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Preface

This text studies heavy-tailed distributions in probability theory, and especially convolutions
of such distributions. The mail goal is to provide a complete and comprehensive introduc-
tion to the theory of long-tailed and subexponential distributions which includes many novel
elements and, in particular, is based on the regular use of the principle of a single big jump.
Much of the material appears for the first time in text form, including

– the establishment of new relations between known classes of subexponential distributions
and the introduction of important new classes;

– the development of some important new concepts, including those of h-insensitivity and
local subexponentiality;

– the presentation of new and direct probabilistic proofs of known asymptotic results.

A number of recent textbooks and monographs contain some elements of the present
theory, notably those by Asmussen [1, 2], Embrechts, Kluppelberg, and Mikosch [23], Rol-
ski, Teugels, Schmidli, and Schmidt [39], and Borovkov and Borovkov [10]. Further, the
monograph by Bingham, Goldie, and Teugels [8] comprehensively develops the theory of
regularly varying functions and distributions; the latter form an important subclass of the
subexponential distributions.

Chapters 2 and 3 of the present monograph deal comprehensively with the properties of
heavy-tailed, long-tailed and subexponential distributions, and give applications to random
sums. Chapter 4 develops concepts of local subexponentiality and gives further applications.
Finally, Chapter 5 studies the distribution of the maximum of a random walk with negative
drift and heavy-tailed increments; notably it contains new and short probabilistic proofs for
the tail asymptotics of this distribution for both finite and infinite time horizons. The study
of heavy-tailed distributions in more general probability models—for example, Markov-
modulated models, those with dependencies, and continuous-time models—is postponed
until such future date as the authors may again find some spare time. Nevertheless, the
same basic principles apply there as are developed in the present text.

We are thankful to many colleagues for helpful discussions and contributions, most no-
tably to Søren Asmussen, Denis Denisov and Andrew Richards. All errors should be blamed
on one of these individuals.

A first version of this manuscript was finished while the authors stayed at the Mathematis-
ches Forschungsinstitut Oberwolfach, under the Research in Pairs programme from March
23 to April 5, 2008. We thank the Institute for its great hospitality and support.

A list of errata, together with complements and updates to this manuscript, will be main-
tained at http://www.ma.hw.ac.uk/∼stan/heavytails/.

April 2009 S.F., D.K., S.Z.
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Notation and conventions

Intervals (x, y) is an open, [x, y] a closed interval; half-open intervals are denoted by
(x, y] and [x, y).

Integrals
∫ y
x is the integral over the interval (x, y].

R, R+, Rs stand for the real line, the positive real half-line [0,∞), and s-dimensional
Cartesian space.

Z, Z+ stand for the set of integers and for the set {0, 1, 2, . . .}.

I(A) stands for the indicator function ofA, that is I(A) = 1 ifA holds and I(A) =
0 otherwise.

O, o, and ∼ Let u and v depend on a parameter x which tends, say, to infinity. Assuming
that v is positive we write

u = O(v) if lim sup
x→∞

|u|/v <∞

u = o(v) if u/v → 0 as x→∞
u ∼ v if u/v → 1 as x→∞.

P{B} stands for the probability (on some appropriate space) of the event B.

Eξ stands for the mean of the random variable ξ.

E{ξ;B} stands for the mean of ξ over the event B, that is, for EξI(B).

F ∗G stands for the convolution of the distributions F and G.

F ∗n stands for the n-fold convolution of the distribution F with itself.

ξ+, F+ for any random variable ξ on R with distributionF , the random variable ξ+ =
max(ξ, 0) and F+ denotes its distribution.

:= The quantity on the left is defined to be equal to the quantity on the right.

=: The quantity on the right is defined to be equal to the quantity on the left.

� indicates the end of a proof.
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Chapter 1

Introduction

Heavy-tailed distributions (probability measures) play a major role in the analysis of many
stochastic systems. For example, they are frequently necessary to accurately model inputs
to computer and communications networks, they are an essential component of the descrip-
tion of many risk processes, and they occur naturally in models of epidemiological spread.
Important examples are Pareto distributions (and other essentially power-law distributions),
lognormal distributions, and Weibull distributions (with parameter less than 1). Indeed most
heavy-tailed distributions used in practice belong to one of these families, which are defined,
along with others, in Chapter 2. We also consider the Weibull distribution at the end of this
chapter.

Since the inputs to systems such as those described above are frequently cumulative in
their effects, the analysis of the corresponding models typically features convolutions of
heavy-tailed distributions. The properties of such convolutions depend on their satisfying
certain regularity conditions. From the point of view of applications practically all heavy-
tailed distributions may be considered to be long-tailed, and indeed to possess the stronger
property of subexponentiality (see below for definitions).

In this monograph we study convolutions of long-tailed and subexponential distributions
on the real line. Our aim is to prove some important new results, and to do so through a
simple, coherent and systematic approach. It turns out that all the standard properties of
such convolutions are then obtained as easy consequences of these results. Thus we also
hope to provide further insight into these properties, and to dispel some of the mystery
which still seems to surround the phenomenon of subexponentiality in particular.

We define the tail function F of a distribution F on R to be given by F (x) = F (x,∞) for
all x. We describe as a tail property of F any property which depends only on {F (x) : x ≥
x0} for any (finite) x0. We further say that F has right-unbounded support if F (x) > 0 for
all x.

Heavy-tailed distributions. A distribution F on R is said to be (right-) heavy-tailed if∫ ∞
−∞

eλx F (dx) =∞ for all λ > 0, (1.1)

that is, if and only if F fails to possess any positive exponential moment. Otherwise F is
said to be light-tailed. We shall show in Chapter 2 that the distribution F is heavy-tailed if
and only if its tail function F fails to be bounded by any exponentially decreasing function.

7



8 CHAPTER 1. INTRODUCTION

It follows that for a distribution F to be heavy-tailed is a tail property of F , and of course
that any heavy-tailed distribution has right-unbounded support.

We mention briefly at this point the connection with hazard rates. Let F be a distribution
on R which is absolutely continuous with density f with respect to Lebesgue measure.
Such a distribution is often characterised in terms of its hazard rate r(x) = f(x)/F (x),
most naturally in the case where F is concentrated on the positive half-line R+. We then
have

F (x) = exp
(
−
∫ x

−∞
r(y) dy

)
.

It follows easily from (1.1) that if lim
x→∞

r(x) = 0 then the distribution F is heavy-tailed,

whereas if lim inf
x→∞

r(x) > 0 then F fails to be heavy-tailed (indeed the integral in (1.1) is

finite for any λ such that lim inf
x→∞

r(x) > λ). In the final case where lim inf
x→∞

r(x) = 0 but in
which the limit itself fails to exist then both possibilities for F exist.

Long-tailed distributions. A distribution F on R is said to be long-tailed if F has right-
unbounded support and, for any fixed y > 0,

F (x+ y)
F (x)

→ 1 as x→∞. (1.2)

Clearly to be long-tailed is again a tail property of a distribution. Further, it is fairly easy to
see that a long-tailed distribution is also heavy-tailed. However, the condition (1.2) implies
a degree of smoothness in the tail function F which is not possessed by every heavy-tailed
distribution.

Subexponential distributions. In order to make good progress with heavy-tailed distri-
butions, we require slightly a stronger regularity condition than the requirement that such a
distribution be long-tailed. This will turn out to be satisfied by all heavy-tailed distributions
likely to be encountered in practice.

We consider first distributions on the positive half-line R+. Let F be any distribution on
R+ and let ξ1, . . . , ξn be independent random variables with the common distribution F .
Then

P{ξ1 + . . .+ ξn > x} ≥ P{max(ξ1, . . . , ξn) > x}
= 1− Fn(x)
∼ nF (x) as x→∞. (1.3)

(Here and throughout we use “∼” to mean that the ratio of the quantities on either side of
this symbol converges to one; we further frequently omit, especially in proofs, the qualifier
“as x→∞”, as unless otherwise indicated all our limits will be of this form.)

Taking n = 2 it follows in particular that

lim inf
x→∞

F ∗ F (x)
F (x)

≥ 2, (1.4)
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where as usual, for any two distributions F and G, by F ∗ G we denote their convolution,
i.e. the distribution of the random variable ξ + η where the random variables ξ and η are
independent with distributions F and G.

A considerably deeper result (proved in Chapter 2) than the above inequality (1.4) is that
if F is heavy-tailed then the relation (1.4) holds with equality. (We remark that there are
also examples of light-tailed distributions on R+ for which (1.4) holds with equality.) The
distribution F on R+ is said to be subexponential if

lim
x→∞

F ∗ F (x)
F (x)

= 2. (1.5)

It turns out that the above condition is now sufficient to ensure that F is heavy-tailed—and
indeed that F is long-tailed. Thus a distribution F on R+ is subexponential if and only if is
heavy-tailed and sufficiently regular that the limit on the left side of (1.5) exists; this limit
is then equal to 2. It is therefore not surprising that the various examples of heavy-tailed
distributions on R+ mentioned at the start of this chapter all turn out to be subexponential.
Indeed those heavy-tailed distributions which do not possess this property are all distinctly
pathological in character.

We shall see that subexponentiality as defined above is also a tail property of the distri-
bution F . Inductive arguments (see Chapter 3) now show that if a distribution F on R+ is
subexponential then the relation (1.5) generalises to

lim
x→∞

F ∗n(x)
F (x)

= n for all integer n ≥ 1

(where F ∗n denotes the n-fold convolution of the distribution F with itself). It follows from
this and from the argument leading to (1.3) that subexponentiality of F is equivalent to the
requirement that

P{max(ξ1, . . . , ξn) > x} ∼ P{ξ1 + · · ·+ ξn > x} as x→∞, (1.6)

The interpretation of the condition (1.6) is that the only significant way in which the sum
ξ1 + · · · + ξn can exceed some large value x is that the maximum of one of the individual
random variables ξ1, . . . , ξn also exceeds x. This is the principle of a single big jump
which underlies the probabilistic behaviour of sums of independent subexponential random
variables.

Since subexponentiality is a tail property of a distribution, it is natural, and important
for many applications, to extend the concept to a distribution F on the entire real line R.
This may be done either by requiring that F have the same tail as that of a subexponential
distribution on R+ (it is natural to consider the distribution F+ given by F+(x) = F (x)
for x ≥ 0 and F+(x) = 0 for x < 0) or, equivalently as it turns out, by requiring that
F is long-tailed and again satisfies the condition (1.5)—the latter condition on its own no
longer being sufficient for the subexponentiality of F . We explore these matters further in
Chapter 3.

We develop also similar concepts of subexponentiality for local probabilities and densities
(see Chapter 4).

Further examples of heavy-tailed distributions which are of use in practical applications,
e.g. the modelling of insurance claim sizes, are given by Embrechts et al. [23]. These,
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and the examples mentioned above, are all well-behaved in a manner we shall shortly make
precise. However, mathematically there is a whole range of further possible distributions,
and one of our aims is to provide a firm basis for excluding those which are in some sense
pathological and to study the properties of those which remain.

Example: the Weibull distribution In order to understand better the typical behaviour of
heavy-tailed distributions, that is, the single big jump phenomenon—as opposed to the be-
haviour of distributions which are light-tailed—we study the Weibull distribution Fα given
by its tail function

Fα(x) = e−x
α
, x ≥ 0,

and hence density fα(x) = αxα−1e−x
α

, x ≥ 0, for some shape parameter α > 0. This is
a heavy-tailed distribution if and only if α < 1. Note that in the case α = 1 we have the
exponential distribution. All moments of the Weibull distribution are finite.

Let ξ1 and ξ2 be independent random variables with common distribution function Fα.
We consider the distribution of the random variable ξ1/d conditional on the sum ξ1 +ξ2 = d
for varying values of d and the shape parameter α. This conditional distribution has density
gα,d where

gα,d(z) = c[z(1− z)]α−1e−d
α(zα+(1−z)α). (1.7)

for the appropriate normalising constant c. Clearly this conditional density is symmetric
about 1/2. The left panel of Figure 1.1 plots the density for d = 10 and for each of the
three cases α = 0.5, α = 1, and α = 2, while the right panel plots the density for d = 25
and for each of the same three values of α. We see that in the heavy-tailed case α = 0.5,
conditional on the fixed value d of the sum ξ1 +ξ2, the value of ξ1/d tends to be either close
to 0 or close to 1; further this effect is more pronounced for the larger value of d. For the
case α = 1 and for any value of d, the above conditional density is uniform. For the case
α = 2, we see that the conditional density of ξ1/d is concentrated in a neighbourhood of
1/2, and that again this concentration is more pronounced for the larger value of d.
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Figure 1.1: Density of ξ1/d conditional on ξ1 + ξ2 = d, for d = 10 (left panel) and d = 25
(right panel), and for α = 0.5 (solid line), α = 1 (short-dashed line) and α = 2 (long-
dashed line).
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These observations are readily verified from (1.7). Indeed it follows from that expression
that, for α < 1 and as d→∞, the distribution of ξ1/d conditional on ξ1 +ξ2 = d converges
to that which assigns probability 1/2 to each of the points 0 and 1. For α = 1 and for all d,
the distribution is uniform. Finally, for α > 1 and as d →∞, the distribution converges to
that which is concentrated on the single point 1/2.
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Chapter 2

Heavy- and long-tailed distributions

In this chapter we are interested in (right-) tail properties of distributions, i.e. in properties
of a distribution which, for any x, depend only on the restriction of the distribution to
(x,∞). More generally it is helpful to consider tail properties of functions.

Recall that for any distribution F on R we define the tail function F by

F (x) = F (x,∞), x ∈ R.

We start with characteristic properties of heavy-tailed distributions, that is, of distributions
all of whose positive exponential moments are infinite. The main result here concerns lower
limits for convolution tails, see Section 2.3.

Then we study different properties of long-tailed distributions, that is, of distributions
whose tails are asymptotically self-similar under shifting by a constant. Of particular in-
terest are convolutions of long-tailed distributions. Our approach is based on a simple de-
composition for such convolutions, and on the concept of ‘h-insensitivity’ for a long-tailed
distribution with respect to some (slowly) increasing function h. In Section 2.8, we present
useful characterisations of h-insensitive distributions.

2.1 Heavy-tailed distributions

The usage of the term “heavy-tailed distribution” varies according to the area of interest,
but is frequently taken to correspond to an absence of (positive) exponential moments. In
the following definitions—which, for completeness here, repeat some of those made in the
Introduction—we follow this tradition.

Definition 2.1. A distribution F on R is said to have right-unbounded support if F (x) > 0
for all x.

Definition 2.2. We define a distribution F to be (right-) heavy-tailed if and only if∫
R
eλxF (dx) =∞ for all λ > 0. (2.1)

It will follow from Theorem 2.6 that to be heavy-tailed is indeed a tail property of a
distribution. As a counterpart we give also the following definition.

13
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Definition 2.3. A distribution F is called light-tailed if and only if∫
R
eλxF (dx) <∞ for some λ > 0. (2.2)

Clearly, for any light-tailed distribution F on the positive half-line R+ = [0,∞), all
moments are finite, that is,

∫∞
0 xkF (dx) <∞ for all k > 0.

We shall say that a nonnegative function (usually tending to zero) is heavy-tailed if it fails
to be bounded by a decreasing exponential function. More precisely we make the following
definition.

Definition 2.4. We define a function f ≥ 0 to be heavy-tailed if and only if

lim sup
x→∞

f(x)eλx =∞ for all λ > 0. (2.3)

For a function to be heavy-tailed is clearly a tail-property of that function. Theorem 2.6
shows in particular that a distribution is heavy-tailed if and only if its tail function is a
heavy-tailed function. First we make the following definition.

Definition 2.5. For any distribution F , the functionR(x) := − lnF (x) is called the hazard
function. If the hazard function is differentiable then its derivative r(x) = R′(x) is called
the hazard rate.

The hazard rate, when it exists, has the usual interpretation discussed in the Introduction.

Theorem 2.6. For any distribution F the following assertions are equivalent:

(i) F is a heavy-tailed distribution;
(ii) the function F is heavy-tailed;

(iii) the hazard function satisfies lim infx→∞R(x)/x = 0;
(iv) for any fixed T > 0, the function F (x, x+ T ] is heavy-tailed;
(v) for some fixed T > 0, the function F (x, x+ T ] is heavy-tailed.

Proof. (i)⇒(iv). Suppose that F (x, x+ T ] is not heavy-tailed. Then

c := sup
x∈R

F (x, x+ T ]eλ
′x <∞ for some λ′ > 0,

and, therefore, for all λ < λ′∫ ∞
0

eλxF (dx) ≤
∞∑
n=0

eλ(n+1)TF (nT, nT + T ]

≤ c

∞∑
n=0

eλ(n+1)T e−λ
′nT = ceλT

∞∑
n=0

e(λ−λ′)nT <∞.

It follows that the integral defined in (2.1) is finite for all λ ∈ (0, λ′), which contradicts
heavy-tailedness of the distribution F .

(v)⇒(ii). This implication follows from the inequality F (x) ≥ F (x, x+ T ].
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(ii)⇒(iii). Suppose that, on the contrary, ‘lim inf’ in (iii) is positive. Then there exist
x0 > 0 and ε > 0 such that R(x) ≥ εx for all x ≥ x0 which implies that F (x) ≤ e−εx in
contradiction of (ii).

(iii)⇒(i). Suppose that, on the contrary, F is light-tailed. It then follows from (2.2) (for
example by the exponential Chebyshev inequality) that, for some λ > 0 and c > 0, we
have F (x) ≤ ce−λx for all x. This implies that lim infx→∞R(x)/x ≥ λ which contradicts
(iii).

Lemma 2.7. Let the distribution F be absolutely continuous with density function f . If F
is a heavy-tailed distribution, then the function f(x) is heavy-tailed too.

Proof. If f(x) is not heavy-tailed, then there exist λ′ > 0 and x0 such that

c := sup
x>x0

f(x)eλ
′x <∞,

and, therefore, for all λ ∈ (0, λ′)∫
R
eλxF (dx) ≤ eλx0 + c

∫ ∞
x0

eλxe−λ
′xdx <∞.

It follows that the integral defined in (2.1) is finite for all λ such that 0 < λ < λ′, which
contradicts heavy-tailedness of the distribution F .

We give an example to show that the converse assertion is not in general true. Consider
the following piecewise continuous density function:

f(x) =
∞∑
n=1

I{x ∈ [n, n+ 2−n]}.

We have lim supx→∞ f(x)eλx = ∞ for all λ > 0, so that f is heavy-tailed. On the other
hand, for all λ ∈ (0, ln 2),∫ ∞

0
eλxf(x)dx <

∞∑
n=1

eλ(n+2−n)2−n =
∞∑
n=1

eλ(n+2−n)−n ln 2 <∞,

so that F is light-tailed.

For lattice distributions we have the following result.

Lemma 2.8. Let F be a distribution on some lattice {a+ hn, n ∈ Z}, a ∈ R, h > 0, with
probabilities F{a + hn} = pn. Then F is heavy-tailed if and only if the sequence {pn} is
heavy-tailed, that is,

lim sup
n→∞

pne
λn =∞ for all λ > 0. (2.4)

Proof. The result follows from Theorem 2.6 with T = h.
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Examples of heavy-tailed distributions We conclude this section with a number of ex-
amples.

• The Pareto distribution on R+. This has tail function F given by

F (x) =
(

κ

x+ κ

)α
for some scale parameter κ > 0 and shape parameter α > 0. Clearly we have
F (x) ∼ (x/κ)−α as x → ∞, and for this reason the Pareto distributions are some-
times referred to as the power law distributions. The Pareto distribution has all mo-
ments of order γ < α finite, while all moments of order γ ≥ α are infinite.

• The Burr distribution on R+. This has tail function F given by

F (x) =
(

κ

xτ + κ

)α
for parameters α, κ, τ > 0. The Burr distribution has all moments of order γ < ατ
finite, while all moments of order γ ≥ ατ are infinite.

• The Cauchy distribution on R. This is most easily given by its density function f
where

f(x) =
1

π((x− a)2 + 1)
for some location parameter a. All moments of order γ < 1 are finite. The first
moment does not exist.

• The lognormal distribution on R+. This is again most easily given by its density
function f where

f(x) =
1√

2πσx
exp

(
−(log x− µ)2

2σ2

)
for parameters µ and σ > 0. All moments of the lognormal distribution are finite.
Note that a (positive) random variable ξ has a lognormal distribution with parameters
µ and σ if and only if log ξ has a normal distribution with mean µ and variance σ2.
For this reason the distribution is natural in many applications.

• The Weibull distribution on R+. This has tail function F given by

F (x) = e−(x/λ)α .

for some scale parameter λ > 0 and shape parameter α > 0. This is a heavy-tailed
distribution if and only if α < 1. Note that in the case α = 1 we have the exponential
distribution. All moments of the Weibull distribution are finite.

Another useful class of heavy-tailed distributions is that of dominated-varying distribu-
tions. We say that F is a dominated-varying distribution (and write F ∈ D) if there exists
c > 0 such that

F (2x) ≥ cF (x) for all x.

Any intermediate regularly varying distribution (see Section 2.8) belongs to D. Other ex-
amples may be constructed using the following scheme. Let G be a distribution with a
regularly varying tail (again see Section 2.8). Then a distribution F belongs to the class D,
provided c1G1(x) ≤ F (x) ≤ c2G(x) for some 0 < c1 < c2 < ∞ and for all sufficiently
large x.
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2.2 Characterisation of heavy-tailed distributions in terms of
generalised moments

In this section we consider an important characterisation of (the tails of) heavy-tailed dis-
tributions on R+, which is both of interest in itself and essential to the consideration of
convolutions in the following section. In very approximate terms, for any such distribu-
tion we seek the existence of a monotone concave function h such that the function e−h(·)

characterises the tail of the distribution.
If a distribution F on the positive half-line R+ is such that not all of its moments are

finite, that is,
∫∞

0 xkF (dx) = ∞ for some k, then F is heavy-tailed. In this case we can
find such k ≥ 1 that the kth moment is infinite, while the (k − 1)th moment is finite. That
is ∫ ∞

0
xe(k−1) lnxdx =∞ and

∫ ∞
0

e(k−1) lnxdx <∞. (2.5)

Note that here the power of the exponent is a concave function. This observation can be
generalised onto the whole class of heavy-tailed distributions as follows.

Theorem 2.9. Let ξ ≥ 0 be a random variable with a heavy-tailed distribution. Let the
function g(x) be such that g(x) → ∞ as x → ∞. Then there exists a monotone concave
function h : R+ → R+ such that h(x) = o(x) as x→∞, Eeh(ξ) <∞, and Eeh(ξ)+g(ξ) =
∞.

Now, (2.5) is a particular example of the latter theorem with g(x) = lnx. If not all
moments of ξ are finite, then the concave function h(x) may be taken as (k − 1) lnx for
k as defined above. But, actually, Theorem 2.9 is sharper; it guarantees the existence of a
concave function h for any g, which may be taken as thin as we please.

As an example of the assertion at the beginning of this section, note that if ξ has a Weibull
distribution with tail function F (x) = e−x

α
, α ∈ (0, 1), and if g(x) = lnx, then one can

choose h(x) = (x+ c)α − ln(x+ c), with c > 0 sufficiently large.
Note also that Theorem 2.9 provides a characteristic property of heavy-tailed distribu-

tions; it fails for any light-tailed distribution. Indeed, consider any non-negative random
variable ξ having a light-tailed distribution, that is, Eeλξ < ∞ for some λ > 0. Take
g(x) = lnx. If h(x) = o(x) as x → ∞, then h(x) ≤ c + λx/2 for some c < ∞ and,
hence,

Eeh(ξ)+g(ξ) ≤ Eξec+λξ/2 <∞.

Proof of Theorem 2.9. We will construct a piecewise linear function h(x). To do so we
construct two positive sequences xn ↑ ∞ and εn ↓ 0 as n→∞ and let

h(x) = h(xn−1) + εn(x− xn−1) if x ∈ (xn−1, xn], n ≥ 1.

This function is monotone, since εn > 0. Moreover, this function is concave, due to the
monotonicity of εn.

Put x0 = 0 and h(0) = 0. Since ξ is heavy-tailed and g(x) → ∞, we can choose x1 so
large that eg(x) ≥ 21 for all x > x1 and

E{eξ; ξ ∈ (x0, x1]}+ ex1F (x1) > F (x0) + 1.
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Choose ε1 > 0 so that

E{eε1ξ; ξ ∈ (x0, x1]}+ eε1x1F (x1) = F (0) + 1/2,

which is equivalent to

E{eh(ξ); ξ ∈ (x0, x1]}+ eh(x1)F (x1) = eh(x0)F (0) + 1/2.

By induction we construct an increasing sequence xn and a decreasing sequence εn > 0
such that eg(x) ≥ 2n for all x > xn and

E{eh(ξ); ξ ∈ (xn−1, xn]}+ eh(xn)F (xn) = eh(xn−1)F (xn−1) + 1/2n

for any n ≥ 2. For n = 1 this is already done. Make the induction hypothesis for some
n ≥ 2. Due to the heavy-tailedness of ξ and to the convergence g(x) → ∞, there exists
xn+1 so large that eg(x) ≥ 2n+1 for all x > xn+1 and

E{eεn(ξ−xn); ξ ∈ (xn, xn+1]}+ eεn(xn+1−xn)F (xn+1) > 2;

As a function of εn+1, the sum

E{eεn+1(ξ−xn); ξ ∈ (xn, xn+1]}+ eεn+1(xn+1−xn)F (xn+1)

is continuously decreasing to F (xn) as εn+1 ↓ 0. Therefore, we can choose εn+1 ∈ (0, εn)
so that

E{eεn+1(ξ−xn); ξ ∈ (xn, xn+1]}+ eεn+1(xn+1−xn)F (xn+1) = F (xn) + 1/(2n+1eh(xn)).

By the definition of h(x) this is equivalent to the following equality:

E{eh(ξ); ξ ∈ (xn, xn+1]}+ eh(xn+1)F (xn+1) = eh(xn)F (xn) + 1/2n+1.

Our induction hypothesis now holds with n+ 1 in place of n as required.
Next, for any N ,

E{eh(ξ); ξ ≤ xN+1} =
N∑
n=0

E{eh(ξ); ξ ∈ (xn, xn+1]}

=
N∑
n=0

(
eh(xn)F (xn)− eh(xn+1)F (xn+1) + 1/2n+1

)
≤ eh(x0)F (x0) + 1.

Hence, Eeh(ξ) is finite. On the other hand, since eg(x) ≥ 2n for all x > xn,

E{eh(ξ)+g(ξ); ξ > xn} ≥ 2nE{eh(ξ); ξ > xn}

≥ 2n
(
E{eh(ξ); ξ ∈ (xn, xn+1]}+ eh(xn+1)F (xn+1)

)
= 2n

(
eh(xn)F (xn) + 1/2n+1

)
.

