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A 3-LOCAL CHARACTERIZATION OF Co2

CHRISTOPHER PARKER AND PETER ROWLEY

Abstract. Conway’s second largest simple group, Co2, is char-
acterized by the centralizer of an element of order 3 and certain
fusion data.

1. Introduction

The vistas revealed by Goldschmidt in [12] inspired many investiga-
tions of amalgams, particularly in their application to finite groups and
their geometries. One such was the fundamental work of Delgado and
Stellmacher [7] in which weak BN pairs were classified. Later Parker
and Rowley [25] determined the finite local characteristic p comple-
tions of weak BN pairs (when p is odd and excluding the amalgams of
type PSL3(p)). However a number of exceptional configurations when
p ∈ {3, 5, 7} required further attention–all but one of them have been
addressed in Parker and Rowley [24], [26], Parker [21] and Parker and
Weidorn [27]. The last one is run to ground here in our main result
which gives a characterization of Conway’s second largest simple group,
Co2.

Theorem 1.1. Suppose that G is a finite group, S ∈ Syl3(G), Z =
Z(S) and C = CG(Z). Assume that O3(C) is extraspecial of order 35,
O2(C/O3(C)) is extraspecial of order 25 and C/O3,2(C) ∼= Alt(5). If Z
is not weakly closed in S with respect to G, then G is isomorphic to
Co2.

The hypothesis on the structure of C in Theorem 1.1 amounts to
saying that C has shape 31+4.21+4.Alt(5). Note that no assertion about
the types of extension is included and the extraspecial groups could
have either +- or −-type. We remark, as may be seen from [6], that
Co2 actually satisfies the hypothesis of Theorem 1.1. As a consequence
of Theorem 1.1 and earlier work on the exceptional cases arising in
[25], we can now see that part (ii) of [25, Theorem 1.5] does not occur.
Theorem 1.1 investigates a more general configuration than required
to settle [25, Theorem 1.5 (ii) (c)]. Though not immediately apparent,
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this configuration rather quickly gives rise to a subgroup M∗ of shape
34.Alt(6). This particular subgroup makes appearances in other simple
groups such as U4(3), U6(2) and McL and is the root cause of the
exceptional possibilities itemized in [25, Theorem 1.5 (ii)(a), (b) and
(c)].

A number of the sporadic simple groups have been characterized in
terms of 3-local data. The earliest being a characterization of J1 by
Higman [14, Theorem 12]. In [20], O’Nan determined the finite simple
groups having an elementary abelian subgroup P of order 32 such that
for x ∈ P#, CG(x)/〈x〉 is isomorphic to PSL2(q), PGL2(q) or PΣL2(q)
(q odd). Thereby also characterizing the sporadic simple groups M22,
M23, M24, J2, HS and Ru. For the remaining Janko groups, 3-local
identifications for J3 were obtained first by Durakov [9] and later by
Aschbacher [1], and for J4 by Stroth [34], Stafford [33] and Güloğlu
[13]. The groups O’N and He were dealt with, respectively, by Il´inyh
[15] and Borovik [4]. All of these results were obtained prior to 1990.
Recently there has been a resurgence of interest and activity in 3-
local characterizations of finite simple groups partly prompted by the
revision project concerning groups of local characteristic p (see, for
example, [19]). The sporadic simple groups studied in this renaissance
period are Co3 (Korchagina, Parker and Rowley [17]), Fi22 (Parker
[21]), McL (Parker and Rowley[26]), M12 (Astill [3]), Th (Fowler [10]),
and Co1, Fi′24, M (Salarian[29, 30, 31]).

With a few exceptions, to date, characterization results for finite
groups in terms of 3-local data ultimately rely upon identifying the tar-
get group(s) via 2-local information. This is the case here, F. Smith’s
Theorem [32] providing the final identification. Thus most of this pa-
per is spent manoeuvering into a position where we can use this result.
We begin in Section 2 giving background results– F. Smith’s Theorem
appearing as Theorem 2.1. Another characterization result appearing
in Theorem 2.2, due to Prince, is employed in Lemma 5.4. Lemma 5.4,
which is the bridge to the 2-local structure of G (G as in Theorem 1.1),
states that NG(B) ∼= Sym(3)×Aut(U4(2)) for a certain subgroup B of
G of order 3. In NG(B) there is an involution t inverting B and cen-
tralizing O3(CG(B)) ∼= Aut(U4(2)). Not only does this lemma fill out
our knowledge of the 3-local subgroups but it also gives us a toehold
in CG(t). After Lemmas 2.3–2.8, results which play minor supporting
roles, a compilation of GF(3)-module data for the groups Sym(4) and
Alt(6) appear in Lemmas 2.9 and 2.10. From Lemma 2.10 we deduce
Lemma 2.11 which concerns hyperplanes of the 4-dimensional permu-
tation GF(3)Alt(6)-module–this plays an important role in Lemma 5.2
where we show that 3′-signalizers for J are trivial. Here J is elementary
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abelian of order 34 and is the Thompson subgroup of S, S ∈ Syl3(G).
Various properties of groups of shape 21+4.Alt(5) are given in Lem-
mas 2.12, 2.13 and 2.14. These results will be applied to bring the
structure of CG(Z) into sharper focus, where Z = Z(S). We conclude
Section 2 with Lemmas 2.15 and 2.16 which concern the spin module for
Sp6(2), followed by an elementary result on Aut(U4(2)) in Lemma 2.17.

The main result of Section 3, Theorem 3.1, anticipates the end game
in our analysis of CG(t), t being the involution mentioned earlier. In
fact, Theorem 3.1 will be applied to CG(t)/〈t〉.

Section 4 sees us start the proof of Theorem 1.1. After Lemma 4.1
in which the structure of CG(Z) is examined (where Z = Z(S), S ∈
Syl3(G)), Lemmas 4.2 and4.3 look at centralizers and commutators
of certain involutions in CG(Z). In Lemmas 4.4, 4.5 and 4.6 it is S
and its subgroups that mostly occupy our attention. Two subgroups
of S that will play central roles in the proof of Theorem 1.1 are Z
and J = CS([Q,S]) where Q = O3(NG(Z)). In Lemma 4.5 we learn
that J is the Thompson subgroup of S, J is elementary abelian of
order 34 and that all G-conjugates of Z in S are trapped inside J . An-
other important subgroup of S, namely B, along with the involution
t, already noted earlier, make their entrance after Lemma 4.7. In the
latter part of Section 4, our attention moves on to NG(Z), resulting
in structural information about this subgroup in Lemmas 4.10, 4.11
and 4.12. Drawing upon the results in Section 4, in Section 5 we de-
termine the structure of NG(B). Our last section brings to bear all the
earlier results on CG(t) eventually yielding that CG(t)/〈t〉 satisfies the
hypotheses of Theorem 3.1. Then using Theorem 3.1 we rapidly obtain
the hypotheses of Theorem 2.1, whence we deduce that G ∼= Co2.

Our main source of information for group structures is the ubiquitous
Atlas [6], and we also follow the notation and conventions there with a
number of variations which we now mention. We shall use Sym(n) and
Alt(n) to denote, respectively, the symmetric and alternating groups
of degree n and Dih(n), Q(n) and SDih(n), respectively, to stand for
the dihedral group, quaternion group and semidihedral group of order
n. Finally X ∼ Y where X and Y are groups will indicate that X and
Y have the same shape.

The remainder of our notation is standard as given, for example, in
[2] and [18].
Acknowledgement. This paper is the fruit of a visit to the Mathe-
matisches Forschungsinstitut Oberwolfach as part of the Research in
Pairs Programme, 29th April–12 May, 2007. The authors wish to thank
the institute and its staff for the pleasant and stimulating environment
that they provided.
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2. Preliminary Results

Theorem 2.1 (F. Smith). Suppose that X is a finite group with Z(X) =
O2′(X) = 1, and Y is the centralizer of an involution in X. If Y/O2(Y ) ∼=
Sp6(2) and O2(Y ) is a non-abelian group of order 29 such that the ele-
ments of order 5 in Y act fixed point freely on O2(Y )/Z(O2(Y )), then
X is isomorphic to Co2.

Proof. See [32]. ¤

Theorem 2.2 (A. Prince). Suppose that Y is isomorphic to the central-
izer of a 3-central element of order 3 in PSp4(3) and that X is a finite
group with an element d such that CX(d) ∼= Y . Let P ∈ Syl3(CX(d))
and E be the elementary abelian subgroup of P of order 27. If E does
not normalize any non-trivial 3′-subgroup of X and d is H-conjugate
to its inverse, then either

(i) |X : CX(d)| = 2;
(ii) X is isomorphic to Aut(U4(2)); or
(iii) X is isomorphic to Sp6(2).

Proof. See [28, Theorem 2] ¤

Lemma 2.3. Suppose that X is a group of shape 31+2
+ .SL2(3), O2(X) =

1 and a Sylow 3-subgroup of X contains an elementary abelian subgroup
of order 33. Then X is isomorphic to the centralizer of a non-trivial
3-central element in PSp4(3).

Proof. See [21, Lemma 6]. ¤

We will also use the following variation of Lemma 2.3.

Lemma 2.4. Suppose that X is a group of shape 31+2
+ .SL2(3), O2(X) =

1 and the Sylow 3-subgroups of a centralizer of an involution in X are
elementary abelian. Then X is isomorphic to the centralizer of a non-
trivial 3-central element in PSp4(3).

Proof. Let S ∈ Syl3(X), R = O3(X), and F ≤ R be a normal subgroup
of S of order 9. Let N = NX(S). If F is not normal in N , then there
exists n ∈ N such that R = F nF . But then S centralizes FF n/Z(R) =
R/Z(R) and so CX(R/Z(R)) > R and this contradicts O2(X) 6= 1.
Hence F is normal in N . Let E = CS(F )(= CN(F )). Then E is abelian
of order 27. Let u be an involution in N . Then u normalizes E and, as
[S, u] ≤ R, CE(u) 6≤ R. Therefore E = CE(u)F . Since F and CE(u)
are elementary abelian by hypothesis, E is elementary abelian of order
33. Hence Lemma 2.3 applies and yields the result. ¤
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Lemma 2.5. Suppose that p is a prime, X is a finite group and
P ∈ Sylp(X). If x, y ∈ Z(J(P )) are X-conjugate, then x and y are
NX(J(P ))-conjugate.

Proof. See [2, 37.6]. ¤

Lemma 2.6. Suppose that p is a prime, X is a finite group and P ∈
Sylp(X). If R ≤ P is not weakly closed in P with respect to X, then
there exists x ∈ X such that R 6= Rx and R and Rx normalize each
other.

