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SIMULATION OF MULTIBODY SYSTEMS WITH SERVO

CONSTRAINTS THROUGH OPTIMAL CONTROL

R. ALTMANN∗, J. HEILAND†

Abstract. We consider mechanical systems where the dynamics are partially con-
strained to prescribed trajectories. An example for such a system is a building crane
with a load and the requirement that the load moves on a certain path.

Modelling the system using Newton’s second law – “The force acting on an object
is equal to the mass of that object times its acceleration.“ – and enforcing the servo
constraints directly leads to differential-algebraic equations (DAEs) of arbitrarily high
index. Typically, the model equations are of index 5 which already poses high regularity
conditions. Also, common approaches for the numerical time-integration will likely fail.
If one relaxes the servo constraints and considers the system from an optimal control
point of view, the strong regularity conditions vanish and the solution can be obtained
by standard techniques.

By means of a spring-mass system, we illustrate the theoretical and expected nu-
merical difficulties. We show how the formulation of the problem in an optimal control
context works and address the solvability of the optimal control system. We discuss that
the problematic DAE behavior is still inherent in the optimal control system and show
how its evidences depend on the regularization parameters of the optimization.

Key words. servo constraints, inverse dynamics, high-index DAEs, optimal control, underactuated mechanical systems

AMS subject classifications. 70Q05, 65L80

1. Introduction

We consider mechanical systems with servo constraints, see e.g. [16, 5, 24], for which a
part of the motion is specified. This includes crane models where we search for an input
such that the end effector follows a prescribed trajectory. Thus, we consider an inverse
dynamics problem.

The direct modeling approach, comprising the equations for the dynamics and the target
trajectory as a constraint, comes as a differential-algebraic equation (DAE) of very high
index. Note that we consider the DAEs in the so-called behaviour context, in which the
inputs are regarded as variables [18, Ch. 3.6]. An immediate consequence is that a solution
to the problem can only exist if the target trajectory is sufficiently smooth. We will refer
to this approach as the DAE setting.

We also investigate the optimal control approach that relaxes the constraints and bal-
ances the approximation to the target with the control effort. We will see that this
relaxation of the constraint Cx = y softens the strong regularity assumptions from the
DAE setting. In theory, the desired trajectory y may be even discontinuous. However,
with the reformulation the DAE problematic is not simply gone. The weak coupling of
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the masses and the non-collocated sensors and activators are still in the model and cause
oscillations in the output and strong peaks in the (unknown) input.

A remedy is the penalization of the derivatives of the control force at the expense of a
worse performance and of less standard systems of equation for the numerical realization.
In this paper we analyse the optimal control approach and investigate methods for the
solution of the resulting equation systems. With the introduction of suitable penalization
parameters we are able to balance the deviation from the trajectory and the control forces
which - in applications - correspond to the costs.

Within the paper, we address the following difficulties:

(1) The very weak coupling of input and output that, in the (DAE) limit, will lead to
singular actuations. We will investigate the dependency of the penalty or regular-
ization parameters and the behavior in the limit case.

(2) Necessary and sufficient optimality conditions with an emphasis on their use for
the solution of the optimization problem. Particularly in the case of holonomic
constraints, the formally derived first-order optimality conditions are preferable
over alternative formulations but they may not be solvable due to inconsistent
data.

To illustrate the ideas and difficulties, we consider the idealized example of two cars
connected via a spring, cf. Figure 1.1, as it was used, e.g., in [5, Sect. II].

Example 1.1. We consider a mechanical system with two degrees of freedom, namely
the positions x1, x2, and one servo constraint. Aim is to find the input force F such
that x1 follows the desired trajectory given by the (sufficiently smooth) function y. The
constrained system has the form

m1ẍ1 = −k(x1 − x2 − d),(1.1a)

m2ẍ2 = k(x1 − x2 − d) + F,(1.1b)

x1 = y.(1.1c)

Here, the spring constant k and the spring length d are positive. The given equations of
motion form a DAE of (differentiation) index 5. For a definition of the index we refer to
[8, Def. 2.2.2]. The generalization to a spring-mass chain of n masses connected by n− 1
springs is straightforward and can be found in [5, Ex. 2], see also Example 2.3.

F

x2 x1
x

k
m2

m1

Figure 1.1. Illustration of the mechanical system from Example 1.1 in-
cluding two cars connected by a spring with parameters k and d.

The paper is organized as follows. In Section 2 we give the formulation of the servo
constraint problem as a DAE for which we additionally allow holonomic constraints. The
counterpart is then presented in Section 3 in which the problem is modeled as an optimal
control problem. Here we formulate the optimality conditions, discuss the consistency
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conditions of the boundary data, and prove the existence of an optimal solution. The
relation of the two approaches is then topic of Section 4. In particular, we analyse the
optimal control problem in which the input is not penalized. Section 5 gives an overview
of the different solution strategies. This includes the DAE case as well as the optimal
control approach for which boundary-value problems have to be solved. In Section 6 we
compare the two approaches in means of two numerical examples. Finally, we conclude in
Section 7.

2. Problem Setting

This section is devoted to the original formulation of the servo constraint problem as
high-index DAE. For this, we consider the dynamics of a mechanical system with holonomic
and servo constraints. This setting then includes the generalization of Example 1.1 with
n cars as well as other simple crane models such as the overhead crane [6, Ex. 4].

Problem 2.1. For a time interval [0, T ], initial values x0, v0 ∈ Rn and a forcing term
f ∈ C([0, T ];Rn), for g : Rn → Rr, M ∈ Rn,n symmetric and strictly positive definite and
A ∈ Rn,n, for an output operator C ∈ Rm,n and a desired output y with y(t) ∈ Rm,
and for an input operator B ∈ Rn,m, find an input u ∈ C([0, T ];Rm), a state trajectory
x ∈ C2([0, T ];Rn), and a Lagrange multiplier p ∈ C([0, T ];Rr) such that

Mẍ = Ax+GT(x)p+Bu+ f,(2.1a)

0 = g(x),(2.1b)

y = Cx,(2.1c)

x(0) = x0, and ẋ(0) = v0.(2.1d)

Note that the Lagrange multiplier p couples the holonomic constraint (2.1b) to the dy-
namical equations (2.1a) and that G is the Jacobian of the holonomic constraint, i.e.,

G(x) = ∂g
∂x(x) ∈ Rm,r.

If there are no holonomic constraints, as in the introductory Example 1.1, equation
(2.1b) falls away. In this case, also the GT(x)p term in equation (2.1a) vanishes and we
are left with the following linear ODE servo problem.

