r + 2 log R
T̊x(r)

)
.

Remember that T̊x(r) ≥ ω(r), that limr→∞ log(r)/ω(r) = 0 (Condition 1) and that
R ≥ R̃0. If we define rR := ω−1(8 log R

)
, then

2 log R
ω(r)

≤ 1
4

for every r ≥ rR .

Therefore, for every R ≥ R̃0 and provided that R̃0 is sufficiently large, we have:

b̃6 + 6ρ log r + 2 log R
ω(r)

≤ 1
2

for every r ≥ rR.

This implies that

(3.7)
3

∑
j=1

N(aj, r) ≥ 1
2

T̊x(r) ≥
1
2

ω(r) ≥ 1
2

ω(rR) for every r ≥ rR .

We can now conclude the proof of our lemma. Indeed, Lemma 2.6, the lower bound
in Condition 3 and the fact that f−1

x (aj) ∩Ds = ∅ imply, for every j = 1, 2, 3,

KLx11(w) ≥ Lx11(aj) � (1 + |aj|)−(α2−τ)t ∑
fx(z)=aj

(1 + |z|)−τ̂t

� R−(α2−τ)t ∑
fx(z)=aj

|z|−τ̂t .

A standard argument (see 7. Appendix, [20] or Chapter 3 of [19]) and (3.7) shows
that

3

∑
j=1

∑
fx(z)=aj

|z|−τ̂t = (τ̂t)2
∫ ∞

s

∑3
j=1 N(aj, r)

rτ̂t+1 dr � ω(rR)
∫ ∞

rR

dr
rτ̂t+1

R
� ω(rR)r−τ̂t

R .

Finally, there exists R̃0 > 0 and c > 0 such that

3KLx11(w) ≥
3

∑
j=1
Lx11(aj) ≥ cR−(α2−τ)tω(rR)r−τ̂t

R

for every R ≥ R̃0 and w ∈ Jθ(x), |w| ≤ R, x ∈ X. �
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Proof of Proposition 3.11. Let νθ(x) ∈ Mθ(x). We have to show that there are constants
R0, ε that do not depend on x ∈ X such that Φx(νθ(x)) ∈ Mx, i.e. that the properties
(a), (b) of (3.5) are satisfied. Let R̃0 be the number given in Lemma 3.13, suppose
that R0 ≥ R̃0 and let R ≥ R0.

We have to choose the constant a ∈ (0, τ̂t− ρ) from Lemma 3.12 and τ ∈ (0, α2).
Let a = 1

2 (α̂t− ρ) and, according to Remark 2.1, we may choose τ sufficiently close
to α2 such that a < τ̂t− ρ and b = a

2 − (α2 − τ)t > 0. Lemma 3.12 implies

L∗xνθ(x)(D
c
R) =

∫
Lx11

D
c
R
dνθ(x) ≤

Ma

Ra .

On the other hand, Lemma 3.13 applied with R = R0 yields

L∗xνθ(x)11 ≥
∫

DR0

Lx11dνθ(x) ≥ cR0
−(α2−τ)t[ω−1(8 log R0

)]−τ̂t
νθ(x)(DR0) .

Notice that νθ(x)(DR0) ≥ 1
2 since νθ(x) ∈ Mθ(x). Therefore,

Φx(νθ(x))(D
c
R) =

L∗xνθ(x)(D
c
R)

L∗xνθ(x)11
≤2Ma

c
R0

(α2−τ)t[ω−1(8 log R0
)]τ̂t

Ra/2
0

Ra/2
0

Ra .

≤2Ma

c

[
ω−1(8 log R0

)]τ̂t

Rb
0

1
Ra/2 .

In order to conclude that Φx(νθ(x)) ∈ Mx it suffices to set ε = a
2 and to show that

there exists R0 such that 2Ma
c

[
ω−1
(

8 log R0

)]τ̂t

Rb
0

≤ 1. But this results from an elementary

calculation based on the properties of ω: limr→∞ log(r)/ log ω(r) = 0 and ω is
increasing. �

Proposition 3.14. LetM be the invariant set of random measures from Proposition 3.11.
The map Φ :M→M is continuous with respect to the narrow topology.

Proof. Suppose that Λ is a directed set and (να)α∈Λ is a net in P(J ) converging to a
measure ν ∈ P(J ) in the narrow topology. If hθ(x),α = 1/να

θ(x)(Lx11) then, by (3.4),

Φx(ν
α
θ(x)) = L

∗
x

(
1

να
θ(x)(Lx11)

νn
θ(x)

)
= L∗x

(
hθ(x),α να

θ(x)

)
.

Proposition 3.7 implies that L∗ is continuous with respect to the narrow topology of
M(J ). Thus, we have to investigate hθ(x),α να

θ(x). Item (a) of the definition ofM in
(3.5) and Lemma 3.13 imply that there are constants 0 < c1 < c2 < ∞ such that

c1 ≤ hθ(x),α ≤ c2 for all n ≥ 0 and x ∈ X .
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This implies that (hx,α να
x )x∈X is a tight, hence relatively compact, family ofM(J ).

Let µ ∈ M(J ) be an accumulation point. It is shown (as a matter of fact for
sequences but the same argument works for all nets) in Lemma 2.9 of [23] that then

µ = hν

for some measurable function h : X → (0, ∞). Notice that L∗µ is a random (proba-
bility) measure. Hence, the disintegrations of this measure

L∗xµθ(x) = hθ(x)L∗x(νθ(x)) ∈ P(Jx)

are probability measures. Therefore, 1 = L∗xµθ(x)(11) = hθ(x)L∗x(νθ(x))(11) which
implies that the accumulation point µ is uniquely defined by

µθ(x) =
1

L∗x(νθ(x))(11)
νθ(x) , x ∈ X .