Proof. Suppose that R is not normal in P . Let N = NP (R) and M =
NP (N). Then M > N . Choose x ∈ M \ N . Then R 6= Rx and, as R
and Rx are both normal in N , we obtain the lemma. Hence we may
assume that R is normal in P . Since R is not weakly closed in P with
respect to X, there exists y ∈ X such that Ry 6= R and Ry ≤ P . If
Ry is normal in P , then R and Ry normalize each other and we take
x = y. Otherwise, repeating the argument as for R, we find z ∈ P such
that Ry and Ryz normalize each other. Taking x = yzy−1 completes
the proof of the lemma. ¤

Lemma 2.7. Suppose that X is a finite group, x ∈ X an involution
of X and V an elementary abelian normal 2-subgroup of X. Set C =
CX(x). Then the map (vx)V C 7→ (v[V, x])C is a bijection between V C-
orbits of the involutions in the coset V x and the C-orbits of the elements
of CV (x)/[V, x]. Furthermore, for vx an involution in V x, |(vx)V C | =
|(v[V, x])C |.|[V, x]|.
Proof. The given map is easily checked to be a bijection. ¤

Lemma 2.8. Suppose that Q is an extraspecial p-group and α ∈ Aut(Q).
If A is a maximal abelian subgroup of Q and [A,α] = 1, then α is a
p-element.

Proof. The Three Subgroup Lemma implies that [Q,α] ≤ A. Then
[Q,α, α] ≤ [A,α] = 1 and so α is a p-element. ¤

Lemma 2.9. Suppose that X ∼= Sym(4) and V is a faithful 3-dimensional
GF(3)X-module. Then

(i) there is a set of 1-dimensional subspaces B = {〈v1〉, 〈v2〉, 〈v3〉}
such that X/O2(X) acts as Sym(3) on B and each subspace in
B is inverted by O2(X);

(ii) X has orbits of length 3, 4 and 6 on the 1-dimensional sub-
spaces of V with representatives 〈v1〉, 〈v1+v2+v3〉 and 〈v1+v2〉
respectively; and
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(iii) X has orbits of length 3, 4 and 6 on the 2-dimensional sub-
spaces of V with representatives 〈v1, v2〉, 〈v1 + v2, v2 + v3〉 and
〈v1, v1 + v2 + v3〉 respectively.

Proof. Let Q = O2(X) and Q# = {x1, x2, x3}. Then, as V is a faithful
irreducible GF(3)X-module and X acts transitively on Q# by conjuga-
tion, we have that V = CV (x1)⊕CV (x2)⊕CV (x3) and that X permutes
the subspace {CV (xi) | 1 ≤ i ≤ 3} transitively. Setting 〈vi〉 = CV (xi),
we have that (i) holds.

Obviously {〈vi〉 | 1 ≤ i ≤ 3} is an orbit of length 3 on the 1-
dimensional subspace of V . The subspaces 〈v1± v2± v3〉 form an orbit
of length 4 and the subspaces 〈vi ± vj〉 with i 6= j give an orbit of
length 6. This proves part (ii). A similar calculation provides a proof
of (iii). ¤
Lemma 2.10. Suppose that X = Alt(6) and let V be the GF(3)-
permutation module for X with standard basis {v1, . . . , v6}. Let U0 =
〈∑6

i=1 vi〉 and U = 〈vi + 2vj | 1 ≤ i, j ≤ 6〉. Set W = U/U0. Then W
is 4-dimensional and the following hold.

(i) X has three orbits on the one-dimensional subspaces of W , O1,
O2 and O3, with representatives 〈v1 +v2 +v3 +U0〉, 〈v1 +2v2 +
v3 + 2v4 + U0〉 and 〈v1 + 2v2 + U0〉 respectively. Furthermore,
|O1| = 10 and |O2| = |O3| = 15. The stabilizers of a member
of O2 and of a member of O3 are not conjugate in X.

(ii) If t is an involution in X, then dim CW (t) = 2 and CW (t)
contains two subspaces from O1 and one each from O2 and O3.
Furthermore, CX(t) ∼= Dih(8) interchanges the two members of
O1 in CW (t) and |CX(t)/CCX(t)(CW (t))| = 4.

(iii) If g ∈ X has order 4, then CW (g) = 0.
(iv) If D ∈ Syl3(X), then dim CW (D) = dim W/[W,D] = 1 and

CW (D) ∈ O1.
(v) If d ∈ X has order 3, then dim CW (d) = 2.
(vi) If D ∈ Syl3(X) and t ∈ NX(D) is an involution, then t cen-

tralizes CW (D) and W/[W,D].

Proof. This is an elementary calculation. ¤
We refer to the module appearing in Lemma 2.10 as the 4-dimensional

permutation GF(3)-module for Alt(6)–we remark that this is in fact
isomorphic to the Ω−

4 (3)-module.

Lemma 2.11. Suppose that X, W and O1 are as in Lemma 2.10 and
assume that W0 is a hyperplane of W . Then W0 contains a member of
O1.
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Proof. Let D ∈ Syl3(X). Assume that W0 contains no element from
O1. Then, as dim CW (D) = 1 by Lemma 2.10(iv), W0 does not contain
any non-trivial D-invariant subspaces. So, as dimW0 = 3, |WD

0 | = 9
and no D-conjugate of W0 contains any member of O1.

Now suppose that W1,W2,W3, W4 are distinct hyperplanes of W .
Then, by the inclusion exclusion principle, |⋃4

i=1 Wi| ≥ 63. Therefore,
using Lemma 2.10(i), 81 = |W | ≥ |⋃x∈D W x

0 |+ 2|O1| ≥ 63 + 20 = 83,
which is absurd. Thus the lemma holds. ¤
Lemma 2.12. Suppose that V is a faithful 4-dimensional GF(3)X-
module and that X contains a normal subgroup Y with Y ∼ 21+4.Alt(5).
Then X is 2-constrained, O2(X) = O2(Y ) is extraspecial of −-type and
either X = Y or X/O2(X) ∼= Sym(5).

Proof. Let Q = O2(Y ). Then Q is normalized by X. Let Z = CX(Q).
Then, as Q acts irreducibly on V and GF(3) is a splitting field for
this action, Z = Z(Q) by Schur’s Lemma [2]. It follows that Aut(Q)
contains a subgroup isomorphic to 24.Alt(5) and so Q is extraspecial
of −-type. Hence Aut(Q) ∼= 24.Sym(5) by [8, Theorems 20.8 and 20.9]
and this proves the result. ¤
Lemma 2.13. Suppose that X ∼ 21+4

− .Alt(5) is 2-constrained. Let Q =
O2(X) and T ∈ Syl3(X).

(i) If i ∈ Q is a non-central involution, then |iX | = 10 and
CX(i) ∼ (Q(8)× 2).Alt(4). In particular, CX(i)Q/Q ∼= Alt(4);
and

(ii) CQ(T ) ∼= Dih(8) and NX(T )Q/Q ∼= Sym(3).

Proof. We know that Q is the central product of Dih(8) and Q(8)
and so it is straightforward to calculate that there are 10 non-central
involutions. They are conjugate in pairs in Q and the element of order
5 in X acts fixed point freely on Q/Z(Q). It is now easy to confirm
the details stated in (i). Since elements of order 3 in X centralize a
non-central involution and since CQ(T ) is extraspecial, we get CQ(T ) ∼=
Dih(8). The second part of (ii) follows from the Frattini Argument. ¤
Lemma 2.14. Suppose that V is a faithful 4-dimensional GF(3)Y -
module and that Y ∼ 21+4

− .Alt(5). Then the following hold.

(i) For v ∈ V #, we have CY (v) ∼= SL2(3). In particular, Y oper-
ates transitively on V #.

(ii) Every element of order 2 in Y is contained in O2(Y ).

Proof. Let Q = O2(Y ), s ∈ Z(Q)# and v ∈ V ]. Then s negates v
and so CQ(v) is a subgroup of Q which does not contain s. Since Q ∼=
Dih(8) ◦ Q(8), we get that CQ(v) has order dividing 2. Hence every
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Conjugacy Classes Sp6(2) Aut(U4(2)) |CX(x)| |CY (x)| |CV (x)|
A1 2A 2C 29.32.5 25.32.5 24

A2 2B 2A 29.32 27.32 26

A3 2C 2B 29.3 26.3 24

A4 2D 2D 27.3 25.3 24

Table 1. Involutions in Aut(U4(2)) and Sp6(2)

orbit of Y on V has order divisible by 16. Since the elements of Y
of order 5 centralize only the zero vector, the orbits of Y have length
divisible by 5. As there are 80 non-zero vectors it follows that Y acts
transitively on V #, |CQ(v)| = 2 and CY (v)Q/Q ∼= Alt(4). Since Y is
perfect and is isomorphic to a subgroup of SL4(3), the 2-rank of Y is
at most 3. By considering 〈s, CY (v)〉 we see that CY (v) 6∼= 2 × Alt(4)
and therefore CY (v) is isomorphic to the unique double cover of Alt(4),
namely SL2(3). This proves (i).

Now suppose that y ∈ Y \Q has order 2. Then as y is a noncentral
involution in Y , CV (y) 6= 0. But then (i) implies y ∈ Q, a contradiction.
Hence (ii) holds. ¤

The group Sp6(2) has a unique 8-dimensional irreducible module over
GF(2) as can be seen for example in [16]. This module is usually called
the spin module for Sp6(2). On restriction to any subgroup of Sp6(2)
isomorphic Aut(U4(2)) the spin module remains irreducible and is the
unique irreducible module of dimension 8 over GF(2) for this group.
For convenience is Section 3, we shall refer to this module as the spin
module for Aut(U4(2)). The next two lemmas collect information about
the action of certain subgroups and elements of these two groups on
the spin module.

Lemma 2.15. Suppose that X ∼= Sp6(2), Y is a subgroup of X with
Y ∼= Aut(U4(2)) and V is the GF(2)X-spin module. Then the following
hold.

(i) There are four conjugacy classes A1, A2, A3 and A4 of involu-
tions in X and each of them has a representative in Y . For
each conjugacy class Ai, 1 ≤ i ≤ 4, and for x an involution in
Ai, Table 1 gives the Atlas class name for Ai in both X and
Y , |CX(x)|, |CY (x)| and |CV (x)|.

(ii) If P is a parabolic subgroup of shape 25.Sp4(2) in X, then
O2(P ) contains one involution from A1 and fifteen involutions
from each of A2 and A3. Furthermore, as a P/O2(P )-module,
O2(P ) is an indecomposable extension of the trivial module by
a natural module.
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(iii) If x ∈ A2, then 〈x〉 = Z(CX(x)) and CX(x) is a maximal
subgroup of X.

(iv) If f ∈ X has order five, then CV (f) = 0.
(v) For v ∈ V , |CY (v)| and |CX(v)| are divisible by 3.
(vi) For S ∈ Syl2(Y ), |CV (S)| = |CV/CV (S)(S)| = 2.
(vii) If S ∈ Syl2(X) and x ∈ NX(Z(S)) has order 3, then x acts

fixed point freely on V .
(viii) There are no subgroups of X of order 25 which have all non-

trivial elements in class A2.

Proof. The facts in (i) regarding involutions classes and their central-
izers in X and Y are taken from the Atlas [6, pgs. 26 and 46]–we
determine |CV (x)| later in the proof. We also immediately see that
CX(x) is a maximal subgroup of X for x ∈ A2. So (iii) holds.