Problem 2.2. Consider the setup of Problem 2.1 with g ≡ 0. Find an input u ∈
C([0, T ];Rm) and a state trajectory x ∈ C2([0, T ];Rn) such that

Mẍ = Ax+Bu+ f,(2.2a)

y = Cx,(2.2b)

x(0) = x0, and ẋ(0) = v0,(2.2c)

As a generic example, we consider the model equations for a mass-spring chain like in
Figure 1.1 but with n cars. This then leads to a DAE of index 2n+ 1, cf. [5, Ex. 2].

Example 2.3. A mass-spring chain, where one wants to steer the first mass x1 along a
trajectory y by applying a force u to the last mass xn, can be modeled as in Problem 2.2,
where x = [x1 x2 · · · xn]T is the vector of coordinates, M ∈ Rn,n is the diagonal matrix
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of the masses, and A ∈ Rn,n, B ∈ Rn,1, C ∈ R1,n, and f ∈ Rn,1 are given as

A =



−k1 k1

k1 −k1 − k2 k2

k2 −k2 − k3 k3
. . .

. . .
. . .

kn−2 −kn−2 − kn−1 kn−1

kn−1 −kn−1


, B =



0

0

0
...

0

1


,

C =
[
1 0 . . . 0

]
, and f =


k1d1

−k1d1 + k2d2
...

−kn−2dn−2 + kn−1dn−1

−kn−1dn−1

(2.3)

for given spring constants k1, . . . , kn−1 > 0 and spring lengths d1, . . . , dn−1 > 0.

In the numerical examples of Section 6 we will consider system (2.2) for the 2-car
example which has index 5 like typical examples from engineering such as trajectory
tracking of cranes, cf. [6] for a list of examples. However, we will also consider the case of
an higher index in Section 6.2.

From the theory of DAEs it is well-known that derivatives of the right-hand side of
system (2.1) appear in the solution [8, Ch. 2]. Because of the assumed semi-explicit
structure of the system, only derivatives of g and y are part of the solution and, in
particular, of the desired input u. One can show that in the index-5 case, the input will
depend on the 4-th derivative of y, while for the n-spring-mass chain of Example 2.3 it will
depend on y(2n). Thus, the following assumptions are indeed necessary for a continuous
solution u of Problem 2.1 or 2.2.

Assumption 2.4 (DAE Setting). In the formulation of Problem 2.1 and Problem 2.2 we
assume:

(1) Smoothness of the data: f ∈ C([0, T ];Rn) and y ∈ Cνd−1([0, T ];Rm), where νd is
the (differentiation) index of the system equations.

(2) Consistency of the initial values with respect to the holonomic constraints: g(x0) =
0 and G(x0)v0 = 0, if applicable.

(3) Consistency of the initial values with respect to the target output: Cx0 = y(0)
and Cv0 = ẏ(0) but also the conditions which result from the insertion of the
differential equation into the servo constraint,

ÿ = Cẍ = CM−1(Ax+GT(x)p+Bu+ f).

Remark 2.5. In the n-car example from Example 2.3 the consistency conditions which
directly follow from equation (2.2b) are y(0) = x01 and ẏ(0) = v01. Furthermore, we obtain
by the combination of equations (2.2a) and (2.2b) the two conditions

m1ÿ(0) = k1(−x01 + x02 + d1), m1y
(3)(0) = k1(−v01 + v02).

We emphasize that the numerical integration of high-index DAEs involves many dif-
ficulties, see e.g. [18, Ch. II]. Furthermore, the high index property and the resulting
assumptions hypothesize that the DAE formulation (2.1) does not provide an appropriate
model. Thus, we propose a remodeling process which leads to an optimal control problem.
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This involves a modeling error which is adjustable by a parameter as we discuss in the
following sections.

3. Formulation as Optimal Control Problem

Instead of prescribing the servo constraint (2.1c) in a rigid way, we formulate it as the
target of an optimization problem. Accordingly, the solution will not follow the trajectory
exactly which allows for a less regular target and which typically leads to smaller input
forces.

Problem 3.1. For a ν ∈ N, find u ∈ Cν([0, T ];Rm) that minimizes the cost functional

J (x, u) := S(x(T )) +

ˆ T

0
Q(x) +R(u) dt(3.1)

with the quadratic performance criteria

Q(x) :=
1

2
(Cx− y)TQ(Cx− y), R(u) :=

1

2

ν∑
i=0

u(i)TRiu
(i),(3.2a)

and S(x(T )) :=
1

2

(
Cx(T )− y(T )

)T
S
(
Cx(T )− y(T )

)
,(3.2b)

for given Q ∈ Rm,m, S ∈ Rm,m, and R0, . . . , Rν ∈ Rm,m symmetric and positive semi-
definite, and with x = x(u) ∈ C2([0, T ];Rn) is related to u through the dynamics (2.1a),
the holonomic constraint (2.1b) and the initial conditions (2.1d).

The parameters Q, S, and R0, . . . , Rν can be chosen to meet certain requirements
for the minimization. With this, we may install different kinds of penalizations of the
derivatives of this input variable u. Note that R0, . . . , Rν describe the modeling error
compared to the DAE formulation in Problem 2.1, see also the discussion in Section 4.

Note that in Problem 3.1 the fulfillment of the constraint (2.1c) is balanced with the
cost of the input u including its derivatives up to order ν. This relaxation also relaxes the
necessary smoothness conditions on y for a continuous solution u and also the consistency
condition of the initial values with respect to the target output, cf. Assumption 2.4.

Assumption 3.2 (Optimal Control Setting). In the formulation of Problem 3.1 we as-
sume:

(1) Smoothness of the data: f and y are continuous on [0, T ].
(2) Consistency of the initial values with respect to the holonomic constraints: g(x0) =

0 and G(x0)v0 = 0, if applicable.

3.1. Optimality Conditions. We derive the formal optimality conditions for the opti-
mization problem Problem 3.1, cf. [22, Ch. 6] and [19] for the DAE case, i.e., in the case
of holonomic constraints.

Assumption 3.3. For any input u, the state equations (2.1a)-(2.1b) with (2.1d) have a
unique solution x = x(u) that depends continuously differentiable on u.