This shows that the net (Φ(να)α∈Λ converges to Φ(ν) in the narrow topology. The
proof of continuity of Φ is complete. �

We are now ready to show the main result of this section.

Proof of Theorem 3.1. Proposition 3.11 yields a Φ–invariant convex and compact set
M⊂ P(J ) of random measures. By Proposition 3.14) the map Φ is continuous on
M for the narrow topology . Therefore, one can apply Schauder-Tychonoff fixed
point theorem in order to get a Φ–invariant random measure ν. This measure is the
required Gibbs state. Finally, the bounds on

λx = νθ(x)(Lx11)

follow again from item (a) of the definition ofM in (3.5) and Proposition 2.3 together
with Lemma 3.13. �

We have to study these conformal measures more in detail. Here and in the rest of
the paper it is very useful to introduce normalized operators

(3.8) L̂x := λ−1
x Lx,

and to employ the notation

λn
x =

n−1

∏
j=0

λn
θ j(x) and L̂n

x = λ−n
x Ln

x .

We continue to use the radius R0 of the definition of the invariant measure space
M, given in Proposition 3.11. Clearly we may suppose that R0 ≥ T > 0, T being the
constant of Condition 2. Condition 4 is applied to get the following lower estimate.

Lemma 3.15. For every R ≥ R0 + 1 and every 0 < δ ≤ min{δ0, 1} there exists A =
A(δ, R, t) ≥ 1 such that

νx
(
D(z, δ)

)
≥ A−1 for all x ∈ X and all z ∈ Jx with |z| ≤ R.
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Proof. Covering DR0 ∩ Jx with δ–disks whose no more than three elements intersect,
and using the fact that νx(DR0) ≥ 1

2 , we see that there exists ã = a(δ, R0) > 0 such
that

(3.9) νx
(
D(wx, δ)

)
≥ ã for m− a.e. x ∈ X and some wx ∈ DR0 .

Let now N = N(δ, R) be the number coming from the mixing property Lemma 1.3,
applied with r = δ/2 and R ≥ R0 + 1. Then, for every z ∈ Jx, |z| ≤ R,

f N
x (D(z, δ/2)) ⊃ DR ∩ JθN(x) ⊃ D(wθN(x), δ) ∩ JθN(x) .

Consequently, there exists a holomorphic inverse branch f−N
x,∗ of f N

x defined on the

disk D(wθN(x), δ) such that f−N
x,∗

(
D(wθN(x), δ)

)
∩D(z, δ/2) 6= ∅. We may assume

without loss of generality that N is so large that Koebe’s distortion theorem together
with the expanding property imply that diam

(
f−N
x,∗ (D(wθN(x), δ))

)
≤ δ/2. Then

f−N
x,∗

(
D(wθN(x), δ)

)
⊂ D(z, δ). Hence,

νx(D(z, δ)) ≥ νx

(
f−N
x,∗

(
D(wθN(x), δ)

))
≥ 1

K
λ−N

x

∣∣∣( f N
x )′( f−N

x (wθN(x))
∣∣∣−t

τ
νθN(x)(D(wθN(x), δ))

≥ a

for some a = a(t, R, δ) > 0 by (3.9), Condition 4, and since λx ≤ C < ∞ for all
x ∈ X. �

4. Uniform bounds and invariant densities

We are now able to prove the following uniform bound for the normalized
operators L̂n

x .

Proposition 4.1. There exists M = Mt < ∞ such that

‖L̂n
x‖ ≤ M for every n ≥ 1 and m− a.e. x ∈ X .

By combining this result with Proposition 2.7, we obtain the following:

Corollary 4.2. For every x ∈ X, every g ∈ Hβ(Jx), and all n ≥ 1, we have

(4.1) vβ(L̂n
x g) ≤ M

(
‖g‖∞ + K(cγn)−βvβ(g)

)
.

Proposition 4.1 and Corollary 4.2 together imply that the above uniform bound is
also valid with respect to the Hölder norm ‖ · ‖β. For simplicity we will use the
same bound M in the sequel.

Corollary 4.3. There exists M = Mt < ∞ such that

‖L̂n
x‖β ≤ M for every n ≥ 1 and m− a.e. x ∈ X .
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We first need an auxiliary result. Let 0 < δ ≤ δ0 and R ≥ R0 + 1.

Lemma 4.4. For every n ≥ 1 we have

L̂n
x11(w) ≤ KA , w ∈ Jθn(x) , |w| ≤ R , x ∈ X ,

where K is the distortion constant from Lemma 2.6 and A is defined in Lemma 3.15.

Proof. Let w ∈ Jθn(x), |w| ≤ R. Then, using Lemma 2.6 and Lemma 3.15, we get

1 =
∫
L̂n

x11dνθn(x) ≥
∫

D(w,δ)
L̂n

x11dνθn(x) ≥
1
K
L̂n

x11(w)νθn(x)
(
D(w, δ)

)
≥ L̂

n
x11(w)

AK
.

We are done. �

Proof of Proposition 4.1. From the lower bound on λx given in Theorem 3.1 and from
the fact that Lx11(w) → 0 as |w| → ∞ uniformly in x ∈ X (see Proposition 2.3), it
follows that there exists R ≥ R0 + 1 such that

(4.2) L̂x11(w) ≤ 1 for w ∈ Jθ(x) ∩Dc
R

for m-a.e. x ∈ X.