Then E{eh(ξ)+g(ξ); ξ > xn} ≥ 1/2 for any n, which implies Eeh(ξ)+g(ξ) = ∞. Note also
that necessarily limn→∞ εn = 0; otherwise lim inf

x→∞
h(x)/x > 0 and ξ is light tailed.
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The latter theorem can be strengthened in the following way (for the proof see [19]):

Theorem 2.10. Let ξ ≥ 0 be a random variable with a heavy-tailed distribution. Let
f : R+ → R be a concave function such that Eef(ξ) =∞. Let the function g : R+ → R be
such that g(x) → ∞ as x → ∞. Then there exists a concave function h : R+ → R+ such
that h ≤ f , Eeh(ξ) <∞, and Eeh(ξ)+g(ξ) =∞.

2.3 Lower limit for tails of convolutions

Recall that the convolution F ∗ G of any two distributions F and G is given by, for any
Borel set B,

(F ∗G)(B) =
∫ ∞
−∞

F (B − y)G(dy) =
∫ ∞
−∞

G(B − y)F (dy),

where B−y = {x−y : x ∈ B}. If, on some probability space with probability measure P,
ξ and η are independent random variables with respective distributions F and G, then (F ∗
G)(B) = P{ξ + η ∈ B}. The tail function of the convolution, the convolution tail, of F
and G is then given by, for any x ∈ R,

F ∗G(x) = P{ξ + η > x} =
∫ ∞
−∞

F (x− y)G(dy) =
∫ ∞
−∞

G(x− y)F (dy).

Now let F be a distribution on R+. In the present section we discuss the following lower
limit:

lim inf
x→∞

F ∗ F (x)
F (x)

,

in the case where F is heavy-tailed. We start with the following result.

Theorem 2.11. For any distributions F1, . . . , Fn on R+ with unbounded supports,

lim inf
x→∞

F1 ∗ . . . ∗ Fn(x)
F 1(x) + . . .+ Fn(x)

≥ 1.

Proof. Let ξ1, . . . , ξn be independent random variables with respective distributions F1,
. . . , Fn. Since the events {ξk > x, ξj ∈ [0, x] for all j 6= k} are disjoint for different k, the
convolution tail can be estimated from below in the following way:

F1 ∗ . . . ∗ Fn(x) ≥
n∑
k=1

P{ξk > x, ξj ∈ [0, x] for all j 6= k}

=
n∑

k=11

F k(x)
∏
j 6=k

Fj(x)

∼
n∑
k=1

F k(x) as x→∞,

which implies the desired statement. Additionally note that we have heavily used the condi-
tion Fk(R+) = 1; for distributions on the whole real line the conclusion in general fails.
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It follows in particular that, for any distribution F on R+ with unbounded support and for
any n ≥ 2,

lim inf
x→∞

F ∗n(x)
F (x)

≥ n. (2.6)

In particular,

lim inf
x→∞

F ∗ F (x)
F (x)

≥ 2. (2.7)

As already discussed in the Introduction, in the light-tailed case the limit given by the
left side of (2.7) is typically greater than 2. For example, for an exponential distribution it
equals infinity. Thus we may ask under what conditions do we have equality in (2.7). We
show that heavy-tailedness of F is sufficient.

Theorem 2.12. For any heavy-tailed distribution F on R+,

lim inf
x→∞

F ∗ F (x)
F (x)

= 2. (2.8)

Proof. By the lower bound (2.7), it remains to prove the upper bound only,

lim inf
x→∞

F ∗ F (x)
F (x)

≤ 2.

Assume the contrary, i.e., there exist δ > 0 and x0 such that

F ∗ F (x) ≥ (2 + δ)F (x) for all x > x0. (2.9)

Applying Theorem 2.9 with g(x) = lnx, we can choose an increasing concave function
h : R+ → R+ such that Eeh(ξ) < ∞ and Eξeh(ξ) = ∞. For any positive b > 0, consider
the concave function

hb(x) := min{h(x), bx}.

Since F is heavy-tailed, h(x) = o(x) as x → ∞; therefore, for any fixed b there exists x1

such that hb(x) = h(x) for all x > x1. Hence, Eehb(ξ) <∞ and Eξehb(ξ) =∞.
For any x, we have the convergence hb(x) ↓ 0 as b ↓ 0. Then Eehb(ξ1) ↓ 1 as b ↓ 0. Thus

there exists b such that

Eehb(ξ1) ≤ 1 + δ/4. (2.10)

For any real a and t, put a[t] = min{a, t}. Then

E(ξ[t]
1 + ξ

[t]
2 )ehb(ξ1+ξ2) = 2Eξ[t]

1 e
hb(ξ1+ξ2) ≤ 2Eξ[t]

1 e
hb(ξ1)+hb(ξ2),

by the concavity of the function hb. Hence,

E(ξ[t]
1 + ξ

[t]
2 )ehb(ξ1+ξ2)

Eξ[t]
1 e

hb(ξ1)
≤ 2

Eξ[t]
1 e

hb(ξ1)Eehb(ξ2)

Eξ[t]
1 e

hb(ξ1)

= 2Eehb(ξ2) ≤ 2 + δ/2, (2.11)
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by (2.10). On the other hand, since (ξ1 + ξ2)[t] ≤ ξ[t]
1 + ξ

[t]
2 ,

E(ξ[t]
1 + ξ

[t]
2 )ehb(ξ1+ξ2)

Eξ[t]
1 e

hb(ξ1)
≥ E(ξ1 + ξ2)[t]ehb(ξ1+ξ2)

Eξ[t]
1 e

hb(ξ1)

=

∫∞
0 x[t]ehb(x)(F ∗ F )(dx)∫∞

0 x[t]ehb(x)F (dx)
. (2.12)

The right side, after integration by parts, is equal to∫∞
0 F ∗ F (x)d(x[t]ehb(x))∫∞

0 F (x)d(x[t]ehb(x))
.

Since Eξ1e
hb(ξ1) = ∞, in the latter fraction both the integrals in the numerator and the

denominator tend to infinity as t→∞. For the increasing function hb(x), together with the
assumption (2.9) this implies that

lim inf
t→∞

∫∞
0 F ∗ F (x)d(x[t]ehb(x))∫∞

0 F (x)d(x[t]ehb(x))
≥ 2 + δ.

Substituting this into (2.12) we get a contradiction to (2.11) for sufficiently large t.

It turns out that the ‘lim inf’ given by the left side of (2.7) is equal to 2 not only for heavy-
tailed, but also for some light-tailed, distributions. Here is an example. Let F be an atomic
distribution at the points xn, n = 0, 1, . . . , with masses pn, i.e., F{xn} = pn. Suppose that
x0 = 1 and that xn+1 > 2xn for every n. Then the tail of the convolution F ∗F at the point
xn − 1 is equal to

F∗F (xn − 1) = (F×F )([xn,∞)× R+) + (F×F )([0, xn−1]× [xn,∞))
∼ 2F (xn − 1) as n→∞.

Hence,

lim
n→∞

F ∗ F (xn − 1)
F (xn − 1)

= 2.

From this equality and from (2.7),

lim inf
x→∞

F ∗ F (x)
F (x)

= 2. (2.13)

Take now xn = 3n, n = 0, 1, . . . , and pn = ce−3n , where c is the normalising constant.
Then F is a light-tailed distribution satisfying the relation (2.13).

We conclude this section with the following result for convolutions of non-identical dis-
tributions.

Theorem 2.13. Let F1 and F2 be two distributions on R+. If the distribution F1 is heavy-
tailed, then

lim inf
x→∞

F1 ∗ F2(x)
F 1(x) + F 2(x)

= 1. (2.14)
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Proof. By Theorem 2.11, the left side of (2.14) is at least 1. Assume now that it is strictly
greater than 1. Then there exists ε > 0 such that, for all sufficiently large x,

F1 ∗ F2(x)
F 1(x) + F 2(x)

≥ 1 + 2ε. (2.15)

Consider the distribution G = (F1 + F2)/2. This distribution is heavy-tailed. By Theorem
2.12 we get

lim inf
x→∞

G ∗G(x)
G(x)

= 2. (2.16)

On the other hand, (2.15) and Theorem 2.11 imply that, for all sufficiently large x,

G ∗G(x) =
F1 ∗ F1(x) + F2 ∗ F2(x) + 2F1 ∗ F2(x)

4

≥ 2(1− ε)F 1(x) + 2(1− ε)F 2(x) + 2(1 + 2ε)(F 1(x) + F 2(x))
4

= 2(1 + ε/2)G(x),

which contradicts (2.16).

2.4 Long-tailed functions and their properties

Our plan is to introduce and to study the subclass of heavy-tailed distributions which are
long-tailed. Later on we will study also long-tailedness properties of other characteristics
of distributions. Therefore, we find it reasonable to start with a discussion of some generic
properties of long-tailed functions.

Definition 2.14. An ultimately positive function f is long-tailed if and only if

lim
x→∞

f(x+ y)
f(x)

= 1, for all y > 0. (2.17)

Clearly if f is long-tailed then we may also replace y by −y in (2.17).

The following result makes a useful connection.

Lemma 2.15. The function f is long-tailed if and only if g(x) := f(log x) (defined for
positive x) is slowly varying at infinity, that is, for any fixed a > 0,

g(ax)
g(x)

→ 1 as x→∞.

Proof. The proof is immediate from the definition of g since

g(ax)
g(x)

=
f(log x+ log a)

f(log x)
.
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If f is long-tailed then we also have uniform convergence in (2.17) over y in compact
intervals. This is obvious for monotone functions, but in the general case the result fol-
lows from the Uniform Convergence Theorem for functions slowly varying at infinity, see
Theorem 1.2.1 in [8]. Thus, for any a > 0, we have

sup
|y|≤a

|f(x)− f(x+ y)| = o(f(x)) as x→∞. (2.18)

We give some quite basic closure properties for the class of long-tailed functions. We
shall make frequent use of these—usually without further comment.

Lemma 2.16. Suppose that the functions f1, . . . , fn are all long-tailed. Then

(i) the function f1(c1 + c2x) is long-tailed;
(ii) if f ∼

∑n
k=1 ckfk where c1, . . . , cn > 0, then f is long-tailed;

(iii) the product function f1 · · · fn is long-tailed;
(iv) the function min(f1, . . . , fn) is long-tailed;
(v) the function max(f1, . . . , fn) is long-tailed.

Proof. The proofs of (i)–(iii) are routine from the definition of long-tailedness.

For (iv) observe that, for any a > 0 and any x, we have

min
(
f1(x+ a)
f1(x)

,
f2(x+ a)
f2(x)

)
≤ min (f1(x+ a), f2(x+ a))

min (f1(x), f2(x))

≤ max
(
f1(x+ a)
f1(x)

,
f2(x+ a)
f2(x)

)
,

Since f1, f2 are long-tailed the result now follows for the case n = 2. The result for general
n follows by induction.

For (v) observe that, analogously to the argument for (iv) above, for any a > 0 and any
x, we have

min
(
f1(x+ a)
f1(x)

,
f2(x+ a)
f2(x)

)
≤ max (f1(x+ a), f2(x+ a))

max (f1(x), f2(x))

≤ max
(
f1(x+ a)
f1(x)

,
f2(x+ a)
f2(x)

)
,

and the result now follows as before.

We now have the following result.

Lemma 2.17. Any long-tailed function f is heavy-tailed and, moreover, satisfies the fol-
lowing relation: for every λ > 0,

lim
x→∞

f(x)eλx =∞.

Proof. Fix λ > 0. Since f is long-tailed, f(x + y) ∼ f(x) as x → ∞ uniformly in
y ∈ [0, 1]. Hence, there exists x0 such that, for all x ≥ x0 and y ∈ [0, 1],

f(x+ y) ≥ f(x)e−λ/2.
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Then f(x0 + n+ y) ≥ f(x0)e−λ(n+1)/2 for all n ≥ 1 and y ∈ [0, 1], and, therefore,

lim inf
x→∞

f(x)eλx ≥ f(x0) lim
n→∞

e−λ(n+1)/2eλn =∞,

so that the lemma now follows.

However, it is not difficult to construct a heavy-tailed function f which is not long-tailed.
Put

f(x) =
∞∑
n=1

2−nI{2n−1 < x ≤ 2n}.

Then, for any λ > 0,

lim sup
x→∞

f(x)eλx ≥ lim sup
n→∞

2−neλ2n =∞,

so that f is heavy-tailed. On the other hand,

lim inf
x→∞

f(x+ 1)
f(x)

≤ lim inf
n→∞

f(2n + 1)
f(2n)

=
1
2
,

which shows that f is not long-tailed.

h-insensitivity. We now introduce a very important concept of which we shall make fre-
quent subsequent use.

Definition 2.18. Given a strictly positive non-decreasing function h, an ultimately positive
function f is called h-insensitive (or h-flat) if

sup
|y|≤h(x)

|f(x+ y)− f(x)| = o(f(x)) as x→∞, uniformly in |y| ≤ h(x). (2.19)

It is clear that the relation (2.19) implies that the function f is long-tailed, and conversely
that any long-tailed function is h-insensitive for any constant function h. The following
lemma gives a strong converse result, which we shall use repeatedly in Section 2.7 and
subsequently throughout the monograph.

Lemma 2.19. Suppose that the function f is long-tailed. Then there exists a function h
such that h(x)→∞ as x→∞ and f is h-insensitive.

Proof. For any integer n ≥ 1, by (2.18), we can choose xn such that

sup
|y|≤n

|f(x+ y)− f(x)| ≤ f(x)/n for all x > xn.

Without loss of generality we may assume that the sequence {xn} is increasing to infinity.
Put h(x) = n for x ∈ [xn, xn+1]. Since xn → ∞ as n → ∞, we have h(x) → ∞ as
x→∞. By the construction we have

sup
|y|≤h(x)

|f(x+ y)− f(x)| ≤ f(x)/n

for all x > xn, which completes the proof.
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One important use of h-insensitivity is the following. The “natural” definition of long-
tailedness of a function f is that of h-insensitivity with respect to any constant function
h(x) = a for all x and some a > 0. The use of this property in this form would then require
that both the statements and the proofs of many results would involve a double limiting
operation in which first x was allowed to tend to infinity, with the use of the relation (2.18),
and following which a was allowed to tend to infinity. The replacement of the constant a by
a function h itself increasing to infinity, but sufficiently slowly that the long-tailed function f
is h-insensitive, not only enables two limiting operations to be replaced with a single one in
proofs, but also permits simpler, cleaner and more insightful presentations of many results
(a typical example is the all-important Lemma 2.33 in Section 2.7).

Now observe that if a long-tailed function f is h-insensitive for some function h and
if a further positive non-decreasing function ĥ is such that ĥ(x) ≤ h(x) for all x, then
(by definition) f is also ĥ-insensitive. Two trivial, but important (and frequently used),
consequences of the combination of this observation with Lemma 2.19 are given by the
following proposition.

Proposition 2.20.
(i) Given a finite collection of long-tailed functions f1, . . . , fn, we may choose a single

function h with respect to which each of the functions fi is h-insensitive;
(ii) given any long-tailed function f and any positive non-decreasing function ĥ, we may

choose a function h such that h(x) ≤ ĥ(x) for all x and f is h-insensitive.

Proof. For (i), note that for each iwe may choose a function hi such that fi is hi-insensitive,
and then define h by h(x) = mini hi(x).

For (ii), note that we may take h(x) = min(ĥ(x), h̄(x)) where h̄ is such that f is h̄-
insensitive.

Finally we note that a further important use of h-insensitivity is the following. For any
given positive function h, increasing to∞, we may consider the class of those distributions
whose (necessarily long-tailed) tail functions are h-insensitive. For varying h, this gives a
powerful method for the classification of such distributions, which we explore in detail in
Section 2.8.

2.5 Long-tailed distributions

As we discussed in the Introduction, all heavy-tailed distributions likely to be encountered in
practical applications are sufficiently regular as to be long-tailed, and it is the latter property,
as applied to distributions, which we study in this section.

First, for any distribution F on R, recall that we denote byR the hazard functionR(x) :=
− lnF (x). By definition, R is always a non-decreasing function and

R(x+ 1)−R(x) = − ln
F (x+ 1)
F (x)

.

Definition 2.21. A distribution F on R is called long-tailed if F (x) > 0 for all x and, for
any fixed y > 0,

F (x+ y) ∼ F (x) as x→∞ (2.20)
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That is, the distribution F is long-tailed if and only if its tail function F is a long-tailed
function. Note that in (2.20) we may again replace y by −y. Further, for a distribution F to
be long-tailed it is sufficient to require (2.20) to hold for any one non-zero value of y. Note
also that the convergence in (2.20) is again uniform over y in compact intervals.

We shall write L for the class of long-tailed distributions on R. Clearly F ∈ L is a tail
property of the distribution F , since it depends only on {F (x) : x ≥ x0} for any finite x0.
Further, it follows from Lemma 2.17 that if the distribution F is long-tailed (F ∈ L) then
F is a heavy-tailed function, and so, by Theorem 2.6, F is also a heavy-tailed distribution.
However, as the example following Lemma 2.17 shows, a heavy-tailed distribution need not
be long-tailed.

The following lemma gives some readily verified equivalent characterisations of long-
tailedness.

Lemma 2.22. Let F be a distribution on R with right-unbounded support, and let ξ be a
random variable with distribution F . Then the following are equivalent:

(i) the distribution F is long-tailed (F ∈ L);
(ii) for any fixed y > 0, F (x, x+ y] = o(F (x)) as x→∞;

(iii) for any fixed y > 0, P{ξ > x+ y | ξ > x} → 1 as x→∞;
(iv) the hazard function R(x) satisfies R(x+ 1)−R(x)→ 0 as x→∞.

Analogously to Lemma 2.16 we further have the following result.

Lemma 2.23. Suppose that the distributions F1, . . . , Fn are all long-tailed (i.e. belong to
the class L) and that ξ1,. . . ,ξn are random variables with distributions F1, . . . , Fn respec-
tively. Then

(i) for any constants c1 and c2 > 0, the distribution of c2ξ1 + c1 is long tailed;
(ii) if F (x) ∼

∑n
k=1 ckF k(x) where c1, . . . , cn > 0, then F is long-tailed;

(iii) if F (x) = min(F1(x), . . . , Fn(x)), then F is long-tailed;
(iv) if F (x) = max(F1(x), . . . , Fn(x)), then F is long-tailed;
(v) the distribution of min(ξ1, . . . , ξn) is long-tailed;

(vi) the distribution of max(ξ1, . . . , ξn) is long-tailed.

Proof. The proofs follow from the application of Lemma 2.16 to the corresponding tail
functions. In particular (v) and (vi) follow from (i) and (iii) of Lemma 2.16.

2.6 Long-tailed distributions and integrated tails

In the study of random walks in particular, a key role is played by the integrated tail distri-
bution, the fundamental properties of which we introduce in this section.

Definition 2.24. For any distribution F on R such that∫ ∞
0

F (y) dy <∞, (2.21)
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(and hence
∫∞
x F (y) dy < ∞ for any finite x) we define the integrated tail distribution FI

via its tail function by

F I(x) = min
(

1,
∫ ∞
x

F (y)dy
)
. (2.22)

Note that if ξ is a random variable with distribution F then∫ ∞
x

F (y)dy = E{ξ; ξ > x} − xP{ξ > x} = E{ξ − x; ξ > x}. (2.23)

The following characterisation will frequently be useful.

Lemma 2.25. Suppose that the distribution F is such that (2.21) holds. Then FI is long-
tailed if and only if F (x) = o(F I(x)) as x→∞.

Proof. The integrated tail distribution FI is long-tailed (FI ∈ L) if and only if F I(x) −
F I(x+1) = o(F I(x)), or, equivalently, F I(x)−F I(x+1) = o(F I(x+1)). The required
result now follows from the inequalities

F (x+ 1) ≤ F I(x)− F I(x+ 1) ≤ F (x),

valid for all sufficiently large x.

Lemma 2.26. Suppose that the distribution F is long-tailed (F ∈ L) and such that (2.21)
holds. Then FI is long-tailed as well (FI ∈ L) and F (x) = o(F I(x)) as x→∞.

Proof. The long-tailedness of FI follows from the relations, as x→∞,

F I(x+ t) =
∫ ∞
x

F (x+ t+ y)dy ∼
∫ ∞
x

F (x+ y)dy = F I(x),

for any fixed t. That F (x) = o(F I(x)) as x→∞ now follows from Lemma 2.25.

The converse assertion, that is, that long-tailedness of FI implies long-tailedness of F , is
not in general true. This is illustrated by the following example.

Example 2.27. Let the distribution F be such that F (x) = 2−2n for x ∈ [2n, 2n+1). Then
F is not long-tailed since F (2n − 1)/F (2n) = 4 for any n, so that F (x− 1)/F (x) 6→ 1 as
x→∞. But we have x−2 ≤ F (x) ≤ 4x−2 for any x > 0. In particular, F I(x) ≥ x−1 and
thus F (x) = o(F I(x)) as x→∞. Thus, by Lemma 2.25, FI is long-tailed.

We now formulate a more general result which will be needed in the theory of random
walks with heavy-tailed increments, and is also of some interest in its own right. Let F be
a distribution on R and µ a non-negative measure on R+ such that∫ ∞

0
F (t)µ(dt) <∞. (2.24)

We may then define the distribution Fµ on R+ given by

Fµ(x) := min
(

1,
∫ ∞

0
F (x+ t)µ(dt)

)
, x ≥ 0. (2.25)

If µ is the Lebesgue measure, then Fµ is the integrated tail distribution. We can formulate
the same question as for FI : what type of conditions on F imply long-tailedness of Fµ?
The answer is given by the following theorem.
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Theorem 2.28. If F is a long-tailed distribution, then Fµ is a long-tailed distribution and,
for any fixed y > 0,

Fµ(x+ y) ∼ Fµ(x)

as x→∞ uniformly in all µ satisfying (2.24), that is,

inf
µ

inf
x>x0

Fµ(x+ y)
Fµ(x)

→ 1 as x0 →∞. (2.26)

If, in addition, F (x ± h(x)) ∼ F (x) as x → ∞, for some positive function h, then (2.26)
holds with ±h(x) in place of y.

Proof. Fix ε > 0. Since F (x + y + u) ∼ F (x + u) as x → ∞ uniformly in u ≥ 0, there
exists x0 such that

Fµ(x+ y) ≥ (1− ε)Fµ(x) for all x > x0.

Then, for all x > x0 and µ,

Fµ(x+ y) =
∫ ∞

0
F (x+ y + u)µ(dy) ≥ (1− ε)

∫ ∞
0

F (x+ u)µ(du) = Fµ(x).

Letting ε → 0 we obtain the desired result. The same argument holds when y is replaced
by ±h(x).

2.7 Convolutions of long-tailed distributions

We know from Theorem 2.11 that for any distributions F andG on the positive half-line R+

lim inf
x→∞

F ∗G(x)
F (x) +G(x)

≥ 1. (2.27)

In order to get the same result for distributions on the whole real line R, we assume some
of distributions involved to be long-tailed. The assumption of the theorem below seems to
be the weakest possible.

Theorem 2.29. Let the distributions F1, . . . , Fn on R be such that the function F 1(x) +
. . .+ Fn(x) is long-tailed. Then, for any distribution G,

lim inf
x→∞

F1 ∗ . . . ∗ Fn ∗G(x)
F 1(x) + . . .+ Fn(x)

≥ 1. (2.28)

In particular (2.28) holds whenever each of the distributions Fi is long-tailed.

Proof (cf Theorem 2.11). Let ξ1, . . . , ξn and η be independent random variables with re-
spective distributions F1, . . . , Fn and G. For any fixed a > 0, we have the following lower
bound:

F1 ∗ . . . ∗ Fn ∗G(x) ≥
n∑
k=1

P{ξk > x+ na, ξj ∈ (−a, x] for all j 6= k, η > −a}

= G(−a)
n∑
k=1

F k(x+ na)
∏
j 6=k

Fj(−a, x]. (2.29)
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For every ε > 0 there exists a such that Fj(−a, a] ≥ 1 − ε for all j and G(−a) > 1 − ε.
Thus, for all x > a,

F1 ∗ . . . ∗ Fn ∗G(x) ≥ (1− ε)n
n∑
k=1

F k(x+ na).

Since the function F 1 + . . .+ Fn is long-tailed,

lim inf
x→∞

F1 ∗ . . . ∗ Fn ∗G(x)
F 1(x) + . . .+ Fn(x)

≥ (1− ε)n.

The required result (2.28) now follows by letting ε→ 0.

For identical distributions, Theorem 2.29 yields the following corollaries.

Corollary 2.30. Let the distribution F on R be long-tailed (F ∈ L). Then, for any n ≥ 2,

lim inf
x→∞

F ∗n(x)
F (x)

≥ n.

Corollary 2.31. Let the distribution F on R be F is long-tailed (F ∈ L) and let the
distribution G be such that G(a) = 0 for some a. Then F ∗G(x) ∼ F (x) as x→∞.

Proof. Since G(a) = 0, we have F ∗G(x) ≤ F (x − a). Thus since F is long-tailed we
have

lim sup
x→∞

F ∗G(x)
F (x)

≤ 1.

Combining this result with the lower bound of Lemma 2.29 in the case n = 1, we obtain
the desired equivalence.

In order to further study convolutions of long-tailed distributions, we make repeated use
of two fundamental decompositions. Let h > 0 and let ξ and η be independent random
variables with distributions F and G respectively. Then the tail function of the convolution
of F and G possesses the following decomposition: for x > 0,

F ∗G(x) = P{ξ + η > x, ξ ≤ h}+ P{ξ + η > x, ξ > h}. (2.30)

If in addition h ≤ x/2 then

F ∗G(x)
= P{ξ + η > x, ξ ≤ h}+ P{ξ + η > x, η ≤ h}+ P{ξ + η > x, ξ > h, η > h}, (2.31)

since if ξ ≤ h and η ≤ h then ξ + η ≤ 2h ≤ x.
Note that

P{ξ + η > x, ξ ≤ h} =
∫ h

−∞
G(x− y)F (dy), (2.32)

while the probability of the event {ξ + η > x, ξ > h, η > h} is symmetric in F and G and

P{ξ + η > x, ξ > h, η > h} =
∫ ∞
h

F (max(h, x− y))G(dy)

=
∫ ∞
h

G(max(h, x− y))F (dy). (2.33)
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Definition 2.32. Given a strictly positive non-decreasing function h, a distribution F on R
is called h-insensitive if its tail function F is an h-insensitive function (see Definition 2.18).
Since F is monotone, this reduces to the requirement that F (x±h(x)) ∼ F (x) as x→∞.

Recall from the results for h-insensitive functions that a distribution F is long-tailed if
and only if there exists a function h as above with respect to which F is h-insensitive.

For long-tailed distributions F and G we shall now make particular use of the decompo-
sition (2.31) in which the constant h is replaced by a function h increasing to infinity (and
with h(x) < x/2 for all x) and such that both F and G are h-insensitive.

The following three lemmas are the keys to everything that follows later in this section.

Lemma 2.33. Suppose that the distribution G on R is long-tailed (G ∈ L) and that the
positive function h is such that h(x)→∞ as x→∞ and G is h-insensitive. Then, for any
distribution F , as x→∞, ∫ h(x)

−∞
G(x− y)F (dy) ∼ G(x),∫ ∞

x−h(x)
F (x− y)G(dy) ∼ G(x).