For the considered setups, and in particular the linear problem from Example 2.3, this
assumption is readily confirmed. To derive the formal optimality conditions, we consider
the Lagrange functional

L(u;λ, µ) = J (x(u), u) +

ˆ T

0
λT
(
ẍ−Ax−GT(x)p−Bu− f

)
+ µTg(x) dt(3.3)
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for formally introduced multipliers λ ∈ C2([0, T ];Rn) and µ ∈ C([0, T ];Rr). The formal
optimality conditions are derived from the requirement that for suitable (λ, µ) an optimal
u∗ marks a stationary point of L(u;λ, µ), i.e.,

∂

∂u
L(u∗;λ, µ)δu = 0(3.4)

for every variation δu, cf. [26, Ch. 14]. This is the case, if (x, p, u, λ, µ) solves the following
formal optimality system.

Problem 3.4. Consider the functions and coefficients defined in Problem 2.1 and 3.1.
Find (x, p), (λ, µ) ∈ C2([0, T ];Rn)× C([0, T ];Rr) and u ∈ C([0, T ];Rm) such that

Mẍ = Ax+GT(x)p+Bu+ f,(3.5a)

0 = g(x),(3.5b)

MTλ̈ = ATλ+
∂

∂x

(
G(x)Tp

)
λ−GT(x)µ− CTQCx+ CTQy,(3.5c)

0 = G(x)λ,(3.5d)

0 =

ν∑
i=0

(−1)iRiu
(2i) −BTλ(3.5e)

with the initial conditions for x as in equation (2.1d) and the terminal conditions for the
dual variable λ given by

MTλ(T ) = 0, MTλ̇(T ) = CTS(Cx(T )− y(T )).(3.6)

For u, depending on the parameter ν, we obtain the boundary conditions

(3.7)
ν∑
i=1

i∑
k=1

(−1)k δ(i−k)Tu Riu
(i+k−1)

∣∣∣T
0

= 0

for all variations δu from a suitable subset of C([0, T ];Rm).

Remark 3.5. For the case ν = 0, by virtue of (3.5e), we obtain the often used algebraic
relation

0 = −BTλ+R0u

and no boundary conditions for the input u.

In general, for ν > 0, the space of suitable variations δu depends on the incorporation of
the inputs in the optimality problem. Either, one may add the derivatives of the input to
the cost functional as in (3.1) without any specifications of initial conditions or the inputs

u̇, . . . , u(ν−1) are incorporated as part of the state vector as in [22, Rem. 3.8]. In the latter

case, initial conditions have to be stated for u(0), . . . , u(ν−1)(0) which may be unphysical.

Furthermore, the corresponding variations δu, δ̇u, δ̈u, . . . , δ
(ν−1)
u have to vanish at t = 0.

Remark 3.6. If we do not impose restrictions on the admissible u and, thus, on δu, for
fixed ν and positive definite Rν the following conditions need to hold:

ν = 1 : u̇(0) = u̇(T ) = 0,

ν = 2 : ü(0) = ü(T ) = 0,

R1u̇(0)−R2u
(3)(0) = R1u̇(T )−R2u

(3)(T ) = 0.
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3.2. First-order Formulation. In order to apply standard theory and standard numer-
ical routines, we reformulate the optimality system as first-order system. For this, we
restrict ourselves to the unconstrained case r = 0 with ν = 1. We introduce the variables

z =

[
x

ẋ

]
, ζ :=

[
−λ̇
λ

]
, v :=

[
u

−u̇

]
.

The DAE (2.2) in first-order form is given by

M̃ ż = Ãz + B̃u+ f̃ ,(3.8a)

C̃z = g,(3.8b)

z(0) =

[
x0

v0

]
,(3.8c)

with

M̃ :=

[
In 0

0 M

]
, Ã :=

[
0 In

A 0

]
, B̃ :=

[
0

B

]
, C̃ :=

[
C 0

]
, f̃ :=

[
0

f

]
.

Therein, In denotes the identity matrix in Rn. In order to write the resulting optimality
system (3.5) as a first-order system, we further introduce the matrices

M̂T :=

[
MT 0

0 In

]
, J̃ :=

[
0 Im

−Im 0

]
, Ĩβ :=

[
−β0Im 0

0 β1Im

]
, B̂ :=

[
B̃ 0

]
=

[
0 0

B 0

]
.

The optimality system with the Lagrange multiplier µ and control v is given via 0 M̃

−M̂T 0

β1J̃


ζ̇ż
v̇

 =

 0 Ã B̂

ÃT −C̃TC̃

B̂T Ĩβ


ζz
v

+

 f̃

C̃Tg

0

(3.9)

with the initial and terminal conditions

z(0) =

[
x0

v0

]
, −M̂Tζ(T ) = γC̃T(C̃x(T )− g(T )), u̇(0) = 0, u̇(T ) = 0.(3.10)

In the case were an initial condition for the input was prescribed, i.e., u(0) = u0 is given,
the conditions for u in (3.10) reduce to u̇(T ) = 0. With appropriate matrices B0 and BT
and a vector ρ ∈ R4n+2m, these boundary conditions can also be written in the form

B0

ζ(0)

z(0)

v(0)

+ BT

ζ(T )

z(T )

v(T )

 = ρ.

This formulation is used in Section 5.2.2 below.

3.3. Necessary Conditions for the Existence of an Optimal Solution. If the opti-
mality system (3.5)-(3.7) has a solution, then it provides necessary optimality conditions
for (x(u), u). However, in the considered DAE context, i.e., when holonomic constraints
are applied, it may happen that the optimization problem has a solution while the formal
optimality system is not solvable [20]. Apart from the general case that the boundary val-
ues do not permit a solution [2], for a DAE, a solution may not exist because of insufficient
smoothness of the data or because of inconsistent initial or terminal values.

Thus, it is an important task to establish the necessary conditions for solvability of the
formal optimality system. By Assumption 3.2 the initial conditions for x are consistent.
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The adjoint equations (3.5b) and (3.5d) have the same differential-algebraic structure, so
that from (3.5d), we can read off the consistency conditions for the terminal values for λ,
namely

(3.11) G(x(T ))λ(T ) = 0 and
d

dt

(
G(x(T ))

)
λ(T ) +G(x(T ))λ̇(T ) = 0,

cf. Assumption 3.2(2). Comparing the prescribed terminal conditions (3.6) for λ to (3.11),
we obtain the necessary and sufficient condition for consistency as

(3.12) 0 = G(x(T ))M−TCTS(Cx(T )− y(T )).

Similar conditions in a slightly different formulation have been reported in [23]. There,
the authors proposed the variants to remove the end point penalization from the cost func-
tional or to consider a regularization of the dynamical equation. Within this regularization
the constraint (2.1b) is replaced by its derivative.