Claim 4.5. Set M = KA(δ0, R, t), again with constants as in Lemma 4.4. Then L̂n
x11 ≤ M

for every n ≥ 1 and m-a.e. x ∈ X.

It suffices to prove this claim. It will be done by induction. The case n = 1 results
directly from (4.2) and Lemma 4.4. So, fix n ≥ 1 and suppose that Claim holds for
this n. We have to show that

L̂n+1
θ−(n+1)(x)

11(w) ≤ M for every w ∈ Jx and a.e. x ∈ X .

If w ∈ Jx ∩DR, then it suffices to apply Lemma 4.4. Otherwise, i.e. if |w| ≥ R, then

L̂n+1
θ−(n+1)(x)

11(w) = L̂θ−1(x)

(
L̂n

θ−(n+1)(x)11
)
(w) ≤ ML̂θ−1(x)11(w) ≤ M .

�

5. Invariant positive cones and Bowen’s contraction

G. Birkhoff in [2] reinterpreted Hilbert’s pseudo-distance on positive cones in
a way which allowed him to show that every linear map preserving cones is a
weak contraction. This enabled him to give an elegant proof of the Perron-Frobenius
theorem based on Banach’s contraction principle. Various versions of Ruelle’s Perron-
Frobenius theorem have been obtained since then using Birkhoff’s strategy (see, for
example, Liverani [15] and Rugh [25, 26] who, at the same time, considered random
dynamics and introduced a complexification scheme leading to real analyticity of
the dimension).

In our setting, with unbounded phase spaces Jx, we encounter several problems.
First of all, because of the behavior of the functions at infinity, every reasonable
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invariant cone contains many functions that all are at the infinite Hilbert distance
from each other. These cones have many, in fact uncountably many, connected
components that are at finite distances from each other. The second problem is that
it is hard to get a strict-contraction property since the mixing property which is at
our disposal (Lemma 1.3) is too weak; one only has mixing on bounded regions.

Our way to overcome these difficulties is to define appropriate invariant cones
and then to avoid Birkhoff’s strategy, but instead, to employ an argument inspired
by Bowen’s lemma [3, Lemma 1.9]. For compact phase spaces this lemma is indeed
equivalent to a strict contraction in the Hilbert metric. In our situation this is not
the case but it turns out that Bowen’s lemma is sufficiently tricky so that we can use
some appropriate version if it that leads to the following exponential convergence
result.

From now on the number δ0 > 0 in the definition of the variation of Hölder
functions will be replaced by a smaller number 0 < δ ≤ δ0 as explained in (5.5).

Theorem 5.1. Let ( fx)x be a hyperbolic transcendental random system. We then have the
following.

(1) There exists a unique ρ ∈ Hβ(J ), an invariant density, i.e. L̂ρ = ρ.
(2) There are B > 0 and ϑ ∈]0, 1[ such that∥∥∥∥L̂n

x gx −
∫

gx dνx ρθn(x)

∥∥∥∥
β

≤ Bϑn‖gx‖β

for every gx ∈ Hβ(Jx) and a.e. x ∈ X.

Remark 5.2. Multiplying, as usually, the Gibbs state ν by the invariant function ρ of
Theorem 5.1, (1) gives, again unique by Theorem 5.1, (2), invariant Gibbs state µ ∈ P(J )
whose disintegrations are

(5.1) µx = ρxνx , x ∈ X.

Moreover, µ is ergodic. Indeed, if there existed an invariant set E ⊂ J with 0 < µ(E) < 1,
then µ1 = 11Eµ and µ2 = 11Ec µ would be two invariant Gibbs states. But this would
contradict the above uniqueness property.

Remark 5.3. Notice that, as a straightforward consequence of point (2) of this theorem, we
also get exponential convergence for random Hölder observables, i.e in Hβ(J ), with respect
to the canonical norm of this space:

|L̂ng− πρ(L̂ng)|β ≤ Bϑn|g|β , g ∈ Hβ(J ) ,

where πρ : Hβ(J )→ < ρ > is the canonical projection defined by πρ(g)x =
∫

gx dνxρx.
In particular, L̂n11 −→ ρ exponentially fast.
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5.1. Invariant cones. Consider the following cones:

(5.2) Cx :=
{

g ≥ 0 : ‖g‖∞ ≤ A
∫

gdνx < ∞ and vβ(g) ≤ H
∫

gdνx

}
.

(5.3) Cx,0 :=
{

g ∈ Cx : g ≤ 2MtA
(∫

gdνx

)
L̂θ−1(x)11

}
.

Since we are primarily interested in the projective features of these cones, it is
convenient for us to use the following slices

(5.4) Λx = {g ∈ Cx , νx(g) = 1} and Λx,0 = Λx ∩ Cx,0 , x ∈ X .

Hence both type of cones do depend on constants β ≥ 1, A > 0, H > 0, and even
on δ. Whenever this is important we will indicate this and write Cx(A, H) or even
Cx(A, H, β, δ), and similarly for the second type of cones. In order to produce cones
with good properties, for example invariance, we have to choose carefully these
constants.

We continue to write M = Mt for the uniform bound given in Proposition 4.1 and
in Corollary 4.3 and K = Kt for the distortion constant appearing in Lemma 2.4 and
Lemma 2.6. First of all, let 0 < δ ≤ δ0 be such that

(5.5)
1
2
+ (2MK + 4) δβ ≤ 1 .

When we deal in the sequel with Hölder functions g, then we assume that the
variation vβ(g) is evaluated on disks of radius δ, i.e. δ0 is replaced by δ in (2.3).