Proof. The existence of the function h is guaranteed by Lemma 2.19. We now have∫ h(x)

−∞
G(x− y)F (dy) ≤ G(x− h(x)).

On the other hand we also have,∫ h(x)

−∞
G(x− y)F (dy) ≥

∫ h(x)

−h(x)
G(x− y)F (dy)

≥ F (−h(x), h(x)]G(x+ h(x))

∼ G(x+ h(x)) as x→∞,

where the last equivalence follows since h(x)→∞ as x→∞. The first result now follows
from the choice of the function h. The second result follows entirely similarly: the integral is
again bounded from above byG(x−h(x)) and from below by F (−h(x), h(x)]G(x+h(x))
and the result follows as previously.

Remark 2.34. Note the crucial role played by the monotonicity of the tail function G in the
proof of Lemma 2.33—something which is not available to us in considering, for example,
densities in Chapter 4.

We now prove a version of Lemma 2.33 which is symmetric in the distributions F and
G, and which allows us to get many important results for convolutions—see the further
discussion below.

Lemma 2.35. Suppose that the distributions F and G on R are such that the sum F +G of
their tail functions is a long-tailed function (equivalently the measure F +G is long-tailed
in the obvious sense) and that the positive function h is such that h(x) → ∞ as x → ∞
and F +G is h-insensitive. Then∫ h(x)

−∞
G(x− y)F (dy) +

∫ h(x)

−∞
F (x− y)G(dy) ∼ G(x) + F (x) as x→∞.
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Proof. The proof is simply a two-sided version of that for the first assertion of Lemma 2.33.
The existence of the function h is again guaranteed by Lemma 2.19. Now note first that∫ h(x)

−∞
G(x− y)F (dy) +

∫ h(x)

−∞
F (x− y)G(dy) ≤ G(x− h(x)) + F (x− h(x)),

and second that∫ h(x)

−∞
G(x− y)F (dy) +

∫ h(x)

−∞
F (x− y)G(dy)

≥
∫ h(x)

−h(x)
G(x− y)F (dy) +

∫ h(x)

−h(x)
F (x− y)G(dy)

≥ F (−h(x), h(x)]G(x+ h(x)) +G(−h(x), h(x)]F (x+ h(x))
∼ G(x+ h(x)) + F (x+ h(x)) as x→∞,

where the last equivalence follows since h(x) → ∞ as x → ∞. The required result now
follows from the choice of the function h.

Note that special cases under which F +G is long-tailed are (a) F and G are both long-
tailed—in which case Lemma 2.35 (almost) follows from 2.33, and (b) F is long-tailed and
G(x) = o(F (x)) as x→∞.

In various calculations we need to estimate the “internal” part of the convolution. The
following result will be useful.

Lemma 2.36. Let h be any increasing function on R+ such that h(x)→∞. Then, for any
distributions F1, F2, G1 and G2 on R,

lim sup
x→∞

P{ξ1 + η1 > x, ξ1 > h(x), η1 > h(x)}
P{ξ2 + η2 > x, ξ2 > h(x), η2 > h(x)}

≤ lim sup
x→∞

F1(x)
F2(x)

· lim sup
x→∞

G1(x)
G2(x)

,

where ξ1, ξ2, η1, and η2 are independent random variables with respective distributions F1,
F2, G1, and G2.

In particular, in the case where the limits of the ratios F1(x)/F2(x) and G1(x)/G2(x)
exist, we have

lim
x→∞

P{ξ1 + η1 > x, ξ1 > h(x), η1 > h(x)}
P{ξ2 + η2 > x, ξ2 > h(x), η2 > h(x)}

= lim
x→∞

F1(x)
F2(x)

· lim
x→∞

G1(x)
G2(x)

.

Proof. It follows from (2.33) that

P{ξ1 + η1 > x, ξ1 > h(x), η1 > h(x)}

≤ sup
z>h(x)

F1(z)
F2(z)

∫ ∞
h(x)

F 2(max(h(x), x− y))G1(dy)

= sup
z>h(x)

F1(z)
F2(z)

∫ ∞
h(x)

G1(max(h(x), x− y))F2(dy).
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Similarly,∫ ∞
h(x)

G1(max(h(x), x− y))F2(dy)

≤ sup
z>h(x)

G1(z)
G2(z)

∫ ∞
h(x)

G2(max(h(x), x− y))F2(dy)

= sup
z>h(x)

G1(z)
G2(z)

P{ξ2 + η2 > x, ξ2 > h(x), η2 > h(x)}.

Combining these results and recalling that h(x) → ∞ as x → ∞, we obtain the desired
conclusion.

Definition 2.37. Two distributions F and G with right-unbounded supports are said to tail-
equivalent if F (x) ∼ G(x) as x→∞ (i.e. limx→∞ F (x)/G(x) = 1).

In the next two theorems we provide conditions under which a random shifting preserves
tail equivalence.

Theorem 2.38. Suppose that F1, F2, and G are distributions on R such that F 1(x) ∼
F 2(x) as x→∞. If G is long-tailed then F1 ∗G(x) ∼ F2 ∗G(x) as x→∞.

Proof. By Lemma 2.19 we can find a function h such that h(x)→∞ and

G(x± h(x)) ∼ G(x) as x→∞,

i.e. G is h-insensitive. We use the following decomposition: for k = 1, 2,

Fk ∗G(x) =
(∫ x−h(x)

−∞
+
∫ ∞
x−h(x)

)
F k(x− y)G(dy). (2.34)

It follows from the tail equivalence of F1 and F2 that F 1(x − y) ∼ F 2(x − y) as x → ∞
uniformly in y < x− h(x). Thus,∫ x−h(x)

−∞
F 1(x− y)G(dy) ∼

∫ x−h(x)

−∞
F 2(x− y)G(dy) (2.35)

as x→∞. Next, by Lemma 2.33, for k = 1, 2,∫ ∞
x−h(x)

F k(x− y)G(dy) ∼ G(x) as x→∞. (2.36)

Substituting (2.35) and (2.36) into (2.34) we obtain the required equivalence F1 ∗G(x) ∼
F2 ∗G(x).

Theorem 2.39. Suppose that F1, F2, G1, and G2 are distributions on R such that F 1(x) ∼
F 2(x) and G1(x) ∼ G2(x) as x → ∞. If the function F 1 + G1 is long-tailed then
F1 ∗G1(x) ∼ F2 ∗G2(x) as x→∞.
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Proof. The conditions of the theorem imply that the function F 2 + G2 is similarly long-
tailed. By Lemma 2.19 and the following remark we can choose a function h such that
h(x)→∞ as x→∞, h(x) ≤ x/2 and, for k = 1, 2,

F k(x± h(x)) +Gk(x± h(x)) ∼ F k(x) +Gk(x) as x→∞,

i.e. F k + Gk is h-insensitive. We use the following decomposition which follows from
(2.31)–(2.33):

Fk ∗Gk(x) =
∫ h(x)

−∞
F k(x− y)Gk(dy) +

∫ h(x)

−∞
Gk(x− y)Fk(dy)

+
∫ ∞
h(x)

F k(max(h(x), x− y))Gk(dy). (2.37)

Since F1 and F2 are tail equivalent and G1 and G2 are tail equivalent, it follows from
Lemma 2.36 that, as x→∞,∫ ∞

h(x)
F 1(max(h(x), x− y))G1(dy) ∼

∫ ∞
h(x)

F 2(max(h(x), x− y))G2(dy).

(2.38)

Further, by Lemma 2.35, for k = 1, 2 and as x→∞,∫ h(x)

−∞
F k(x− y)Gk(dy) +

∫ h(x)

−∞
Gk(x− y)Fk(dy) ∼ F k(x) +Gk(x). (2.39)

Substituting (2.38) and (2.39) into (2.37) we obtain the required equivalence F1 ∗G1(x) ∼
F2 ∗G2(x).

We now use Theorem 2.39 to show that the class L is closed under convolutions. This is
a corollary of the following result.

Theorem 2.40. Suppose that the distributions F and G are such that F is long-tailed and
the measure F + G is also long-tailed (i.e. the sum F + G of the tail functions of the two
distributions is long-tailed). Then the convolution F ∗G is also long-tailed.

Proof. Fix y > 0. Take F1 = F and F2 to be equal to F shifted by −y, that is, F 2(x) =
F (x + y). Then F2 ∗ G is equal to F ∗ G shifted by −y. Since F is long-tailed, F 1(x) ∼
F 2(x). Since also F 1 +G is long-tailed, it follows from Theorem 2.39 with G1 = G2 = G
that F1 ∗G(x) ∼ F2 ∗G(x). Hence F ∗G(x) ∼ F ∗G(x+ y) as x→∞.

Both the following corollaries are now immediate from Theorem 2.40 since in each case
the measure F +G is long-tailed.

Corollary 2.41. Let the distributions F and G be long-tailed. Then the convolution F ∗G
is also long-tailed.

Corollary 2.42. Suppose that F and G are distributions and that F is long-tailed. If
G(x) = o(F (x)) as x→∞, then F ∗G is long-tailed.

Finally in this section we have the following converse result.
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Lemma 2.43. Let F and G be two distributions on R+ such that F has unbounded support
and G is non-degenerate at 0. If G(x) ≤ cF (x) for some c <∞ and

lim sup
x→∞

F ∗G(x)
F (x) +G(x)

≤ 1, (2.40)

then F is long-tailed.

Proof. Take any a such that G(a,∞) > 0 which is possible because G is not concentrated
at 0. Since for any two distributions on R+

F ∗G(x) =
∫ x

0
F (x− y)G(dy) +G(x),

it follows from the condition (2.40) that∫ x

0
F (x− y)G(dy) ≤ F (x) + o(F (x) +G(x))

= F (x) + o(F (x)) as x→∞,

due to the condition G(x) ≤ cF (x). This implies that∫ x

0
F (x− y, x]G(dy) =

∫ x

0
(F (x− y)− F (x))G(dy)

= o(F (x)) as x→∞.

The left side is not less than F (x− a, x]G(a, x], hence F (x− a, x] = o(F (x)) as x→∞.
The latter relation is equivalent to F (x− a) ∼ F (x) which completes the proof.

2.8 h-insensitive distributions

Let F be a long-tailed distribution (F ∈ L), i.e. a distribution whose tail function F is such
that for some (and hence for all) non-zero y, we have F (x + y) ∼ F (x) as x → ∞. We
saw in Lemma 2.19 that we can then find a non-decreasing positive function h such that
h(x)→∞ as x→∞ and

F (x+ y) ∼ F (x) uniformly in |y| ≤ h(x), (2.41)

i.e. such that the distribution F is h-insensitive (see Definition 2.32).
In this section we turn this process around: we fix a positive function h which is increas-

ing to infinity, and seek to identify those long-tailed distributions which are h-insensitive.
By varying the choice of h, we then have an important technique for classifying long-tailed
distributions according to the heaviness of their tails and for establishing characteristic prop-
erties of various classes of these distributions.

As a first example, consider the function h given by h(x) = εx for some ε > 0; then the
class of h-insensitive distributions coincides with the class of distributions whose tails are
slowly varying at infinity, that is, for any ε > 0,

F ((1 + ε)x)
F (x)

→ 1 as x→∞. (2.42)
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These distributions are extremely heavy; in particular they do not possess any finite positive
moments, that is,

∫
xγF (dx) = ∞ for any γ > 0. Examples are given by distributions F

with the following tail functions:

F (x) ∼ 1/ lnγ x, F (x) ∼ 1/(ln lnx)γ as x→ 0, γ > 0.

Regularly varying distributions We introduce here the well-known class of regularly
varying distributions, and consider their insensitivity properties.

Definition 2.44. An ultimately positive function f is called regularly varying at infinity
with index α ∈ R if, for any fixed c > 0,

f(cx) ∼ cαf(x) as x→∞. (2.43)

A distribution F on R is called regularly varying at infinity with index −α < 0 if F (cx) ∼
c−αF (x) as x→∞, that is, F (x) is regularly varying at infinity with index −α < 0.

Particular examples of regularly varying distributions which were introduced in Section
2.1 are the the Pareto, Burr, and Cauchy distributions.

If a distribution F on R+ is regularly varying at infinity with index −α < 0, then all
moments of order γ < α are finite, while all moments of order γ > α are infinite. The
moment of order γ = α may be finite or infinite depending on the particular behaviour of
the corresponding slowly varying function (see below).

If a function f is regularly varying at infinity with index α then we have f(x) = xαl(x)
for some slowly varying function l. Hence it follows from the discussion of Section 2.4 that,
for any positive function h such that h(x) = o(x) as x → ∞, we have f(x + y) ∼ f(x)
as x → ∞ uniformly in |y| ≤ h(x); we shall then say that f is o(x)-insensitive. Similarly
we shall say that a distribution F is o(x)-insensitive if its tail function F is o(x)-insensitive.
Thus distributions which are regularly varying at infinity are o(x)-insensitive.

Intermediate regularly varying distributions It turns out that the property of o(x)-
insensitivity characterises a slightly wider class of distributions than that of distributions
whose tails are regularly varying, and we now discuss this.

Definition 2.45. A distribution F on R is called intermediate regularly varying if

lim
ε↓0

lim inf
x→∞

F (x(1 + ε))
F (x)

= 1. (2.44)

Any regularly varying distribution is intermediate regularly varying. But the latter class
is richer. We provide first a simple example. Take any density function g which is regularly
varying at infinity with index −α < −1. Then, by Karamata’s Theorem, the corresponding
distribution G will be regularly varying with index −α+ 1 < 0. Now consider any density
function f such that c1g(x) ≤ f(x) ≤ c2g(x), for some 0 < c1 < c2 < ∞ and for all x.
The corresponding distribution F is intermediate regularly varying because

F (x, x(1 + ε)] ≤ c2G(x, x(1 + ε)] and F (x) ≥ c1G(x).

On the other hand, F is not necessarily a regularly varying distribution. We now have the
following characterisation result.
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Theorem 2.46. A distribution F on R is intermediate regularly varying if and only if, for
any positive function h such that h(x) = o(x) as x→∞,

F (x+ h(x)) ∼ F (x), (2.45)

i.e. if and only if F is o(x)-insensitive.

Proof. It is straightforward that if F is intermediate regularly varying then it is o(x)-
insensitive. Hence it only remains to prove the reverse implication. Assume, on the contrary,
that this implication fails. Thus let F be a distribution which is o(x)-insensitive but which
fails to be intermediate regularly varying. The function

l(ε) := lim inf
x→∞

F (x(1 + ε))
F (x)

decreases in ε > 0, due to the monotonicity of F . Therefore, the failure of (2.44) implies
that there exists a positive δ such that l(ε) ≤ 1− 2δ for any ε > 0. Hence, for any positive
integer n, we can find xn such that

F (xn(1 + 1/n)) ≤ (1− δ)F (xn)

Without loss of generality we may assume the sequence {xn} to be increasing. Now put
h(x) = x/n for x ∈ [xn, xn+1). Then h(x) = o(x) as x→∞. However,

lim inf
x→∞

F (x+ h(x))
F (x)

≤ lim inf
n→∞

F (xn + h(xn))
F (xn)

= lim inf
n→∞

F (xn(1 + 1/n))
F (xn)

≤ 1− δ,

which contradicts the o(x)-insensitivity of F .

We now give an attractive probabilistic characterisation of intermediate regularly varying
distributions.

Theorem 2.47. A distribution F on R is intermediate regularly varying if and only if, for
any sequence of independent identically distributed random variables ξ1, ξ2, . . . with finite
positive mean,

F (Sn)
F (nEξ1)

→ 1 as n→∞ (2.46)

with probability 1, where Sn = ξ1 + . . .+ ξn.

Proof. We suppose first that F is intermediate regularly varying; let ξ1, ξ2, . . . be any se-
quence of independent identically distributed random variables with finite positive mean,
and, for each n, let Sn = ξ1 + . . . + ξn; we show that then the relation (2.46) holds. Let
a = Eξ1. Fix any ε > 0. It follows from the definition of intermediate regular variation that
there is n0 and a δ > 0 such that

sup
n≥n0

∣∣∣∣F (n(a± δ))
F (na)

− 1
∣∣∣∣ ≤ ε.
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By the Strong Law of Large Numbers, with probability 1, there exists a random number N
such that |Sn − na| ≤ nδ for all n ≥ N . Then, for n ≥ max{N,n0},∣∣∣∣F (Sn)

F (na)
− 1
∣∣∣∣ ≤ sup

n≥n0

∣∣∣∣F (n(a± δ))
F (na)

− 1
∣∣∣∣ ≤ ε.

Since ε > 0 is arbitrary, this implies the convergence (2.46).
We now prove the converse implication. Assume that the distribution F is not interme-

diate regularly varying. It is sufficient to construct a sequence of independent identically
distributed random variables ξ1, ξ2, . . . with mean 1, such that the relation (2.46) fails to
hold (where again Sn = ξ1 + . . . + ξn). By Theorem 2.46 F fails to be o(x)-insensitive,
and so there exist an ε > 0, an increasing sequence nk and an increasing function h with
h(x) = o(x) such that

F (nk + h(nk)) ≤ (1− ε)F (nk) for all k. (2.47)

Since h(x)/x→ 0, we can choose an increasing subsequence nkm such that

∞∑
m=1

h(nkm)
nkm

<∞. (2.48)

Since h is increasing it follows also that
∑∞

m=1 n
−1
km

< ∞, and so we can define a random
variable ξ taking values on {1± h(nkm),m = 1, 2, . . .} with probabilities

P{ξ = 1− h(nkm)} = P{ξ = 1 + h(nkm)} = c/nkm

(where c is the appropriate normalising constant). It further follows from (2.48) that the
random variable ξ has a finite mean; moreover, this mean equals 1. Define the sequence of
independent random variables ξ1, ξ2, . . . to each have the same distribution as ξ. We shall
show that

lim inf
m→∞

P{Snkm ≥ nkm + h(nkm)} > 0. (2.49)

From this and from (2.47), and since also F is non-increasing, it will follow that

lim inf
m→∞

P{F (Snkm ) ≤ (1− ε)F (nk)} > 0,

so that (2.46) cannot hold.
To show (2.49), fix m and consider the events

Aj =
⋂

i≤nkm , i 6=j
{ξi 6= 1± h(nkm)}, j = 1, . . . nkm .

Then the events Aj ∩ {ξj = 1 + h(nkm)} are disjoint. Therefore,

P{Snkm ≥ nkm + h(nkm)}

≥
nkm∑
j=1

P{Snkm ≥ nkm + h(nkm) |Aj , ξj = 1 + h(nkm)}P{Aj , ξj = 1 + h(nkm)}

= nkmP{Snkm − nkm ≥ h(nkm) |A1, ξ1 − 1 = h(nkm)}P{A1}P{ξ1 = 1 + h(nkm)}
= cP{Snkm − nkm ≥ h(nkm) |A1, ξ1 − 1 = h(nkm)}P{A1},
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where the final equality follows from the definition of the distribution of ξ1. Using again
the independence of the random variables ξi, we have

P{Snkm − nkm ≥ h(nkm) |A1, ξ1 − 1 = h(nkm)}
= P{Snkm − nkm − (ξ1 − 1) ≥ 0 |A1} ≥ 1/2,

where the final inequality follows from the symmetry about 1 of the common distribution
of the random variables ξi. In addition,

P{A1} = (P{ξi 6= 1± h(nkm)})
nkm

−1

= (1− 2c/nkm)nkm−1 → e−2c as m→∞.

We thus finally obtain that

lim inf
m→∞

P{Snkm ≥ nkm + h(nkm)} ≥ ce−2c/2,

so that (2.49) follows.

Other heavy-tailed distributions We proceed now to heavy-tailed distributions with thin-
ner tails. For the lognormal distribution, one can take h(x) = o(x/ lnx) in order to
have h-insensitivity. For the Weibull distribution with parameter α ∈ (0, 1), one can take
h(x) = o(x1−α).

In many practical situations, the class of so-called
√
x-insensitive distributions —those

which are h-insensitive for the function h(x) = x1/2—is of special interest. Among these
are intermediate regularly-varying distributions (in particular regularly-varying distribu-
tions), lognormal distributions and Weibull distributions with shape parameter α < 1/2.
The reason for interest in this quite broad class is explained by the following theorem,
which should be compared with Theorem 2.47.

Theorem 2.48. For any distribution F on R, the following assertions are equivalent:
(i) F is

√
x-insensitive;

(ii) for any sequence of independent identically distributed random variables ξ1, ξ2, . . .
with positive mean and with finite positive variance,

F (Sn)
F (nEξ1)

→ 1 as n→∞ (2.50)

in probability, where Sn = ξ1 + . . .+ ξn;
(iii) for some sequence of independent identically distributed random variables ξ1, ξ2, . . .

with positive mean and with finite positive variance, (2.50) holds.

Proof. To show (i)⇒(ii) suppose that the distribution F is
√
x-insensitive and that the in-

dependent identically distributed random variables ξ1, ξ2, . . . have common mean a > 0
and finite variance. Fix ε > 0. By the Central Limit Theorem, there exist N and A such
that P{|Sn − na| ≤ A

√
n} ≥ 1 − ε for all n ≥ N . It follows from the definition of√

x-insensitivity that there is n0 such that∣∣∣∣F (na±A
√
n))

F (na)
− 1
∣∣∣∣ ≤ ε for all n ≥ n0.



2.9. COMMENTS 39

Then, for n ≥ max{N,n0},

P
{∣∣∣∣F (Sn)
F (na)

− 1
∣∣∣∣ ≤ ε} ≥ P{|Sn − na| ≤ A

√
n} ≥ 1− ε,

which completes the proof of (2.50).

It remains to prove implication (iii)⇒(i). Assume that the independent identically dis-
tributed random variables ξ1, ξ2, . . . have common mean a > 0 and finite variance σ2 > 0,
but that the distribution F fails to be

√
x-insensitive. Then there exists ε > 0 and an in-

creasing sequence nk such that, for all k,

F (nka+
√
nkσ2) ≤ (1− ε)F (nka).

Therefore,

P
{∣∣∣∣F (Snk)
F (nka)

− 1
∣∣∣∣ ≥ ε} ≥ P{Snk − nka ≥

√
nkσ2} →

∫ ∞
1

e−u
2/2

√
2π

du > 0,

which contradicts (2.50).

We finish this section by observing that the exponential distribution, while itself light-
tailed, is, in an obvious sense, on the boundary of the class of such distributions. We may
construct examples of long-tailed (and hence heavy-tailed) distributions on R+, say, whose
tails are arbitrarily close to that of the exponential distribution. For example, the distribution
with tail function

F (x) = e−cx/ lnα x, α > 0, c > 0,

is very close to the exponential distribution, but is still long-tailed; indeed one can take the
function h of Lemma 2.19 to be any such that h(x) = o(lnα x) as x → ∞. Further, if we
replace the logarithmic function by themth iterated logarithm, we obtain again a long-tailed
distribution.

2.9 Comments

The lower bound (2.7) may be found in Chistyakov [12] and in Pakes [34].

The class of long-tailed distributions (but not the term itself) was introduced by Chistyakov
in [12], in the context of branching processes.

Theorem 2.39 generalises a result of Cline [15] where the case F1, F2, G1, G2 ∈ L was
considered.

Corollary 2.41 is well-known from Embrechts and Goldie [20].
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Chapter 3

Subexponential distributions

As we stated in the Introduction, all those heavy-tailed distributions likely to be of use in
practical applications are not only long-tailed but possess the additional regularity property
of subexponentiality. Essentially this corresponds to good tail behaviour under the operation
of convolution. In this chapter, following established tradition, we introduce first subexpo-
nential distributions on the positive half-line R+. It is not immediately obvious from the
definition, but it nevertheless turns out, that subexponentiality is a tail property of a distri-
bution. It is thus both natural, and important for many applications, to extend the concept
to distributions on the entire real line R. We also study the very useful subclass of subex-
ponential distributions which is called S∗, and which again contains all those heavy-tailed
distributions likely to be encountered in practice.

Different sufficient and necessary conditions for subexponentiality may be found in Sec-
tions 3.5 and 3.6. We also discuss the questions of why not every long-tailed distribution
is subexponential and why the subexponentiality of a distribution does not imply subexpo-
nentiality of the integrated tail distribution.

In Section 3.9 we consider closure properties for the class of subexponential distributions.
We conclude with the fundamental uniform upper bound for the tail of the nth convolution
of a subexponential distribution known as Kesten’s estimate.

3.1 Subexponential distributions on the positive half-line

In the previous chapter we showed in (2.7) that, for any distribution F on R+ with un-
bounded support,

lim inf
x→∞

F ∗ F (x)
F (x)

≥ 2.

It was then proved in Theorem 2.12 that, for any heavy-tailed distribution F on R+,

lim inf
x→∞

F ∗ F (x)
F (x)

= 2.

In particular, if F is heavy-tailed on R+ and if

F ∗ F (x)
F (x)

→ c as x→∞,

41
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where c ∈ (0,∞], then necessarily c = 2. This observation leads naturally to the following
definition.

Definition 3.1. Let F be a distribution on R+ with unbounded support. We say that F is
subexponential, and write F ∈ S, if

F ∗ F (x) ∼ 2F (x) as x→∞. (3.1)

Now let ξ1 and ξ2 be independent random variables on R+ with common distribution F .
Then the above definition is equivalent to stating that F is subexponential if

P{ξ1 + ξ2 > x} ∼ 2P{ξ1 > x} as x→∞.

This last relation may be rewritten as

P{ξ1 > x|ξ1 + ξ2 > x} → 1/2 as x→∞.

Further, since we always have the equivalence

P{max(ξ1, ξ2) > x} = 1− (1− P{ξ1 > x})2 ∼ 2P{ξ1 > x}

as x→∞, it follows that F is a subexponential distribution if and only if

P{ξ1 + ξ2 > x} ∼ P{max(ξ1, ξ2) > x} as x→∞.

Finally, since ξ1, ξ2 are non-negative, the inequality max(ξ1, ξ2) > x implies also that
ξ1 + ξ2 > x, and so the subexponentiality of their distribution is equivalent to the following
relation:

P{ξ1 + ξ2 > x,max(ξ1, ξ2) ≤ x} = o(P{ξ1 > x}) as x→∞. (3.2)

That is, for large x, the only significant way in which ξ1 + ξ2 can exceed x is that either
ξ1 or ξ2 should itself exceed x. This is the well-known “principle of a single big jump” for
sums of subexponentially distributed random variables.

Lemma 2.43 with G = F implies immediately the following result.

Lemma 3.2. Any subexponential distribution on R+ is long-tailed. In particular, any subex-
ponential distribution is heavy-tailed.

The converse is not true; there exist some long-tailed distributions on R+ which are not
subexponential; see Section 3.7 for more detail.

Since a long-tailed distribution F satisfies F (x)eλx → ∞ as x → ∞, for all λ > 0
(see Lemma 2.17), it is this property that suggested the name subexponential. However, the
name is used in the slightly more restrictive sense that we have defined.