Let S ∈ Syl2(X) and P1, P2 and P3 be the maximal parabolic sub-
groups of X containing S with P1 ∼ 25.Sp4(2), P2 ∼ 26.SL3(2) and
|P3| = 29.32. Then the restrictions of V to Pi, i = 1, 2, 3 are given in
[22]. In particular, we have that [V,O2(P1)] = CV (O2(P1)) has dimen-
sion 4 and, as P/O2(P1) modules, V/CV (O2(P1)) ∼= CV (O2(P1)) and
both are natural Sp4(2)-modules. Therefore, the elements of order 5 in
X act fixed point freely on V which gives (iv).

There are dihedral subgroups of X of order 10 which contain invo-
lutions from classes A1, A3 and A4. Therefore |CV (x)| = 24 for x in
any of these classes. We have that V restricted to a Levi complement
L of P1 decomposes as a direct sum of two natural modules and so the
transvections in L centralize a subspace of dimension 6 in V . These
elements are therefore in class A2. This completes the proof of (i).

Since CV (S) is normalized by P2, we calculate that Y has two orbits
on V # one of length 135 and the other of length 120. In particular (v)
holds.

Since Z = Z(S) contains elements from classes A1, A2 and A3 which
we denote by za, zb and zc respectively, NX(Z) = CX(Z) ≤ CX(zc) ≤
P1 ∩ P3 ≤ CX(za) ∩ CX(zb) ≤ CX(Z). It follows that NX(Z) 6≤ P2 and
thus the elements d of order 3 in NX(Z) have CV (d) = 0. Thus (vii)
holds.

From Table 1 we have that Z(S) ≤ O2(P1) contains elements from
each of the classes A1, A2 and A3. As P1 centralizes an element z
of Z(S) in class A1 and since P1 acts transitively on the non-trivial
elements of O2(P1)/〈z〉. The first part of (ii) holds. The final part of (ii)
is well known and can be, for example, verified by using the Chevalley
commutator formula to calculate that |[O2(P ), S]| = 24 where S ∈
Syl2(P ).
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Suppose that B is an elementary abelian subgroup of X of order 25

in which every involution is in A2. By considering the restriction of V
to P1, we see that |BO2(P1)/O2(P1)| ≤ 2. Thus B ∩ O2(P1) contains
all the A2-involutions of O2(P1) and is consequently P1 invariant. This
contradicts (ii), so proving part (viii).

We prove (vi). Let P be the parabolic subgroup of Aut(U4(2)) of
shape 24 : Sym(5), R = O2(P ) and S ∈ Syl2(P ). Then as the elements
of order 5 in P act fixed point freely on V , CV (R) = [V, R] has dimen-
sion 4. Furthermore, CV (R) is an irreducible P/R-module and from
this we obtain CV (S) = CCV (R)(S) and CCV (R)/CV (S)(S) have dimen-
sion 1. Since [S, S] ∩ R has order 23 and R contains only 5 elements
in class A2, we deduce that [S, S] contains an involution that is not in
class A2. As the preimage of CV/CV (S)(S) is centralized by [S, S], we see
that CV/CV (S)(S) = CCV (R)/CV (S)(S) and (vi) follows. ¤

Lemma 2.16. Suppose that X ∼= Sp6(2) and V is the GF(2)X-spin
module. If F ≤ X, [V, F, F ] = 0 and |V/CV (F )| ≤ |F |, then there
exists f ∈ F# which is not in class A2.

Proof. First of all we note that, as V is self-dual, |[V, F ]| = |V/CV (F )| ≤
|F |.

Assume that every non-trivial element of F is in class A2. Then
24 ≥ |F | > 2 by Lemma 2.15 (i) and (viii). If |F | = 22, then for
f1, f2 ∈ F# with f1 6= f2 we have CV (f1) = CV (f2) = CV (F ). But then
CV (F ) is invariant under 〈CX(f1), CX(f2)〉 = X as CX(f1) is a maximal
subgroup of X by Lemma 2.15(iii). Therefore |V : CV (F )| ≥ 23 and
|F | ≥ 23.

Assume that P1 is a parabolic subgroup of X of shape 25.Sp4(2)
such that F ≤ P1. Set E = F ∩ O2(P1). Suppose that |E| ≥ 23. If
|E| = 24, then E contains all the A2-elements of O2(P1) and hence is
invariant under the action of P1. This contradicts Lemma 2.15(ii) and
so we conclude that |E| = 23. Let P ≤ P1 be the parabolic subgroup
of P1 which normalizes EZ(P1). Since E contains all the A2-elements
of EZ(P1), P normalizes E. Also, since P normalizes EZ(P1), P nor-
malizes Z(S) for any S ∈ Syl2(P ). Hence P only normalizes subspaces
of even dimension by Lemma 2.15(vii). Consequently, as P normalizes
CV (E) and |CV (E)| ≤ 25, we deduce that CV (E) = CV (O2(P1)) has
order 24. Since E acts quadratically on V , [V,E] = CV (E) and thus
CV (F ) = CV (E). So |F | = 24 and hence, as |E| = 23, F 6≤ O2(P1). But
then CV (F ) < CV (E) which is a contradiction. Hence |E| ≤ 22. Be-
cause O2(P1) \ O2(P1) contains no A2-elements, we have |F | ≤ 23 and
so |F | = 23. Finally, [V, F ] ≥ [V,E]+[V, f ] for some f ∈ F \O2(P1) and
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so, as [V, f ] 6≤ [V, O2(P1)] and [V, E] ≤ [V, O2(P1)] with |[V, E]| ≥ 23,
we have |[V, F ]| > |F |, and this is our final contradiction. ¤
Lemma 2.17. Suppose that X ∼= Aut(U4(2)) and x is an involution
of X with CX(x) ∼= 2× Sym(6). Let F ∈ Syl3(CX(x)). If T ∈ Syl3(X)
and F ≤ T , then F ≤ J(T ).

Proof. Note that J(T ) is elementary abelian of order 33. If Z(T ) ≤
F , then x ∈ CX(Z(T )) ≤ X ′ by [6, pg. 26] whereas x 6∈ X ′. Thus
Z(T ) 6≤ F . Hence Z(T )F is elementary abelian of order 33 and so
Z(T )F = J(T ), and the lemma holds. ¤

3. A 2-local subgroup

As intimated in Section 1, the raison d’être for Theorem 3.1 is to
assist in uncovering the structure of an involution centralizer in a group
satisfying the hypothesis of Theorem 1.1. The main thrust of the proof
of Theorem 3.1 is to show that Q is a strongly closed 2-subgroup of T
with respect to G where T ∈ Syl2(H). Goldschmidt’s classification of
groups with a strongly closed abelian 2-subgroup [11] quickly concludes
the proof. We use the simultaneous notation for conjugacy classes in
the groups Sp6(2) and Aut(U4(2)) given in Table 1.

Theorem 3.1. Suppose that G is a finite group, Q is a subgroup of G
and H = NG(Q). Assume that the following hold

(i) H/Q ∼= Aut(U4(2)) or Sp6(2);
(ii) Q = CG(Q) is a minimal normal subgroup of H and is elemen-

tary abelian of order 28;
(iii) H controls fusion of elements of H of order 3; and
(iv) if g ∈ G \H and d ∈ H ∩Hg has order 3, then CQ(d) = 1.

Then G = HO2′(G).

Proof. Let T ∈ Syl2(H). To begin with we note that as a GF(2)H-
module, Q is isomorphic to the GF(2)H/Q spin-module (see the dis-
cussion before Lemma 2.15).

(3.1.1) Suppose that g ∈ G and y ∈ (Qg ∩ H) \ Q. Then CH(y) is a
3′-group.

Let y ∈ (Qg ∩ H) \ Q and suppose that 3 divides |CH(y)|, S ∈
Syl3(CH(y)) and x = yg−1

. Then x ∈ Q and |CH(x)| is divisible by
3 by Lemma 2.15 (v). Let P ∈ Syl3(CH(x)). If P 6∈ Syl3(CG(x)),
then NCG(x)(P ) 6≤ H and so there exists n ∈ NCG(x)(P ) \H such that
P ≤ H∩Hn. Since, for d ∈ P of order 3, x ∈ CQ(d), this contradicts as-
sumption (iv). Hence P ∈ Syl3(CG(x)) and therefore P g ∈ Syl3(CG(y)).
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Since S is a 3-subgroup of CG(y), there is an h ∈ CG(y) such that
P gh ≥ S. By assumption (iii), H controls fusion of elements of or-
der 3 in H. Hence, as each element of S is G-conjugate to an element
of P , each element of S is H-conjugate to an element of P . Now, as
x ∈ CQ(P ) and Q is normal in H, for elements of s ∈ S we have
CQ(s) 6= 1. Since S ≤ H ∩ Hgh, we then get gh ∈ H by (iv). Thus
y = xgh ∈ Qgh = Q and we have a contradiction as y 6∈ Q. Therefore,
3 does not divide |CH(y)| as claimed. ♠

(3.1.2) Let g ∈ G and suppose y ∈ (Qg ∩ H) \ Q. Then yQ is an
A2-involution in H/Q and CH(y)Q ∈ Syl2(H).

If yQ is not in the A2-class of H/Q, then, by Lemma 2.15(i), CQ(y) =
[Q, y] and so Lemma 2.7 gives CH(y)Q/Q = CH/Q(y). Thus CH(y) is
not a 3′-group by Lemma 2.15(i) again, and this is contrary to (3.1.1).
Hence yQ is in the A2-class of H/Q. From Lemmas 2.15(i) and 2.7 we
have |CQ(y)/[Q, y]| = 24 and |CH/Q(yQ)|3 = 32. Since |CH(y)| is not
divisible by 3 by (3.1.1), CH(y) must have an orbit of length divisi-
ble by 32 and hence of length exactly 32 on CQ(y)/[Q, y]. It follows
that |CH(y)| = 215 if H/Q ∼= Sp6(2) and 213 if H/Q ∼= Aut(U4(2)).
Therefore, as |Q : CQ(y)| = 22, CH(y)Q ∈ Syl2(H). So (3.1.2) holds.♠

We note that (3.1.2) applies equally well to show that involutions in
(Q ∩Hg)Qg/Qg are in the A2-class of Hg/Qg.

(3.1.3) Q is weakly closed in H with respect to G. In particular, T ∈
Syl2(G).

Suppose that (3.1.3) is false. Then, by Lemma 2.6, there exists g ∈
G\H such that Qg and Q normalize each other. Hence we may assume
that |Q : CQ(Qg)| ≤ |QgQ/Q|. By (3.1.2) the non-trivial elements of
QgQ/Q are all in H/Q class A2. These two facts together contradict
Lemma 2.16. Therefore Q is weakly closed in H with respect to G and
Syl2(H) ⊆ Syl2(G). ♠

Aiming for a contradiction we now suppose that Q is not strongly
closed in T with respect to G.