The radius R0 has been defined in Lemma 3.13. Increasing it if necessary we may
suppose that Lemma 3.15 is valid with R = R0 and, for the same reason as in (4.2),
that

(5.6) 2ML̂x11 ≤ 1 in Dc
R0
∩ Jx , x ∈ X .

Define now, with A(δ, R, t) from Lemma 3.15,

(5.7) A := 2 max{1, A(δ, R0, t), M} and H = 2MKA+ 4 .

Notice that A ≥ 1. This ensures that the constant function 11 ∈ Cx, x ∈ X. Finally, let
N0 ≥ 1 be such that

(5.8) MK(cγN0)−βH ≤ 1 .

Proposition 5.4. With the above choice of constants and for every n ≥ N0,

L̂n
x (Cx) ⊂ Cθn(x),0 ⊂ Cθn(x) , x ∈ X .

Proof. Let g ∈ Cx. We may assume that
∫

gdνx = 1. We will show that L̂n
x g ∈ Cθn(x),0

for every n ≥ N0. Let in the following n ≥ N0. From the two-norm type inequality
(4.1) and from the definition of the cone, we get that

(5.9) vβ(L̂n
x g) ≤ M

(
A+ K(cγn)−βH

)
≤ MA+ 1 ≤ H,
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where the last two inequalities result from the choice of N0 and from the definition
of H. Then,

(5.10) L̂n
x g = L̂θn−1(x)

(
L̂n−1

x g
)
≤ M‖g‖∞L̂θn−1(x)11 ≤ MAL̂θn−1(x)11 .

In order to see that Ln
x g ∈ Cθn(x),0 it remains to estimate ‖L̂n

x g‖∞. Since we already
have (5.9), we obtain, for every |z| ≤ R0, the following.

1 =
∫
L̂n

x g dνθn(x) ≥
∫

D(z,δ)
L̂n

x g dνθn(x)

≥
(
L̂n

x g(z)− Hδβ
)

νθn(x)(D(z, δ)) ≥
(
L̂n

x g(z)− Hδβ
)

A(δ, R0, t)−1 ,

where the last inequality was written due to Lemma 3.15. Therefore,

L̂n
x g(z) ≤ A/2 + Hδβ ≤ A

(
1
2
+ (2MK + 4)δβ

)
≤ A,

by (5.5). If |z| ≥ R0, then it suffices to combine (5.10) and (5.6) in order to conclude
this proof with the inequality,

L̂n
x g(z) ≤ MAL̂θn−1(x)11(z) ≤ A .

The proof is complete. �

5.2. Cone contraction via Bowen’s lemma. Let R1 ≥ R0 be such that

(5.11) 2AML̂x11 ≤ 1 in Dc
R1

.

Lemma 5.5. For every R ≥ R1 there are N = NR ≥ N0 and a = aR > 0 such that

L̂N
x g∣∣D2R

≥ a for every g ∈ Λx,0 , x ∈ X .

Proof. Let g ∈ Λx,0. Since
∫

gdνx = 1, we have that ‖g‖∞ ≥ 1. Hence, by the choice
of R1,

g ≤ 2MA L̂x11 ≤ 1 in Dc
R1

.

Thus, there exists zmax ∈ DR1 with g(zmax) = ‖g‖∞ ≥ 1.
Let 0 < r ≤ δ be such that Hrβ ≤ 1

4 . The mixing property Lemma 1.3 implies
the existence of N = N(r, R) ≥ 0 such that every w ∈ JθN(x) ∩D2R has a preimage
z0 ∈ f−N

x (w) ∩D(zmax, r). Therefore, using Condition 4, for every such w, we get
that

L̂N
x g(w) ≥ λ−N

x

∣∣∣( f N
x )′(z0)

∣∣∣−t

τ
g(z0) ≥ C−N

∣∣∣( f N
x )′(z0)

∣∣∣−t

τ

(
g(zmax)− Hrβ

)
≥ C−N inf

|z|≤R1 | f N
x (z)|≤2R

∣∣∣( f N
x )′(z)

∣∣∣−t

τ

(
1− 1

4

)
=: a > 0.

The proof is complete. �
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Notice that there is no way to get a global, valid on the whole Julia set, version of
Lemma 5.5. This is why we have to work with the following truncated functions. We
remark that our cones are chosen in such a way that such truncations can be made
to lie inside them. This is not the case for the standard Bowen cones.

Let ϕ1 : C→ [0, 1] be a Lipschitz function such that ϕ1 ≡ 1 on D1 and ϕ1 ≡ 0 on
Dc

2. For R ≥ 1 define ϕR(z) = ϕ1(z/R). Then ϕR is also Lipschitz with variation
v1(ϕR)→ 0 as R→ ∞. Define

(5.12) ϕx,R := ϕRL̂θ−1(x)11 .

Then, 0 ≤ ϕx,R ≤ L̂θ−1(x)11, ϕx,R ≡ L̂θ−1(x)11 on DR and ϕx,R ≡ 0 in Dc
2R. The

functions ϕx,R are Lipschitz with v1(ϕx,R) → v1(L̂θ−1(x)11) uniformly as R → ∞.
Therefore, given the definition of the cones, especially the definitions of the con-
stants A, H in (5.7), and the formulas established in the course of the proof of
Proposition 5.4, it follows that

ϕx,R ∈ Cx,0 , x ∈ X,

provided that R is sufficiently large. We will assume that R1 is chosen so that these
truncated functions belong to the cones for all R ≥ R1. Suppose also, in what follows,
that η > 0 is chosen such that

(5.13) 0 < η ≤ min
{

1
3

,
1
H

,
1
2

a
M

}
.