In the class of distributions on the positive half-line, subexponentiality is a tail property,
as are both heavy- and long-tailedness. To see this, observe that if a distribution F1 on R+

is subexponential (and therefore long-tailed) and if a distribution F2 on R+ is such that, for
some x0, we have F 1(x) = F 2(x) for all x ≥ x0, then by Theorem 2.39 F1 ∗ F1(x) ∼
F2 ∗ F2(x) as x→∞, which implies the subexponentiality of F2.
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3.2 Subexponential distributions on the whole real line

In the previous section we defined subexponential distributions on the positive half-line R+.
We showed there that subexponentiality was a tail property of a distribution. Thus, as
remarked at the beginning of this chapter, it is both natural and desirable to extend the
concept to distributions on the entire real line R.

The problem is now that of extending the definition appropriately. It turns out that, for a
distribution F on the entire real line R, the condition (3.1) no longer defines a tail property
of that distribution, nor even implies that the distribution is long-tailed. This is illustrated
by the following example.

Example 3.3. For A ≥ 0, consider the distribution F on the interval [−A,∞) with the tail
function

F (x) = (x+A+ 1)−2e−(x+A), x ≥ −A.

The convolution tail is given by

F ∗ F (x) =
∫ ∞
−∞

F (x− y)F (dy)

=
∫ x/2

−∞
F (x− y)F (dy)−

∫ ∞
x/2

F (x− y)dF (y)

= 2
∫ x/2

−∞
F (x− y)F (dy) + (F (x/2))2,

after integration by parts. We thus have that, as x→∞,

F ∗ F (x) ∼ 2e−x−A
∫ x/2

−A
(x− y)−2eyF (dy) + o(F (x))

∼ 2x−2e−x−A
∫ x/2

−A
eyF (dy) + o(F (x))

∼ 2F (x)
∫ ∞
−A

eyF (dy).

Take A such that
∫∞
−A e

yF (dy) = 1. Then F ∗ F (x) ∼ 2F (x), but F is not long-tailed and
indeed F is light-tailed.

The above example shows that the satisfaction of the condition (3.1) is not a tail property
for the class of distributions on the whole real line R—for otherwise the condition would be
satisfied by the distribution F+ (given, as in the Introduction, by F+(x) = F (x) for x ≥ 0
and F+(x) = 0 for x < 0), and Lemma 3.2 would then guarantee that F+ was long-tailed
in contradiction to the result F is not long-tailed.

Thus the most usual way to define the subexponentiality of a distribution F on the whole
real line R is to require that the distribution F+ on R+ be subexponential. The condi-
tion (3.1) then continues to hold—it is simply no longer sufficient for subexponentiality.
This approach has the advantage of making it immediately clear that subexponentiality re-
mains a tail property, but the disadvantage of requiring a two-stage definition. We shall
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see below that an equivalent definition, which we shall make formally, is to require that the
distribution F , in additional to satisfying (3.1), is also long-tailed. The asserted equivalence
follows from the following lemma.

Lemma 3.4. Let F be a distribution on R and let ξ be a random variable with distribution
F . Then the following are equivalent:

(i) F is long-tailed and F ∗ F (x) ∼ 2F (x) as x→∞;
(ii) the distribution F+ of ξ+ is subexponential;

(iii) the conditional distribution G(B) := P{ξ ∈ B | ξ ≥ 0} is subexponential.

Proof. Let ξ1 and ξ2 be two independent copies of ξ.

(i)⇒(ii). Suppose that F is long-tailed. Fix A > 0. On the event {ξk > −A}, we have
ξ+
k ≤ ξk +A. Thus, for x ≥ 0,

P{ξ+
1 + ξ+

2 > x} ≤ P{ξ1 + ξ2 > x− 2A, ξ1 > −A, ξ2 > −A}
+P{ξ2 > x, ξ1 ≤ −A}+ P{ξ1 > x, ξ2 ≤ −A}

≤ P{ξ1 + ξ2 > x− 2A}+ 2F (x)F (−A).

Hence, since F is long-tailed,

lim sup
x→∞

P{ξ+
1 + ξ+

2 > x}
F (x)

≤ lim
x→∞

P{ξ1 + ξ2 > x− 2A}
F (x− 2A)

+ 2F (−A)

= 2 + 2F (−A).

Since A can be chosen as large as we please,

lim sup
x→∞

P{ξ+
1 + ξ+

2 > x}
F (x)

≤ 2.

Together with (2.7) this implies that F+ ∗ F+(x) ∼ 2F+(x) as x → ∞, i.e. that the
distribution F+ of ξ+ is subexponential.

(ii)⇒(i). Suppose now that the distribution F+ of ξ+ is subexponential. That F+ and
hence F is long-tailed follows from Lemma 3.2. We further have ξ1 + ξ2 ≤ ξ+

1 + ξ+
2 , so

that
F ∗ F (x) ≤ F+ ∗ F+(x) ∼ 2F (x)

as x → ∞, again by the subexponentiality of F+. Together with the lower estimate for
the ‘lim inf’ provided by Corollary 2.30, we get the required tail asymptotics F ∗ F (x) ∼
2F (x) as x→∞.

(ii)⇔(iii). We show now the equivalence of the conditions (ii) and (iii). Define first
p = P{ξ < 0} and observe that, for x ≥ 0,

P{ξ+
1 + ξ+

2 > x} = 2P{ξ1 < 0, ξ2 > x}+ P{ξ1 + ξ2 > x, ξ1 ≥ 0, ξ2 ≥ 0}
= 2pF (x) + (1− p)2P{ξ1 + ξ2 > x | ξ1 ≥ 0, ξ2 ≥ 0}
= 2pF (x) + (1− p)2G ∗G(x).
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Since also, for x ≥ 0, we haveF (x) = (1−p)G(x), the subexponentiality ofG is equivalent
to the condition that, as x→∞,

P{ξ+
1 + ξ+

2 > x} ∼ 2pF (x) + 2(1− p)F (x)
= 2P{ξ+ > x},

i.e. to the subexponentiality of F+.

The above lemma allows us to make the following definition of subexponentiality on the
whole real line R.

Definition 3.5. Let F be a distribution on R with right-unbounded support. We say that F
is subexponential on the whole line , and write F ∈ SR, if F is long-tailed and

F ∗ F (x) ∼ 2F (x) as x→∞.

Equivalently, a random variable ξ has a subexponential distribution on the whole line if ξ+

has a subexponential distribution.

Thus subexponentiality on the whole real line R generalises the concept of subexponen-
tiality on the positive half-line R+ and any distribution which is subexponential on R+ or
R is long-tailed, i.e. S ⊆ SR ⊆ L.

We now have the following theorem which provides the foundation for our results on
convolutions of subexponential distributions.

Theorem 3.6. Let the distribution F on R be long-tailed (F ∈ L) and let ξ1, ξ2 be two
independent random variables with distribution F . Let the function h be such that h(x)→
∞ as→ ∞ and F is h-insensitive (see Definition 2.32). Then F is subexponential on the
whole line (F ∈ SR) if and only if

P{ξ1 + ξ2 > x, ξ1 > h(x), ξ2 > h(x)} = o(F (x)) as x→∞. (3.3)

Proof. We assume first that additionally h(x) < x/2 for all x. Then, for any x,

P{ξ1 + ξ2 > x}
= P{ξ1 + ξ2 > x, ξ1 ≤ h(x)}+ P{ξ1 + ξ2 > x, ξ2 ≤ h(x)}

+ P{ξ1 + ξ2 > x, ξ1 > h(x), ξ2 > h(x)}. (3.4)

Since F is long-tailed, it follows from (2.32), the given conditions on h and Lemma 2.33
that, for i = 1, 2,

P{ξ1 + ξ2 > x, ξi ≤ h(x)} ∼ F (x) as x→∞. (3.5)

Again, since F is long-tailed, the subexponentiality of F is equivalent to the requirement
that P{ξ1 + ξ2 > x} ∼ 2F (x) as x→∞, and the equivalence of this to the condition (3.3)
now follows from (3.4) and (3.5).

In the case where we do not have h(x) < x/2 for all x, small variations are required to
the above proof. If F is subexponential, then we may consider instead the function ĥ given
by ĥ(x) = min(h(x), x/2). Since F is then also ĥ-insensitive, the relation (3.3) holds with
h replaced by ĥ, and so also in its original form. Conversely, if (3.3) holds, then that F is
subexponential follows as before, except only that we now have “≤” instead of equality in
(3.4), which does not affect the argument.
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Theorem 3.6 implies that, as in the case of non-negative subexponential summands, the
most probable way for large deviations of the sum ξ1 + ξ2 to occur is that one summand
is small and the other is large; for (very) large x, the main contribution to the probability
P{ξ1 + ξ2 > x} is made by the probabilities of the events {ξ1 + ξ2 > x, ξi ≤ h(x)} for
i = 1, 2.

We now give what is almost a restatement of Theorem 3.6 in terms of integrals, in a form
which will be of use in various of our subsequent calculations.

Theorem 3.7. Let the distribution F on R be long-tailed. Then the following are equivalent:
(i) F is subexponential on the whole line, i.e. F ∈ SR;

(ii) for every function h with h(x) < x/2 for all x and such that h(x)→∞ as x→∞,∫ x−h(x)

h(x)
F (x− y)F (dy) = o(F (x)) as x→∞; (3.6)

(iii) there exists a function h with h(x) < x/2 for all x, such that h(x) → ∞ as x → ∞
and F is h-insensitive, and the relation (3.6) holds.

Proof. As remarked above, the theorem is only a slight variation on Theorem 3.6. Let ξ1

and ξ2 again be independent random variables with common distribution F , and let h be any
function such that h(x) < x/2, h(x) → ∞ and F is h-insensitive (note that since F ∈ L

there is always at least one such function h); the difference between the left side of (3.3)
and the left side of (3.6) is

P{ξ1 > x− h(x), ξ2 > h(x)} = F (x− h(x))F (h(x)) ∼ F (x)F (h(x)) = o(F (x))

as x → ∞. The theorem thus follows immediately from Theorem 3.6, except only that
it is necessary to observe that the reason why, in the statement (ii), we do not require any
restriction to functions h such that F is h-insensitive follows from Proposition 2.20(ii).

In the succeeding sections, we will make use of the following result.

Lemma 3.8. Suppose that F is subexponential on the whole line and that the function h is
such that h(x)→∞ as x→∞. Let the distributions G1, G2 be such that, for i = 1, 2, we
have Gi(x) = O(F (x)) as x → ∞. If η1 and η2 are independent random variables with
distributions G1 and G2, then

P{η1 + η2 > x, η1 > h(x), η2 > h(x)} = o(F (x)) as x→∞.

Proof. Let ξ1 and ξ2 be two independent random variables with distribution F . Since
Gi(x) = O(F (x)), it follows from Lemma 2.36 that, for some c <∞,

P{η1 + η2 > x, η1 > h(x), η2 > h(x)} ≤ cP{ξ1 + ξ2 > x, ξ1 > h(x), ξ2 > h(x)}.

The subexponentiality of F and Theorem 3.6, together with the immediately preceding
remark, imply that

P{ξ1 + ξ2 > x, ξ1 > h(x), ξ2 > h(x)} = o(F (x)).

Hence the result follows.
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3.3 Subexponentiality and weak tail-equivalence

We start with the definition of weak tail-equivalence and then use this property to establish
a number of powerful results.

Definition 3.9. Two distributions F andGwith right-unbounded supports are called weakly
tail-equivalent if there exist c1 > 0 and c2 <∞ such that, for any x > 0,

c1 ≤
F (x)
G(x)

≤ c2.

This is equivalent to the condition

0 < lim inf
x→∞

F (x)
G(x)

≤ lim sup
x→∞

F (x)
G(x)

<∞.

Lemma 3.10. Let F and G be weakly tail-equivalent distributions on R. Suppose that
either (i) both F and G are long-tailed, or (ii) both F and G are concentrated on R+, and
suppose further that

lim sup
x→∞

F ∗G(x)
F (x) +G(x)

≤ 1. (3.7)

Then both F and G are subexponential.

Proof. It follows from Lemma 2.43 that, in both the cases considered, both F and G are
long-tailed.

Now let h be any function such that h(x) < x/2, h(x) → ∞, and both F and G are
h-insensitive (recall that the existence of such a function is guaranteed by the results of
Section 2.4). Let ξ and η be independent random variables with distributions F and G re-
spectively. It follows from the decomposition (2.31) (with h(x) in place of h), Lemma 2.33,
and the condition (3.7) that

P{ξ + η > x, ξ > h(x), η > h(x)} = o(F (x) +G(x)) as x→∞. (3.8)

Let ξ′ be an additional random variable, independent of ξ, with distribution F . Then,
from (3.8), the weak tail-equivalence of F and G, and Lemma 2.36,

P{ξ + ξ′ > x, ξ > h(x), ξ′ > h(x)} = o(F (x) +G(x))

= o(F (x)) as x→∞,

where the second line in the above display again follows from the weak tail-equivalence of
F and G. Hence, by Theorem 3.6, F is subexponential.

Now we prove that the class of subexponential distributions is closed under the weak
tail-equivalence relation.

Theorem 3.11. Suppose that F is subexponential on the whole line, that G is long-tailed,
and that F and G are weakly tail-equivalent. Then G ∈ SR.
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Proof. Choose a function h such that h(x) → ∞ and G is h-insensitive. Let η1 and η2 be
independent random variables with distribution G. Then, from Lemma 3.8 and the given
weak tail-equivalence,

P{η1 + η2 > x, η1 > h(x), η2 > h(x)} = o(F (x)) = o(G(x)).

Hence it follows from Theorem 3.6 that G ∈ SR.

Definition 3.12. Two distributions F and G with right-unbounded supports are said to be
proportionally tail-equivalent if there exists a constant c > 0 such that F (x) ∼ cG(x) as
x→∞.

Theorem 3.11 has the following corollary.

Corollary 3.13. Let the distributions F and G be proportionally tail-equivalent. If F ∈ SR
then G ∈ SR.

We now turn to convolutions of many distributions.

Theorem 3.14. Let (a reference distribution)F ∈ SR. Suppose that distributionsG1, . . . , Gn
are such that, for each i, the function F + Gi is long-tailed and Gi(x) = O(F (x)) as
x→∞. Then

G1 ∗ · · · ∗Gn(x) = G1(x) + . . .+Gn(x) + o(F (x)) as x→∞.

Proof. Note first that it follows from the conditions of the theorem that, for each i and for
any constant a,

F (x+ a) +Gi(x+ a) = F (x) +Gi(x) + o(F (x) +Gi(x))

= F (x) +Gi(x) + o(F (x)).

Hence from the representation F +
∑k

i=1Gi =
∑k

i=1(F +Gi)− (k − 1)F and since F is
also long-tailed, for each k and for any constant a,

F (x+ a) +
k∑
i=1

Gi(x+ a) = F (x) +
k∑
i=1

Gi(x) + o(F (x)),

and so the measure F +
∑k

i=1Gi (i.e. the function F +
∑k

i=1Gi) is also long-tailed. Note
also that for each k we have

∑k
i=1Gi(x) = O(F (x)). It now follows that it is sufficient to

prove the theorem for case n = 2, the general result then following by induction.

By Lemma 2.19 and Proposition 2.20 there exists a function h such that h(x) → ∞,
h(x) ≤ x/2, and F , F + G1 and F + G2 are all h-insensitive. It then follows from
Lemma 2.33 that, as x→∞,∫ h(x)

−∞
G1(x− y)G2(dy) =

∫ h(x)

−∞
(G1 + F )(x− y)G2(dy)−

∫ h(x)

−∞
F (x− y)G2(dy)

= G1 + F (x)− F (x) + o(G1(x) + F (x))

= G1(x) + o(F (x)), (3.9)
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and similarly ∫ h(x)

−∞
G2(x− y)G1(dy) = G2(x) + o(F (x)). (3.10)

Further, from Lemma 3.8,∫ ∞
h(x)

G1(max(h(x), x− y)G2(dy) = o(F (x)). (3.11)

The required result now follows from the decomposition (2.31) (where ξ and η are indepen-
dent random variables with distributions G1 and G2) and from (3.9)–(3.11).

Theorem 3.15. Suppose again that the conditions of Theorem 3.14 hold, and that addition-
ally G1 satisfies the stronger condition (than (i) of Theorem 3.14) that G1 ∈ L and that G1

is weakly tail equivalent to F . Then G1 ∗ · · · ∗Gn ∈ SR, and additionally G1 ∗ · · · ∗Gn is
weakly tail equivalent to F .

Proof. It follows from Theorem 3.11 that G1 ∈ SR. Further the weak tail equivalence of
F and G1 implies that, for each k, Gk(x) = O(G1(x)). Hence by Theorem 3.14 with
F = G1, the distribution G1 ∗G2 ∗ · · · ∗Gn is long-tailed and weakly tail equivalent to G1

and so also to F . In particular, again by Theorem 3.11, G1 ∗ · · · ∗Gn ∈ SR.

We have the following corollaries of Theorems 3.14 and 3.15.

Corollary 3.16. Suppose that distributions F and G are such that F ∈ SR, that F + G is
long-tailed and that G(x) = O(F (x)) as x→∞. Then F ∗G ∈ SR and

F ∗G(x) = F (x) +G(x) + o(F (x)) as x→∞.

Proof. This result follows from Theorems 3.14 and 3.15 in the case n = 2 withG1 replaced
by F and G2 by G.

Corollary 3.17. Assume that F , G ∈ SR. If F and G are weakly tail-equivalent, then
F ∗G ∈ SR.

Corollary 3.18. Assume that F ∈ SR. If G(x) = o(F (x)) as x → ∞, then F ∗ G ∈ SR
and F ∗G(x) ∼ F (x).

Corollary 3.19. Suppose thatF ∈ SR. LetG1, . . . , Gn be distributions such thatGi(x)/F (x)→
ci as x→∞, for some constants ci ≥ 0, i = 1, . . . , n. Then

G1 ∗ . . . ∗Gn(x)
F (x)

→ c1 + . . .+ cn as x→∞.

If c1 + . . .+ cn > 0, then G1 ∗ . . . ∗Gn ∈ SR.

Proof. The first statement of the corollary is immediate from Theorem 3.14. If c1 + . . . +
cn > 0, we may assume without loss of generality that c1 > 0, so that the second statement
follows from Theorem 3.15.

The following result is a special case of Corollary 3.19.
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Corollary 3.20. Assume that F ∈ SR. Then for any n ≥ 2, F ∗n(x)/F (x)→ n as x→∞.
In particular, F ∗n ∈ SR.

The following converse result follows.

Theorem 3.21. Let a distribution F on R+ with unbounded support be such that F ∗n(x) ∼
nF (x) for some n ≥ 2. Then F is subexponential.

Proof. Take G := F ∗(n−1). For any x we have the inequality G(x) ≥ F (x). On the
other hand, G(x) ≤ F ∗n(x) ∼ nF (x). Hence the distributions F and G are weakly tail-
equivalent. Thus by Theorem 2.11, as x→∞,

F ∗G(x) ≥ (1 + o(1))(F (x) +G(x))
= F (x) +G(x) + o(F (x)).

Recalling that F ∗G(x) = F ∗n(x) ∼ nF (x), we deduce the following upper estimate

F ∗(n−1)(x) = G(x) ≤ (n− 1 + o(1))F (x).

Together with lower estimate (2.6) this implies that F ∗(n−1)(x) ∼ (n− 1)F (x) as x→∞.
By induction we deduce then that F ∗2(x) ∼ 2F (x), which completes the proof.

3.4 The class S∗

We have already observed that a heavy-tailed distribution F on R+ is subexponential if
and only if it is long-tailed and its tail is sufficiently regular that limx→∞ F ∗ F (x)/F (x)
exists (and that this limit is then equal to 2). Thus subexponentiality, with all its important
properties for the tails of convolutions, is effectively guaranteed for all those heavy-tailed
distributions likely to be encountered in practice.

However, some applications, for example, those concerned with the behaviour of the
maxima of random walks with heavy-tailed increments, require a very slightly stronger
regularity condition with respect to their tails—that of membership of the class S∗ which we
introduce below. We shall see that membership of S∗ is again a tail property of a distribution
and that S∗ is a subclass of the class SR of distributions which are subexponential on R.

For any distribution F on R with right-unbounded support, we have the inequality∫ x

0
F (x− y)F (y)dy = 2

∫ x/2

0
F (x− y)F (y)dy

≥ 2F (x)
∫ x/2

0
F (y)dy.

Therefore, always

lim inf
x→∞

1
F (x)

∫ x

0
F (x− y)F (y)dy ≥ 2m,

where m = Eξ+ and ξ has distribution F . If F is heavy-tailed, then (see [26], Lemma 4])

lim inf
x→∞

1
F (x)

∫ x

0
F (x− y)F (y)dy = 2m. (3.12)

These observations provide a motivation for the following definition.
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Definition 3.22. Let F be a distribution on R with right-unbounded support and finite mean
on the positive half line. We say that F belongs to the class S∗ if∫ x

0
F (x− y)F (y)dy ∼ 2mF (x) as x→∞,

where m = Eξ+ and ξ has distribution F .

It follows from the observation (3.12) that a distribution F on R belongs to the class S∗ if
and only if it is heavy-tailed and sufficiently regular that limx→∞

1
F (x)

∫ x
0 F (x− y)F (y)dy

exists. Thus it is again the case that most heavy-tailed distributions likely to be of use in
practical applications belong to the class S∗. This includes all those named distributions
introduced in Section 2.1, i.e. the Pareto, Burr, Cauchy, lognormal, and Weibull (with shape
parameter α < 1) distributions.

We shall see in Section 4.2 that the condition F ∈ S∗ is equivalent to the requirement
that the density f on R+ given by f(x) := F (x)/m be subexponential in the sense defined
there.

We show first that the class S∗ is a subclass of the class L of long-tailed distributions on
R.

Theorem 3.23. Let the distribution F on R belong to S∗. Then F is long-tailed.

Proof. Since∫ x

0
F (x− y)F (y)dy ≥ 2F (x)

∫ 1

0
F (y)dy + 2F (x− 1)

∫ x/2

1
F (y)dy,

the inclusion F ∈ S∗ implies

(F (x− 1)− F (x))
∫ x/2

1
F (y)dy ≤ 1

2

∫ x

0
F (x− y)F (y)dy − F (x)

∫ x/2

0
F (y)dy

= o(F (x)) as x→∞.

It thus follows from Lemma 2.22 that F is long-tailed.

We now have the following analogue to the conditions for subexponentiality given by
Theorem 3.7.

Theorem 3.24. Let F be a distribution on R. Then the following are equivalent:

(i) F ∈ S∗;
(ii) F is long-tailed, and for every function h with h(x) < x/2 for all x and such that

h(x)→∞ as x→∞,∫ x−h(x)

h(x)
F (x− y)F (y)dy = o(F (x)) as x→∞; (3.13)

(iii) there exists a function h with h(x) < x/2 for all x, such that h(x) → ∞ as x → ∞
and F is h-insensitive, and the relation (3.13) holds.
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Note that it follows in particular from Theorem 3.24 that membership of the class S∗ is a
tail property.

Proof of Theorem 3.24. Note first that each of the conditions (i)–(iii) implies that F is long-
tailed. This follows in the case of (i) from Theorem 3.23, and in the case of (iii) from the
existence of an increasing function with respect to which F is h-insensitive. Hence we
assume without loss of generality that F is long-tailed (F ∈ L).

Let h be any function with h(x) < x/2, such that h(x) → ∞ as x → ∞ and F is h-
insensitive. (Note as usual that since F is assumed long-tailed there exists at least one such
function h.) Then, for any x ≥ 0,∫ x

0
F (x− y)F (y) dy = 2

∫ h(x)

0
F (x− y)F (y) dy +

∫ x−h(x)

h(x)
F (x− y)F (y) dy.

The h-insensitivity of F implies that∫ h(x)

0
F (x− y)F (y) dy ∼ mF (x) as x→∞,

where again m = Eξ+ and ξ has distribution F . It thus follows that the condition F ∈
S∗ is equivalent to (3.13). The theorem now follows on noting that, as in the proof of
Theorem 3.7, the reason why, in the statement (ii), we do not require any restriction to
functions h such that F is h-insensitive follows from Proposition 2.20(ii).

We now have the following theorem and its important corollary.

Theorem 3.25. Suppose that F ∈ S∗, that G is long-tailed, and that F and G are weakly
tail-equivalent. Then G ∈ S∗.

Proof. Let h be a function such that h(x) < x/2, h(x)→∞ and G is h-insensitive. Then,
from Theorem 3.24 and the given weak tail-equivalence,∫ x−h(x)

h(x)
G(x− y)G(y) dy = O

(∫ x−h(x)

h(x)
F (x− y)F (y) dy

)
= o(F (x))

= o(G(x)) as x→∞.

Again from Theorem 3.24, it now follows that G ∈ S∗.

Corollary 3.26. Let distributions F and G be proportionally tail-equivalent. If F ∈ S∗

then G ∈ S∗.

The following theorem asserts in particular that S∗ is a subclass of SR.

Theorem 3.27. If F ∈ S∗, then F ∈ SR and FI ∈ S.

We do not provide a proof for this result now. Instead of that we recall the notion of an
integrated weighted tail distribution and state sufficient conditions for its tail to be subexpo-
nential. Then Theorem 3.27 is a particular case of Theorem 3.28.
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Let F be a distribution on R and let µ a non-negative measure on R+ such that∫ ∞
0

F (t)µ(dt) is finite. (3.14)

Then we can define the distribution Fµ on R+ by its tail:

Fµ(x) := min
(

1,
∫ ∞

0
F (x+ t)µ(dt)

)
, x ≥ 0. (3.15)

We may now ask the following question: what type of conditions on F imply the subexpo-
nentiality of Fµ?

For any b > 0, define the class Mb of all non-negative measures µ on R+ such that
µ(x, x+ 1] ≤ b for all x.

Theorem 3.28. Let F ∈ S∗ and µ ∈ Mb, b ∈ (0,∞). Then Fµ ∈ S. Moreover,
Fµ ∗ Fµ(x) ∼ 2Fµ(x) as x→∞ uniformly in µ ∈Mb.

Here are two examples of such measures µ: (i) if µ(B) = I{0 ∈ B}, then Fµ is F
restricted to R+; (ii) if µ(dt) = dt is Lebesgue measure on R+, then Fµ = FI . These
examples give a proof of Theorem 3.27.

Proof of Theorem 3.28. First, recall that Theorem 2.28 states that if F is long-tailed, then
Fµ is long-tailed uniformly in µ ∈ Mb. Thus, it is sufficient to show that, for any h(x) →
∞,

lim
x→∞

sup
µ∈Mb

1
Fµ(x)

∫ x−h(x)

h(x)
Fµ(x− y)Fµ(dy) = 0, (3.16)

see Theorem 3.7. For any µ ∈Mb,

Fµ(y, y + 1] ≤
∫ y+1

y
F (t)µ(dt) ≤ F (y)µ(y, y + 1] ≤ bF (y).