The following theorem shows that instead of the state equations, one can modify the
cost functional. This modification ensures consistency while not affecting neither the
performance criterion nor the necessity of the formal optimal conditions.

Theorem 3.7 (Ensuring consistency). Let Px∗(T ) be a projector onto the kernel of G(x∗(T )),

that satisfies M−TPT
x∗(T ) = Px∗(T )M

−T. Then, replacing the terminal conditions (3.6) for

λ by the conditions

MTλ(T ) = 0, MTλ̇(T ) = Px∗(T )C
TS(Cx∗(T )− y(T )),(3.13)

ensures consistency of the terminal conditions for λ. Moreover, if (x∗, p∗, u∗, λ, µ) solve
the optimality system with (3.13), then u∗ is a stationary point of (3.3).

Proof. Let u∗ be a solution to the optimality system and consider the first variation
∂
∂uL(u∗;λ, µ). The relation that defines the terminal condition for λ̇T is given by
(3.14)

0 =
∂

∂u

(
S(x∗(T ))

)
δu(T )− λ̇T(T )δx(δu)(T ) =

∂

∂x

(
S(x∗(T ))

)
δx(δu)(T )− λ̇T(T )δx(δu)(T ),

where δx(δu) = ∂
∂u

(
x∗(u)

)
δu is the variation in x∗ that is induced by the variation of

u. Since δx(δu) solves the state equations (2.1a)-(2.1b) linearized about x∗ with input
δu, cf. [25, Ch. 2], it holds that δx(δu)(T ) fulfills the linearized constraint (2.1b), i.e.
G(x∗(T ))δx(δu)(T ) = 0 or, equivalently, δx(δu)(T ) = Px∗(T )δx(δu)(T ). Thus, relation (3.14)

does not change if one replaces ∂
∂x

(
S(x∗(T ))

)
by ∂

∂x

(
S(x∗(T ))

)
Px∗(T ). For the considered

quadratic cost functional (3.1), this means that the formal conditions (3.12) are equivalent
(in the sense that the the first variation of L is not affected) to

λ̇(T ) = Px∗(T )
∂

∂x

(
S(x∗(T ))

)T
= Px∗(T )C

TS(Cx∗(T )− y(T ))

which concludes the proof. �

Remark 3.8. In the general case, Px∗(T ) is defined implicitly since it depends on the un-
known solution x∗. In the case of linear holonomic constraints, Px∗(T ) is readily computed,
cf. [14, Rem. 8.20]. As in the example presented below, in order to ensure consistency of
the terminal conditions one may also use a projection onto a subspace of G(x(T )) that is
possibly independent of x. This, however, will effectively alter the performance criterion
S.
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Remark 3.9. If M is symmetric, the condition M−TPT
x∗(T ) = Px∗(T )M

−T is nothing but

the orthogonality condition in the inner product induced by M−1 which is the natural
inner product in PDE applications.

3.4. Existence of Optimal Solutions. For Problem 3.1 constrained by linear equations
without holonomic constraints as in (2.2a), existence of solutions is provided by well-known
results.

Lemma 3.10 (Existence of an optimal solution). For ν ≥ 0 consider the optimal control
problem with cost functional (3.1), constrained by (2.2a) and let Assumption 3.2 hold. If

Rν > 0 and if u(0), u̇(0), . . . , u(ν−1)(0) are given, then system (3.5) and the optimal
control problem have a unique solution for any T <∞ and initial data x0 and v0.

Proof. Recall that, by the standard order reduction approach, the second-order system
(3.5) can be reformulated as an equivalent first-order system, cf. Section 3.2.

Then, for ν = 0 the result is given in [22, Rem. 3.6]. For ν = 1 with R1 > 0, we
may introduce a new variable for the derivative of the control u. Interpreting u as a part
of the state variable whereas its derivative v := u̇ is the new control variable, the same
arguments apply, cf. [22, Rem. 3.8]. Note that this ansatz requires an initial value for u.
This procedure may be successively repeated for ν > 1. �

Remark 3.11. Note that the existence result in Lemma 3.10 is true for all initial values
x0 and v0 in contrast to the DAE (2.1), which requires consistent initial data. In the case
ν = 0 with R0 = 0, we again need consistent boundary conditions, since this yields again
the DAE formulation of the problem. We discuss this case below in Section 4.

For the nonlinear optimality system (3.5) with holonomic constraints, we use the strong
but reasonable assumption that the state equations (2.1) have a solution for any input
u under consideration and that the solutions of the state equations depend smoothly on
the input (Assumption 3.3) to state that existence of a solution to the formal optimality
system is indeed a necessary condition.

We first show that the adjoint equations have a solution for every state trajectory and,
thus, also at the optimal solution. Then we confer that the smoothness of the input to
state map implies that, at an optimal solution, the gradient condition (3.5e) must also be
fulfilled.

Lemma 3.12. Consider a solution (x, p) of (2.1). If g is sufficiently smooth and G(x(t))
has full row rank for all t ∈ [0, T ] and if the end condition

MTλ(T ) = 0, MTλ̇(T ) = CTS(Cx(T )− y(T )),(3.15)

is consistent, then the adjoint equation (3.5c)-(3.5d) with end condition (3.15) has a unique
solution.

Proof. We rewrite the adjoint equations as a first-order system, cf. the second equation
of (3.9), [

MT 0

0 MT

]
d

dt

[
λ

λ̇

]
=

[
0 MT

ÃT 0

][
λ

λ̇

]
+

[
0

GT

]
µ+

[
0

f̃

]
,(3.16a)

Gλ = 0,(3.16b)

where µ is the multiplier that accounted for the holonomic constraint in (3.3), where
we have omitted the dependencies on x and t, and where we have clustered all linear
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coefficients and inhomogeneities in Ã and f̃ . Then, via another multiplier η, we add the
differentiated constraint Ġλ+Gλ̇ = 0 to the system and consider[

MT 0

0 MT

]
d

dt

[
λ

λ̇

]
=

[
0 MT

ÃT 0

][
λ

λ̇

]
+

[
GT ĠT

0 GT

][
η

µ

]
+

[
0

f̃

]
,(3.17a) [

G 0

Ġ G

][
λ

λ̇

]
= 0.(3.17b)

Since G has pointwise full row rank and since the terminal conditions are assumed to be
consistent, we can call on [14, Thm. 8.6] to state that System (3.17) has a unique solution.
One can show that the parts (λ, µ) of a solution (λ, η, µ) to (3.17) also solve (3.16). The
other way round, by construction and by the smoothness assumption on G, a solution
(λ, µ) to (3.16) partially defines a solution to (3.17) and, thus, is unique. �

Theorem 3.13. Assume that u 7→ x is Lipschitz continuous. If for a given (x(u0), u0),
the constraints and the cost functional are Gâteaux differentiable with respect to x at x(u0)
and if the terminal conditions (3.6) are consistent, then the optimality system (3.5) is a
necessary condition for optimality of (x(u0), u0).