With these choices we will now obtain the following version of Bowen’s [3, Lemma
1.9].

Lemma 5.6. For every R ≥ R1 and with N = NR ≥ N0 given by Lemma 5.5,

L̂N
x g− ηϕθN(x),R ∈ CθN(x),0 for every g ∈ Λx,0 .

Proof. Let x ∈ X, let g ∈ Λx,0, and let R ≥ R1. Lemma 5.5 shows that for 0 < η < 1
2

a
M ,

L̂N
x g− ηϕθN(x) >

a
2
> 0 on D2R ∩ JθN(x) .

Set

(5.14) g′ =
L̂N

x g− ηϕθN(x),R

1− ηθN(x),R
where ηθN(x),R := η

∫
ϕθN(x),RdνθN(x) .

Then
∫

g′dνθN(x) = 1 and g′ > 0. We have, by

(1− ηθN(x),R) g′ ≤ M‖g‖∞L̂θ(N−1)(x)11 + ηL̂θ(N−1)(x)11 ≤ (MA+ η)L̂θ(N−1)(x)11 .

But 0 < ηθN(x),R ≤ η ≤ 1
3 and thus g′ ≤ 2MAL̂θ(N−1)(x)11. This means that function

g′ ∈ ΛθN(x),0 provided that we can show that g′ ∈ ΛθN(x).
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In order to estimate the variation of g′ we use again the two-norm type inequality
(4.1):

vb(g′) ≤ 1
1− ηθN(x),R

(
M‖g‖∞ + MK(cγN)−βvβ(g) + ηvβ(ϕ

θN (x),R)
)

.

Remember that g, ϕ
θN (x),R ∈ Cx, that η ≤ min

{ 1
3 , 1

H

}
, and that we have (5.8). There-

fore,
vb(g′) ≤ 2 (MA+ 1 + 1) = 2MA+ 4 ≤ H .

It remains to estimate ‖g′‖∞. If z ∈ JθN(x) ∩DR0 , then

1 =
∫

g′dνθN(x) ≥
∫

D(z,δ)
g′dνθN(x) ≥ (g′(z)− Hδβ)νθN(x)(D(z, δ)) .

Using once more Lemma 3.15 and the choice of δ in (5.5), we obtain

g′(z) ≤ A(δ, R0, t) + Hδβ ≤ A
2
+ (2MKA+ 4)δβ ≤ A

(
1
2
+ (2MK + 4)δβ

)
≤ A .

If z ∈ JθN(x) ∩Dc
R0

, then g′(z) ≤ 2MAL̂θ(N−1)(x)11(z) ≤ A by the choice of R0 (see
(5.6)). The proof is complete. �

Applying repeatedly Lemma 5.6 gives the desired contraction.

Proposition 5.7. For every ε > 0 there exists nε ≥ 1 such that for every n ≥ nε and a.e.
x ∈ X,

(5.15)
∥∥L̂n

x gx − L̂n
xhx
∥∥

β
≤ ε for all gx, hx ∈ Λx,0 .

Proof. Let R ≥ R1 and N = NR ≥ N0 be like in Lemma 5.6. and let g = g(0)x ∈ Λx,0.
With the notation of the previous proof, and in particular with the numbers ηθN(x),R
defined in (5.14), we get from Lemma 5.6 that

L̂N
x g = ηϕθN(x),R + (1− ηθN(x),R)g(1)

θN(x)

for some g(1)
θN(x) ∈ ΛθN(x),0. Applying L̂N

θN(x) to this equation and using once more
Lemma 5.6 gives

L̂2N
x g = ηL̂N

θN(x)ϕθN(x),R +(1− ηθN(x),R)ηϕθ2N(x),R +(1− ηθN(x),R)(1− ηθ2N(x),R)g(2)
θ2N(x)

for some g(2)
θ2N(x) ∈ Λθ2N(x),0. Inductively it follows that for every k ≥ 1 there is a

function g(k)
θkN(x) ∈ ΛθkN(x),0 such that

L̂kN
x g = η

k

∑
j=1

(
j−1

∏
i=1

(1− ηθiN(x),R)

)
L̂(k−j)N

θ jN(x) ϕθ jN(x),R +
k

∏
i=1

(1− ηθiN(x),R) g(k)
θkN(x) .
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Observe that the first of these two terms does not depend on g. Therefore, for every
g, h ∈ Λx,0 there are g(k)

θkN(x), h(k)
θkN(x) ∈ ΛθkN(x),0 such that

(5.16) L̂kN
x g− L̂kN

x h =
k

∏
i=1

(1− ηθiN(x),R)
(

g(k)
θkN(x) − h(k)

θkN(x)

)
.

Remember that ηy,R = η
∫

ϕy,Rdνy ≥ η
∫

DR0
L̂θ−1(y)11dνy for all R ≥ R0, and that, by

Lemma 3.13, there exists a constant c = c(R0) > 0 such that L̂θ−1(y)11 ≥ c on DR0 .
Therefore,

1 > η ≥ ηy,R ≥ ηcνy(DR0) ≥ η
c
2
= η̃ > 0.

Thus,
1− ηy,R ≤ 1− η̃.