Therefore, (3.16) holds if and only if

lim
x→∞

sup
µ∈Mb

1
Fµ(x)

∫ x−h(x)

h(x)
Fµ(x− y)F (y)dy = 0. (3.17)

Since F ∈ S∗, as x→∞,∫ x−h(x)

h(x)
F (x− u)F (u)du = o(F (x)),

by Theorem 3.24. Then,∫ x−h(x)

h(x)
Fµ(x− y)F (y)dy =

∫ x−h(x)

h(x)

(∫ ∞
0

F (x+ t− y)µ(dt)

)
F (y)dy

≤
∫ ∞

0

(∫ x+t−h(x)

h(x)
F (x+ t− y)F (y)dy

)
µ(dt)

=
∫ ∞

0
o(F (x+ t))µ(dt) = o(Fµ(x))

and we get (3.17).
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3.5 Sufficient conditions for subexponentiality

We formulate and prove here two results. The first may be applied to very heavy distribu-
tions such as Pareto distributions, while the second one may be applied to lighter distribu-
tions of the Weibull-type.

Theorem 3.29. Let F be a long-tailed distribution on R (F ∈ L) and suppose that there
exists c > 0 such that F (2x) ≥ cF (x) for all x (that is, F belongs to the class D of
dominated-varying distributions introduced in Section 2.1). Then

(i) F is subexponential on the whole line;
(ii) F ∈ S∗, provided F has a finite mean on the positive half line;

(iii) Fµ ∈ S, for all µ satisfying (3.14).

Note in particular that the statement (i) of Theorem 3.29 asserts that D ∩ L ⊆ SR.

Proof. It follows from the comment after Theorem 3.28 that (iii) implies (i) and (ii). So
we prove (iii). The inequality F (2x) ≥ cF (x) yields, for those values of x such that the
integrals below are less than 1,

Fµ(2x) =
∫ ∞

0
F (2x+ y)µ(dy)

≥ c

∫ ∞
0

F (x+ y/2)µ(dy)

≥ c

∫ ∞
0

F (x+ y)µ(dy) = cFµ(x). (3.18)

Now let h be any function such that h(x) < x/2 and h(x) → ∞. We have the following
estimate:∫ x−h(x)

h(x)
Fµ(x− y)Fµ(dy) =

∫ x/2

h(x)
Fµ(x− y)Fµ(dy) +

∫ x−h(x)

x/2
Fµ(x− y)Fµ(dy)

≤ Fµ(x/2)Fµ(h(x)) + Fµ(h(x))Fµ(x/2).

Therefore, by (3.18),∫ x−h(x)

h(x)
Fµ(x− y)Fµ(dy) ≤ 2Fµ(x)Fµ(h(x))/c = o(Fµ(x)) as x→∞.

Applying now Theorem 3.7(ii), we conclude that Fµ ∈ S.

The Pareto distribution, and more generally any regularly varying or indeed intermediate
regularly varying distribution, satisfies conditions of Theorem 3.29 (i.e. belongs to D) and
is, therefore, subexponential. All of the above distributions whose means are finite also
belong to the to class S∗.

However, the lognormal distribution and the Weibull distribution do not satisfy the condi-
tions of Theorem 3.29 and we need a different technique for proving their subexponentiality.

Recall that we denote by R the hazard function given by R(x) := − lnF (x) and by r the
hazard rate function given by r(x) = R′(x), provided the hazard function is differentiable.
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Theorem 3.30. Let F be a long-tailed distribution on R (F ∈ L). Assume that there exist
γ < 1 and A <∞ such that the hazard function R(x) satisfies the following inequality:

R(x)−R(x− y) ≤ γR(y) +A, (3.19)

for all x > 0 and y ∈ [0, x/2]. If the function e−(1−γ)R(x) is integrable over R+, then
F ∈ S∗. In particular, F is subexponential on the whole line (F ∈ SR).

Proof. For any h < x/2,∫ x−h

h
F (x− y)F (y)dy = 2

∫ x/2

h
F (x− y)F (y)dy

= 2F (x)
∫ x/2

h
eR(x)−R(x−y)−R(y)dy.

It follows from (3.19) that∫ x/2

h
eR(x)−R(x−y)−R(y)dy ≤ eA

∫ ∞
h

e−(1−γ)R(y)dy → 0 as h→∞,

since the function e−(1−γ)R(x) is integrable. Hence, if h is now any function such that
h(x)→∞ then ∫ x−h(x)

h(x)
F (x− y)F (y)dy = o(F (x)).

Hence, by Theorem 3.24, we have F ∈ S∗.

We note briefly that, for 0 < γ < 1, the function e−(1−γ)R(x) is integrable if F has a
finite moment of order 1

1−γ + ε on the positive half line R+ for some ε > 0. To see this
note that the tail of F may then be bounded from above by cx−1/(1−γ)−ε (by the Chebyshev
inequality):

e−(1−γ)R(x) = (F (x))1−γ ≤ c1−γx−1−(1−γ)ε.

The heavy-tailed Weibull distribution, with tail function F given by F (x) = e−x
α

for
some α ∈ (0, 1), satisfies the conditions of Theorem 3.30. Indeed, since the function
R(x) = xα is concave for α ∈ (0, 1), we have for y ≤ x/2 (so that x − y ≥ y and
R′(x− y) ≤ R′(y))

R(x)−R(x− y) ≤ yR′(x− y) ≤ yR′(y) = αR(y).

Similarly, it may be checked that the lognormal distribution satisfies conditions of Theo-
rem 3.30 and, therefore, belongs to the class S∗.

3.6 Conditions for subexponentiality in terms of truncated ex-
ponential moments

Note that some heavy-tailed distributions, for example those with tail functions of the form
e−x/ log x do not satisfy the conditions of Theorem 3.30 (in this case γ = 1) and we need a
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more advanced technique for proving the subexponentiality of such distributions. The next
two theorems, due to Pitman [36], relate the classes S and S∗ to the asymptotic behaviour
of truncated exponential moments with special indices.

Theorem 3.31. Let F be a distribution on R+. Suppose that the hazard rate function r
exists, is eventually non-increasing and that r(x)→ 0 as x→∞. Then F is subexponential
(F ∈ S) if and only if ∫ x

0
eyr(x)F (dy)→ 1 as x→∞. (3.20)

Further, a sufficient condition for subexponentiality is that the function of y given by eyr(y)−R(y)r(y)
is integrable over R+. Here R(x) =

∫ x
0 r(y)dy defines the corresponding hazard function.

Note that the integral in (3.20) is equal to E{eξr(x); ξ ≤ x}, where ξ is a random variable
with distribution F .

Proof. The proof consists of two steps. First, we show that it may be assumed without loss
of generality that the function r(x) is non-increasing for all x (and that the condition (3.20)
is a tail property), and then we prove the results under this assumption.

Suppose first that r(x) may increase in a neighbourhood of 0 but is non-increasing for all
x ≥ x∗. Define the non-increasing hazard rate

r∗(x) =
{
r(x∗) for x ≤ x∗,
r(x) for x > x∗,

and put R∗(x) =
∫ x

0 r∗(y)dy. Define also the distribution F∗ by F∗(x) = e−R∗(x). Then,
for all x ≥ x∗,

R∗(x)−R(x) =
∫ x∗

0
(r(x∗)− r(y))dy =: c∗,

and hence, by Theorem 3.11, either both F∗ and F are subexponential or both are not. We
now prove that the functions r and r∗ either both satisfy, or else both fail to satisfy, the
condition (3.20). Note first that F ∗(x∗) = e−c∗F (x∗). Note that r(x) → 0 as x → ∞
implies that eyr(x) → 1 as x→∞, uniformly in 0 ≤ y ≤ x∗. Hence∫ x

0
eyr(x)F (dy) =

(∫ x∗

0
+
∫ x

x∗

)
eyr(x)F (dy)

= F [0, x∗] + o(1) +
∫ x

x∗

eyr(x)F (dy).

It now follows that F satisfies the condition (3.20) if and only if∫ x

x∗

eyr(x)F (dy) =
∫ x

x∗

F (dy) + o(1) = F (x∗) + o(1).

Note also that F∗(dx) = e−c∗F (dx) for x > x∗. Therefore, as x→∞,∫ x

0
eyr∗(x)F∗(dy) =

∫ x∗

0
eyr∗(x)F∗(dy) +

∫ x

x∗

eyr(x)F∗(dy)

= F∗[0, x∗] + o(1) + e−c∗
∫ x

x∗

eyr(x)F (dy)

= F∗[0, x∗] + o(1) + e−c∗(F (x∗) + o(1))
= F∗[0, x∗] + F ∗(x∗) + o(1) = 1 + o(1).
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where the equality in the second line follows since r(x) → 0 and from the definitions, and
equality in the third line holds if and only if and only if F satisfies (3.20). Thus, we have
shown that F satisfies (3.20) if and only if F∗ satisfies the analogous condition, with F∗ in
place of F and r∗ in place of r. In other words, without loss of generality, we may assume
from the very beginning that r(x) is non-increasing for all x ≥ 0.

Subexponentiality is equivalent to the convergence: as x→∞,∫ x

0
eR(x)−R(x−y)F (dy) :=

∫ x

0
eR(x)−R(x−y)−R(y)r(y)dy → 1. (3.21)

Since r(x) = R′(x) is non-increasing, R(x) is concave and

R(x)−R(x− y) ≥ yr(x) for any y ∈ [0, x].

Hence, subexponentiality in the form (3.21) implies

lim sup
x→∞

∫ x

0
eyr(x)F (dy) ≤ 1.

Together with the fact that the integral in the above expression is at least F [0, x], this implies
(3.20).

Now suppose that (3.20) holds. We make use of the following representation:∫ x

0
eR(x)−R(x−y)F (dy) =

(∫ x/2

0
+
∫ x

x/2

)
eR(x)−R(x−y)−R(y)r(y)dy

=
∫ x/2

0
eR(x)−R(x−y)−R(y)r(y)dy

+
∫ x/2

0
eR(x)−R(x−y)−R(y)r(x− y)dy

=: I1 + I2.

The first integral is not less than F [0, x/2] which tends to 1 as x→∞. On the other hand,
for y ≤ x/2, and therefore x− y ≥ x/2,

R(x)−R(x− y) ≤ yr(x− y) ≤ yr(x/2). (3.22)

Thus,

I1 ≤
∫ x/2

0
eyr(x/2)F (dy),

which tends to 1 as x→∞ by (3.20). Thus I1 → 1.
On noting that, for any fixed y, eR(x)−R(x−y)−R(y)r(y) → e−R(y)r(y) as x → ∞ and

that
∫∞

0 e−R(y)r(y)dy = 1, we obtain that the family (in x) of functions (in y)

zx(y) = eR(x)−R(x−y)−R(y)r(y)I{y ≤ x/2}

is uniformly integrable in the sense that

sup
x

∫ ∞
A

zx(y)dy → 0 as A→∞.



58 CHAPTER 3. SUBEXPONENTIAL DISTRIBUTIONS

Since r(x−y) ≤ r(y) for all y ≤ x/2, the integrand in I2 is dominated by zx(y). It follows
that I2 → 0 as x → ∞, since also eR(x)−R(x−y)−R(y)r(x − y) ≤ r(x − y) → 0 for any
fixed y. Thus (3.21) holds; that is, the condition (3.20) implies subexponentiality.

The second part of the theorem follows by dominated convergence, since, for all suffi-
ciently large y < x, we have r(x) ≤ r(y).

As an example, consider a distribution F such that, for some α > 0 and for all sufficiently
large x,

F (x) = e−x/ logα x (3.23)

Then, again for sufficiently large x, the hazard rate function r is given by r(x) = 1/ logα x−
α/ logα+1 x and the function

exr(x)−R(x)r(x) = e−αx/ logα+1 xr(x)

(where, as usual, R is the corresponding hazard function) is integrable over R+. Therefore,
by Theorem 3.31, F is subexponential.

In the following theorem we give an applicable necessary and sufficient condition for
membership of the class S∗.

Theorem 3.32. Let F be a distribution on R+ with finite mean m. Suppose that the hazard
rate function r exists, is eventually non-increasing, and that r(x) → 0 as x → ∞. Then
F ∈ S∗ if and only if ∫ x

0
eyr(x)F (y)dy → m as x→∞. (3.24)

Further, a sufficient condition for F ∈ S∗ is that (the function of y given by) eyr(y)F (y) is
integrable over R+.

Proof. Arguments similar to those used in the proof of Theorem 3.31 show that without loss
of generality we may assume that the corresponding hazard function R satisfies R(0) = 0
and that the hazard rate function r is non-increasing over all of R+. The distribution F
belongs to the class S∗ if and only if, as x→∞,∫ x/2

0
eR(x)−R(x−y)F (y)dy :=

∫ x/2

0
eR(x)−R(x−y)−R(y)dy → m. (3.25)

Since r(x) = R′(x) is non-increasing, R(x) is concave and

R(x)−R(x− y) ≥ yr(x) for any y ∈ [0, x].

Suppose first that the condition (3.25) holds. Then

lim sup
x→∞

∫ x

0
eyr(x)F (y)dy ≤ m.

However, we also have that the latter integral is at least
∫ x

0 F (y)dy which tends to m as
x→∞. Hence the condition (3.24) follows.
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Now suppose instead that the condition (3.24) holds. It follows from (3.22) that∫ x/2

0
eR(x)−R(x−y)F (y)dy ≤

∫ x/2

0
eyr(x/2)F (y)dy,

and from (3.24) that this latter integral tends to m as x→∞.

The second part of the theorem follows by dominated convergence, since, again for all
sufficiently large y < x, we have r(x) ≤ r(y).

As an example we again consider a distribution F whose tail is such that, for some α > 0
and for all sufficiently large x, the relation (3.23) holds. We now have that F ∈ S∗, since in
this case the function

exr(x)−R(x) = e−αx/ logα+1 x

(where the hazard rate function r is given as previously and R is again the corresponding
hazard function) is integrable over R+.

3.7 S is a proper subset of L

In this section we use Theorem 3.31 to construct a distribution F which is long-tailed but
not subexponential. Fix any decreasing sequence αn → 0 as n → ∞. The corresponding
hazard function R(x) will be defined as continuous and piecewise linear so that the hazard
rate function r(x) := R′(x) = αn for x ∈ (xn−1, xn]. Since on the interval y ∈ (xn−1, xn]

yr(xn)−R(y) = yαn − [R(xn−1) + αn(y − xn−1)] > −R(xn−1),

we have the following lower bound for the integral on the left side of (3.20):∫ xn

xn−1

eyr(xn)−R(y)r(y)dy ≥
∫ xn

xn−1

e−R(xn−1)αndy

= αn(xn − xn−1)e−R(xn−1).

Now choose x0 = 0, R(x0) = 0, and the xn so that

αn(xn − xn−1)e−R(xn−1) = 2.

For this we take xn = xn−1 + 2α−1
n eR(xn−1) and then

R(xn) = R(xn−1) + αn(xn − xn−1)
= R(xn−1) + 2eR(xn−1).

Clearly R(x) → ∞ as x → ∞. Since αn → 0 as n → ∞, r(x) → 0 as x → ∞;
thus, F (x) = e−R(x) is long-tailed (see Section 2.5). On the other hand, by the above
construction, ∫ xn

xn−1

eyr(xn)−R(y)r(y)dy ≥ 2 for all n,
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so that ∫ xn

0
eyr(xn)−R(y)r(y)dy

does not converge to 1 as n → ∞. It now follows from Theorem 3.31 that F is not subex-
ponential.

The idea in this example is that the tail F is a piecewise exponential function; the indexes
of the exponents tend to zero and the lengths of the intervals of exponentiality grow very
fast.

3.8 Does F ∈ S imply that FI ∈ S?

It is natural to consider the following question: May the assumption F ∈ S∗ of Theorem
3.28 be weakened to F ∈ S? In the case of Lebesgue measure µ, i.e. where Fµ = FI , this
question is raised in [23, Section 1.4.2].

In this section, we answer the above question in the negative by giving an example of
a distribution F ∈ S with finite mean such that FI /∈ S. This example is based on the
following construction.

Define R0 = 0, Rn+1 = eγRn , where γ ∈ (1/2, 1). Since eγx > x for all x ≥ 1, the
sequence Rn is increasing and

Rn+1/Rn →∞ as n→∞. (3.26)

Put tn = R2
n. Define the hazard function R(x) := − lnF (x) as

R(x) = Rn + rn(x− tn) for x ∈ (tn, tn+1],

where

rn =
Rn+1 −Rn
tn+1 − tn

=
1

Rn+1 +Rn
(3.27)

∼ 1
Rn+1

as n→∞ (3.28)

by (3.26). In other words, the hazard rate r(x) = R′(x) is defined as r(x) = rn for
x ∈ (tn, tn+1], where rn is given by (3.27). By construction, we have

F (tn) = e−
√
tn ,

so that at the points tn the tail function F of the distribution F behaves like that of the
Weibull distribution with parameter 1/2.

We shall prove that F ∈ S and has finite mean, but that FI /∈ S. Let

Jn := FI(tn, tn+1] =
∫ tn+1

tn

F (u)du =
∫ tn+1

tn

e−R(u)du.

Since by (3.28)

Jn = r−1
n (e−Rn − e−Rn+1)

∼ r−1
n e−Rn ∼ Rn+1e

−Rn = e−(1−γ)Rn as n→∞, (3.29)
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and γ < 1, we have
∑

n Jn <∞; hence F has finite mean.

It follows from (3.27) that r(x) is eventually decreasing and tends to 0, and we can thus
apply Theorem 3.31 to show that F is subexponential. By that theorem, F is subexponential
provided the function eyr(y)−R(y)r(y) is integrable over R+. We estimate the integral of this
function. Put

In =
∫ tn+1

tn

eyr(y)−R(y)r(y)dy.

Then

In = rn

∫ tn+1

tn

eyrn−Rn−rn(y−tn)dy ≤ rne−Rn+rntntn+1.

Since, as n→∞,

rntn+1 = rnR
2
n+1 ∼ Rn+1 (3.30)

by (3.28) and

rntn = rnR
2
n ∼ R2

n/Rn+1 = R2
ne
−γRn → 0, (3.31)

we get, for n sufficiently large,

In ≤ 2Rn+1e
−Rn ∼ 2e−(1−γ)Rn .

Therefore, ∫ ∞
0

eyr(y)−R(y)r(y)dy =
∞∑
n=0

In <∞,

and F is indeed subexponential.

For x ∈ (tn, tn+1], it follows from (3.31) that the density of FI may be estimated as
follows:

F ′I(x) = F (x) = e−Rn−rn(x−tn) ∼ e−Rn−rnx as n→∞. (3.32)

For x ∈ (tn, tn+1], define Jn(x) = FI [x, tn+1). We have

Jn(x) = e−Rn+rntn

∫ tn+1

x
e−rnydy

= r−1
n e−Rn+rntn(e−rnx − e−rntn+1)

∼ Jne
−rnx(1− e−rn(tn+1−x)) as n→∞, (3.33)

by (3.29) and (3.31). We also have from (3.33) and (3.30) that, for x ∈ (tn, tn+1/2],

F I(x) ≥ Jn(x) ∼ Jne−rnx as n→∞. (3.34)

For any x ∈ (tn, tn+1],

F I(x) = Jn(x) + Jn+1 + Jn+2 + . . . .
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By (3.29), Jk+1 = o(Jk). Fix any α ∈ (0, 1 − γ). Then by (3.34), (3.29), and (3.30), as
n→∞,

Jn+1

Jn(αtn+1)
∼ Jn+1

Jn
eαrntn+1 = e(γ−1+α)Rn+1+o(Rn+1) → 0.

Summing and using (3.34), we get

F I(αtn+1) ∼ Jn(αtn+1) ∼ Jne−αrntn+1 as n→∞.

On the other hand, by (3.32), for n sufficiently large,

FI ∗ FI(αtn+1) ≥
∫ αtn+1−tn

tn

F I(αtn+1 − y)FI(dy)

≥ (1 + o(1))
∫ αtn+1−tn

tn

F I(αtn+1 − y)e−Rn−rnydy.

Applying now (3.34), we get

FI ∗ FI(αtn+1) ≥ (1 + o(1))Jn
∫ αtn+1−tn

tn

e−rn(αtn+1−y)−Rn−rnydy

∼ Jnαtn+1e
−Rn−αrntn+1 .

Then the ratio
FI ∗ FI(αtn+1)
F I(αtn+1)

is asymptotically not less than αtn+1e
−Rn = αeRn(2γ−1) which tends to infinity as n→∞

since γ > 1/2. Thus, F ∈ S and has finite mean, but FI /∈ S.

3.9 Closure properties of the class of subexponential distribu-
tions

In this section, we discuss the following question: is the class SR closed under convolution?
It is well-known that the class of regularly varying distributions, which is a subclass of the
class SR of subexponential distributions, is closed under convolution. Indeed if F and G
are regularly varying, the result that F ∗ G is also regularly varying is straightforwardly
obtained from Theorem 3.14 by taking the “reference” distribution of that theorem to be
(F + G)/2. It is also known that the class SR does not possess this closure property.
However, if distributions F , G ∈ SR, then it follows from Corollary 3.16 that a sufficient
condition for F ∗G ∈ SR is given byG(x) = O(F (x)) as x→∞. (Indeed, as the corollary
shows, G may satisfy weaker conditions than that of being subexponential.) Further it
follows that under this condition we have that, for any function h such that h(x)→∞ and
both F and G are h-insensitive,

P{ξ + η > x, ξ > h(x), η > h(x)} = o(F (x) +G(x)) as x→∞, (3.35)

where ξ and η are independent random variables with respective distributions F and G.
(See, for example, the proof of Theorem 3.14 above.) The following result is therefore not
surprising: if F , G ∈ SR, the condition (3.35) is necessary and sufficient for F ∗G ∈ SR.
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Theorem 3.33. Suppose that the distributions F and G on R are subexponential. Then the
following conditions are equivalent:

(i) F ∗G(x) ∼ F (x) +G(x) as x→∞;
(ii) F ∗G ∈ SR;

(iii) the mixture pF + (1− p)G belongs to SR for all p satisfying 0 < p < 1;
(iv) the mixture pF + (1− p)G belongs to SR for some p satisfying 0 < p < 1;
(v) the relation (3.35) holds for any function h such that h(x)→∞ as x→∞ and both

F and G are h-insensitive;
(vi) the relation (3.35) holds for some function h such that h(x) → ∞ as x → ∞ and

both F and G are h-insensitive.

Proof. Let h be any function such that h(x) → ∞ as x → ∞ and both F and G are
h-insensitive. We show that each of the conditions (i)–(iv) is equivalent to (3.35). The
equivalence of the conditions (i)–(vi) of the theorem is then immediate. First, since F and
G are subexponential, and hence long-tailed, it follows from the decomposition (2.18) and
Lemma 2.33 that

F ∗G(x)

= F (x) + o(F (x)) +G(x) + o(G(x)) + P{ξ + η > x, ξ > h(x), η > h(x)}. (3.36)

Hence the condition (i) and (3.35) are equivalent.

To show the equivalence of (ii) and (3.35) observe first that subexponentiality of F and
G implies that

F ∗2(x) ∼ 2F (x), G∗2(x) ∼ 2G(x), (3.37)

and thus in particular, from Lemma 2.36, that

P{ξ1 + ξ2 + η1 + η2 > x, ξ1 + ξ2 > h(x), η1 + η2 > h(x)}
∼ 4P{ξ + η > x, ξ > h(x), η > h(x)}. (3.38)

Further, since (F ∗ G)∗2 = F ∗2 ∗ G∗2 and since both F ∗2 and G∗2 are h-insensitive,
(F ∗G)∗2(x) may be estimated as in (3.36) with F ∗2 and G∗2 replacing F and G. Hence,
using also (3.37) and (3.38),

(F ∗G)∗2(x)

= (2 + o(1))(F (x) +G(x)) + (4 + o(1))P{ξ + η > x, ξ > h(x), η > h(x)}. (3.39)

Now since subexponentiality of F and G also implies, by Corollary 2.41, that F ∗ G ∈ L,
the condition (ii) is equivalent to the requirement that

(F ∗G)∗2(x) = (2 + o(1))F ∗G(x)

= (2 + o(1))(F (x) +G(x)) + (2 + o(1))P{ξ + η > x, ξ > h(x), η > h(x)},
(3.40)

where (3.40) follows from (3.36). However, the equalities (3.39) and (3.40) hold simulta-
neously if and only if (3.35) holds.
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Finally, to show the equivalence of (iii) (and (iv)) and (3.35), fix p such that 0 < p < 1
and note first that pF+(1−p)G is h-insensitive. Hence, by Theorem 3.6, subexponentiality
of pF + (1− p)G is equivalent to∫ ∞

h(x)
pF + (1− p)G(max(h(x), x− y))(pF + (1− p)G)(dy) = o(F (x) +G(x)).

The left side is equal to

p2P{ξ1 + ξ2 > x, ξ1 > h(x), ξ2 > h(x)}+ (1− p)2P{η1 + η2 > x, η1 > h(x), η2 > h(x)}
+2p(1− p)P{ξ + η > x, ξ > h(x), η > h(x)}.

By subexponentiality of F and G and again by Theorem 3.6, P{ξ1 + ξ2 > x, ξ1 >
h(x), ξ2 > h(x)} = o(F (x)) and P{η1 + η2 > x, η1 > h(x), η2 > h(x)} = o(G(x)). The
equivalence of (iii) and (3.35) now follows.

In general, the class SR is not closed under convolutions. An example of two subexpo-
nential distributions F1 and F2 such that F1 ∗ F2 is not subexponential was constructed by
Leslie in [33].

3.10 Kesten’s estimate

We know that if a distribution F on R is subexponential (F ∈ SR) then F ∗n(x)/F (x)→ n
as x→∞. However, for many purposes, e.g. the application of the dominated convergence
theorem, an upper bound for F ∗n(x)/F (x) is required. One such is given by the theorem
below, known as Kesten’s estimate.

Theorem 3.34. Suppose that F ∈ SR. Then, for any ε > 0, there exists c(ε) > 0 such that,
for any x ≥ 0 and n ≥ 1,

F ∗n(x) ≤ c(ε)(1 + ε)nF (x).

Proof. Since for any random variable ξ we have ξ ≤ ξ+, it is sufficient to prove the theorem
for distributions on the positive half-line R+. Let ξ1, ξ2, . . . be a sequence of independent
random variables with common distribution F , and, for each n, let Sn =

∑n
i=1 ξi. For

x0 > 0 and k ≥ 1, put

Ak := Ak(x0) = sup
x>x0

F ∗k(x)
F (x)

.

Take ε > 0. It follows from subexponentiality that there exists x0 such that, for any x > x0,

P{ξ1 + ξ2 > x, ξ2 ≤ x} = P{ξ1 + ξ2 > x} − P{ξ2 > x}
≤ (1 + ε/2)F (x).

We have the following decomposition

P{Sn > x} = P{Sn > x, ξn ≤ x− x0}+ P{Sn > x, ξn > x− x0}
=: P1(x) + P2(x).
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By the definitions of An−1 and x0, for any x > x0,

P1(x) =
∫ x−x0

0
P{Sn−1 > x− y}P{ξn ∈ dy}

≤ An−1

∫ x−x0

0
F (x− y)P{ξn ∈ dy}

= An−1P{ξ1 + ξn > x, ξn ≤ x− x0}
≤ An−1(1 + ε/2)F (x). (3.41)

Further, for any x > x0,

P2(x) ≤ P{ξn > x− x0} ≤ LF (x), (3.42)

where

L = sup
y

F (y − x0)
F (y)

.