(3.1.4) We can select g ∈ G and y ∈ (Qg∩H)\Q so that CH(y) ≤ Hg.

Since Q is not strongly closed in T (≤ H), there exists g ∈ G and
y ∈ (Qg ∩H) \Q. Clearly Qg ≤ CG(y), and so we may select a Sylow
2-subgroup T1 of CG(y) such that T1 contains Qg. Since CH(y) is a
2-group by (3.1.2), there exists a Sylow 2-subgroup T2 of CG(y) which

contains CH(y). Thus there is an f ∈ CG(y) such that T f
1 = T2. Because
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Q is weakly closed in H and Qgf ≤ T2, CH(y) ≤ T2 ≤ NG(Qgf ) = Hgf .
Since f ∈ CG(y), y ∈ (Qgf ∩H) \Q. Thus we may replace g by gf and
we have proved (3.1.4). ♠

Choosing g and y as in (3.1.4), we set W = CH(y)Qg.

(3.1.5) There exists a Sylow 2-subgroup T0 of Hg which normalizes
Q ∩Qg and contains W . Furthermore, |T0 : W | ≤ 2.

Since CH(y)Q ∈ Syl2(H) by (3.1.2), and CH(y)Q normalizes Q∩Qg

by (3.1.4), NH(Q ∩ Qg) contains a Sylow 2-subgroup of G by (3.1.3).
Since W normalizes Q ∩ Qg, there is a T0 ∈ Syl2(NG(Q ∩ Qg)) with
T0 ≥ W . Therefore, as Qg is weakly closed in W , T0 ≤ Hg. Since
|Q : CQ(y)| = 4, we have |T0 : W | ≤ 4 by (3.1.2). If |T0 : W | = 4, then
we must have Qg ≤ CH(y) which contradicts Q being weakly closed in
H and Q 6= Qg. Hence |T0 : W | ≤ 2. ♠

Let Z2(T0) be the second centre of T0 where T0 is as in (3.1.5). Then,
as |Z2(T0)| = 4 by Lemma 2.15(vi) and Q ∩ Qg is normal in T0, we
either have |Q ∩ Qg| ≤ 2, or Z2(T0) ≤ Q ∩ Qg. Since |T0 : W | ≤ 2,
CQg(W ) ≤ Z2(T0). From y ∈ CQg(W ) ≤ Z2(T0) and y 6∈ Q, we must
have |Q∩Qg| ≤ 2. Since yQ is in H/Q class A2, we have |CQ(y)| = 26.
Hence |CQ(y)Qg/Qg| = |CQ(y) : Q ∩ Qg| ≥ 25 and, by (3.1.2), all the
involutions of CQ(y)Qg/Qg are in Hg/Qg class A2, which contradicts
Lemma 2.15 (viii). We have therefore shown that Q is strongly closed
in T with respect to G.

Set M = 〈QG〉. If M 6= QO2′(G), then |M : Q| is even and hence we
have T ∩M > Q by (3.1.3). But then 〈(T ∩M)H〉 has index at most 2
in H and is contained in M . Finally, applying Goldschmidt’s Theorem
[11], we see that the possible composition factors of M/O2′,2(M) do not
involve either U4(2) or Sp6(2). Thus M = QO2′(G) and the Frattini
Argument completes the proof of the theorem. ¤

4. Part of the 3-local structure

Having now gathered together our prerequisite results, we are ready
to begin the proof of Theorem 1.1. Thus for the remainder of this
article we assume that G is a finite group with S a Sylow 3-subgroup
of G and Z = Z(S). Additionally, we assume that Z is not weakly
closed in S with respect to G and CG(Z) has shape 31+4.21+4.Alt(5)
as described in the hypothesis of Theorem 1.1. We set L = NG(Z),
L∗ = CG(Z), Q = O3(L) and let P ∈ Syl2(O3,2(L∗)). So P and Q
are extraspecial of order 25 and 35 respectively and O3,2(L∗) = PQ.
Furthermore, O3(L∗) = Q. Let 〈u〉 = Z(P ) and U = CL(u).
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We begin by fleshing out the structure and embeddings of these
groups. In the next proof we use the fact that Sp4(3) contains no sub-
group isomorphic to Alt(5). This is easy to see as the 2-rank of both
Sp4(3) and Alt(5) is 2 whereas Alt(5) has no non-trivial central ele-
ments.

Lemma 4.1. (i) Z = Z(Q) has order 3.
(ii) L∗ and L are 3-constrained.
(iii) L∗/Q is 2-constrained, acts irreducibly on Q/Z and P ∼= 21+4

− .
(iv) Q is extraspecial of +-type.

Proof. From the given structure of L∗, we have Z ≤ Q and so, as Q is
extraspecial, Z = Z(Q) has order 3. This is (i).

Suppose that CL(Q) 6≤ Q. Then CL(Q)Q/Q is a non-trivial normal
subgroup of L∗/Q. Let D ∈ Syl3(CL(Q)). Then |D| ≤ 9 and hence is
abelian. If D > Z, then DQ = S and hence D ≤ Z(S) = Z which
is a contradiction. Thus D = Z ≤ Q by (i). The assumed structure
of L∗ now indicates that CL(Q) ≤ QP . In particular, L∗/CL(Q) has
a composition factor isomorphic to Alt(5). As Q is extraspecial, the
commutator map defines a symplectic form on Q/Z and so Out(Q)
is isomorphic to a subgroup of GSp4(3). Since Sp4(3) has no sub-
groups isomorphic to Alt(5), CL(Q) < QP . If CL(Q)Q = 〈u〉Q, then
PCL(Q)Q/Q has 2-rank 4, contrary to the 2-rank of Sp4(3) being 2.
Thus 〈u〉Q/Q < CL(Q)Q/Q < PQ/Q. In this case, CL∗/Q(PQ/Q)
must contain a component L1 isomorphic to Alt(5) or SL2(5). The for-
mer case being impossible, we get L1

∼= SL2(5). Since L1 ∩ PQ/Q is
normal of order 2 we deduce that L1 ≥ 〈u〉Q/Q, and once again we
have L1CL(Q)Q/Q ∼= Alt(5) which is our final contradiction. Hence
CL(Q) = Z and (ii) holds.

Part (iii) follows from Lemma 2.12, since L∗/Q acts faithfully on
Q/Z and PQ/Q is extraspecial.

Finally (iv) is a consequence of (iii) and [23, Lemma 2.8]. ¤
Lemma 4.2. Suppose that s is an involution of L∗ with sQ 6= uQ.
Then the following hold.

(i) s ∈ PQ.
(ii) CL∗(s)PQ/PQ ∼= Alt(4).
(iii) Q = CQ(s)[Q, s], [CQ(s), [Q, s]] = 1 and CQ(s) ∼= [Q, s] ∼= 31+2

+ .
(iv) CPQ(s) ∼ 31+2

+ .(Q(8)× 2).

Proof. Part (i) follows from Lemma 2.14(ii) and part (ii) comes from
Lemma 2.13 (i).

Let s ∈ PQ be an involution with sQ 6= uQ. Then Q = CQ(s)[Q, s]
and the Three Subgroup Lemma shows that [CQ(s), [Q, s]] = 1. Thus,
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as sQ 6= uQ, [Q, s] < Q and so, as s does not centralize Q, we deduce
that CQ(s) ∼= [Q, s] ∼= 31+2

+ from Lemma 4.1(iv).
Part (iv) follows from Lemma 2.13 (i) and part (iii). ¤

Lemma 4.3. Suppose that s is an involution of L∗ with sQ 6= uQ.
Then the following hold.

(i) [O2(CL∗(s)), O3(CL∗(s))] = 1.
(ii) O2(CL∗(s)) = O3′(CL∗(s))

∼= Q(8).
(iii) CL∗(s)/O2(CL∗(s)) ∼ 31+2

+ .SL2(3) is isomorphic to the central-
izer of a non-trivial 3-central element in PSp4(3).

(iv) If b ∈ CL∗(s) has order 3 and b 6∈ Q, then CO3′ (CL∗ (s))(b) = 〈s〉.
Proof. Part (i) is trivial (and is included as it illuminates the struc-
ture of CL∗(s)). Set Y = CL∗(s), W = CQ(s) = Q ∩ Y and select an
involution of Qu which centralizes s and, for convenience, call it u.
Then, by Lemma 4.2 (iv), W ∼= 31+2

+ . Therefore Y/CY (W ) embeds into
Aut(31+2

+ ) ∼ 32.GL2(3). As W is extraspecial, WCY (W )/CY (W ) ∼= 32.
Let X = CY (W ). Since (QP ∩ Y )Q/Q ∼= Q(8)× 2 by Lemma 4.2 (iv)
and since u inverts W/Z, CQP∩Y (W ) = CW (W )〈s〉 = Z〈s〉. Hence, as
X is normal in Y , we have

[X, CQP (s)] ≤ X ∩ CQP (s) = Z〈s〉.
As the elements of order 3 in Y \W act non-trivially on (PQ∩Y )Q/Q,
we get X ≤ CFQ(s) where F ∈ Syl2(Y ). Additionally, as Y/Q is 2-
closed, we have Y/CY (W ) ∼ 32.SL2(3) and CY (W ) has order 23.3. It
follows that |O2(Y )| = 23. Noting that O2(Y ) and u are in a common
Sylow 2-subgroup of Y , [Q, s] = CQ(su) and that O2(Y ) acts faithfully
on [Q, s] by the 3-constraint of L∗, by applying the above conclusions
to the involution su we obtain O2(Y ) ∼= Q(8). As O2(Y ) = O3′(Y ), (ii)
holds.

Now we have Y/O2(Y ) ∼ 31+2
+ .SL2(3) and, of course, O2(Y/O2(Y )) =

1. Now CL∗(u)/O2(CL∗(u)) has shape 3.Alt(5) and hence is isomorphic
to 3 × Alt(5) as the Schur multiplier of Alt(5) has order 2. Hence
CL∗(u) has elementary abelian Sylow 3-subgroups. It follows that the
Sylow 3-subgroups of CY/O2(Y )(uO2(Y )) are elementary abelian. So,
using Lemma 2.4 the conclusion in (iii) holds.

Finally assume we are given b ∈ Y \ Q of order 3. If b centralizes
[Q, s]/Z, then, as L∗ is 3-constrained,

|[Q, b]Z/Z| = |[CQ(s)[Q, s], b]Z/Z| = |[CQ(s), b]Z/Z| = 3.

Select an L∗-conjugate b∗ such that bb∗ has order divisible by 5. Then
|[Q, bb∗]Z/Z| = 9, but elements of order 5 which act faithfully on Q/Z
in fact act fixed point freely on Q/Z and so we have a contradiction. It
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follows that b does not centralize [Q, s]/Z. Hence O2(Y )〈b〉 acts faith-
fully on [Q, s] and so O2(Y )〈b〉 ∼= SL2(3). Therefore CO2(Y )(b) = 〈s〉 as
claimed in (iv). ¤

Another, less precise, way of recording Lemma 4.3 is to say that
CL∗(s) has shape (31+2

+ ×Q(8)).SL2(3).