Along with (5.16), this allows us to deduce the the uniform bound of Proposition 4.1,
with some n1,ε ≥ 1 sufficiently large, for the supremum norm rather than the Hölder
one. In order to get the appropriate estimate for the β–variation we need once more
(4.1). Write n = m + n2,ε + n1,ε with some n2,ε to be determined in a moment and
some m ≥ 0. Then for all g, h ∈ Λx,0, we have

vβ

(
L̂n

x g− L̂n
xh
)
= vβ

(
L̂m+n2,ε

θn1,ε (x)

(
L̂n1,ε

x (g− h)
))

≤ M
(∥∥L̂n1,ε

x (g− h)
∥∥

∞ + K(cγm+n2,ε)−βvβ

(
L̂n1,ε

x (g− h)
))

≤ Mε + MK(cγn2,ε)−β 2H,

since L̂n1,ε
x g, L̂n1,ε

x h ∈ Cθn1,ε (x),0. It suffices now to choose n2,ε ≥ 0 sufficiently large in
order to conclude this proof. �

Proof of Theorem 5.1 (1). Consider ρk = L̂k11. First of all, Proposition 5.4 implies that
ρk

x ∈ Λx,0 for every k ≥ N0. Hence Proposition 5.7 applies and gives

‖ρk
x − ρl

x‖β ≤ ε for every l ≥ k ≥ nε , x ∈ X .

This shows that (ρk
x)k is a, uniformly in x ∈ X, Cauchy sequence of (Hβ(Jx), ‖.‖β)

and hence there is a limit ρ ∈ Hβ(J ). Clearly, L̂ρ = ρ and ρx ∈ Λx,0, x ∈ X.
Uniqueness of this function follows from the contraction given in (5.15). �

Proof of Theorem 5.1 (2). Since A, H ≥ 2, we have that{
11 + hx : ‖hx‖β < 1/4

}
⊂ Cx,

for all x ∈ X. Let g ∈ Hβ(Jx), g 6≡ 0 be arbitrary. Then

h :=
g

8‖g‖β
= (h + 11)− 11
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is a difference of functions from Cx. If ε > 0 and n = nε is given by Proposition 5.7,
then ∥∥∥∥∥L̂n

x

(
h−
(∫

hdνx

)
ρθn(x)

)∥∥∥∥∥
β

≤
∥∥∥∥L̂n

xh−
(∫

hdνx

)
ρθn(x)

∥∥∥∥
β

≤

≤
∥∥∥∥L̂n

x(11 + h)−
∫
(11 + h) dνx ρθn(x)

∥∥∥∥
β

+
∥∥∥L̂n

x11− ρθn(x)

∥∥∥
β

≤ ε
∫
(11 + h) dνx + ε

≤ 17
8

ε.

This shows that for every ε > 0 there exists N = Nε such that∥∥∥∥L̂N
x

(
g−

(∫
gdνx

)
ρθN(x)

)∥∥∥∥
β

≤ ε‖g‖β for every g ∈ Hβ(Jx) .

Fix ε := 1/2 and let N = N1/2. Write any integer n ≥ 0 in a unique form as
n = kN + m, where k ≥ 0 and m ∈ {0, ..., N − 1}. Then, for every g ∈ Hβ(Jx) we
have, ∥∥∥∥L̂n

x g−
∫

gdνxρθn(x)

∥∥∥∥
β

=

∥∥∥∥L̂m
θkN(x)

(
L̂kN

x
(

g−
∫

gdνxρx
))∥∥∥∥

β

≤ M
(

1
2

)k ∥∥∥∥g−
∫

gdνxρx

∥∥∥∥
β

≤ 2M
(

1
21/N

)n (
1 + ‖ρx‖β

)
‖g‖β .

This completes the proof of Theorem 5.1. �

6. Exponential decay of correlations and CLT

Exponential decay of correlations is now a fairly straightforward consequence of
Theorem 5.1 (2). It will be valid for functions of the following spaces.

Let Hp
β(J ) be the space of functions g : J → R with Hölder fibers gx ∈ Hβ(Jx)

and such that ‖gx‖β ∈ Lp(m). The canonical norm is

|g|β,p =

(∫
X
‖gx‖p

βdm(x)
) 1

p

.

Replacing in this definition the β–Hölder condition on the fiber Jx by a L1(νx)

condition leads to a space of functions that will be denoted by L1,p
ν (J ). The natural

norm is in this case

|g|1,p
ν =

(∫
X
‖gx‖p

L1(νx)
dm(x)

) 1
p

.
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Clearly, if p = 1 then L1,1
ν (J ) = L1(ν). In both cases we also consider p = ∞ and

then the Lp norms are replaced by the sup–norm.

Theorem 6.1. Let ( fx)x be a hyperbolic transcendental random system and let p, q ∈ [1, ∞]

such that 1
p +

1
q = 1. Then, for every g ∈ L1,p

ν (J ), h ∈ Hq
β(J ) with

∫
Jx

hx dµx = 0 and
for every n ≥ 1, we have∣∣∣∣∫J (g ◦ f n) h dµ

∣∣∣∣ = ∣∣∣∣∫X

∫
Jx

(gθn(x) ◦ f n
x ) hxdµxdm(x)

∣∣∣∣ ≤ bϑn |g|1,p
ν |h|β,q

for some positive constant b and some ϑ ∈ (0, 1).

Proof. A standard calculation and application of Theorem 5.1 (2) gives∣∣∣∣∫Jx

(gθn(x) ◦ f n
x ) hxdµx

∣∣∣∣ =
∣∣∣∣∣
∫
Jθn(x)

gθn(x) L̂n
x (hxρx) dνθn(x)

∣∣∣∣∣
≤
∥∥L̂n

x (hxρx)
∥∥

β
‖gθn(x)‖L1(νθn(x))

≤ Bϑn ‖hxρx‖β ‖gθn(x)‖L1(νθn(x))
≤ bϑn ‖hx‖β ‖gθn(x)‖L1(νθn(x))

for some constant b > 0 since ‖ρx‖β ≤ M for all x ∈ X by Corollary 4.3 and
Theorem 5.1 (2). Therefore,∣∣∣∣∫J (g ◦ f n) h dµ

∣∣∣∣ = ∣∣∣∣∫X

∫
Jx

(gθn(x) ◦ f n
x ) hxdµxdm(x)

∣∣∣∣
≤ bϑn

∫
X
‖hx‖β ‖gθn(x)‖L1(νθn(x))

dm(x)

≤ bϑn
(∫

X
‖hx‖q

β dm(x)
) 1

q
(∫

X
‖gx‖p

L1(νx)
dm(x)

) 1
p

.