Proof. By Lemma 3.12, at every candidate solution x(u0), the adjoint equation (3.5c) and
(3.5d) with (3.6) is solvable. Then, the claim follows from the result given in [14, Thm.
5.5]. �

Concerning sufficiency for the existence of unique global or local solutions, general re-
sults for constrained optimization extended to optimal control problems can be consulted,
see, e.g., [14, Ch. 5.3].

3.5. Various Optimality Systems. In the remaining part of this section, we consider
special cases of the optimality system (3.5) for constrained and non-constrained systems
and different values of ν. For this, we consider again the cost functional (3.1) and set

Q = Im, Ri = βiIm, S = γIm.

Thus, the remaining parameters for the optimization problem are γ, β0, . . . , βν ≥ 0. For
different values of ν this then leads to different structures of the optimality system which
we further analyse. In this subsection, we always assume βν > 0. The special case ν = 0
with β0 = 0, i.e., with no constraints on the input at all, is then discussed in Section 4.

3.5.1. Case r = 0, ν = 0. We consider the unconstrained case with r = 0, i.e., the
optimization is constrained by an ODE instead of an DAE. As mentioned above, we
assume here β0 > 0. This then leads to the optimality system 0 M

MT 0

0


λ̈ẍ
ü

 =

 0 A B

AT −CTC

−BT β0Im


λx
u

+

 f

CTy

0

 .
Thus, we obtain an DAE of index 1 but with initial and terminal conditions of the form

x(0) = x0, ẋ(0) = v0, λ(T ) = 0, MTλ̇(T ) = γCT(Cx(T )− y(T )).
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3.5.2. Case r = 0, ν = 1. Again we consider the unconstrained case, i.e., r = 0. However,
we include the penalization of the first derivative of the input u with parameter β1 6= 0.
This then leads to the system 0 M

MT 0

β1Im


λ̈ẍ
ü

 =

 0 A B

AT −CTC

−BT β0Im


λx
u

+

 f

CTy

0

 .(3.18)

In contrast to the case with ν = 0, the leading matrix on the left-hand side is invertible.
Thus, the optimality system (3.18) is an ODE. The corresponding boundary conditions
are given by

x(0) = x0, ẋ(0) = v0, u̇(0) = 0, u̇(T ) = 0,

λ(T ) = 0, MTλ̇(T ) = γCT(Cx(T )− y(T )).

3.5.3. Case r = 0, ν = 2. In the case ν = 2 also the second derivative of the inputs are
penalized, i.e., β2 6= 0. As seen in equation (3.5e), the fourth derivative of u appears in
the optimality system. In order to write the system in a second-order form, we introduce
a new variable v := ü. The optimality system then has the form

0 M

MT 0

0 β2Im

Im 0



λ̈

ẍ

ü

v̈

 =


0 A B

AT −CTC

BT −β0Im β1Im

0 Im



λ

x

u

v

+


f

CTy

0

0

 .(3.19)

Thus, we have again an ODE and the corresponding boundary values read:

x(0) = x0, ẋ(0) = v0, ü(0) = 0, ü(T ) = 0,

β1u̇(0) = β2v̇(0), β1u̇(T ) = β2v̇(T ),

λ(T ) = 0, MTλ̇(T ) = γCT(Cx(T )− y(T )).

3.5.4. Case r > 0, ν = 0. Finally, we give an example of the optimality system if the cost
functional ist constrained by an DAE. Here, we do not penalize derivatives of the inputs,
i.e., ν = 0 and β0 6= 0. Assuming that the Jacobian G is constant, i.e., equation (3.5b) is
of the form 0 = g(x) = Gx, we obtain the optimality system

0 M

MT 0

0

0

0




λ̈

ẍ

p̈

−µ̈
−ü

 =


0 A GT 0 −B
AT −CTC 0 GT 0

G 0 0

0 G 0

−BT 0 −β0Im




λ

x

p

−µ
−u

+


f

CTy

0

0

0

 .

In contrast to the previous cases, we obtain here a DAE of index 3, but again with a
mixture of initial and terminal conditions. This can be shown by a look at the special
structure which is the same as for constrained multibody systems, cf. [13, Ch. VII.1].
Note that this is no surprise, since we removed only the ’index-5 constraint’ by the cost
functional.
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4. Comparison of DAE and Optimal Control Solutions

To discuss the qualitative behavior of the solutions of the optimal control problem,
we consider the linear case without holonomic constraints and, in particular, discuss the
n-element mass-spring chains as in Example 2.3 with the matrices A ∈ Rn,n, B ∈ Rn,
C ∈ R1,n, and the right-hand side f ∈ Rn as in (2.3).

In the optimal control setting of Section 3 it is reasonable to assume that Rν is positive
definite. In the sequel, we analyse the limit case with ν = 0 and R0 = 0, i.e., the case in
which the control is not constrained at all.

4.1. Equivalence for R0 = 0. We show that for Example 2.3 with ν = 0 and R0 = 0
the DAE approach of Problem 2.2 is equivalent to the optimal control formulation in
Problem 3.1, provided Q > 0. Note that this implies that the corresponding optimality
system is only solvable for y ∈ C2n([0, T ];R). Recall that n denote the number of coupled
cars.

It is easy to see that a solution (x, u) of the original DAE (2.2) minimizes the cost
functional for R0 = 0. As solution of the DAE, we have Cx = y such that the cost
functional J from (3.1) is minimized since

J (x, u) = S(x(T )) +
1

2

ˆ T

0
(Cx− y)TQ(Cx− y) dt = 0.

Let us consider the optimality system for the case R0 = 0. Equation (3.5e) reduces to
0 = BTλ which directly implies that the last component of λ vanishes, i.e., λn = 0. As a
result, equation (3.5c) has the form

λ̈1

λ̈2
...

λ̈n−1

0

 =


−k1 k1

k1 −k1 − k2 k2
. . .

. . .
. . .

kn−2 −kn−2 − kn−1 kn−1

kn−1 −kn−1




λ1

λ2
...

λn−1

0

−

Q(x1 − y)

0
...

0

0

 .