Since F is long-tailed, L is finite. It follows from (3.41) and (3.42) that An ≤ An−1(1 +
ε/2) + L for n > 1. Therefore, an induction argument yields:

An ≤ A1(1 + ε/2)n−1 + L

n−2∑
l=0

(1 + ε/2)l ≤ Ln(1 + ε/2)n−1.

This implies the conclusion of the theorem.

It is straightforward to check that the above proof depends on F only through the quantity
|F ∗ F (x)/F (x) − 2|. We hence obtain immediately the following uniform version of
Kesten’s estimate.

Theorem 3.35. Suppose that the family F is uniformly subexponential, that is,

sup
F∈F

∣∣∣F ∗ F (x)
F (x)

− 2
∣∣∣ → 0 as x→∞, (3.43)

and, in addition, for any y > 0,

sup
F∈F

sup
x

F (x− y)
F (x)

< ∞. (3.44)

Then, for any ε > 0, there exists c(ε) > 0 such that, for any F ∈ F, x ≥ 0 and n ≥ 1,

F ∗n(x) ≤ c(ε)(1 + ε)nF (x).

Recall from Section 3.4 that, for any b > 0, we define the class Mb to consist of all non-
negative measures µ on R+ such that µ(x, x + 1] ≤ b for all x. As before, we define the
distribution Fµ on R+ by its tail:

Fµ(x) := min
(

1,
∫ ∞

0
F (x+ t)µ(dt)

)
, x ≥ 0.

We now have the following corollary to Theorem 3.35.
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Corollary 3.36. Assume that F ∈ S∗ and b > 0. Then, for any ε > 0, there exists c(ε) > 0
such that, for all µ ∈Mb, x ≥ 0 and n ≥ 1,

F ∗nµ (x) ≤ c(ε)(1 + ε)nFµ(x).

Proof. We check the conditions of Theorem 3.35. The uniform subexponentiality follows
from Theorem 3.28. Fix y > 0. Since F ∈ S∗, F is long-tailed and, therefore, there exists
c <∞ such that F (x− y) ≤ cF (x) for all x. Then∫ ∞

0
F (x− y + t)µ(dt) ≤ c

∫ ∞
0

F (x+ t)µ(dt),

and so also the condition (3.44) holds.

3.11 Subexponentiality and randomly stopped sums

In this Section we study tail asymptotics for the distribution of a sum (of independent iden-
tically distributed random variables) stopped at a random time which is independent of the
summands. These results may be used in a variety of areas including the theory of random
walks, branching processes, infinitely divisible laws, etc.

Let ξ, ξ1, ξ2, . . . be independent random variables with a common distribution F on R+.
Let S0 = 0 and, for n ≥ 1, let Sn = ξ1 + . . . + ξn. Let the counting random variable τ
be independent of the sequence {ξn} and take values in Z+. Then the distribution of Sτ is
given by

F ∗τ =
∞∑
n=0

P{τ = n}F ∗n. (3.45)

The first result below says that if the random variable τ has a light-tailed distribution and
the distribution F of the random variables ξi has a subexponential distribution, then again
there holds the “principle of a single big jump” introduced in Section 3.1.

Theorem 3.37. Suppose that Eτ < ∞, that F ∈ SR and that E(1 + δ)τ < ∞ for some
δ > 0. Then

P{Sτ > x}
F (x)

→ Eτ as x→∞. (3.46)

Proof. The proof is immediate from Corollary 3.20, Theorem 3.34, and the dominated con-
vergence theorem.

Here the result is valid for any subexponential distribution on the whole real line. For a
fixed distribution F , the condition E(1 + δ)τ <∞ may be substantially weakened. We can
illustrate this by the following example. Assume that there exist finite positive constants
c and α such that F (x/n) ≤ cnαF (x) for all x > 0 and n ≥ 1 (for instance, the Pareto
distribution with parameter α satisfies this condition). Then P{Sτ > x} ∼ Eτ · F (x) as
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x → ∞ provided Eτ1+α is finite; this follows by combining the dominated convergence
with the inequalities

P{Sn > x} ≤ P{n ·max
k≤n

ξk > x} ≤ nP{ξ1 > x/n} ≤ n1+αF (x).

The next result shows that subexponentiality on the positive half-line R+ is essentially
characterised by the relation (3.46).

Theorem 3.38. Suppose that Eτ < ∞ and that P{τ > 1} > 0. Suppose further that the
distribution F is concentrated on R+ and that (3.46) holds. Then F ∈ S.

Proof. For each positive integer k, let pk = P{τ = k}; note also that, from (2.6), since F
is concentrated on R+ and has unbounded support,

lim inf
x→∞

F ∗k(x)
F (x)

≥ k. (3.47)

Let n ≥ 2 be such that pn > 0. Then, from (3.45) and (3.46),

Eτ = lim
x→∞

P{Sτ > x}
F (x)

≥ lim inf
x→∞

∑
k 6=n

pk
F ∗k(x)
F (x)

+ pn lim sup
x→∞

F ∗n(x)
F (x)

≥
∑
k 6=n

pk lim inf
x→∞

F ∗k(x)
F (x)

+ pn lim sup
x→∞

F ∗n(x)
F (x)

≥
∑
k 6=n

pkk + pn lim sup
x→∞

F ∗n(x)
F (x)

,

where the third line in the above display follows from Fatou’s Lemma and the last line
follows from (3.47). Since also Eτ =

∑
k≥0 pkk and pn > 0, it follows that

lim sup
x→∞

F ∗n(x)
F (x)

≤ n,

which, by Theorem 3.21, implies the subexponentiality of F .

The uniform version of Kesten’s estimate, see Theorem 3.35, implies the following result
for families of distributions.

Theorem 3.39. Let δ > 0 and c < ∞. Suppose that the family of distributions F is
uniformly subexponential, that is,

sup
F∈F

∣∣∣∣F ∗ F (x)
F (x)

− 2
∣∣∣∣ → 0 as x→∞,

and that, in addition, for any y > 0,

sup
F∈F

sup
x

F (x− y)
F (x)

< ∞.
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Then

∞∑
n=0

F ∗n(x)P{τ = n} ∼ EτF (x)

as x→∞ uniformly in F ∈ F and in all τ such that E(1 + δ)τ ≤ c.

Together with Corollary 3.36, Theorem 3.39 implies the following uniform asymptotics.

Corollary 3.40. Let b > 0, δ > 0 and c <∞. Suppose that F ∈ S∗. Then

∞∑
n=0

F ∗nµ (x)P{τ = n} ∼ EτFµ(x)

as x→∞ uniformly in µ ∈Mb and in all τ such that E(1 + δ)τ ≤ c.

3.12 Comments

The concept of subexponential distributions (but not the name) was introduced by Chistyakov
in [12], in the context of branching processes. In the same paper, the present Lemma 3.2
was established as well as some sufficient conditions for subexponentiality. Also, Theorem
3.34 (Kesten’s estimate) was proved under an additional technical assumption.

The notion of weak tail-equivalence and Theorem 3.11 go back to Klüppelberg [29].

The class S∗ was introduced by Klüppelberg [29].

Corollary 3.18 was proved by Embrechts et al. [22].

The version of Corollary 3.16 with G ∈ L was proved by Embrechts and Goldie [20]).
Corollary 3.19 is well-known (and goes back to [21] where the case n = 2, G1 = G2 was
considered; some particular results may be found in Teugels [42] and Pakes [34], see also
[4]).

Theorem 3.31 is due to Pitman [36].

Examples where F is long-tailed but not subexponential can be found in Embrechts and
Goldie [20], and in Pitman [36]. Here we have followed the idea of Pitman.

The first four equivalences given by Theorem 3.33 were proved by Embrechts and Goldie
in [20].



Chapter 4

Densities and local probabilities

This chapter is devoted to local long-tailedness and to local subexponentiality. First we
consider densities with respect to either Lebesgue measure on R or counting measure on
Z. Next we study the asymptotic behaviour of the probabilities to belong to an interval of a
fixed length. We give the analogues of the basic properties of the tail probabilities includ-
ing two analogues of Kesten’s estimate, and provide sufficient conditions for probability
distributions to have these local properties..

The study of local properties of subexponentiality gives insights into the local asymptotic
behaviour of sums and maxima of random variables having heavy-tailed distributions and,
in particular, permits us to obtain the local asymptotics for the supremum of a random
walk with negative drift, and also new results related to the renewal equation. The concept
of a subexponential density on the positive line is well-known, while the broader concept
of ”delta”-subexponentiality has been introduced recently [4]. The theories for these two
classes of distributions look similar, but there are (sometimes essential) differences in the
ideas and proofs, and we therefore think that it makes sense to provide a complete treatment
of both concepts.

Sections 4.1-4.3 deal with long-tailed densities, subexponential densities, and sufficient
conditions for a distribution to have a subexponential density, while Sections 4.4-4.6 deal
with similar topics for ∆-subexponential distributions.

4.1 Long tailed densities and their convolutions

In this section, we provide the definition and basic properties of long-tailed densities on the
real line R. Since a long-tailed density may be a non-monotone function, we cannot prove
here a general result similar to Theorem 2.40 for tail distribution functions. We provide
instead two separate results, Theorem 4.3 and Lemma 4.4.

Let µ be either Lebesgue measure on R or counting measure on Z. We say that a distri-
bution F on R is absolutely continuous with respect to µ if F has a density f with respect
to µ, that is, for any Borel set B ⊆ R,

F (B) =
∫
B
f(x)µ(dx).

In what follows the argument of the density is either a real number if µ is Lebesgue measure;
or an integer if µ is counting measure. If µ is Lebesgue measure, then f is a density of F

69
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if, for any Borel set B ⊆ R,

F (B) =
∫
B
f(x)dx.

If µ is counting measure, then f is a density of F if, for any B ⊆ Z,

F (B) =
∑
n∈B

f(n).

For two distributions F and G with densities f and g respectively, the convolution F ∗G
has density f ∗ g with respect to µ given by

(f ∗ g)(x) =
∫ ∞
−∞

f(x− y)G(dy) =
∫ ∞
−∞

f(x− y)g(y)µ(dy).

Definition 4.1. We say that a density f with respect to µ is long-tailed if f(x) > 0 for all
sufficiently large x and f(x+ t) ∼ f(x) as x→∞, for any fixed t > 0.

Thus a density f is long-tailed if and only if f is a long-tailed function. As pointed out
in (2.18), it then follows that f(x + t) ∼ f(x) as x → ∞ uniformly over t in compact
intervals. In particular, this implies that if f is long-tailed, then f(x) → 0 as x → ∞. To
see this, assume that, on the contrary, there exist a sequence xn → ∞ and ε > 0 such that
xn+1 > xn + 2 and f(xn) ≥ 2ε for all n. Then, from the uniform tail-equivalence (2.18)
with a = 1, there isN such that, for n ≥ N and for x ∈ [xn−1, xn+1), f(x) ≥ ε. Hence,

1 =
∫ ∞
−∞

f(y)µ(dy) ≥
∞∑
n=N

∫ xn+1

xn−1
f(y)µ(dy) ≥

∞∑
n=N

2ε =∞.

This contradiction proves that f(x)→ 0 as x→∞.
Every distribution F with long-tailed density f is long-tailed itself, since for any fixed y

F (x+ y) =
∫ ∞

0
f(x+ y + u)µ(du)

∼
∫ ∞

0
f(x+ u)µ(du) = F (x) as x→∞.

Theorem 4.2. Let the distributions F and G on R have densities f and g with respect to µ.
Suppose that f is long-tailed. Then the density f ∗ g satisfies

lim inf
x→∞

(f ∗ g)(x)
f(x)

≥ 1. (4.1)

If, in addition, g is long-tailed, then

lim inf
x→∞

(f ∗ g)(x)
f(x) + g(x)

= 1. (4.2)

Proof. Fix any a > 0. By the uniform convergence (2.18), f(x − y) ∼ f(x) as x → ∞
uniformly in |y| ≤ a. Hence,

(f ∗ g)(x) ≥
∫ a

−a
f(x− y)G(dy) ∼ f(x)G[−a, a) as x→∞.
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Letting a→∞ we obtain (4.1).
If g(x) is also long-tailed, then g(x− y) ∼ g(x) as x→∞ uniformly in |y| ≤ a. Thus,

for all x > 2a,

(f ∗ g)(x) ≥
∫ a

−a
f(x− y)G(dy) +

∫ a

−a
g(x− y)F (dy)

∼ f(x)G[−a, a) + g(x)F [−a, a) as x→∞.

Letting a→∞ we obtain

lim inf
x→∞

(f ∗ g)(x)
f(x) + g(x)

≥ 1.

Hence the equality (4.2) will follow if we show that

lim inf
x→∞

(f ∗ g)(x)
f(x) + g(x)

≤ 1.

To prove this, assume that, on the contrary, there exist ε > 0 and x0 such that, for all x > x0,

(f ∗ g)(x) ≥ (1 + ε)(f(x) + g(x)).

Integrating with respect to x we obtain

F ∗G(x) ≥ (1 + ε)(F (x) +G(x)).

Since the density f is long-tailed, the distribution F is also long-tailed and, therefore, heavy-
tailed, and so the latter inequality contradicts Theorem 2.13.

Theorem 4.3. Let the distributions F and G on R have densities f and g with respect to
µ both of which are long-tailed. Then the density f ∗ g of the convolution F ∗ G is also
long-tailed.

Proof. By Lemma 2.19 and Proposition 2.20, we can choose a function h such that h(x) <
x/2, h(x) → ∞ as x → ∞ and both f and g are h-insensitive (i.e. f(x − y) ∼ f(x) and
g(x− y) ∼ g(x) as x→∞ uniformly in |y| ≤ h(x)). Fix t > 0. Then,

(f ∗ g)(x+ t) =
∫ x−h(x)

−∞
f(x+ t− y)G(dy) +

∫ x+t−h(x)

x−h(x)
f(x+ t− y)G(dy)

+
∫ ∞
x+t−h(x)

f(x+ t− y)g(y)µ(dy). (4.3)

For fixed t > 0, it follows from the given conditions on h that f(x+ t− y) ∼ f(x− y) as
x→∞ uniformly in y ≤ x− h(x). Therefore, as x→∞,∫ x−h(x)

−∞
f(x+ t− y)G(dy) ∼

∫ x−h(x)

−∞
f(x− y)G(dy). (4.4)

The second integral is bounded from above by

sup
y∈[h(x),h(x)+t)

f(y)G[x− h(x), x+ t− h(x)) ∼ tf(h(x))g(x)

= o(g(x)) = o((f ∗ g)(x)) (4.5)
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as x→∞, by (4.2). The third integral in (4.3) is equal to∫ h(x)

−∞
g(x+ t− y)F (dy) ∼

∫ h(x)

−∞
g(x− y)F (dy) (4.6)

by arguments similar to that leading to (4.4). Collecting (4.4)–(4.6), we get (f ∗g)(x+ t) =
(f ∗ g)(x) + o((f ∗ g)(x)), since the sum of right sides in (4.4) and (4.6) equals (f ∗ g)(x).
This completes the proof.

Lemma 4.4. Let the distributions F and G on R have densities f and g with respect to µ.
Suppose that f is long-tailed and that

sup
z≥x

g(z) = o(f(x)) as x→∞.

Then f ∗ g is also long-tailed.

Proof. Again Lemma 2.19 with Proposition 2.20 enables us to find an increasing function h
such that h(x) < x/2, h(x)→∞ as x→∞ and f is h-insensitive. For any t, consider the
following decomposition:

(f ∗ g)(x+ t) =
∫ x−h(x)

−∞
f(x+ t− y)G(dy) +

∫ ∞
x−h(x)

f(x+ t− y)g(y)µ(dy).

The first integral satisfies (4.4). The second integral is not greater than

sup
y>x−h(x)

g(y) = o(f(x− h(x))) = o(f(x)). (4.7)

It follows from (4.4) and (4.7) that, as x→∞,

(f ∗ g)(x+ t) = (1 + o(1))(f ∗ g)(x) + o(f(x)).

Applying now the result (4.1) of Theorem 4.2, we arrive at the desired equivalence (f ∗
g)(x+ t) ∼ (f ∗ g)(x) as x→∞.

Theorems 4.2 and 4.3 imply the following corollary.

Corollary 4.5. Suppose that f is long-tailed. Then f∗n is also long-tailed and

lim inf
x→∞

f∗n(x)
f(x)

≥ n.

4.2 Subexponential densities

We start this Section with the introduction of the concept of a subexponential density on
the whole real line R and with some discussion of an alternative definition, and also of
the properties and relations of these two definitions (see Subsection 4.2.1). Then we move
to the more classical subject of subexponential densities on the positive half-line R+ (see
Subsection 4.2.2) where the two earlier definitions coincide.
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4.2.1 Subexponential densities on the real line

In the previous chapter we showed that there are three equivalent ways to define the subex-
ponentiality of probability distributions on the whole real line: the distribution F of a ran-
dom variable ξ is subexponential if
(1) it is long-tailed and F ∗ F (x) ∼ 2F (x) as x→∞, or, equivalently, if
(2) the conditional distribution P{ξ ∈ ·

∣∣ ξ ≥ 0) on the positive half-line R+ is subexpo-
nential, or, equivalently, if

(3) the distribution F+ of the random variable ξ+ is subexponential.
We also showed that if F is a subexponential distribution on R and G is a distribution on
R such that F (x) ∼ G(x) as x → ∞, then G is also subexponential. Thus in particular
subexponentiality on R is a tail property of distribution functions as defined in Chapter 1.

For probability densities, the analogue of the third definition above does not make much
sense in general, since, in the case of Lebesgue measure, for a random variable ξ such that
P{ξ < 0} > 0, the random variable ξ+ is not absolutely continuous. However, the two first
definitions have natural analogues. While these two definitions agree for distributions on
the positive half-line R+ they seem not to be generally equivalent in the case of distribu-
tions F on R. Indeed, there is no unity among the authors about which of these definitions
is better and more adequately reflects the concept of subexponentiality of densities, and
about whether subexponentiality in this case should necessarily be a tail property. The first
definition is formulated in terms of the distribution itself, but the left tail of the distribution
may influence the right-tail asymptotics of its convolution with itself and, therefore, the tail
property does not hold. The second definition (which we may call “conditional subexpo-
nentiality”) depends only on the truncation of the distribution to the positive half-line and
possesses then the tail property.

This section is organised as follows. First, we give the first definition and discuss its
relation to subexponentiality of distributions. Then we formulate the main equivalence
result for subexponential densities on the positive half-line which is needed for the two next
results. Finally, we give the definition of “conditional subexponentiality” of densities and
show that subexponentiality of a density implies its conditional subexponentiality, but that
the converse holds only under additional assumptions.

Definition 4.6. We say that a density f on R with respect to µ is subexponential if f is
long-tailed and

f∗2(x) :=
∫ ∞
−∞

f(x− y)f(y)µ(dy) ∼ 2f(x) as x→∞.

Typical examples of subexponential densities are given by the Pareto, lognormal, and
Weibull (with parameter between 0 and 1) distributions (see Section 4.3 for proofs).

Every distribution F with subexponential density f is subexponential itself, since F is
then long-tailed and, as x→∞,

F ∗ F (x) =
∫ ∞
x

(f ∗ f)(y)µ(dy)

∼ 2
∫ ∞
x

f(y)µ(dy)

= 2F (x).
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The converse result is not in general true: one can, for example, modify a density while
keeping the corresponding distribution almost the same. For example, we may take any
subexponential density g corresponding to a, necessarily subexponential, distribution G,
and construct a new density f such that f(x) is equal to g(x) everywhere except the inter-
vals x ∈ [2n, 2n + 1), n ≥ 1 where we put f(x) = 0. To make f a probability density,
we may add an appropriate mass to the interval [0, 2]. Then the density f is not subexpo-
nential because it is not long-tailed. On the other hand, the corresponding distribution F
is subexponential, since it may easily be verified that F (x) ∼ G(x) as x → ∞ and G is
subexponential.

Now we formulate the basic theorem for subexponential densities on the positive half-line
R+.

Theorem 4.7. Suppose that the distribution F on R+ has a long-tailed density f with
respect to µ. Then the following assertions are equivalent:

(i) the density f is subexponential;
(ii) for every function h such that h(x)→∞ as x→∞,∫ x−h(x)

h(x)
f(x− y)f(y)µ(dy) = o(f(x)) as x→∞; (4.8)

(iii) the relation (4.8) holds for some function h such that h(x) < x/2, h(x) → ∞ as
x→∞ and f is h-insensitive.

Proof. (i)⇒(ii). Assume that f is subexponential. Clearly it follows from the monotonicity
in h(x) of the integral in (4.8) that we may assume without loss of generality that h(x) <
x/2 for all x. Then

f∗2(x) = 2
∫ h(x)

0
f(x− y)f(y)µ(dy) +

∫ x−h(x)

h(x)
f(x− y)f(y)dy. (4.9)

By Fatou’s lemma,

lim inf
x→∞

∫ h(x)

0

f(x− y)
f(x)

f(y)µ(dy) ≥ 1,

and so (4.8) follows from the subexponentiality of f .
(ii)⇒(iii). This implication is trivial on recalling that f is long-tailed.
(iii)⇒(i). Assume now that the relation (4.8) holds for some function h as given by (iii).

Then (4.9) holds, and the first integral on the right of (4.9) is tail-equivalent to f(x) (as
x→∞) by the choice of the function h. Together with the condition (4.8) this implies the
subexponentiality of f .

Note that it follows from the above theorem that for a distribution on R+ subexponential-
ity of its density is indeed a tail property.

We now formulate the concept of conditional subexponentiality for a density on R.

Definition 4.8. A density f on R is conditionally subexponential if the density f+ of the
corresponding conditional distribution on the positive half-line, that is

f+(x) :=
f(x)I{x ≥ 0}

F (R+)
, (4.10)

is subexponential.
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The next two results show the relation between subexponentiality and conditional subex-
ponentiality of densities.

Lemma 4.9. Suppose that the distribution F on R has a subexponential density f with
respect to µ. Then the density f is also conditionally subexponential.

Proof. Since the subexponentiality of f implies that it is also long-tailed, by Lemma 2.19,
we can choose a function h such that h(x) < x/2, h(x) → ∞ as x → ∞ and f is h-
insensitive. Then

f∗2(x) = 2
∫ −h(x)

−∞
f(x− y)f(y)µ(dy) + 2

∫ h(x)

−h(x)
f(x− y)f(y)µ(dy)

+
∫ x−h(x)

h(x)
f(x− y)f(y)µ(dy) (4.11)

≥ 2
∫ h(x)

−h(x)
f(x− y)f(y)µ(dy) +

∫ x−h(x)

h(x)
f(x− y)f(y)µ(dy)

∼ 2f(x) +
∫ x−h(x)

h(x)
f(x− y)f(y)µ(dy)

as x→∞, by the choice of the function h. Since also f is subexponential, that is, f∗2(x) ∼
2f(x), we obtain that∫ x−h(x)

h(x)
f(x− y)f(y)µ(dy) = o(f(x)) as x→∞.

Hence the density f+ satisfies the condition (4.8) of Theorem 4.7 and so is subexponential,
that is, f is conditionally subexponential.

We now give the converse result which requires an extra condition.

Lemma 4.10. Suppose that the distribution F on R has a density f with respect to µ which
is conditionally subexponential. Suppose also that there exists a function h such that h(x) <
x/2 for all x, that h(x)→∞ as x→∞, that f is h-insensitive and that∫ −h(x)

−∞
f(x− y)f(y)µ(dy) = o(f(x)) as x→∞. (4.12)

Then the density f is also subexponential.
In particular there exists a function h satisfying the above conditions if, for some c > 0

and some x0,

f(x+ y) ≤ cf(x) for all x > x0 and y > 0. (4.13)

Proof. To prove the first part of the lemma, we let the function h be as given in its statement
and make use of decomposition (4.11). From the choice of h,∫ h(x)

−h(x)
f(x− y)f(y)µ(dy) ∼ f(x)

∫ h(x)

−h(x)
f(y)µ(dy)

∼ 2f(x) as x→∞. (4.14)
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Since the density f is conditionally subexponential, it follows from Theorem 4.7 that∫ x−h(x)

h(x)
f(x− y)f(y)µ(dy) = o(f(x)) as x→∞. (4.15)

The relations (4.12), (4.14), and (4.15) now imply that f∗2(x) ∼ 2f(x) as x→∞.
We now prove the second statement of the lemma. Suppose that the condition (4.13)

holds. Since f is conditionally subexponential, it is long-tailed and so, by Lemma 2.19
we may choose a function h such that h(x) < x/2, h(x) → ∞ as x → ∞ and f is
h-insensitive. Then∫ −h(x)

−∞
f(x− y)f(y)µ(dy) ≤ cf(x+ h(x))F (−h(x))

= o(f(x)) as x→∞.

We conclude this section with the following comment. In contrast to tail functions, densi-
ties are not in general decreasing functions. Moreover, a subexponential density may be not
tail-equivalent to any non-decreasing function and, in particular, the condition (4.13) may
fail. For this reason, there is no complete correspondence between subexponentiality and
conditional subexponentiality of densities.

4.2.2 Subexponential densities on the positive half-line

In this section, we study further the properties of subexponential densities on the positive
half-line R+, in particular giving closure properties for the class of such densities and pro-
viding also the analogue of Kesten’s estimate.

Theorem 4.11. Let f be a subexponential density on R+ with respect to µ. Suppose that
the density g on R+ is long-tailed and that f and g are weakly tail-equivalent, that is,

0 < lim inf
x→∞

g(x)
f(x)

≤ lim sup
x→∞

g(x)
f(x)

<∞. (4.16)

Then g is also subexponential.

In particular, the condition (4.16) is satisfied if g(x) ∼ cf(x) as x → ∞ for some
c ∈ (0,∞).

Proof. The result follows from Theorem 4.7(ii) and (iii): observe that (4.16) implies that
there exists c1 < ∞ such that g(x) ≤ c1f(x) for all sufficiently large x; hence, for any
function h such that h(x) < x/2 for all x, h(x)→∞ as x→∞ and g is h-insensitive,∫ x−h(x)

h(x)
g(x− y)g(y)µ(dy) ≤ c2

1

∫ x−h(x)

h(x)
f(x− y)f(y)µ(dy)

= o(f(x))
= o(g(x)) as x→∞.
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Lemma 4.12. Let f be a subexponential density on R+ with respect to µ. Let f1, f2 be two
densities on R+ such that f1(x)/f(x) → c1 and f2(x)/f(x) → c2 as x → ∞, for some
constants c1, c2 ≥ 0. Then

(f1 ∗ f2)(x)
f(x)

→ c1 + c2 as x→∞. (4.17)

Further, if c1 + c2 > 0 then the convolution f1 ∗ f2 is a subexponential density.