�

Finally, following Gordin and Liverani’s method, one can obtain various versions
of the central limit theorem (CLT). Here is the simplest one.

Theorem 6.2. Let ψ ∈ Hβ(J ) ∩ L∞(J ) such that
∫
Jx

ψxdµx = 0, x ∈ X . If ψ is not
cohomologous to 0, then there exists σ > 0 such that, for every t ∈ R,

µ

(
{z ∈ J ;

1√
n

Snψ(z) ≤ t}
)
→ 1

σ
√

2π

∫ t

−∞
exp(−u2/2σ2) du

Proof. The dual operator U∗x : L2(Jx, µx)→ L2(Jθ(x), µθ(x)) of the Koopman operator
Uxψx = ψx ◦ fx is given by

U∗x ψx =
1

ρθ(x)
L̂x(ρxψx) .

By Gordin’s result [10] it suffices to check that ∑k ‖UkU∗kψ‖L2(µ) < ∞. We have

‖UkU∗kψ‖2
L2(µ) =

∫
J
(U∗kψ)2 ◦ f k dµ =

∫
J
(U∗kψ)2 dµ
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by invariance of the measure µ. Therefore,

‖UkU∗kψ‖2
L2(µ) =

∫
J

ψ UkU∗kψ dµ ≤ ‖ψ‖∞

∫
J
|U∗kψ| ◦ f k dµ = ‖ψ‖∞

∫
J
|U∗kψ| dµ

by the same argument. Now,∫
J
|U∗kψ| dµ =

∫
X

∫
Jx

1
ρx

∣∣∣L̂θ−k(x)(ρθ−k(x)ψθ−k(x))
∣∣∣ dµxdm

=
∫

X

∫
Jx

∣∣∣L̂θ−k(x)(ρθ−k(x)ψθ−k(x))
∣∣∣ dνxdm .

The fibers of ψ having µx–integral zero, it follows from Theorem 5.1 (2) as in the
preceding proof that, for some constant b > 0,∫

J
|U∗kψ| dµ ≤ bϑk

∫
X
‖ψθ−k(x)‖βdm = bϑk|ψ|β .

In conclusion,
‖UkU∗kψ‖2

L2(µ) ≤ bϑk|ψ|β‖ψ‖∞

which directly implies Gordin’s L2–summability condition. �

7. Appendix: Facts from Nevanlinna Theory and uniform bounds of transfer

operators

7.1. FMT and proof of Proposition 2.3. The goal here is to establish the uniform
bounds of the transfer operators claimed in Proposition 2.3. These bounds can be
established by employing Nevanlinna’s theory of value distribution similar to what
we did in [18, 19]. The main tool we use is Nevalinna’s first main theorem (FMT)
which we now describe briefly. There are several complete accounts of it in the
literature, for example in [20, 21, 4, 9].

The theory of value distribution of a meromorphic function f : C→ Ĉ relies on
some naturally to f associated functions for which we use standard notations. For
example, n(r, w) or n f (r, w) is used for the counting function which designs the
number of w–points (counted with multiplicity) of modulus at most r. The average or
integrated counting number N(r, w) is related to n(r, w) by dN(r, w)/dr = n(r, w)/r.

Concerning the characteristic function T̊(r) = T̊f (r) of f , we use the Ahlfors-
Shimizu spherical version of it which measures the average covering number of the
Riemann sphere of the restriction of f to the disk of radius r:

(7.1) T̊(r) =
∫ r

0

(
1
π

∫ ∫
|x+iy|≤t

| f ′|2
(1 + | f |2)2 dxdy

)
dt
t
=
∫ r

0
A f (t)

dt
t

.

The exponential growth of this function determines the order ρ( f ) of f since we
have

ρ( f ) = lim sup
r→∞

T̊(r)
r

.
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Nevanlinna’s first main theorem (FMT) as stated in [7] (see also [4, 9]) yields:

Theorem 7.1. Let f : C → Ĉ be meromorphic of finite order. Then, with the notations
above,

N(r, w) ≤ T̊(r) + log
1

[ f (0), w]
for every w ∈ Ĉ and r > 0

where [a, b] denotes the chordal distance on the Riemann sphere (with, in particular, [a, b] ≤ 1,
a, b ∈ Ĉ).

Proof of Proposition 2.3. Remember first that we have the normalization Condition
2 and thus (1.1): 0 ∈ Jx and | fx(0)| ≤ T, x ∈ X.

Secondly, by (2.2) along with the Remark 2.2,

Lx11(w) ≤ κt

(1 + |w|)(α2−τ)t ∑
fx(z)=w

(
1 + |z|

)−tτ̂ for every w ∈ Vδ0(Jθ(x)) .

Combined with the distortion Lemma 2.6 it follows that the required estimations
follow if there exists C > 0 such that

∑
fx(z)=w

(
1 + |z|

)−tτ̂ ≤ C for every w ∈ Vδ0(Jθ(x)) \D( fx(0), δ0/2) , x ∈ X .