In agreement with the boundary conditions of λ, we obtain successively λn−1 = · · · = λ1 =
0. If Q is invertible, this implies that x1 = Cx = y which then resembles Problem 2.2. In
this case, also condition (3.6) is satisfied and thus, the Problems 2.2 and 3.1 are equivalent.
If Q is not invertible then the system is not uniquely solvable.

Remark 4.1. The preceding observation is an instance of the general fact that if the linear
system without holonomic constraints is controllable and observable and if Q is invertible,
then, provided the data is sufficiently smooth, a solution to the optimal control problem
Problem 3.1 resembles the solution of the DAE of Problem 2.1. To see this, recall that
in the considered situation, the system is observable, if, and only if, Cx − g = 0 implies
x1 = g, and, by duality, that the system is controllable, if and only if, BTλ = 0 implies
that λ = 0 for all time.

Remark 4.2. The equivalence of the DAE and optimal control approach for R0 = 0 can
also be shown for the trolley crane from the example in Section 6.3 below which includes
a holonomic constraint. In this case, one can show in a similar manner that the dual
variables λ and µ vanish such that the servo constraint Cx = y has to be satisfied.

4.2. Convergence Barriers. By Lemma 3.10, if y ∈ C([0, T ],R) and R0 > 0, then the
quadratic Problem 3.1 with ν = 0, subject to linear constraints, has a unique solution. By
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the results of the previous Section 4.1, for R0 = 0, a solution only exists, if y sufficiently
smooth.

In this subsection, we examine how the optimal control u behaves when R0 → 0 in
dependence of the smoothness of y. Consider the n-car example Example 2.3 and the
associated adjoint equations

(4.1) MTλ̈ = ATλ− CT(Cx− y)

with A and C from (2.3). With

(4.2) ∆j := kj

( λj
mj
− λj−1

mj−1

)
, j = 2, 3, . . . , n,

we can rewrite Equation (4.1) as

λ̈1 = −∆2 − (x1 − y),(4.3a)

λ̈2 = ∆2 −∆3,(4.3b)

...

λ̈n−1 = ∆n −∆n−1,(4.3c)

λ̈n = ∆n.(4.3d)

The gradient condition (3.5e) gives λn = R0u and ∆n = λ̈n = R0ü. By a combination of
(4.2) and (4.3), we recursively compute λn−1, λn−2, · · · , λ1 via the formulas

λj−1 = − 1

kj−1
∆j +

mj−1

mj
λj and ∆j−1 = ∆j − λ̈j−1.

Finally, via (4.3a), we can directly relate the difference in the target x1−y to the computed
input u. Assuming uniform masses m and uniform spring constants k for n = 2 we find

(4.4) x1 − y = R0

(
2ü− 1

k
u(4)

)
while for n = 3 it must hold that

(4.5) x1 − y = R0

(
(
1

k
+ 1)u(4) − 1

k
(
1

k
+ 1)u(6)

)
.

We observe that

• For nonsmooth y, where we cannot expect convergence of x1 to y, the control u
will have strong peaks in its derivatives in order to fulfill (4.4) or (4.5) for R0 → 0.
• For moderate values of R0, the tracking error x1 − y is affected by the oscillations

in the derivatives of u multiplied by multiples of 1
k depending on the length of the

considered chain.
• For k → ∞, i.e., when the connections between the cars become more rigid, the

higher derivatives of u are damped out from the tracking error. In fact, if one
connection is rigid, the two connected cars can be considered as one and the index
of the system reduces.

5. Solution Strategies

Within this section, we review several concepts how to solve numerically mechanical
problems with servo constraints. First, we comment on the classical approach where the
model is given by the DAE (2.1). In this case, index reduction methods are applied which
then allow to integrate the resulting equations. Second, using the optimal control ansatz
(3.1), we consider the two cases of either solving directly the optimality system, which is
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a boundary value problem (BVP), or the resulting Riccati equations. The latter approach
may then be used to define a feedback control.

5.1. Solving High-index DAEs. As mentioned already in the introduction, the compu-
tation of the inverse dynamics of a discrete mechanical system given by a specification of
a trajectory is a highly challenging problem [4, 5]. The reason is the high-index structure
of the resulting DAEs. In the here considered case of underactuated mechanical systems,
the systems are often of (differentiation) index 5 but may be arbitrarily high as shown in
Example 2.3.

In order to realize the so-called feedforward control of the system, one has to solve
this high-index DAE. Here, it is advisable to apply index reduction methods instead of
solving the equations directly [8, Ch. 5.4]. A well-known approach based on a projection
of the dynamics was introduced in [5], see also [7]. For this, one has to compute time-
dependent projection matrices in order to split the dynamics of the underactuated system
into constrained and unconstrained parts.

Instead of the projection approach one may also use the index reduction technique called
minimal extension [17]. This technique profits from the given semi-explicit structure of
the dynamical system and can be easily applied. The application to a wide range of crane
models can be found in the recent paper [1]. Therein, it is shown that the method of
minimal extension may even be applied a second time which then leads to a DAE of index
1 for which the numerical integration works essentially as for stiff ODEs [13, Ch. VI.1].

We remark that index reduction techniques are inevitable for numerical simulations
of high-index problems. However, for applications like the n-car example given in the
introduction, which is of index 2n+ 1, the DAE approach does not seem to be applicable.
The here presented modeling as an optimal control problem still works properly for the
general case. For a numerical example including a 3-car model, we refer to Section 6.

5.2. Direct Solution of the Optimality BVP. In this subsection, we discuss the ap-
plication of the finite difference method as well as a shooting approach in order to solve
the optimality system (3.5).

5.2.1. Finite Differences. The optimality system includes both initial and terminal con-
ditions, so that the application of standard time-stepping methods is not possible. A
straight-forward approach is to introduce a grid of the time domain and to apply the
method of finite differences to the differential coupled equations leads to a (large but
block-sparse) algebraic system. Alternatively, one can apply finite elements or more gen-
eral collocation methods.

5.2.2. Shooting Method. For the application of the shooting method, we consider the first-
order system (3.9), i.e., we consider again the case with r = 0 (no additional holonomic
constraint) and ν = 1.

For notational reasons, we write system (3.9) short as Mẏ = Ky + h, i.e., the vector y
includes all state, input, and dual variables. Recall that the boundary conditions can be
written in the form B0y(0) + BT y(T ) = ρ. Because of the special structure of the given
boundary conditions (initial and terminal conditions are not mixed), we may assume a
reordering of the variables in order to get a system of the form

Mẏ = Ky + h,

[
B01
0

]
y(0) +

[
0

BT2

]
y(T ) =

[
ρ1

ρ2

]
.