Lemma 4.4. CQ/Z(S) = [Q/Z, S] has order 32 and [Q,S] is elementary
abelian of order 33.

Proof. Since L∗/Q ∼ 21+4
− .Alt(5), Lemma 4.2 (ii) implies that there

is an involution s ∈ PQ which centralizes S/Q. Hence S normalizes
Q1 = CQ(s) and Q2 = [Q, s]. Thus, by Lemma 4.2(iii), CQ/Z(S) =
CQ1/Z(S)CQ2/Z(S). By Lemma 2.13 (ii), sQ and suQ are conjugate in
NPQ/Q(S/Q) ∼= Dih(8) by an element fQ say. Since u inverts Q/Z by

Lemma 4.1(iii), we get that Qf
1 = Q2. Thus |CQ1/Z(S)| = |CQ2/Z(S)|.

Therefore, as L∗ is 3-constrained by Lemma 4.1 (ii), |CQ/Z(S)| = 32.
Since, for i = 1, 2, [Qi/Z, S] ≤ CQi/Z(S), we get that CQ/Z(S) =
[Q/Z, S] has order 32 as claimed. The Three Subgroup Lemma and
Q being of exponent 3 shows that [Q,S] is elementary abelian. Finally,
noting that Z ≤ [Q,S] we have the lemma. ¤

We now put J = CS([Q,S]), and start the investigation of the 3-local
subgroup M = NG(J). Set M∗ = O3′(M).

Lemma 4.5. The following hold.

(i) J = J(S) is elementary abelian of order 34.
(ii) Z is weakly closed in Q with respect to G.
(iii) If g ∈ G and Zg ≤ S, then Zg ≤ J .

Proof. Let s ∈ PQ be an involution such that sQ 6= uQ. Set Q1 =
CQ(s) and Q2 = [Q, s]. Then we proceed exactly as in [21, Lemmas 13
and 15] first to show that [S, S, S] ≤ Z and then to find that J = J(S)
is abelian of order 34 (but not necessarily elementary abelian). Arguing
as in the proof of [21, Lemma 16], we get that Z is weakly closed in Q.
So (ii) holds.

Suppose that X = Zg ≤ S and X 6= Z. Then X 6≤ Q by (ii).
Assume that [Q,S]X is non-abelian. Since [[Q,S]X, Q] ≤ [Q,S] and
X ≤ [Q,S]X, S = QX normalizes [Q,S]X. Similarly, [[Q,S], X] ≤
[[Q,S], S] ≤ Z by Lemma 4.4, and so [Q, S]X normalizes ZX. Let
F = NS(ZX). Then, as S = QX, F = (F∩Q)[Q,S]X and [F∩Q,X] ≤
ZX∩Q = Z. Therefore, applying Lemma 4.4, (F ∩Q)/Z ≤ CQ/Z(X) =
CQ/Z(S) = [Q,S]/Z and so F = [Q,S]X. Note that, as [Q,S] does not
centralize X, ZX contains three [Q, S]-conjugates of X. Hence every
non-trivial element of XZ is conjugate to an element of Z. Since S
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normalizes [Q,S]X = NS(ZX) and Z, there are nine S-conjugates of
ZX contained in [Q,S]X and these conjugates pairwise intersect in Z.
Thus [Q,S]X contains at least 9.3 + 1 = 28 conjugates of Z. On the
other hand, Z is the only conjugate of Z contained in [Q,S] by (ii).
Hence [Q, S] contains twelve groups of order 3 which are not conjugate
to Z. Since this accounts for all the subgroups of order 3 in [Q,S]X, we
deduce that all the subgroups of [Q,S]X which have order 3 and are
not conjugate to Z are contained in [Q,S]. Now consider C[Q,S]X(X).
Since |[Q,S]X| = 34 and [[Q,S], X] = Z, |C[Q,S]X(X)| = 33. Therefore,
setting D = C[Q,S]X(X) ∩Qg (recall X = Zg), we have |D| ≥ 32. Since
X is weakly closed in Qg by (ii), X is the unique conjugate of Z in D.
Therefore every element of D which is not in X is in fact in [Q,S] and
so

X ≤ D = 〈d | d ∈ D \X〉 ≤ [Q,S]

and we have a contradiction. Thus [X, [Q,S]] = 1 and so X ≤ J by the
definition of J and hence (iii) holds.

Since Z is not weakly closed in S with respect to G, there exists a
conjugate X = Zg ∈ S with X 6= Z. By (iii), X ≤ J and by (ii) X 6≤ Q.
Since [Q,S] = CQ([Q,S]), we conclude that J = [Q,S]X is elementary
abelian of order 34. Since the 3-rank of Q is 3, we now have that the
3-rank of S is 4 as |S : Q| = 3. Assume that B is an abelian subgroup
of S of order 34 and that B 6= J . If BJ = S, then Z = Z(S) ≥ J ∩ B
which has order 9, a contradiction. Thus |BJ | = 35 and |B ∩ J | = 33.
If B ∩ J ≤ Q, then B ∩ J ≤ Q ∩ J = [Q,S]. Since |[Q, S]| = 33,
this gives [Q,S] ≤ B which implies that B ≤ CS([Q,S]) = J , another
contradiction. Thus B ∩ J 6≤ Q. If x ∈ (B ∩ J) \Q, then x centralizes
BJ ∩Q which has order 34. But then

(BJ ∩Q)/Z ≤ CQ/Z(x) = CQ/Z(S) = [Q,S]/Z,

and so we conclude that no such B exists. Thus J is the unique abelian
subgroup of S of maximal order and so J = J(S). Thus (i) is true. ¤
Lemma 4.6. The following hold:

(i) S = QJ ;
(ii) L ∩M = NG(S).
(iii) CG(J) = CG([Q,S]) = J .

Proof. Since J ∩Q is elementary abelian of order 33, we have that S =
QJ , giving (i). Also NG(S) normalizes Z(S) = Z(Q) and J = J(S).
Hence NG(S) ≤ L ∩M . Since L ∩M normalizes S = QJ , (ii) holds.

From Z ≤ [Q,S], CG([Q,S]) ≤ L∗ and so, by Lemma 2.8, CG([Q,S])
is a 3-group. Since CG([Q,S]) ∩Q = [Q,S], we have |CG([Q,S])| ≤ 34

and hence CG([Q,S]) = J as claimed. ¤
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Lemma 4.7. (i) There are exactly ten G-conjugates of Z in J .
(ii) |L/L∗| = 2, L ∼ 31+4

+ .21+4
− .Sym(5).

(iii) M/O3,2(M) ∼= Aut(Alt(6)), M∗/J ∼= Alt(6) and |Z(M/J)| =
|O3,2(M)/J | = 2.

Proof. Since Z is not weakly closed in S, Lemma 4.5 (ii) and (iii) imply
that there exists g ∈ G such that X = Zg ≤ J and X 6= Z. Since J
is abelian, J centralizes ZX and, as in the proof of Lemma 4.5(iii),
NS(ZX) = [Q,S]X = J . Thus there are nine S-conjugates of X in J .
This shows that the number of G-conjugates of Z in J is congruent to
1 modulo 9. Since, by Lemmas 2.5 and 4.5 (i), M controls G-fusion in
J , all the G-conjugates of Z in J are conjugate in M . Because there
is a unique conjugate of Z in J ∩Q by Lemma 4.5(ii), we deduce that
|ZM | ≤ 28. Since M/J acts faithfully on J by Lemma 4.6 (ii), we
have that M/J is isomorphic to a subgroup of GL4(3). Now |GL4(3)|
is not divisible by either 7 or 19 and so there is no choice other than
|ZM | = 10. Hence (i) holds.

Since J is characteristic in S, NL∗(S) ≤ M . Thus, as XS = ZM \{Z}
and NL∗(S) normalizes Z, NNL∗ (S)(X)S = NL∗(S). In particular, X is
normalized by a Sylow 2-subgroup T of NL∗(S). Since XQP/QP is
inverted in L∗/QP , we must have that X is inverted by an element in
T . Hence L > L∗ and now (ii) follows from Lemma 2.12.

From (ii) we have |NL(S)/J | = 25.32. Therefore |M/J | = 26.32.5 by
(i). Furthermore, M acts two transitively on ZM which has order 10.
Since S/J = QJ/J has order 9 and is elementary abelian, we see that
CNL(S)/J(S/J) contains an involution i. Because S acts transitively on
ZM \ {Z} we see that i normalizes every subgroup in ZM and fur-
thermore it either centralizes all or inverts all of the subgroups in XS.
Since J is self-centralizing we infer that i inverts every element of J .
In particular, i ∈ Z(M/J). Since M has order divisible by 5, M acts
irreducibly on J . From CJ(S) = Z, we conclude that the splitting field
for the action of M on J is GF(3). Therefore, |Z(M/J)| = 2 by Schur’s
Lemma. Let N be the kernel of the action of M on ZM . Assume that
N > 〈i〉J and choose n ∈ N \〈i〉J . If n centralizes every element of ZM

or inverts every element of ZM , then n ∈ CG(J)〈i〉 = J〈i〉 which is not
the case. Thus n inverts some element in ZM which, as 〈i〉J E N , we
may without loss take to be Z and centralizes some element X ∈ ZM .
From S = QX, we see that n normalizes S and then obtain that n cen-
tralizes all the members of ZM \ {Z}. Since 〈ZM \ {Z}〉 is normalized
by S, Z ≤ 〈ZM \ {Z}〉 and so n centralizes Z, which is a contradic-
tion. Thus N = J〈i〉. Using [5, Theorem XIII and Corollary, page 202]
(Burnside says that this result is in fact due to Galois and is contained
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in his final letter of May 29th 1832), we get that M/N is an almost
non-abelian simple group. It follows that M/N ∼= Aut(Alt(6)) and that
N = O3,2(M). If O2(M/J) ∼= 2.Alt(6) ∼= SL2(9), then, as a Sylow 2-
subgroup of the normalizer of a Sylow 3-subgroup in Aut(Alt(6)) is
isomorphic to SDih(16), we infer that NL(S) has exponent 16. On the
other hand, using (ii) it is straight forward to see that NL(S) has no
elements of order 16. Therefore, M∗/J = O3′(M/J) ∼= Alt(6). ¤

Define M0 = M∗O3,2(M) and let t ∈ NP (S) be an involution with
t 6= u. Finally set M1 = 〈t〉M0 and B = [J, t].

Lemma 4.8. CS(t) ∈ Syl3(CL∗(t)).

Proof. This follows directly from Lemma 4.3(iii).
¤

Lemma 4.9. B has order 3 and |CJ(t)| = 33.

Proof. From the choice of t, we have that B = [J, t] ≤ J ∩Q = [Q,S].
Since t ∈ L∗, t centralizes Z and so |B| ≤ 9. If |B| = 9, then [Q,S] =
[[Q,S], u]Z = BZ and so [[Q,S], ut] ≤ Z. Since ut centralizes Z and
J/[Q, S], we reason that ut centralizes J and, because CJ(J) = J by
Lemma 4.6 (iii), this means that u = t contrary to the choice of t. Thus
|B| = 3 and |CJ(t)| = 33 as claimed. ¤
Lemma 4.10. M1/J ∼= 2× Sym(6).