Proof. Let h be any function such that h(x) < x/2, h(x) → ∞ as x → ∞ and f is
h-insensitive (note that this implies the h-insensitivity of f1, f2 also). Then

f1 ∗ f2(x) =
∫ h(x)

0
f1(x− y)f2(y)µ(dy) +

∫ h(x)

0
f2(x− y)f1(y)µ(dy)

+
∫ x−h(x)

h(x)
f1(x− y)f2(y)µ(dy)

=: I1(x) + I2(x) + I3(x).

We have I1(x)/f(x)→ c1 and I2(x)/f(x)→ c2 as x→∞. Finally,

I3(x) ≤ (c1c2 + o(1))
∫ x−h(x)

h(x)
f(x− y)f(y)µ(dy) = o(f(x)),

by Theorem 4.7(ii), so that (4.17) now follows. The final assertion of the lemma follows
from Theorem 4.11,

Using induction arguments, we obtain the following corollary.

Corollary 4.13. Assume that f is a subexponential density on R+ with respect to µ. Then,
for any n ≥ 2, f∗n(x) ∼ nf(x) as x→∞ and f∗n is a subexponential density.

For subexponential densities we have the following analogue of Kesten’s estimate.

Theorem 4.14. Assume that f is a subexponential density on R+ with respect to µ. If f
is bounded, then, for any ε > 0, there exist x0 = x0(ε) and c(ε) > 0 such that, for any
x > x0 and for any integer n ≥ 1,

f∗n(x) ≤ c(ε)(1 + ε)nf(x).

Proof. Take c <∞ such that f(x) ≤ c for all x ≥ 0. Then it follows from the convolution
formula that

f∗n(x) ≤ cF [0, x] ≤ c for all x ≥ 0 and n ≥ 1. (4.18)

Since f is long-tailed, there exists x1 such that

inf
x∈[x1,x2]

f(x) > 0 for every x2 > x1. (4.19)

For x0 > x1 and n ≥ 1, put

An(x0) := sup
x>x0

f∗n(x)
f(x)

.
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Fix any ε > 0. By the subexponentiality of f , there exists x0 such that, for all x > x0,∫ x−x0

0
f(x− y)f(y)µ(dy) ≤ (1 + ε/2)f(x).

For any n ≥ 2 and x > 2x0,

f∗n(x) =
∫ x−x0

0
f∗(n−1)(x− y)f(y)µ(dy) +

∫ x0

0
f(x− y)f∗(n−1)(y)µ(dy).

By the definition of An−1(x0) and the choice of x0,∫ x−x0

0
f∗(n−1)(x− y)f(y)µ(dy) ≤ An−1(x0)

∫ x−x0

0
f(x− y)f(y)µ(dy)

≤ An−1(x0)(1 + ε/2)f(x). (4.20)

Further, ∫ x0

0
f(x− y)f∗(n−1)(y)µ(dy) ≤ max

0<y≤x0

f(x− y) ≤ L1f(x), (4.21)

where

L1 := sup
0<y≤x0,t>2x0

f(t− y)
f(t)

.

If x0 < x ≤ 2x0, then, by (4.18) and (4.19),

f∗n(x)
f(x)

≤ c

infx0<t≤2x0 f(t)
=: L2 <∞. (4.22)

Since f is long-tailed, we may choose x0 so that also L1 < ∞. Put L = max(L1, L2). It
follows from (4.20)–(4.22) that, for any x > x0,

f∗n(x) ≤ (An−1(x0)(1 + ε/2) + L)f(x).

Hence, An(x0) ≤ An−1(x0)(1 + ε/2) + L. Therefore, an induction argument gives

An(x0) ≤ A1(x0)(1 + ε/2)n−1 + L

n−2∑
l=0

(1 + ε/2)l ≤ Ln(1 + ε/2)n−1,

which implies the conclusion of the theorem.

4.3 Sufficient conditions for subexponentiality of densities

Sufficient conditions for distributions to be subexponential were given in Section 3.5. In
this section, we provide similar conditions for subexponentiality of densities.

Theorem 4.15. Let the distribution F on R+ have a long-tailed density f . Suppose that
there exist c > 0 and x0 such that f(y) ≥ cf(x) for any x > x0 and y ∈ (x, 2x]. Then the
density f is subexponential.
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Proof. Let h be any positive function such that h(x)→∞ as x→∞ and h(x) < x/2 for
all x. Then∫ x−h(x)

h(x)
f(x− y)f(y)µ(dy) = 2

∫ x/2

h(x)
f(x− y)f(y)µ(dy)

≤ 2cf(x)
∫ x/2

h(x)
f(y)µ(dy) = o(f(x))

as x→∞. The subexponentiality of f now follows from Theorem 4.7(ii).

Observe that in particular the density of the Pareto distribution satisfies the conditions of
Theorem 4.15.

Theorem 4.16. Let the distribution F on R+ have a long-tailed density f . Suppose that,
for some x0, the function g(x) := − ln f(x) is concave for x ≥ x0. Suppose further that
there exists a function h such that h(x) < x/2 for all x, that h(x)→∞ as x→∞, that f
is h-insensitive, and that xe−g(h(x)) → 0 as x→∞. Then the density f is subexponential.

Proof. By Theorem 4.11, without loss of generality we may assume x0 = 0. Since g is
concave, the minimum of the sum g(x − y) + g(y) in y ∈ [h(x), x − h(x)] is equal to
g(x− h(x)) + g(h(x)). Therefore,∫ x−h(x)

h(x)
f(x− y)f(y)µ(dy) =

∫ x−h(x)

h(x)
e−(g(x−y)+g(y))µ(dy) ≤ xe−(g(x−h(x))+g(h(x))).

Since e−g(x−h(x)) ∼ e−g(x),∫ x−h(x)

h(x)
f(x− y)f(y)µ(dy) = O(e−g(x)xe−g(h(x))) = o(f(x)),

so that the result now follows from Theorem 4.7.

The density of the Weibull distribution with parameter α ∈ (0, 1) satisfies conditions of
Theorem 4.16 with h(x) = ln2/α x. The density of the log-normal distribution satisfies the
these conditions with h(x) =

√
x.

4.4 ∆-Long-tailed distributions and their convolutions

This section and the next deal with local properties of long-tailedness and subexponentiality
which may be considered as intermediate properties of a distribution between that of being
long-tailed/subexponential and that of having a long-tailed/subexponential density, and are
formulated in terms of the probability for a random variable to belong to an interval of a
fixed length when the location of the interval is tending to infinity.

Define ∆ = (0, T ] for some finite T > 0. For any x and for any nonnegative integer n,
define also x+ ∆ := (x, x+ T ] and n∆ := (0, nT ].

We now introduce the following definition.
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Definition 4.17. A distribution F on R is called ∆-long-tailed if F (x+ ∆) is a long-tailed
function, that is, for any fixed y > 0,

F (x+ y + ∆)
F (x+ ∆)

→ 1 as x→∞.

By the property (2.18) of long-tailed functions, the latter convergence holds uniformly over
all y in any compact set. We write also L∆ for the class of ∆-long-tailed distributions.
We consider here only finite intervals ∆, but if we allowed the interval to be infinite, ∆ =
(0,∞), we would have L∆ = L, the class of long-tailed distributions.

It follows from the definition that, if F ∈ L∆ for some interval ∆ = (0, T ], then F ∈
Ln∆ for any n = 2, 3, . . . and also F ∈ L. To see this observe that, for any fixed y > 0 and
any n ∈ {2, 3, . . . ,∞},

F (x+ y + n∆) =
n−1∑
k=0

F (x+ kT + y + ∆)

∼
n−1∑
k=0

F (x+ kT + ∆) = F (x+ n∆).

Note that any distribution F on the integer lattice with F{n + 1} ∼ F{n} as n → ∞
(i.e. with a long-tailed density with respect to counting measure) may be also viewed as a
member of L∆ with ∆ = (0, 1].

In earlier chapters we dealt with tail functions of distributions (for any distribution F and
for any x, the tail F (x) = F (x + ∆) with ∆ = (0,∞)). Tail functions are monotone
non-increasing, and this allowed us to prove Theorem 2.11. For finite intervals ∆, there is
in general no such monotonicity, and we need further restrictions, given by Theorem 4.18,
to obtain the inequality

lim inf
x→∞

(F ∗G)(x+ ∆)
F (x+ ∆) +G(x+ ∆)

≥ 1. (4.23)

Theorem 4.18. Let the distributions F and G belong to the class L∆, where ∆ = (0, T ]
for some finite T . Then

lim inf
x→∞

(F ∗G)(x+ ∆)
F (x+ ∆) +G(x+ ∆)

= 1. (4.24)

Proof. Let ξ and η be two independent random variables with respective distributions F
and G. Fix any a > 0. For x > 2a, we have the following lower bound:

(F ∗G)(x+ ∆) ≥ P{ξ + η ∈ x+ ∆, |ξ| ≤ a}+ P{ξ + η ∈ x+ ∆, |η| ≤ a}.

We also have the tail equivalences F (x+y+∆) ∼ F (x+∆) andG(x+y+∆) ∼ G(x+∆)
as x→∞ uniformly in |y| ≤ a. Therefore, as x→∞,

P{ξ + η ∈ x+ ∆, |ξ| ≤ a} =
∫

[−a,a]
G(x− y + ∆)F (dy)

∼ G(x+ ∆)
∫

[−a,a]
F (dy)

∼ G(x+ ∆)F [−a, a],
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and similarly

P{ξ + η ∈ x+ ∆, |η| ≤ a} ∼ F (x+ ∆)G[−a, a].

Letting a → ∞ implies the lower bound (4.23). Now assume that, on the contrary, the
equality (4.24) does not hold, that is,

lim inf
x→∞

(F ∗G)(x+ ∆)
F (x+ ∆) +G(x+ ∆)

> 1.

Then there exist ε > 0 and x0 such that, for all x > x0 and n ≥ 0,

(F ∗G)(x+ nT + ∆) ≥ (1 + ε)(F (x+ nT + ∆) +G(x+ nT + ∆)).

Summing over n ≥ 0, we obtain

F ∗G(x) ≥ (1 + ε)(F (x) +G(x)).

However, since F ∈ L∆ ⊆ L, it follows that the distribution F is heavy-tailed, and there-
fore the latter inequality contradicts Theorem 2.13.

In the next theorem we prove that, for any ∆, the class L∆ is closed under convolutions.

Theorem 4.19. Let the distributions F andG belong to the class L∆ for some finite interval
∆ = (0, T ]. Then F ∗G ∈ L∆.

Proof. Let ξ and η be two independent random variables with respective distributions F and
G. By Lemma 2.19 and Proposition 2.20 there exists a function h such that h(x) < x/2,
h(x)→∞ and both F (x+ ∆) and G(x+ ∆) are h-insensitive.

Consider the event B(x, t) = {ξ + η ∈ x+ t+ ∆}. In order to prove that F ∗G ∈ L∆,
we need to check that, for any t > 0, P{B(x, t)} ∼ P{B(x, 0)} as x → ∞. Since the
events {ξ ≤ x−h(x)} and {η ≤ h(x)} together imply {ξ+η ≤ x}, we have the following
decomposition:

P{B(x, t)} = P{B(x, t), ξ ≤ x− h(x)}
+ P{B(x, t), η ≤ h(x)}+ P{B(x, t), ξ > x− h(x), η > h(x)}. (4.25)

For fixed t > 0, G(x+ t− y+ ∆) ∼ G(x− y+ ∆) as x→∞ uniformly in y ≤ x−h(x),
since h(x)→∞. Therefore, as x→∞,

P{B(x, t), ξ ≤ x− h(x)} =
∫ x−h(x)

−∞
G(x+ t− y + ∆)F (dy)

∼
∫ x−h(x)

−∞
G(x− y + ∆)F (dy)

= P{B(x, 0), ξ ≤ x− h(x)}. (4.26)

A similar argument shows that

P{B(x, t), η ≤ h(x)} =
∫ h(x)

−∞
F (x+ t− y + ∆)G(dy)

∼
∫ h(x)

−∞
F (x− y + ∆)G(dy)

= P{B(x, 0), η ≤ h(x)}. (4.27)
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Finally,

P{B(x, t), ξ > x− h(x), η > h(x)}
= P{B(x, t), ξ ∈ (x− h(x), x− h(x) + t+ T ], η > h(x)}.

The value of the latter probability is at most

G(h(x))F (x− h(x) + (0, t+ T ]) = o(F (x− h(x) + (0, t+ T ])) as x→∞.

Without loss of generality, we can assume that t < T . Then,

F (x− h(x) + (0, t+ T ]) ≤ F (x− h(x) + (0, T ]) + F (x− h(x) + T + (0, T ])
= o(F (x− h(x) + ∆)) + o(F (x− h(x) + T + ∆))

as x → ∞. Both terms on the right side of the above expression are of the order o(F (x +
∆)), by the choice of the function h. Thus, as x→∞,

P{B(x, t), ξ > x− h(x), η > h(x)} = o(F (x+ ∆)). (4.28)

Combining (4.25)–(4.28) we conclude that

P{B(x, t)} = (1 + o(1))P{B(x, 0)}+ o(F (x+ ∆))

as x→∞. The conclusion of the theorem now follows on applying Theorem 4.18.

By induction arguments we obtain the following corollary to Theorems 4.18 and 4.19.

Corollary 4.20. If F ∈ L∆, then, for all n ≥ 2, F ∗n ∈ L∆ and

lim inf
x→∞

F ∗n(x+ ∆)
F (x+ ∆)

≥ n.

4.5 ∆-Subexponential distributions

We continue our study of local properties by introducing the concept of ∆-subexponentiality.
As in the case of subexponential densities, there are two slightly different approaches

to the definition of ∆-subexponentiality of a distribution on the whole real line R, and
these approaches coincide if the support of the distribution is restricted to the positive half-
line R+. As earlier, the first definition—which is that we make below—seems in some
respects more natural, but does not possess the tail property. However, for distributions
on R+, ∆-subexponentiality is a tail property. The alternative definition is that a distri-
bution on R should be ∆-subexponential (to avoid confusion we might say conditionally
∆-subexponential) if and only if the distribution conditioned on R+ is ∆-subexponential,
and here of course the tail property is preserved. Here we only touch the distributions on
the whole line R and provide only the first definition of ∆-subexponentiality; we then con-
centrate on distributions on R+, where the dilemma indicated above does not arise.

Definition 4.21. Let F be a distribution on R with right-unbounded support. For any fixed
∆ = (0, T ] for some finite T > 0 we say that F is ∆-subexponential if F ∈ L∆ and

(F ∗ F )(x+ ∆) ∼ 2F (x+ ∆) as x→∞.
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Equivalently, a random variable ξ has a ∆-subexponential distribution if the function
P{ξ ∈ x+ ∆} is long-tailed and, for two independent copies ξ1 and ξ2 of ξ,

P{ξ1 + ξ2 ∈ x+ ∆} ∼ 2P{ξ ∈ x+ ∆} as x→∞.

In this and the following sections, we always consider finite intervals ∆. But if we al-
lowed the interval to be infinite, ∆ = (0,∞), then the class of (0,∞)-subexponential
distributions would be none other than the standard class SR of subexponential distributions
on the whole real line R. For all finite ∆, the typical examples of ∆-subexponential dis-
tributions are the same—in particular the Pareto, lognormal, and Weibull (with parameter
between 0 and 1) distributions, as we shall show in Section 4.6. Also, many properties of
∆-subexponential distributions with finite ∆ are very close to those of subexponential dis-
tributions, as we shall show below. However, we have to repeat (see the previous section)
that, for any distribution F , in contrast to the tail function F , the function F (x + ∆) may
be non-monotone. This leads to extra challenges in the study of ∆-subexponentiality (see
the example on non-monotonicity at the end of Section 4.6).

Note that, for any ∆ = (0, T ), any distribution F with subexponential density f is ∆-
subexponential since

(F ∗ F )(x+ ∆) =
∫ x+T

x
(f ∗ f)(y)µ(dy)

∼ 2
∫ x+T

x
f(y)µ(dy) = 2F (x+ ∆) as x→∞.

Further, it follows from the definition that, if F is ∆-subexponential, then F is n∆-subexpo-
nential for any n = 2, 3, . . . andF ∈ SR. To see this observe that, for any n ∈ {2, 3, . . . ,∞}
and as x→∞,

P{ξ1 + ξ2 ∈ x+ n∆} =
n−1∑
k=0

P{ξ1 + ξ2 ∈ x+ kT + ∆}

∼ 2
n−1∑
k=0

P{ξ ∈ x+ kT + ∆}

= 2P{ξ ∈ x+ n∆}.

Thus we have in particular that, for any ∆, the class of ∆-subexponential distributions is a
subclass of SR.

Note also that if we consider the distributions concentrated on the integers, then the class
of (0, 1]-subexponential distributions consists of all distributions F such that F{n + 1} ∼
F{n} and F ∗2{n} ∼ 2F{n} as n → ∞, and so coincides with the class of distributions
with subexponential densities.

We now have the following theorem which characterises ∆-subexponential distributions
on the positive half-line R+ and which is analogous to Theorem 3.6 or Theorem 3.7 for
subexponential distributions on R and to Theorem 4.7 for subexponential densities on R+.
Then Theorem 4.24 shows that, as for subexponentiality of densities, ∆-subexponentiality
is a tail property for distributions on R+. This latter result can also be deduced from Theo-
rem 4.22.
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Theorem 4.22. Suppose that the distribution F on R+ is such that F ∈ L∆ for some ∆.
Let ξ1 and ξ2 be two independent random variables with common distribution F . Then the
following assertions are equivalent:

(i) F is ∆-subexponential;
(ii) for every function h such that h(x)→∞ as x→∞,

P{ξ1 + ξ2 ∈ x+ ∆, ξ1 > h(x), ξ2 > h(x)} = o(F (x+ ∆)); (4.29)

(iii) there exists a function h such that h(x) < x/2, h(x) → ∞ as x → ∞, the function
F (x+ ∆) is h-insensitive and the relation (4.29) holds.

Proof. (i)⇒(ii). Suppose first that F is ∆-subexponential. Define the eventB = {ξ1 +ξ2 ∈
x+ ∆}. Note that if (4.29) is valid for some function h, then it is valid for any function h1

such that h1 ≥ h. Hence we may assume without loss of generality that h(x) < x/2 for all
x. Then

P(B) = P{B, ξ1 ≤ h(x)}+ P{B, ξ2 ≤ h(x)}+ P{B, ξ1 > h(x), ξ2 > h(x)}
= 2P{B, ξ1 ≤ h(x)}+ P{B, ξ1 > h(x), ξ2 > h(x)}. (4.30)

By Fatou’s lemma,

lim inf
x→∞

P{B, ξ1 ≤ h(x)}
F (x+ ∆)

= lim inf
x→∞

∫ h(x)

0

F (x− y + ∆)
F (x+ ∆)

F (dy) ≥ 1. (4.31)

Hence from (4.30), (4.31) and the Definition 4.21 of ∆-subexponentiality, we obtain (4.29).
That (ii) implies (iii) is trivial since the condition F ∈ L∆ implies the existence of a

function with respect to which F (x+ ∆) is h-insensitive.
(iii)⇒(i). Now suppose that the condition (iii) holds for some function h. We again use

the decomposition (4.30) for B as defined above. Then

P{B, ξ1 ≤ h(x)} =
∫ h(x)

0
F (x− y + ∆)F (dy)

∼ F (x+ ∆)
∫ h(x)

0
F (dy)

∼ F (x+ ∆) as x→∞,

and so (4.29) together with (4.30) implies the ∆-subexponentiality of F .

Next we prove the result which shows in particular that the subclass of ∆-subexponential
distributions on the positive half-line R+ is closed under the natural local tail-equivalence
relation.

Theorem 4.23. Let F be a ∆-subexponential distribution for some ∆. Suppose that the
distribution G on R+ belongs to L∆ and the functions F (x+ ∆) and G(x+ ∆) are weakly
tail-equivalent, that is,

0 < lim inf
x→∞

G(x+ ∆)
F (x+ ∆)

≤ lim sup
x→∞

G(x+ ∆)
F (x+ ∆)

<∞. (4.32)

Then G is also ∆-subexponential. In particular, G is ∆-subexponential provided G(x +
∆) ∼ cF (x+ ∆) as x→∞ for some c > 0.



4.5. ∆-SUBEXPONENTIAL DISTRIBUTIONS 85

Proof. Choose a function h such that h(x) < x/2 for all x, h(x)→∞ as x→∞ and the
function g(x+ ∆) is h-insensitive. Let ξ1, ξ2, ζ1, ζ2 be independent random variables such
that ξ1 and ξ2 have common distribution F , and ζ1 and ζ2 have common distribution G. By
Theorem 4.22, it is sufficient to prove that

P{ζ1 + ζ2 ∈ x+ ∆, ζ1 > h(x), ζ2 > h(x)} = o(G(x+ ∆)).

The probability on the left side of the above expression is not greater than∫ x−h(x)+T

h(x)
G(x− y + ∆)G(dy) =: I.

By the condition (4.32), for some c1 <∞ and for all sufficiently large x,

I ≤ c1

∫ x−h(x)+T

h(x)
F (x− y + ∆)G(dy)

≤ c1P{ζ1 + ξ2 ∈ x+ ∆, ζ1 > h(x), ξ2 > h(x)− T}

≤ c1

∫ x−h(x)+2T

h(x)−T
G(x− y + ∆)F (dy).

A repetition of the above argument now gives that

I ≤ c2
1

∫ x−h(x)+2T

h(x)−T
F (x− y + ∆)F (dy)

≤ c2
1P{ξ1 + ξ2 ∈ x+ ∆, ξ1 ≥ h(x)− 2T, ξ2 ≥ h(x)− T}

= o(F (x+ ∆))
= o(G(x+ ∆)).

as required, where the third line in the above display again follows from Theorem 4.22.

Theorem 4.24 shows in particular that the convolution of tail-equivalent ∆-subexponential
distributions on the positive half-line is also ∆-subexponential.

Theorem 4.24. Suppose that the distribution F is ∆-subexponential, for some ∆. Let G1,
G2 be two distributions on R+ such thatG1(x+∆)/F (x+∆)→ c1 andG2(x+∆)/F (x+
∆)→ c2 as x→∞, for some constants c1, c2 ≥ 0. Then

(G1 ∗G2)(x+ ∆)
F (x+ ∆)

→ c1 + c2 as x→∞. (4.33)

Further, if c1 + c2 > 0 then the convolution G1 ∗G2 is ∆-subexponential.

Proof. Let ζ1 and ζ2 be independent random variables with distributionsG1 andG2 respec-
tively. Let h be a function such that h(x) < x/2 for all x, h(x) → ∞ as x → ∞, and the
function F (x+ ∆) is h-insensitive. Define also the event B = {ζ1 + ζ2 ∈ x+ ∆}. Then

P{B} = P{B, ζ1 ≤ h(x)}+ P{B, ζ2 ≤ h(x)}+ P{B, ζ1 > h(x), ζ2 > h(x)}. (4.34)

As in the last lines of the proof of Theorem 4.22, one can show that

P{B, ζ1 ≤ h(x)) ∼ G2(x+ ∆)
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as x→∞, and then

P{B, ζ1 ≤ h(x)}
F (x+ ∆)

→ c2,
P{B, ζ2 ≤ h(x)}

F (x+ ∆)
→ c1. (4.35)

Following the same argument as that in the proof of Theorem 4.23, we obtain also that

P{B, ζ1 > h(x), ζ2 > h(x)} = o(F (x+ ∆)). (4.36)

The result (4.33) now follows from (4.34)– (4.36).
The final assertion of the theorem follows from Theorem 4.23.

By induction, Theorem 4.24 implies the following corollary.

Corollary 4.25. Suppose that the distribution F is ∆-subexponential, for some ∆. Let G
be a distribution on R+ such that G(x+ ∆)/F (x+ ∆)→ c ≥ 0 as x→∞. Then, for any
n ≥ 2, G∗n(x+ ∆)/F (x+ ∆)→ nc as x→∞. If c > 0, then G∗n is ∆-subexponential.

We conclude this Section with the result which provides of Kesten’s upper bound for the
class of ∆-subexponential distributions.

Theorem 4.26. Suppose that the distribution F is ∆-subexponential, for some ∆ = (0, T ].
Then, for any ε > 0, there exist x0 = x0(ε) > 0 and c(ε) > 0 such that, for any x > x0

and for any n ≥ 1,

F ∗n(x+ ∆) ≤ c(ε)(1 + ε)nF (x+ ∆).

Proof. Let {ξn} be a sequence of independent non-negative random variables with common
distribution F . Put Sn = ξ1 + . . .+ ξn. For x0 ≥ 0 and k ≥ 1, put

An := An(x0) = sup
x>x0

F ∗n(x+ ∆)
F (x+ ∆)

.

Take any ε > 0. Appealing to Theorem 4.22, we conclude that x0 may be chosen such that,
for any x > x0,

P{ξ1 + ξ2 ∈ x+ ∆, ξ2 ≤ x− x0} ≤ (1 + ε/2)F (x+ ∆).

For any n > 1 and x > x0,

P{Sn ∈ x+ ∆} = P{Sn ∈ x+ ∆, ξn ≤ x− x0}+ P{Sn ∈ x+ ∆, ξn > x− x0}
=: P1(x) + P2(x),

where, by the definition of An−1 and x0,

P1(x) =
∫ x−x0

0
P{Sn−1 ∈ x− y + ∆}F (dy)

≤ An−1

∫ x−x0

0
F (x− y + ∆)F (dy)

= An−1P{ξ1 + ξn ∈ x+ ∆, ξn ≤ x− x0}
≤ An−1(1 + ε/2)F (x+ ∆). (4.37)
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Further,

P2(x) =
∫ x0+T

0
P{ξn ∈ x− y + ∆, ξn > x− x0}P{Sn−1 ∈ dy}

≤ sup
0<t≤x0

F (x− t+ ∆).

Thus, if x > 2x0, then

P2(x) ≤ L1F (x+ ∆),

where

L1 = sup
0<t≤x0, y>2x0

F (y − t+ ∆)
F (y + ∆)

.

If x0 < x ≤ 2x0, then P2(x) ≤ 1 implies

P2(x)
F (x+ ∆)

≤ 1
infx0<x≤2x0 F (x+ ∆)

=: L2.

Since F ∈ L∆, both L1 and L2 are finite for x0 sufficiently large. Put L = max(L1, L2).
Then, for any x > x0,

P2(x) ≤ LF (x+ ∆). (4.38)

It follows from (4.37) and (4.38) that An ≤ An−1(1 + ε/2) + L for n > 1. Therefore, the
induction argument yields

An ≤ A1(1 + ε/2)n−1 + L
n−2∑
l=0

(1 + ε/2)l ≤ Ln(1 + ε/2)n−1.

This implies the conclusion of the theorem.

4.6 Sufficient conditions for ∆-subexponentiality

In this Section, we give sufficient conditions for a distribution to be ∆-subexponential.
There is much similarity between these conditions and the conditions given earlier for
subexponentiality.

Theorem 4.27. Let the distribution F on R+ belong to the class L∆ where ∆ = (0, T ] for
some finite T > 0. Suppose that there exist c > 0 and x0 < ∞ such that F (x + t + ∆) ≥
cF (x+ ∆) for any t ∈ (0, x] and x > x0. Then F is ∆-subexponential.