The aim of the shooting method is to restore the initial conditions for the entire vector y
such that methods for initial value problems are applicable again. Since the initial values
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of the state variables and u̇ (respectively u, if initial data for the input was prescribed) are
already given, we can apply the so-called reduced superposition [2, Ch. 4.2.4]. This reduces
the computational effort of the method. Within the following algorithm, we denote by s
the size of the original system and thus, 2s the size of the first-order system we want to
solve.

Step 1: Search for the fundamental solution of the corresponding homogenous system.
However, using the reduced superposition, it is sufficient to compute Y ∈ R2s,s solving

MẎ = KY, Y (0) =

I 0

I 0

I 0


T

.

Step 2: Find a solution w ∈ R2s of the initial value problem

Mẇ = Kw + h, w(0) =
[
0 0 x0 v0 0 0

]T
.

Step 3: Find coefficients c ∈ Rs, given by the linear system

BT2Y (T )c = ρ2 − BT2w(T ),

which then gives the solution of the BVP as y = Y c + w. Thus, an approximation of y
can be either given directly, if the matrices Y and w were stored on the entire time grid,
or by solving the IVP

Mẏ = Ky + h with y(0) = Y (0)c+ w(0).

Remark 5.1 (comparison of computational effort). Assume that we always use the same
time step size with N grid points. Then, the finite difference method leads to a system of
size 2sN such that the computational effort is quadratic in N . For the shooting method
we have to solve several initial value problems (each using N time steps). Note that the
size of the systems is bounded by the size of the original BVP such that the overall costs
are only linear in N (but with a large constant depending on s2).

Remark 5.2. An extension of the (single) shooting method which is more stable is called
the multiple shooting method [2, Ch. 4.4.3]. For this, the time interval [0, T ] is partitioned
by shooting points 0 = t1 < t2 < · · · < tN+1 = T . On each subinterval [ti, ti+1] we
may compute a solution yi(t) = Yi(t)ci + wi(t) similarly as above. The coefficient vectors
ci ∈ Rs are given by a linear system which contains the boundary as well as the continuity
conditions in-between the time steps.

Remark 5.3. For the other cases, i.e., for r > 0 (with holonomic constraints) or different
values of ν, we may need to use different techniques, depending in the structure of the
BVP. In the case r = 0, ν = 0, cf. Section 3.5.1, where we obtain as optimality system an
index-1 DAE, we have to consider shooting methods for such systems. For this, we refer
to [21]. In the case r > 0, for which we obtain index-3 systems, we refer to [9] or, after an
index reduction to index 2, also to [12].

5.3. Riccati Approach. In the linear case and if ν = 0, i.e., if no derivatives of u
appear in the optimality system (3.5), the BVP can be solved via a Riccati decoupling.
This requires the formulation as a first-order system as in (3.9) which already is in the
standard form considered, e.g., in [22, Ch. 5]. In the case of holonomic constraints, one
can call on the results on constrained Riccati equations given in [14] that readily apply to
constrained multibody equations in the Gear-Gupta-Leimkuhler formulation [11].



16

6. Numerical Examples

In this section, we provide several numerical experiments. First, we consider the two-car
system from Example 1.1, i.e., an example without holonomic constraints. Second, we add
a third car which then gives a index-7 DAE in the original formulation. Finally, we consider
an overhead crane as an example with r > 0, i.e., with a holonomic constraint. The code
is written in Python and can be obtained from the author’s public Github repository [15].

6.1. Two-car Example. We consider the two-car example from the introduction, see
Figure 1.1. Recall that the equations of motion (1.1) form a DAE of index 5. As in [6,
Ex. 3] the following parameters were used within the computations:

m1 = 2kg, m2 = 1kg, k = 1Nm , d = 0.5m.

6.1.1. Comparison of DAE and Optimal Control Solution. The initial values within the
computations are given by

x01 = 0.5m, v01 = 0ms , x02 = 0m, v02 = 0ms .

For the definition of a rest-to-rest maneuver we introduce the polynomial

p(s) = 1716s7 − 9009s8 + 20020s9 − 24024s10 + 16380s11 − 6006s12 + 924s13.

With this and y0 = 0.5m, yf = 2.5m, we define on the time interval [0, 4s] the target
trajectory

y(t) =


y0, if 0 ≤ t < 1,

y0 + p
(
t−1
2

)
(yf − y0), if 1 ≤ t ≤ 3,

yf, if 3 < t ≤ 4.

(6.1)

Note that y is smooth enough, such that the DAE solution (to which we refer to as exact
solution) exists. Recall that this requires consistent initial positions and initial velocities
of the cars as mentioned in Remark 2.5, namely

y(0) = x01, ẏ(0) = v01, m1ÿ(0) = −(x01 − x02 − d), m1y
(3)(0) = −(v01 − v02).

We compare the exact solutions, that are readily computable from the systems equation,
to the trajectories and input forces obtained from solving the associated optimal control
problem Problem 3.1 with the parameters Q = S = 1 and for varying R0 = β ∈ R. The
occurring linear boundary value problem is solved by finite differences on a regular grid
of size τ = 0.01s.

As expected, depending on the penalization parameter β, the optimal control approach
leads to input forces that are smaller than the exact force F , see Figure 6.1(left). The
reduction of the amplitude is best seen for large values of β. The optimal control prob-
lem is a compromise of costs and accuracy, as can be seen from the deviations from the
target trajectory that decrease for smaller values of the penalization parameter β, cf.
Figure 6.1(right).

6.1.2. Feedback Representations of the Optimization Solutions. Another advantage of the
optimization approach is that the optimal control can be realized as a feedback. In fact,
the first-order optimality conditions (3.5) suggest that u depends linearly on λ which
depends, possibly nonlinearly, on the state x. For the considered linear case of Example
1.1, the optimality system can be solved via a differential Riccati equation [22, Ch. 5.1],
which directly leads to a feedback representation of the optimal control.

We stay with the example of the 2-car setup to illustrate the benefits of the feedback
representation. If one simply applies the known exact control solution to the considered
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Figure 6.1. The exact input force F (DAE solution) and the forces ob-
tained through the optimal control formulation for different values of the
penalization parameter β (left) and the corresponding trajectories (right)
for the 2-car example.

system, a perturbation, e.g. in the initial position or initial velocity, will necessarily lead to
a drift off the desired trajectory, cf. Figure 6.2(left). In contrast, the feedback solution of
the optimal control problem with β0 = 10−9 will detect and damp possible perturbations,
cf. Figure 6.2(right).
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Figure 6.2. Benefits of the feedback representation: The output obtained
from applying the exact control solution directly (left) and the output
obtained via a feedback representation of the control solution of the optimal
control problem (right) in the case of perturbed initial values.