Proof. From Lemma 4.7(iii), we have that M0/J ∼= 2 × Alt(6). Note
that in its action on J , as M∗ is perfect and O3,2(M) inverts J , every
element of M0 has determinant 1. Since, by Lemma 4.9, |B| = 3, we see
that t has determinant −1 as an operator on J and so t 6∈ M0. Again
using Lemma 4.7, we have NM(S)/O3,2(M)S ∼= SDih(16). Thus, as t is
an involution, we deduce that 〈t〉NM0(S)/O3,2(M)S ∼= Dih(8). Hence
〈t〉M0/O3,2(M) ∼= Sym(6). Since t is an involution and M0/O3,2(M)
contains normal subgroup isomorphic to Alt(6), we finally infer that
M1/J ∼= 2× Sym(6). ¤
Lemma 4.11. J is the 4-dimensional permutation GF(3)-module for
M∗/J .

Proof. The proof of (i) is identical to the proof presented in [26, Lemma
5.4]. ¤
Lemma 4.12. M has two orbits on the subgroups of J of order 3.
One is ZM and has length 10 and the other is BM and has length 30.
Furthermore, NM(Z)/J ∼ (2× 32).SDih(16) and NM(B)/J ∼= 2× 2×
Sym(4).
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Proof. We have seen in Lemmas 4.6 (ii) and 4.7 that |ZM | = 10 and
NM(Z) = NG(Z) = L∩M . The structure of NM(Z)/J can be extracted
from Lemma 4.7 (ii).

Suppose that X is a subgroup of J of order 3 which is not in ZM .
Then X is not 3-central and, as the elements of order 5 in M act
fixed point freely on J and Aut(Alt(6)) has no subgroups of index 15,
we have that |XM | = 30, as claimed. Furthermore, in Aut(Alt(6)), the
subgroup of index 30 is contained in Sym(6). Thus Lemma 4.10 implies
that NM(X)/J ∼= 2× 2×Sym(4). Finally we note that B ≤ J ∩Q and
B 6= Z and so BM = XM by Lemma 4.5(ii). ¤
Corollary 4.13. NM(B) has two orbits on ZM .

Proof. We have that |ZM | = |ZM∗| = 10. Since M∗/J ∼= Alt(6) and
Alt(6) has a unique transitive permutation representation of degree 10,
calculation in this permutation representation yields the statement. ¤

5. The centralizer of B

In this brief section we uncover the structure of CG(B). We maintain
the notation of the previous section. So t ∈ NP (S) is an involution with
t 6= u and B = [J, t].

Lemma 5.1. IL∗(J, 3′) = {1}.
Proof. Suppose that R ∈ IL∗(J, 3′). Then, as R is normalized by J
and normalizes Q, R centralizes Q ∩ J = [Q,S]. Hence R ≤ J by
Lemma 4.6 (iii) and so R = 1. ¤

We now extend the scope of the last lemma to the whole of G.

Lemma 5.2. IG(J, 3′) = {1}.
Proof. Suppose that R ∈ IG(J, 3′). Then R = 〈CR(H) | |J : H| = 3〉.
By Lemmas 2.11, 4.11 and 4.12, each H with |J : H| = 3 contains a
M -conjugate of Z. Thus

R = 〈CR(Y ) | Y ≤ J and Y is M -conjugate of Z〉.
Since, for each Y ∈ ZM , CR(Y ) ∈ ICG(Y )(J, 3′), Lemma 5.1, implies
that CR(Y ) = 1. Thus R = 1 and the lemma holds. ¤
Lemma 5.3. We have that CL∗(B)/B is isomorphic to the centralizer
of a non-trivial 3-central element in PSp4(3). Furthermore, CL(B)/B
inverts ZB/B.

Proof. Since Q is extraspecial of exponent 3, we have CQ(B) ∼= 3×31+2
+ .

From Lemma 2.14 (i), we have that CL∗(B)Q/Q ∼= SL2(3). Thus
CL∗(B)/B ∼ 31+2

+ .SL2(3). Let U = O2(CL∗(B)). Then [CQ(U), U,Q] =
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[Q,CQ(U), U ] = 1 and hence the Three Subgroup Lemma implies that
CQ(U) and [Q,U ] commute. If U > 1, then Q ≥ CQ(U) ≥ CQ(B).
Thus |Q : CQ(U)| ≤ 3 and hence |[Q,U ]| ≤ 9. In particular, [Q,U ] is
abelian. Since Q = CQ(U)[Q,U ] with CQ(U) and [Q,U ] commuting,
we have [Q,U ] ≤ Z which means that U centralizes Q and contra-
dicts Lemma 4.1(ii). Therefore U = 1. Since J ≤ CL∗(B) and J/B
is elementary abelian of order 33, CL∗(B)/B satisfies the hypothesis
of Lemma 2.3 and so CL∗(B)/B is isomorphic to the centralizer of a
non-trivial 3-central element in PSp4(3).

By Lemma 2.14 (i), L∗ acts transitively on (Q/Z)# and so, as Q
is extraspecial, L∗ acts transitively on Q \ Z. Consequently CL(B) >
CL∗(B) and so ZB/B is inverted by CL(B). ¤

Lemma 5.4. We have CG(B) ∼= 3× Aut(U4(2)), NG(B) ∼= Sym(3)×
Aut(U4(2)) and t centralizes O3(CG(B)).

Proof. Lemmas 5.2 and 5.3 imply that CG(B)/B satisfies the hypothe-
ses of Theorem 2.2. Furthermore by Lemma 4.12, NM(B) ∼ 34.(2×2×
Sym(4)) which is not a subgroup of L. Therefore CG(B) 6= CL(B) and
hence Theorem 2.2 gives CG(B)/B ∼= Aut(U4(2)) or Sp6(2). Set E =
O3(CG(B)). Then as Out(Sp6(2)) = Out(Aut(U4(2)) = 1 and the Schur
multipliers of Sp6(2) and U4(2) have trivial 3-part, E ∼= Aut(U4(2)) or
Sp6(2) and, as t inverts B, NG(B) ∼= Sym(3) × E. Since t centralizes
E ∩ J which is elementary abelian of order 33 and since this subgroup
is self-centralizing in E, we infer that B〈t〉 = CNG(B)(E) ∼= Sym(3).
Thus the lemma will be proved once we have eliminated the possibility
that E ∼= Sp6(2).

Suppose that E ∼= Sp6(2). Then E contains a subgroup F with
F ∼= Sp2(2) × Sp4(2) ∼= Sym(3) × Sym(6). Since there is a unique
conjugacy class of elementary abelian subgroups of order 27 in Sp6(2),
we may choose F so that J ∩ E ∈ Syl3(F ). Note that t centralizes F .
Let R1 ∈ Syl2(N〈t〉F (J ∩ E)). Then R1

∼= 2 × 2 × Dih(8) ≤ NF (J)
and R1 contains t which inverts B. Let x ∈ R′

1. Then x ≤ F ′′ ∼=
Alt(6) and x inverts J ∩ F ′′ and centralizes O3(F )B. On the other
hand, by Lemma 4.10, R1 ≤ M1 ∼ 34.(2 × Sym(6)) and so R′

1 ≤ M∗.
But then CJ(x) contains 3-central elements of G by 2.10 (ii). Hence
O3(F )B contains a 3-central element of G, say e. However this means
that Alt(6) ∼= F ′′ ≤ CG(e) ∼ 31+4

+ .21+4
− .Alt(5), which is absurd. Hence

E 6∼= Sp6(2) and the lemma is proven. ¤

Now set E = O3(CG(B)), EL = E ∩ L and EM = E ∩M .

Lemma 5.5. EL ∼ 31+2
+ .GL2(3) and EM = NE(JK) ∼ 33.(2×Sym(4)).
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Proof. We have that E = CG(〈t, B〉) and so Z and JK are contained
in E. That Z is a 3-central subgroup of E follows from Lemma 5.3.
Hence EL ∼ 31+2

+ .GL2(3) by [6, pg. 26]. Since a Sylow 3-subgroup of
E contains a unique elementary abelian subgroup of order 27, we read
that EM = NE(JK) ∼ 33.(2× Sym(4)) from [6, pg. 26]. ¤

6. The centralizer of t

We now start our investigation of the centralizer of the involution
t. We set K = CG(t). By Lemma 5.4, K contains E = O3(CG(B)) ∼=
Aut(U4(2)). Our first lemma asserts that we already see the Sylow
3-subgroup of K in CL(t).

Lemma 6.1. CS(t) is a Sylow 3-subgroup of K. In particular, |K|3 =
34 and E contains a Sylow 3-subgroup of K.

Proof. Let F = CS(t). Then Lemmas 4.3(iii) and 4.8 imply that Z(F ) =
Z and F ∈ Syl3(CL(t)). If F1 ∈ Syl3(K) and F ≤ F1, then NF1(F ) nor-
malizes Z and is consequently contained in L. Thus NF1(F ) = F and
so F = F1. ¤
Lemma 6.2. The involutions t and u are not G-conjugate and u ∈ M∗.

Proof. Choose an element s of order 2 in NM∗(S). Then s inverts S/J .
Using Lemma 2.10(ii) and (vi) we see that s centralizes J/(J ∩ Q)
and Z, and inverts (Q ∩ J)/Z. Since s normalizes Q by Lemma 4.6
(ii), we deduce that 〈s〉Q = 〈u〉Q. In particular, u ∈ M∗ and so we
have that CS(u) = CJ(u) contains exactly two 3-central subgroups by
Lemma 2.10(ii). Let F = CS(u). Suppose that F1 ∈ Syl3(CG(u)) with
F ≤ F1. If F1 > F , then |ZNF1

(F )| = 3 which is not the case. Thus
F1 = F has order 9 and consequently, using Lemma 6.1, we see that t
and u are not G-conjugate. ¤
Lemma 6.3. Suppose that x is an involution of M with |CJ(x)| = 33.
Then x is M-conjugate to t.

Proof. Note that, as |CJ(x)| = 33, [J, x] is cyclic of order 3. Suppose
that [J, x] is 3-central. Then, by Lemma 4.12, we may without loss
suppose that [J, x] = Z and so, as x inverts [J, x], x ∈ L \ L∗. Be-
cause x centralizes J/Z, we have that J/Z preserves the decomposi-
tion of Q/Z = CQ/Z(x) × [Q/Z, x]. Since CQ/Z(x) ≥ (J ∩ Q)/Z, we
have [[Q, x], J ]Z/Z ≤ (J ∩Q)/Z ∩ [Q/Z, x] ≤ CQ/Z(x) ∩ [Q/Z, x] = 1.
Thus J centralizes Q/Z which means that [J,Q] ≤ Z and contradicts
Lemma 4.1(ii). Thus we infer that [J, x] is not 3-central. Therefore by
Lemma 4.12 we may conjugate x in M so that [J, x] = B = [J, t]. Since
x and t are involutions, xt centralizes B. But then xt centralizes J and
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Lemma 4.6 (iii) implies that xt ∈ J . Therefore x and t are J-conjugate.
Thus, in particular, x and t are M -conjugate. ¤

Set JK = J ∩K.