Observe that

∑
fx(z)=w

(
1 + |z|

)−tτ̂ ≤ ∑
fx(z)=w

max{1, |z|}−tτ̂ = n fx(1, w) + ∑
fx(z)=w , |z|>1

|z|−tτ̂ .

The second term can be treated by means of two integrations by part and an
application of Theorem 7.1 (this is completely standard, compare also [19, p.16]):

∑
fx(z) = w
|z| > 1

|z|−tτ̂ =
∫ ∞

1

d n fx(r, w)

rtτ̂ = −n fx(1, w) + tτ̂
∫ ∞

1

n fx(r, w)

rtτ̂+1 dr

≤ −n fx(1, w)− tτ̂N fx(1, w) + (tτ̂)2
∫ ∞

1

N fx(r, w)

rtτ̂+1 dr

≤ −n fx(1, w) + (tτ̂)2
∫ ∞

1

T̊fx(r)
rtτ̂+1 dr + (tτ̂)2 log

1
[ f (0), w]

∫ ∞

1

dr
rtτ̂+1 .

Since T̊fx(r) ≤ Cρrρ (Condition 1),

∑
fx(z)=w

(
1 + |z|

)−tτ̂ ≤ (tτ̂)2 Cρ

τ̂t− ρ
+ τ̂t log

1
[ f (0), w]

.

The second term is uniformly bounded since we assumed |w− fx(0)| ≥ δ0/2 and
since we know that | fx(0)| ≤ T. The proof is complete.

�
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7.2. Uniform second main theorem (SMT). Our construction of conformal mea-
sures relies on the SMT of Nevanlinna along with good estimates of the error term
appearing in it. The later has been extensively studied in the 80’s and 90’s and
the book [4] by Cherry and Ye is an excellent reference for this topic. In particular,
Chapter 2 of this book fits perfectly well to what we are doing. The following result
is a straightforward adaption of a particular case of Theorem 2.8.5 in [4]. We use
here and throughout the whole section the notations of this book.

Theorem 7.2. Let L ≥ 1 and set b1 = b1(L) = e(1 + (Lee)2) and r0 = r0(L) = Lee. Let
ρ > 0 and Cρ > 0. Then, for every non–constant meromorphic function f : C → Ĉ and
every three distinct points a1, a2, a3 ∈ Ĉ verifying

(1)
1
L
≤ f #(0) =

| f ′(0)|
1 + | f (0)|2 ≤ L,

(2) f (0) 6∈ {a1, a2, a3} and
(3) T̊f (r) ≤ Cρrρ, r > 0, the following holds:

3

∑
j=1

N f (aj, r) ≥ T̊f (r)− S(r, a1, a2, a3) for every r ≥ r0

where

S(r, a1, a2, a3) = 2 log(108 + 18 log 2) +
1
2

log b1 + 1 + 4 log T̊f (r)

+

(
3
2
(ρ− 1) +

1
2

)
log r + log L + D̊(a1, a2, a3)

≤ b6 + 6ρ log r + D̊(a1, a2, a3) ,

D̊(a1, a2, a3) = − log ∏i 6=j[ai, aj] + 2 log 2, [ai, aj] being the chordal distance, and where
the constant b6 does depend on L, Cρ only.

This, in fact uniform, version of the SMT deserves some comments.
First of all, the radius r0 normally depends on the function f since it is chosen in

order to have T̊f (r) ≥ e. However, as it is explained in Proposition 2.8.1 of [4], if f is
any meromorphic function with

(7.2) f #(0) ≥ 1
L

then T̊f (r) ≥ log r− log L. Consequently, given L ≥ 1, there exists r0 = r0(L) such
that the above SMT does hold for every f that satisfies (7.2). Inspecting the proof of
Proposition 2.8.1 of [4] gives the precise number r0 indicated in the above theorem.

Various formulations of the SMT and especially the ones in Chapter 2 of [4]
involve two functions, a Khinchin function ψ and an auxiliary function φ. Their role
is to optimize the error term S(r, a1, a2, a3) often by the cost of a larger exceptional set
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E, i.e. set of radii r ≥ r0 such that SMT does only hold if r 6∈ E and this set satisfies

(7.3)
∫

E

dr
φ(r)

≤ 2k0(ψ) = 2
∫ ∞

e

dx
xψ(x)

.

For our application we do not care about a minimal error term and thus we did a
more or less arbitrary chose ψ(x) = x. We equally well could have made Nevan-
linna’s choice ψ(x) = (log x)1+ε. But our choice leads to a nicer expression of the
error term.

The choice of φ is more subtle since we need the SMT estimation for every r ≥ r0.
A precise argument how to remove the exceptional set is in Nevanlinna’s book [20,
p. 257] and it is only possible since we deal with functions that have finite order.
Indeed, the assumption (3) implies that the order ρ( f ) ≤ ρ and that the variation
of the characteristic function is bounded in the following way. From the definition
of T̊f in (7.1) follows that A f (r) ≤

∫ er
r A f (t) dt

t ≤ T̊f (er) ≤ Cρ(er)ρ . Therefore, if
r0 ≤ r1 < r2 then

T̊f (r2)− T̊f (r1) =
∫ r2

r1

A f (t)
dt
t
≤ Cρeρρ−1 (rρ

2 − rρ
1

)
.

Choose now, anf that’s what we did in the above SMT, the function φ(r) = r−(ρ−1).
If the interval (r1, r2) ⊂ E then it results from (7.3) that this variation is bounded

T̊f (r2)− T̊f (r1) ≤ Cρeρ2k0(ψ)

and from this it is not hard to see how to remove the exceptional set.
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