6.2. Three-car Example. In this subsection, we add an additional car, i.e., we consider
Example 2.3 with n = 3. This means that the positions of the bodies are given by x1,
x2, and x3 where the trajectory of x1 is prescribed by y. Recall that this gives a DAE of
index 7 rather than index 5 as in the previous example. As parameters we set

m1 = m2 = 1kg, m3 = 2kg, k = 1Nm , d = 0.5m.

As initial conditions we have

x01 = 0.5m, v01 = 0ms , x02 = 0m, v02 = 0ms , x03 = −0.5m, v03 = 0ms .
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For the simulation we consider the same rest-to-rest maneuver as in (6.1). As required,
the prescribed trajectory is 6-times continuously differentiable and the initial conditions
satisfy all consistency conditions, cf. Assumption 2.4 and Remark 2.5.

The exact solution as well as the results from the optimal control problem for different
values of the penalization parameter are shown in Figure 6.3. The weak coupling from
the input on the third car to the output measured on the first car is apparent in the large
peaks in the exact input force. The optimization approach leads to significantly reduced
amplitudes in the input at the expense of a certain deviation from the prescribed target
trajectory.
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Figure 6.3. The exact input force F (DAE solution) and the forces ob-
tained through the optimal control formulation for different values of the
penalization parameter β (left) and the corresponding trajectories (right)
for the 3-car example.

6.3. Overhead Crane. The servo constraint problem of this section was originally for-
mulated in terms of minimal coordinates in [6] and was recast in redundant coordinates in
[3], see Figure 6.4. We follow here the latter approach which then fits into the framework
of Section 2. For this, we consider the state and input variables

x

z

s

F α,Mn

(xd, zd)

y(t)

Figure 6.4. Overhead trolley crane with the notation of the rotationless
formulation introduced in [3].

x = [s, α, xd, zd]
T, u = [F, Mn]T.
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With these redundant coordinates (one additional variable as well as one additional equa-
tion) we need to add one holonomic constraint and a corresponding Lagrange multiplier
p ∈ R. The overall system reads

mt

J

m

m



s̈

α̈

ẍd

z̈d

−GT(x)p−


1 0

0 1

0 0

0 0

u =


0

−rmg
0

mg

 ,(6.2a)

(xd − s)2 + z2d − (rα)2 = 0,(6.2b) [
xd

zd

]
− y = 0(6.2c)

with

G(x) = 2
[
s− xd −r2α xd − s zd

]
,
(
G(x)Tp

)
x

= 2p


1 0 −1 0

0 −r2 0 0

−1 0 1 0

0 0 0 1

 .
In the optimal control approach, with a cost functional as in Problem 3.1, the solution is
obtained through the solution of the additional adjoint equations (3.5c) and (3.5d), the
gradient condition (3.5e), and the boundary conditions (3.6) and (3.7).

We consider the system parameters

mt = 10kg, J = 0.1Nm, m = 1kg, r = 0.1m, g = 9.81m
s2
,

with initial values

x0 = [0m, 40m, 0m, 4m]T and ẋ0 = [0, 0, 0, 0]T.

Furthermore, we consider a target trajectory as defined in (6.1) but on the time interval
[0, 6s] and with the vector valued starting and terminal points

y0 = [0, 4]T and yf = [1, 5]T.

We linearize the resulting nonlinear boundary value problems with holonomic constraints
around the constant solution that is obtained with u ≡ [0, 0]T and solve it via finite
differences. The computed approximation to the optimal control is then evaluated in the
actual nonlinear model (6.2a,b) and compared to the analytical solution of (6.2a-c).

As the plots in Figure 6.5 show, this combined linearization and optimal control ap-
proach leads to decent approximation of the actual control that can be obtained without
the direct solution of the high-index DAE [1] or finding the flat inputs [10].

7. Conclusion

Within this paper, we have considered mechanical systems with a partly specified mo-
tion which are usually modeled by DAEs of index ≥ 5. Such models require high regu-
larity assumptions and their numerical treatment is extremely challenging because of the
sensitivity to perturbations. Because of this, we have introduced an alternative model-
ing approach which relaxes the prescribed servo constraint and considers a minimization
problem instead. By this, we decrease the possible errors which occur in the simulation of
an high-index DAE but include an additional error, since we do not satisfy the constraint
exactly. However, this modeling error is controllable by the penalization parameters.
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Figure 6.5. The forces F and Mn obtained through linearization and
optimization for varying penalization parameter β (top) and the resulting
trajectories (bottom) for the example of the overhead crane.

By means of the numerical examples, we have shown the advantages of the optimal
control approach. First, the resulting control effort is much smaller at the price of only
a small error in the constraint and thus, more realistic as this corresponds to a reduction
of costs in real-world applications. Second, the approach is less sensitive to perturbations
such as inconsistent initial data.
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[10] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Flatness and defect of non-linear systems: Introduc-
tory theory and examples. IntControl, 61(6):1327–1361, 1995.



21

[11] C. W. Gear, G. K. Gupta, and B. Leimkuhler. Automatic integration of Euler-Lagrange equations
with constraints. J. Comput. Appl. Math., 12-13:77–90, 1985.

[12] M. Gerdts. Direct shooting method for the numerical solution of higher-index DAE optimal control
problems. J. Optim. Theory Appl., 117(2):267–294, 2003.

[13] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic
Problems. Springer-Verlag, Berlin, second edition, 1996.

[14] J. Heiland. Decoupling and optimization of differential-algebraic equations with application in flow
control. PhD thesis, TU Berlin, 2014.

[15] J. Heiland. holo-servo-opt – a Python module for the solution of multi-body systems with holonomic
and servo constraints via optimal control. https://github.com/highlando/holo-servo-opt, 2015.

[16] V. I. Kirgetov. The motion of controlled mechanical systems with prescribed constraints (servocon-
straints). J. Appl. Math. Mech., 31:465–477, 1967.

[17] P. Kunkel and V. Mehrmann. Index reduction for differential-algebraic equations by minimal exten-
sion. Z. Angew. Math. Mech., 84(9):579–597, 2004.

[18] P. Kunkel and V. Mehrmann. Differential-Algebraic Equations. Analysis and Numerical Solution.
European Mathematical Society Publishing House, Zürich, 2006.
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