Lemma 6.4. We have that

(i) JK = J(CS(t));
(ii) NG(JK) ≤ M ;
(iii) CG(JK) = J〈t〉;
(iv) NK(JK)/CK(JK) ∼= 2× Sym(4); and
(v) NK(JK) ≤ 〈t〉E

Proof. Since CS(t) is isomorphic to a Sylow 3-subgroup of PSp4(3) by
Lemma 4.3(iii), (i) holds.

Let Y = NG(JK). Then Y normalizes CY (JK) which contains J .
Hence the Frattini Argument implies that Y = NY (J)CY (JK). Since
Z ≤ JK , CG(JK) ≤ L∗. Because JK centralizes t, JK 6≤ Q and so
CG(JK) ≤ NL∗(S) is 3-closed. It follows that CY (JK) normalizes J =
J(S). So (ii) holds.

Combining Lemma 5.4 with information about subgroups of Aut(U4(2))
given in the Atlas [6], we have NNG(B)(JK) ∼ Sym(3) × 33.(2 ×
Sym(4)). Since NG(JK) ≤ NM(B), parts (iii), (iv) and (v) now fol-
low from Lemma 4.12. ¤
Lemma 6.5. K contains a subgroup isomorphic to Sym(3)× Sym(6).

Proof. Let t1 ∈ E be such that CE(t1) ∼= 2 × Sym(6). Then CG(t1) ≥
B〈t〉 ×CE(t1) ∼= Sym(3)× 2× Sym(6) and so it suffices to show that t
and t1 are G-conjugate.

We make our initial choice of t1 so that there exists F ∈ Syl3(CE(t1))
such that F ≤ CS(B). Then by Lemma 2.17 F is contained in the
Thompson subgroup of S ∩ E which is JK . Hence BF ≤ J .

Since BF is a maximal subgroup of J , BF contains a conjugate of Z
by Lemma 2.11. Conjugating by a suitable element of M we may then
suppose that Z ≤ BF ≤ J and t1 centralizes BF . Thus we may view
the entire configuration in L∗. If t1 ∈ QP , then either t1 is conjugate
to u or t1 is conjugate to t. Since |CL∗(u)|3 = 32, we have that t1 is
conjugate to t in this case and are done. In the case when t1 ∈ L∗ \QP
we have CL∗/QP (t1QP ) is a 2-group. As BF is centralized by t1 we infer
that BF ≤ QP and so BF = Q∩ J . Therefore [[Q, 〈J, J t1〉], 〈J, J t1〉] ≤
[BF, 〈J, J t1〉] = 1. Hence 〈J, J t1〉 is a 3-group. Since J is the Thompson
subgroup of any 3-group containing it, J = J t1 . Finally, we deduce that
t and t1 are conjugate in M by Lemma 6.3. This completes the proof
of the lemma. ¤
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For n ∈ {0, 1, 2, 3, 4}, Zn denotes the set of subgroups of JK of order
9 containing precisely n subgroups which are G-conjugate to Z.

Lemma 6.6. (i) JK contains exactly 4 subgroups G-conjugate to
Z and the remaining subgroups of JK of order 3 are all G-
conjugate to B.

(ii) The NK(JK) orbits, under conjugation, of the subgroups of JK

of order 9 are Z0, Z1 and Z2. Further, |Z0| = 3, |Z1| = 4 and
|Z2| = 6.

Proof. From Lemma 6.4 (iii), we have that NK(JK)/CK(JK) ∼= 2 ×
Sym(4). Since JK is irreducible as an NK(JK)-module, the centre of
NK(JK)/CK(JK) inverts JK and thus has no effect on the orbits of
NK(JK) on subgroups of JK . Using the notation from Lemma 2.9,
we note that the subgroups corresponding to NK(JK) conjugates of
Z are the subgroups of the form 〈v1 ± v2 ± v3〉. Thus |ZNK(JK)| = 4
by Lemma 2.9 (ii). Since NM(B) = NK(JK)J , we have that NK(JK)
has two orbits on ZM by Corollary 4.13. Obviously one of the orbits is
ZNK(JK) and, as JK is not normalized by M , the other is an orbit of
subgroups contained in J but not in JK . Since M controls G-fusion in
J , we conclude that JK contains exactly four subgroups G-conjugate
to Z. The second statement in (i) now follows from Lemma 4.12.

Now Lemma 2.9 (iii) gives part (ii) of the lemma. ¤
Lemma 6.7. Let A ∈ Z1 and a ∈ A# be 3-central. Then A = JK ∩
O3(CG(a)).

Proof. By Lemma 4.5 (ii), we have that JK ∩ O3(CG(a)) ∈ Z1. The
result is now verified as, by Lemma 6.6, there are exactly four NK(JK)-
conjugates of 〈a〉 in JK and |Z1| = 4. ¤
Lemma 6.8. Suppose that |JK : A| = 3. Then JK ∈ Syl3(CK(A)).

Proof. Since JK is abelian and JK ≤ K, JK ≤ CK(A). By Lemma 6.6,
there exists b ∈ A which is not 3-central. Now CG(b) ∼= 3×Aut(U4(2))
by Lemma 5.4. Set Eb = O2(CG(b)). Then t ∈ Eb. From [6, pg. 26] we
read that |CEb

(t)|3 ≤ 32 and so the result follows. ¤
Using the notation from Lemma 6.8 we see that either CEb

(t) ∼=
2× Sym(6) or CEb

(t) ∼ 21+4
+ .32.22.

Lemma 6.9. Suppose that [JK : A] = 3.

(i) If A ∈ Z1, then O3′(CK(A)) ∼= Q(8). Also, for b ∈ A# with b
not 3-central in G,

O3′(CK(A)) ≤ O3′(CK(〈b〉)) ∼= 21+4
+ .
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(ii) If A ∈ Z0 ∪ Z2, then O3′(CK(A)) = 〈t〉.
(iii) If T ∈ ICG(A)(JK , 3′), then T ≤ O3′(CK(A)).

Proof. Assume that A ∈ Z1. Let a ∈ A# be a 3-central element and
b ∈ A \ 〈a〉. Then CG(a) ∼ 31+4

+ .21+4
− .Alt(5). Since every element of

order 2 in CG(a) is contained in O3,2(CG(a)) by Lemma 2.14(ii), we
have that t ∈ O3,2(CG(a)). As t is not conjugate to the elements in
Z(CG(a)/O3(CG(a)) by Lemma 6.2, we have O3′(CCG(a)(t)) ∼= Q(8)
by Lemma 4.3. By Lemmas 4.3 and 6.7, A = JK ∩ O3(CG(a)) ≤
CO3(CG(a)(t). Thus Lemma 4.3 (i) and (ii) imply that O3′(CK(A)) ∼=
Q(8) which is the first claim in (i). We now focus on b. Using Lem-
mas 6.6 (i) and 5.4, we have CG(b) ∼= 3 × Aut(U4(2)). Let Eb =
O3(CG(b)). Then, as t centralizes b, t ∈ Eb. Now CCG(b)(t) contains
O3′(CK(A)) ∼= Q(8). Hence, as 2× Sym(6) doesn’t contain a subgroup
isomorphic to Q(8), we may use [6, pg. 26] to deduce that t ∈ E ′

b and
that CK(〈b〉) ∼ 3 × 21+4

+ .32.2. Thus O3′(CK(b)) ∼= 21+4
+ . Now applying

[18, 8.2.12, pg. 189] we have that (i) holds.
Assume that A ∈ Z2 and just as above let a ∈ A# be a 3-central

element. By Lemma 6.7, A 6≤ O3(CG(a)). Let b ∈ A\O3(CG(a)). Again
by Lemma 6.2, t is not conjugate to an element of Z(CG(a)/O3(CG(a)).
Hence using Lemmas 2.14 (ii) and 4.3(iv) we get CO3′ (CK(a))(b) = 〈t〉.
In particular, using [18, 8.2.12, pg. 189] yet again (ii) holds for A ∈ Z2.

Suppose that A ∈ Z0. Let b ∈ A#. Then CG(b) ∼= 3 × Aut(U4(2))
by Lemma 6.6 (i). Put Eb = O3(CG(b)). Then t ∈ E and since JK is
centralized by t, using [6, pg. 26] we have CCG(b)(t) ∼ 3 × 21+4

+ .32.22

or CCG(b)(t) ∼= 3 × 2 × Sym(6). In the latter case the centralizer in
CCG(b)(t) of any further element of order 3 has shape 2 × 3 × Sym(3)
and so (ii) holds if this possibility arises. So assume the former possi-
bility occurs. Then, as O2(CEb

(t)) is isomorphic to the central prod-
uct SL2(3) ◦ SL2(3), CO2(CEb

(t))(A ∩ Eb) either has order 8 or 2. In
the former case we deduce from centralizer orders that A ∩ E is 3-
central in E and consequently 3-central in G, a contradiction. Thus
CO2(CE(t))(A ∩ E) = 〈t〉 and so (ii) holds when A ∈ Z0.

By Lemma 6.8, JK ∈ Syl3(CK(A)) and so, as CK(A) is soluble,
JKO3′(CK(A)) = O3′,3(CK(A)). Therefore any 3′-subgroup of CK(A)
which is normalized by JK centralizes JKO3′(CG(A))/O3′(CG(A)). Hence,
as CK(A) is soluble, (iii) follows from [18, 6.4.4 pg. 134]. ¤

Define R = 〈O3′(CK(A)) | A ∈ Z1〉. Notice, that by Lemma 6.9 (i)
and (ii), we also have that R = 〈O3′(CK(A)) | |JK : A| = 3〉.
Lemma 6.10. R ∼= 21+8

+ and I∗K(JK , 3′) = {R}.
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Proof. As JK ≤ CK(A) for all A ∈ Z1, R as defined is normalized by
JK . Let Z1 = {A1, A2, A3, A4}. Then, by Lemma 6.9(i), for 1 ≤ i ≤ 4,
O3′(CK(Ai)) ∼= Q(8). Additionally, for 1 ≤ i < j ≤ 4, Ai ∩ Aj is a
G-conjugate of B by Lemmas 6.6(i) and 6.7. Thus O2((CK(Ai∩Aj)) ∼=
21+4

+
∼= Q(8) ◦ Q(8) by Lemma 6.9 (i). Note that 21+4

+ contains ex-
actly two subgroups isomorphic to Q(8) and that these subgroups com-
mute. Assume that O3′(CK(Ai)) = O3′(CK(Aj)), then this subgroup
is centralized by 〈Ai, Aj〉 = JK . Since Z0 ∪ Z2 6= ∅, this contradicts
Lemma 6.9 (ii) and (iii). Thus [O3′(CK(Ai)), O3′(CK(Aj))] = 1. It fol-
lows now that R is a central product of 4 subgroups each isomorphic
to Q(8) and so R ∼= 21+8

+ . In particular, R ∈ IK(JK , 3′).
Suppose that R0 ∈ IK(JK , 3′). Then R0 = 〈CR0(A) | |JK : A| = 3〉.

Since, for |JK : A| = 3, CR0(A) ∈ ICG(A)(JK , 3′), we have CR0(A) ≤
O3′(CK(A) by Lemma 6.9 (iii). But then by Lemma 6.9 (i) and (ii),
R0 ≤ R. Hence I∗K(JK , 3′) = {R}. ¤

Lemma 6.11. Suppose that A ∈ Z1. Then R = 〈O3′(CK(b)) | b ∈
A#, b not 3-central in G〉.
Proof. We have CR(A) ∼= Q(8) by Lemma 6.9(i). By Lemma 6.10,
R/CR(A) is elementary abelian of order 26. Since for b ∈ A# such that
b is not 3-central in G, we have |O3′(CK(b))/CR(A)| = 22 by Lemma 6.9
(i), we infer that R = 〈O3′(CK(b)) | b ∈ A#, b not 3-central in G〉. ¤

Lemma 6.12. NK(R) ≥ RE and CK(R) ≤ R.

Proof. By Lemma 5.5, EL ∼ 31+2
+ .GL2(3) and EM ∼ 33.(2 × Sym(4)).

Furthermore, O3(EM) = JK . Since R is the unique member of I∗K(JK , 3′),
EM normalizes R. Let T = O3(EL). Then T ∩ JK ∈ Z1 by Lemma 4.5
(ii). Let x ∈ EL\EM and set A = (T ∩JK)x. Note that A ≤ T = T x, so
T normalizes R and as JK normalizes R, A also normalizes Rx. Now,
using Lemma 6.11, R = 〈CR(b) | b ∈ A#, b not 3-central in G〉. Sup-
pose that b ∈ A# is not 3-central in G. Then CR(b) = O3′(CK(b)) ∼=
21+4

+ . Applying Lemma 6.9 (i) to Rx and Jx
K ∩ T , we have CRx(b) =

O3′(CK(b)) ∼= 21+4
+ . Thus

Rx ∩R ≥ 〈O3′(CK(b)) | b ∈ A#, b not 3-central in G〉 = R.

Hence R = Rx. Therefore, R is normalized by 〈EM , x〉 = E.
Let C = CK(R). Then as E contains a Sylow 3-subgroup of K by

Lemma 6.1 and E acts non-trivially on R, CK(R) is a 3′-group which is
normalized by E and hence by JK . Thus CK(R) ≤ R by Lemma 6.10.

¤
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We now set H = NG(R). Notice that as R is extraspecial, we have
that H centralizes t and so H = NK(R). Our next goal is to show that
G, H and R satisfy the hypothesis of Theorem 3.1.

Lemma 6.13. H/R ∼= Aut(U4(2)) or Sp6(2).

Proof. We have that Z ≤ E ≤ NG(R) by Lemma 6.12. From the defi-
nition of R and Lemma 4.3 (iii), O2(CL∗(t)) ≤ R. Thus CL∗(t)R/R ∼=
CL∗(t)/O2(CL∗(t)) is isomorphic to the centralizer of a 3-central ele-
ment of order 3 in PSp4(3). Since ER/R ≥ CL∗(t)R/R we infer that
ZR/R is inverted by its normalizer in H/R. Hence, using Theorem 2.2
and Lemma 6.10, we have that H/R ∼= Aut(U4(2)) or Sp6(2). ¤
Lemma 6.14. CH(R) ≤ R and R/〈t〉 is a minimal normal subgroup
of H/〈t〉 of order 28.

Proof. Lemma 6.12 ensures that CH(R) ≤ R. Also as R is extraspecial
of order 29, R/〈t〉 has order 28. Suppose that R1 is a normal subgroup
of H contained in R with 〈t〉 ≤ R1 ≤ R. Now JKR/R is elementary
abelian of order 27 and the 3-rank of GL5(2) is 2, and therefore either
R/R1 or R1 is centralized by O2(H/R) and hence by JK . However
CG(JK) = J〈t〉 by Lemma 6.4(iii) and so we see that either R = R1 or
R1 = 〈t〉. Thus R/〈t〉 is a minimal normal subgroup of H/〈t〉. ¤
Lemma 6.15. The following hold.

(i) CK(Z) ≤ H.
(ii) ER controls fusion of elements of order 3 in K.
(iii) BG∩K = BK

1 ∪BK
2 where B1 is conjugate to a subgroup of JK

which together with Z forms a subgroup in Z1.
(iv) CK(B1) ≤ ER.

Proof. Looking in E, we see CE(Z) ∼ 31+2.SL2(3). From Lemma 6.10,
we have CR(Z) ∼= Q(8). Since |CK(Z)| = 26.34 by Lemma 4.3 (iii), part
(i) holds.

Using [6, pg. 26], we have that every element of order 3 in E is E-
conjugate to an element of JK . Since E contains a Sylow 3-subgroup of
K and NK(JK) controls K-fusion of 3-elements in JK by Lemma 2.5,
we have (ii).

From Lemmas 2.9 and 6.4 (iv), K has 3 conjugacy classes of elements
of order 3 and just one 3-central classes. Thus (iii) follows from (ii).

Now consider the class BK
1 . We may suppose that B1Z ∈ Z1. Then

CR(B1) ∼= 21+4
+ by Lemma 6.9 (i). It follows that t is an involution

contained in O3(CG(B1))
′ ∼= U4(2) with CCG(B1)(t) ∼ 3× 21+4

+ .32.22. In
particular, (CG(B1) ∩ K)R/R normalizes JKR/R and so (iv) follows
from Lemma 6.4 (v). ¤
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Lemma 6.16. Cyclic groups in the same H-class as B2 (see Lemma 6.15)
act fixed point freely on R/〈t〉.

Proof. Since B2 is not contained in any member of Z1, we have that
B2 acts faithfully on O3′(CG(A)) for each A ∈ Z1. Thus, as R =∏

A∈Z1
O3′(CG(A)), we have that B2 acts fixed point freely on R/〈t〉.

¤

Lemma 6.17. If k ∈ K \ H and d ∈ H ∩ Hk has order 3, then
CR(d) = 〈t〉.

Proof. We begin by noting that R = O2(H) and so NK(H) = H. Hence
if there exists k ∈ K \H, then H ∩Hk 6= H

Suppose for a moment that a conjugate of JK is contained in H∩Hk.
Then we may assume that JK ≤ Hk. Thus JK and Jk−1

K are both

contained in H. Hence there exists h ∈ H such that JK = Jk−1h
K . But

then k−1h ∈ NK(JK) ≤ ER ≤ H by Lemmas 6.4 (v) and 6.12, whence
k ∈ H and we have a contradiction.

Let T ∈ Syl3(H ∩Hk) and assume T 6= 1. Suppose that T contains
a K-conjugate Y of Z or B1. Then, as H controls fusion of elements of
order 3 in K by Lemma 6.15 (ii), we may suppose that either Y = Z
or Y = B1. Hence Lemma 6.15 (i) and (iv) gives that CK(Y ) ≤ H.
However then CHk(Y ) contains a subgroup X of Hk which is conjugate
to JK as every element of order 3 in H is fused to an element of JK in H.
But this means X ≤ CK(Y ) ≤ H by Lemma 6.15 (i) and (v) and this
contradicts the observation in paragraph two of the proof. It follows
that if d ∈ H ∩Hk has order 3 and k 6∈ H, then d is conjugate to an
element of B2. The claim in the lemma now follows from Lemma 6.16.

¤

Proof of Theorem 1.1. Let K = K/〈t〉 and set H = NK(R). Lem-
mas 6.13, 6.14, 6.15 (ii) and 6.17 together show that the hypothe-
ses of Theorem 3.1 are satisfied. Therefore K = O2′(K)H. Now H
contains a Sylow 3-subgroup of K and so O2′(K) ≤ O3′(K). Since
I∗K(JK , 3′) = {R}, we infer that O2′(K) ≤ R. Thus K = H. Since,

by Lemma 6.5, K contains a subgroup isomorphic Sym(3) × Sym(6)
whereas Aut(U4(2)) does not, we now get that H/R ∼= Sp6(2). Since
O3(G) = 1, Lemma 5.2 implies that O2′(G) = Z(G) = 1. Since R/〈t〉 is
the spin-module for H/R, Lemma 2.15(iv) implies that the elements of
order 5 in H act fixed point freely on R/〈t〉. Hence, at last, Theorem 2.1
gives us that G is isomorphic to Co2. ¤
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[22] Parker, Christopher ; Röhrle, Gerhard. The restriction of minuscule representa-
tions to parabolic subgroups. Math. Proc. Cambridge Philos. Soc. 135 (2003),
no. 1, 59–79.

[23] Parker, Christopher; Rowley, Peter. Symplectic amalgams. Springer Mono-
graphs in Mathematics. Springer-Verlag London, Ltd., London, 2002.

[24] Parker, Christopher ; Rowley, Peter. A characteristic 5 identification of the
Lyons group. J. London Math. Soc. (2) 69 (2004), no. 1, 128–140.

[25] Parker, Christopher ; Rowley, Peter. Local characteristic p completions of weak
BN -pairs. Proc. London Math. Soc. (3) 93 (2006), no. 2, 325–394.

[26] Parker, Christopher; Rowley, Peter. A 3-local identification of the alternat-
ing group of degree 8, the McLaughlin simple group and their automorphism
groups. J. Algebra, 319, no. 4, 2008, 1752–1775.

[27] Parker, C. W. ; Wiedorn, C. B. A 7-local identification of the Monster. Nagoya
Math. J. 178 (2005), 129–149.

[28] Prince, A. R. A characterization of the simple groups PSp(4, 3) and PSp(6,
2). J. Algebra 45 (1977), no. 2, 306–320.

[29] Salarian. M. R. An Identification of Co1. Preprint 2007.
[30] Salarian. M. R. An 3-local characterization of M(24)′. Preprint 2007.
[31] Salarian. M. R. An Identification of the monster group. Preprint 2007.
[32] Smith, Fredrick L. A characterization of the .2 Conway simple group. J. Alge-

bra 31 (1974), 91–116.
[33] Stafford, Richard M. A characterization of Janko’s simple group J4 by central-

izers of elements of order 3. J. Algebra 57 (1979), no. 2, 555–566.
[34] Stroth, G. An odd characterization of J4. Israel J. Math. 31 (1978), no. 2,

189–192.

Christopher Parker, School of Mathematics, University of Birm-
ingham, Edgbaston, Birmingham B15 2TT, United Kingdom

E-mail address: c.w.parker@bham.ac.uk

Peter Rowley, School of Mathematics, University of Manchester,
Oxford Road, M13 6PL, United Kingdom

E-mail address: peter.j.rowley@manchester.ac.uk