Proof. Let the function h be such that h(x) < x/2 for all x and h(x) → ∞ as x → ∞.
Then

P{ξ1 + ξ2 ∈ x+∆, ξ1 > h(x), ξ2 > h(x)} ≤ 2
∫ x/2+T

h(x)
F (x− y + ∆)F (dy)

≤ 2(c+ o(1))F (x+ ∆)
∫ x/2+T

h(x)
F (dy)

= o(F (x+ ∆))

as x→∞. Applying now Theorem 4.22(ii) we conclude that F is ∆-subexponential.
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The Pareto distribution (with the tail F (x) = x−α, α > 0, x ≥ 1) satisfies the conditions
of Theorem 4.27. The same is true for any distribution F such that the function F (x+ ∆)
is regularly varying at infinity.

Theorem 4.28. Suppose that the distribution F on R+ belongs to the class L∆ for some
finite ∆ = (0, T ]. Suppose also that for some x0 the function g(x) := − lnF (x + ∆) is
concave for x ≥ x0. Suppose finally that there exists a function h such that h(x) → ∞
as x → ∞, F (x + ∆) is h-insensitive, and xF (h(x) + ∆) → 0 as x → ∞. Then F is
∆-subexponential.

Proof. By Theorem 4.23, we may assume without loss of generality that x0 = 0. Since g(x)
is concave, the minimum of the sum g(x − y) + g(y) on the interval y ∈ [h(x), x − h(x)]
is equal to g(x− h(x)) + g(h(x)).

Choose any c > 1 and x so large than

sup
t≥h(x)−T

sup
u,v∈∆

F (t+ v + ∆)/F (t+ u+ ∆) ≤ c.

Then, for any x sufficiently large and for any x− h(x) > t > h(x),∫ t

t−T
F (x−y+∆)F (dy) ≤ c2F (x−t+∆)F (t+∆) ≤ c4/T

∫ t

t−T
F (x−y+∆)F (y+∆)dy.

Let c1 = c4/T . We may assume for simplicity that x − 2h(x) is a multiple of T and let
k = (x− 2h(x))/T . Then∫ x−h(x)

h(x)
F (x− y + ∆)F (dy) =

k−1∑
i=0

∫ h(x)+(i+1)T

h(x)+iT
F (x− y + ∆)F (dy)

≤ c1

∫ x−h(x)

h(x)
F (x− y + ∆)F (y + ∆)dy

= c1

∫ x−h(x)

h(x)
e−(g(x−y)+g(y))dy

≤ c1xe
−(g(x−h(x))+g(h(x))).

Since e−g(x−h(x)) ∼ e−g(x), it follows that∫ x−h(x)

h(x)
F (x− y + ∆)F (dy) = O(e−g(x)xe−g(h(x))) = o(F (x+ ∆)). (4.39)

We now have

P{ξ1 + ξ2 ∈ x+ ∆, ξ1 > h(x), ξ2 > h(x)}

=
∫ x−h(x)

h(x)
F (x− y + ∆)F (dy) + P{ξ1 > x− h(x), ξ1 + ξ2 ∈ x+ ∆, ξ2 > h(x)}.

The second term on the right side of the above expression is not bigger than

P{ξ1 ∈ x−h(x)+∆}·P{ξ2 > h(x)} ∼ F (x+∆)F (h(x)) = o(F (x+∆)) as x→∞.
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Hence, using also (4.39), we have

P{ξ1 + ξ2 ∈ x+ ∆, ξ1 > h(x), ξ2 > h(x)} = o(F (x+ ∆)) as x→∞,

and so the ∆-subexponentiality of F follows from Theorem 4.22.

To show the applicability of the latter theorem, we consider two examples. First, we
consider the Weibull distribution F on the positive half-line R+ with tail function given by
F (x) = e−x

β
, x ≥ 0, β ∈ (0, 1), and let ∆ = (0, T ], for some finite T . Then it can be

deduced that
F (x+ ∆) ∼ βTxβ−1 exp(−xβ) as x→∞.

From this, we want to show that F (x+ ∆) is asymptotically equivalent to a function which
satisfied the condition of Theorem 4.28. Indeed, consider the distribution F̂ with the tail
function given by F̂ (x) = min(1, xβ−1e−x

β
). Let x0 be the unique positive solution to the

equation x1−β = e−x
β

. Then the function ĝ(x) = − ln F̂ (x + ∆) is concave for x ≥ x0,
and the conditions of Theorem 4.28 are satisfied with h(x) = xγ , γ ∈ (0, 1−β). Therefore,
F̂ is ∆-subexponential and, by Theorem 4.23, F is also ∆-subexponential.

Second, we consider the lognormal distribution F with the density f given by f(x) =
e−(lnx−ln a)2/2σ2

/x
√

2πσ2 and note that the function g(x) = − ln(x−1e−(lnx−ln a)2/2σ2
) =

lnx+ (lnx− ln a)2/2σ2 is eventually concave. Since, for any fixed ∆ = (0, T ],

F (x+ ∆) ∼ Tf(x)

as x→∞, the conditions of Theorem 4.28 are satisfied for any function h such that h(x) =
o(x). Thus, F is ∆-subexponential.

We now show by two examples that the classes of ∆-subexponential distributions differ
for different ∆ and also the complexity of the relations between these classes. The first
example deals with lattice distributions. Let the random variable ξ be positive and integer-
valued, with P{ξ = 2k} = γ/k2 and P{ξ = 2k + 1} = γ/2k, where γ is the appropriate
normalizing constant. Then ξ has a lattice distribution F with span 1. By Theorem 4.27, F
is (0, 2]-subexponential. But it cannot be (0, a]-subexponential if a is not an even integer or
infinity.

In the second example, we consider absolutely continuous distributions. Assume that ξ is
the sum of two independent random variables: ξ = η+ζ where η is distributed uniformly on
(−1/8, 1/8) and P{ζ = k} = γ/k2 for k = 1, 2, . . . where γ is the appropriate normalising
constant. Then the distribution F of ξ is absolutely continuous. It may be verified that F is
(0, 1]-subexponential, but cannot be (0, a]-subexponential if a is not an integer or infinity.

Finally, recall that in the previous section we undertook to provide an example of a ∆-
subexponential distribution F where the function F (x+∆) is not asymptotically equivalent
to any non-decreasing function. Consider first a long-tailed function f such that f(x) ∈
[1/x2, 2/x2] for all x > 0. Choose the function f in such a way that f is not asymptotically
equivalent to a non-increasing function. For instance, one can define f as follows. Consider
the increasing sequence xn = 2n/4. Put f(x2n) = 1/x2

2n and f(x2n+1) = 2/x2
2n+1.

Then assume that f is linear between any two consecutive members of the above sequence.
Consider now the lattice distribution F on the set of natural numbers with F{n} = f(n)
for all sufficiently large integers n. Then by Theorem 4.23, F is ∆-subexponential, but
f(n) = F (n− 1, n] is not asymptotically equivalent to a non-increasing function.
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4.7 Local asymptotics for a randomly stopped sum

In this section, we give local analogues, both for subexponential densities and for ∆-
subexponential distributions, of results which were given in Section 3.11 for subexponen-
tial distributions. We show that a random sum preserves a local subexponential property
of independent identically distributed summands provided that the counting variable has a
light-tailed distribution. We also establish the corresponding characteristic properties.

As for the results obtained in Section 3.11, the results from this section are needed in a
variety of models in which random sums may appear, including random walks, branching
processes, and infinitely divisible laws.

We again consider a sequence ξ, ξ1, ξ2, . . . of independent random variables with a com-
mon distribution F on R+ and their partial sums S0 = 0, Sn = ξ1 + . . . + ξn for each
n ≥ 1, together a counting random variable τ which is independent of the sequence {ξn}
and takes values in Z+.

4.7.1 Density of a randomly stopped sum

Let µ be either Lebesgue measure on R or counting measure on Z. Throughout this section,
the argument x of the density function f is either a real number if µ is Lebesgue measure;
or an integer if µ is counting measure.

Theorem 4.29. Let {pn}n≥1 be a non-negative sequence such that
∑

n≥1 pn = 1 and
mp :=

∑
n≥1 npn is finite. Let the distribution F on R+ have a long-tailed density f with

respect to µ. Define the density g on R+ by

g(x) =
∑
n≥1

pnf
∗n(x).

(i) If the density f is subexponential and bounded, and if∑
n≥1

(1 + δ)npn <∞

for some δ > 0, then

g(x) ∼ mpf(x) as x→∞. (4.40)

(ii) If the relation (4.40) holds and p1 < 1, then the density f is subexponential.

Proof. The result (i) is immediate from Corollary 4.13, Theorem 4.14, and the dominated
convergence theorem. We prove the second result. By Corollary 4.5, for any k ≥ 2,

lim inf
x→∞

f∗k(x)/f(x) ≥ k.

If p1 < 1 then pn > 0 for some n ≥ 2, and so, arguing as in the proof of Theorem 3.38, it
follows from the above bound and from (4.40) that

lim sup
x→∞

f∗n(x)
f(x)

≤ n. (4.41)
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By Corollary 4.5, f∗(n−1) is long-tailed and so, from (4.41) and Theorem 4.2,

n ≥ lim sup
x→∞

f∗n(x)
f(x)

= lim sup
x→∞

(f ∗ f∗(n−1))(x)
f(x)

≥ 1 + lim sup
x→∞

f∗(n−1)(x)
f(x)

.

It follows by induction from the above bound that

lim sup
x→∞

f∗2(x)
f(x)

≤ 2.

Again by Theorem 4.2, this implies that limx→∞ f
∗2(x)/f(x) = 2, which implies the

subexponentiality of the density f .

4.7.2 ∆-Subexponential distributions and random sums

Analogously to Theorem 4.29, we have the following result.

Theorem 4.30. Let ∆ = (0, T ] for some finite T > 0. Suppose that the distribution F on
R+ is ∆-long-tailed (F ∈ L∆), and that the random variable τ (introduced at the start of
Section 4.7) is such that Eτ <∞.

(i) If F is a ∆-subexponential distribution and if E(1 + δ)τ <∞ for some δ > 0, then

P{Sτ ∈ x+ ∆}
F (x+ ∆)

→ Eτ as x→∞. (4.42)

(ii) If P{τ > 1} > 0 and further the relation (4.42) holds, then the distribution F is
∆-subexponential.

Proof. The proof of (i) follows from Corollary 4.25, Theorem 4.26, and the dominated
convergence theorem. We prove (ii). Since F ∈ L∆, it follows from Corollary 4.20 that,
for any k ≥ 2,

lim inf
x→∞

F ∗k(x+ ∆)
F (x+ ∆)

≥ k. (4.43)

If P{τ = n} > 0 for some n ≥ 2, then, again arguing as in the proof of Theorem 3.38, it
follows from the above bound and from (4.42) that

lim sup
x→∞

F ∗n(x+ ∆)
F (x+ ∆)

≤ n. (4.44)

Since F ∈ L∆, by Corollary 4.20 the convolution F ∗(n−1) also belongs to the class L∆.
Hence, by (4.44) and Theorem 4.18,

n ≥ lim sup
x→∞

F ∗n(x+ ∆)
F (x+ ∆)

= lim sup
x→∞

(F ∗ F ∗(n−1))(x+ ∆)
G(x+ ∆)

≥ 1 + lim sup
x→∞

F ∗(n−1)(x+ ∆)
F (x+ ∆)

.
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It follows by induction from the above bound that

lim sup
x→∞

F ∗2(x+ ∆)
F (x+ ∆)

≤ 2.

Again by Theorem 4.18, this implies that limx→∞ F
∗2(x + ∆)/F (x + ∆) = 2, which

implies the ∆-subexponentiality of the distribution F .

4.8 Comments

Local theorems for some classes of lattice distributions are given by Chover, Ney and
Wainger in [13, Section 2]. Densities are considered in [13, Section 2] (requiring conti-
nuity) and by Klüppelberg in [30] who considered asymptotics of densities for a special
case (see also Sgibnev [41] for some results on densities on R).

Much of the material of this chapter is adapted from the paper by Asmussen, Foss and
Korshunov [4].



Chapter 5

Maxima of random walks

In this chapter, we study a random walk whose increments have a heavy-tailed distribution
with a negative mean. The maximum of such a random walk is almost surely finite and our
interest is in the tail asymptotics of its distribution. We use direct probabilistic techniques
and show that again, under the appropriate subexponentiality condition, the main cause for
the maximum to be very large is that a single one of the increments is similarly large. We
start with Section 5.1 where a number of basic auxiliary results are collected.

5.1 Approximations of sums by integrals for long-tailed func-
tions and distributions

For any function f which is integrable at infinity, we define the function fI by

fI(x) :=
∫ ∞
x

f(y)dy.

Lemma 5.1. Suppose that the nonnegative function f is integrable at infinity. Suppose
further that either (a) f is non-increasing and fI is long-tailed, or (b) f is long-tailed.
Then, for any a > 0,

∞∑
n=0

f(x+ na) ∼ 1
a
fI(x) as x→∞.

Proof. Suppose first that f is non-increasing and fI is long-tailed. Then, for all n ≥ 0 and
for all x,

1
a

∫ x+(n+1)a

x+na
f(x)dx ≤ f(x+ na) ≤ 1

a

∫ x+na

x+(n−1)a
f(x)dx. (5.1)

Summing over n, we obtain

1
a
fI(x) ≤

∞∑
n=0

f(x+ na) ≤ 1
a
fI(x− a), (5.2)

which implies the result since fI is long-tailed.

93
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Now suppose that f is long-tailed. Then, given ε > 0 we have, for all n ≥ 0 and for all
sufficiently large x,

1− ε
a

∫ x+(n+1)a

x+na
f(x)dx ≤ f(x+ na) ≤ 1 + ε

a

∫ x+(n+1)a

x+na
f(x)dx.

Hence, for all sufficiently large x,

1− ε
a

fI(x) ≤
∞∑
n=0

f(x+ na) ≤ 1 + ε

a
fI(x).

and the result now follows on letting ε→ 0.

The following result is of general use and, in particular, will be needed in the next section.

Lemma 5.2. Suppose that the random variable ξ has a distribution F such that the inte-
grated tail distribution FI (see Section 2.6) is long-tailed. Let {τn}n≥1 be a sequence of
independent identically distributed nonnegative random variables with finite mean a > 0
and suppose that this sequence is independent of ξ. Define also T0 = 0, Tn =

∑n
i=1 τi for

n ≥ 1. Then

∞∑
n=0

P{ξ > x+ Tn} ∼
1
a
F I(x) as x→∞. (5.3)

Proof. We prove first the lower bound. By the Law of Large Numbers, given ε > 0, we can
choose L sufficiently large that

P{Tn ≤ L+ n(a+ ε)} > 1− ε, n = 0, 1, 2, . . . .

Then by Lemma 5.1 applied to the tail function F , and the assumed independence of ξ and
{τn}n≥1, for any x,

∞∑
n=0

P{ξ > x+ Tn} > (1− ε)
∞∑
n=0

P{ξ > x+ L+ n(a+ ε)}

∼ 1− ε
a+ ε

F I(x) as x→∞.

Now let ε→ 0 to obtain that

lim inf
x→∞

∑∞
n=0 P{ξ > x+ Tn}

F I(x)
≥ 1
a
.

For the upper bound, observe that, again by Lemma 5.1, the assumed independence of ξ
and {τn}n≥1, and the positivity of the random variables Tn, given ε ∈ (0, a), for any x,

∞∑
n=0

P{ξ > x+ Tn} ≤
∞∑
n=0

P{ξ > x+ n(a− ε)}+ P{ξ > x}
∞∑
n=0

P{Tn < n(a− ε)}

∼ 1
a− ε

F I(x) + F (x)
∞∑
n=0

P{Tn < n(a− ε)} as x→∞. (5.4)
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Since a− τ1− ε is bounded from above by a− ε and has mean−ε, there exists some λ > 0
such that

α := Eeλ(a−τ1−ε) < 1,

and so

P{Tn < n(a− ε)} = P{e−λ(Tn−na) > eλnε}
≤ Ee−λ(Tn−na)e−λnε

= αn.

It follows that
∞∑
n=0

P{Tn < n(a− ε)} <∞

and so it follows from (5.4) and Lemma 2.25 that

lim sup
x→∞

∑∞
n=0 P{ξ > x+ Tn}

F I(x)
≤ 1
a− ε

.

Now let ε→ 0 to obtain the upper bound.

5.2 Asymptotics for the supremum of a random walk with a neg-
ative drift

We give an elementary probabilistic proof of the asymptotic behaviour of the distribution of
the maximum of a random walk with negative drift and heavy-tailed increments (see The-
orem 5.4 below). The underlying intuition of the result is that the only significant way in
which a high value of the partial maximum can be attained is through “one big jump” by
the random walk away from its mean path. We give here a relatively short proof from first
principles which captures this intuition. It is similar in spirit to the probabilistic proof re-
lated to the ladder heights (which may also be of use for deriving local asymptotics), but by
considering instead a first renewal time at which the random walk exceeds a “tilted” level,
the argument becomes more elementary. In particular subsequent renewals have an asymp-
totically negligible probability under appropriate limits, and results from renewal theory—
notably the derivation and use of the Pollaczeck-Khinchine formula—are not required.

We proceed with the proof by deriving separately the lower and the upper bounds, since
no restrictions (apart of the negativeness of the mean!) are required for the former to hold
while subexponentiality is needed for the latter.

Let ξ1, ξ2, . . . be independent identically distributed random variables with distribution
function F such that Eξ1 = −a < 0. Let S0 = 0, Sn = ξ1 + . . . + ξn for n ≥ 1. Let
Mn = max(Si, 0 ≤ i ≤ n) for n ≥ 0 and let M = sup(Sn, n ≥ 0). By the Strong Law of
Large Numbers, P{M <∞} = 1.

We start with the lower bound which is proved by a quite elementary equilibrium identity.

Theorem 5.3. Suppose that Eξ1 = −a < 0. Then, for any x ≥ 0,

P{M > x} ≥
∫∞
x F (y)dy

a+
∫∞
x F (y)dy

,
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and, in particular,

lim inf
x→∞

P{M > x}
F I(x)

≥ 1
a
.

Proof. Let ξ be a random variable with distribution F which is independent of M . Then
M has the same distribution as (M + ξ)+ := max(0,M + ξ)). Now fix x ≥ 0. For z > 0
consider the function

Lz(y) =


x if y ≤ x,
y if y ∈ (x, x+ z],
x+ z if y > x+ z.

Since this function is bounded, ELz(M) is finite and ELz(M) = ELz(M + ξ). Therefore,

E(Lz(M + ξ)− Lz(M)) = 0.

We have |Lz(M+ξ)−Lz(M)| ≤ |ξ| for all z andLz(M+ξ)−Lz(M)→ L(M+ξ)−L(M)
as z →∞ where

L(y) =
{
x if y ≤ x,
y if y > x.

Hence, by the dominated convergence we obtain the equality

E(L(M + ξ)− L(M)) = 0. (5.5)

We make use of the following bounds. For y ∈ [0, x],

L(y + ξ)− L(y) = (y + ξ − x)I{y + ξ > x} ≥ (ξ − x)I{ξ > x},

and so

E{L(M + ξ)− L(M);M ≤ x} ≥ E{ξ − x; ξ > x}P{M ≤ x}. (5.6)

For y > x,
L(y + ξ)− L(y) ≥ ξ,

and so

E{L(M + ξ)− L(M);M > x} ≥ EξP{M > x}. (5.7)

Substituting (5.6) and (5.7) into (5.5) we get the inequality

E{ξ − x; ξ > x}P{M ≤ x} ≤ −EξP{M > x}.

Therefore,

P{M > x} ≥ E{ξ − x; ξ > x}
a+ E{ξ − x; ξ > x}

=

∫∞
x F (y)dy

a+
∫∞
x F (y)dy

.

where the final equality follows from (2.23).
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We now give our main result of this section, for the asymptotic behaviour of the tail of
M .

Theorem 5.4. Suppose that, in addition to the condition Eξ1 = −a < 0, the integrated tail
distribution FI is subexponential. Then

P{M > x} ∼ a−1F I(x) as x→∞.

Proof. By Theorem 5.3, it is sufficient to establish the upper bound associated with the
required asymptotics. Given ε > 0 and some (eventually large) A > a, define renewal
times 0 =: τ0 < τ1 ≤ τ2 ≤ . . . for the process {Sn} by

τ1 = min{j ≥ 1 : Sj > A− j(a− ε)} ≤ ∞

(here we make the standard convention min ∅ =∞), and, for k ≥ 2,

τk = ∞, if τk−1 =∞,
τk = τk−1 + min{j ≥ 1 : Sτk−1+j − Sτk−1

> A− j(a− ε)}, if τk−1 <∞.

Observe that, for any k, the joint distribution of the vectors

(τ1, Sτ1), (τ2 − τ1, Sτ2 − Sτ1) . . . , (τk − τk−1, Sτk − Sτk−1
), (5.8)

given τk <∞, is that of independent identically distributed vectors. Since Eξ1 < 0, by the
Strong Law of Large Numbers,

γ := P{τ1 <∞} → 0 as A→∞. (5.9)

Define also S∞ = −∞. Since τ1 = n implies Sn−1 ≤ A − (n − 1)(a − ε), we now have
that, for all sufficiently large x,

P{Sτ1 > x} =
∞∑
n=1

P{τ1 = n, Sn > x}

≤
∞∑
n=1

P{Sn−1 ≤ A− (n− 1)(a− ε), Sn > x}

≤
∞∑
n=1

P{ξn > x−A+ (n− 1)(a− ε)}.

Therefore, again for all sufficiently large x,

P{Sτ1 > x} ≤
∞∑
n=0

F (x−A+ n(a− ε)) ≤ 1
a− ε

F I(x−A− a+ ε), (5.10)

where the second inequality above follows by the same argument as that leading to the right
hand side of (5.2).

Let ϕ1, ϕ2, . . . be independent identically distributed random variables such that

P{ϕ1 > x} = P{Sτ1 > x | τ1 <∞}, x ∈ R.
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Then, from (5.10) and since FI is long-tailed,

P{ϕ1 > x} ≤ G(x), x ∈ R, (5.11)

for some distribution function G on R satisfying

lim
x→∞

G(x)
F I(x)

=
1

γ(a− ε)
. (5.12)

It follows from the subexponentiality of FI and Corollary 3.13 that the distribution G is
subexponential. Thus, by applying Theorem 3.37 with a geometrically distributed indepen-
dent stopping time, we have

(1− γ)
∞∑
k=0

γkG∗k(x) ∼ γ

1− γ
G(x) as x→∞.

From the stochastic majorisation (5.11) and the relation (5.12), we now get the following
asymptotic upper bound:

∞∑
k=1

γkP{ϕ1 + . . .+ ϕk > x} ≤ γ + o(1)
(1− γ)2

G(x)

≤ 1 + o(1)
(1− γ)2(a− ε)

F I(x) as x→∞. (5.13)

If M > x then there exist τk and j ∈ [τk, τk+1) such that Sj > x. Then necessarily
Sτk > x−A+ a− ε. (To see this assume that, on the contrary, Sτk ≤ x−A+ a− ε < x.
In this case τk < j < τk+1 and Sj − Sτk > x− (x− A+ a− ε) = A− a+ ε. Hence we
have the contradiction that τk+1 ≤ j.) It follows that

{M > x} ⊆
∞⋃
k=1

{Sτk > x−A+ a− ε}.

We now have (again for sufficiently large x) that

P{M > x} ≤
∞∑
k=1

P{Sτk > x−A+ a− ε}

≤
∞∑
k=1

γkP{ϕ1 + . . .+ ϕk > x−A+ a− ε},

by (5.8) and by the construction of the random variables ϕi. Using also (5.13), we now have

lim sup
x→∞

P{M > x}
F I(x)

≤ 1
(a− ε)(1− γ)2

.

Now let A → ∞, so that γ → 0 by (5.9), and then let ε → 0 to obtain the required upper
bound

lim sup
x→∞

P{M > x}
F I(x)

≤ 1
a
.
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5.3 Finite horizon asymptotics

We continue to study the random walk with negative drift introduced in the previous sec-
tion. Recall that Mn = max(Si, 0 ≤ i ≤ n) is defined to be the maximum of the random
walk to time n. In this section we derive asymptotics for the probability P{Mn > x} as
x → ∞ under heavy-tailedness assumptions. These asymptotics are uniform in n. The
underlying intuition of the result is again that the only significant way in which a high value
of the partial maximum can be attained is via a “big jump” of one of its increments. The
proof of the lower bound is based on direct computations and requires the extra assumption
of long-tailedness of the distribution F of the increments ξi. The proof of the upper bound
is similar to that of Theorem 5.4, although the condition of that theorem that FI be subex-
ponential requires to be strengthened slightly to F ∈ S∗ (see Section 3.4 and in particular
Theorem 3.27).

Theorem 5.5.
(i) Suppose that, in addition to the condition Eξ = −a < 0, the distribution F is long-

tailed (F ∈ L). Then

P{Mn > x} ≥ 1 + o(1)
a

∫ x+na

x
F (y)dy as x→∞, uniformly in n ≥ 1. (5.14)

(ii) Suppose that, in addition to the condition Eξ1 = −a < 0, the distribution F ∈ S∗.
Then

P{Mn > x} ∼ 1
a

∫ x+na

x
F (y)dy as x→∞, uniformly in n ≥ 1. (5.15)

Proof. We prove first the lower bound given in (5.14). Since Eξ1 < 0, it follows from the
Weak Law of Large Numbers that, given ε > 0 and δ > 0, we can choose A sufficiently
large that

P{Sn > −A− n(a+ ε)} ≥ 1− δ for all n ≥ 0. (5.16)

Then the following lower bound is immediate:

P{Mn > x} =
n−1∑
k=0

P{Mk ≤ x, Sk+1 > x}

≥
n−1∑
k=0

P{Mk ≤ x, Sk > −A− k(a+ ε), ξk+1 > x+A+ k(a+ ε)}.

By the independence of random variables ξi and by (5.16), we have

P{Mn > x} ≥
n−1∑
k=0

P{Mk ≤ x, Sk > −A− k(a+ ε)}P{ξk+1 > x+ L+ k(a+ ε)}

≥
n−1∑
k=0

(1− 2δ)F (x+A+ k(a+ ε)),

where the last inequality holds for all x sufficiently large that

P{M > x} ≤ δ (5.17)
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(which implies that P{Mk > x} ≤ δ for all k). By applying the first inequality in (5.1) to
each of the terms F (x+ a+ k(a+ ε)) above and then taking their sum, we get

P{Mn > x} ≥ 1− 2δ
a+ ε

∫ x+na

x
F (y +A)dy.

Since F is assumed to be long-tailed, it now follows that

P{Mn > x} ≥ 1− 3δ
a+ ε

∫ x+na

x
F (y)dy

for all x sufficiently large that (5.17) holds. That the inequality (5.14) holds with the re-
quired uniformity in n now follows by letting δ, ε→ 0.

We now prove (5.15). Here F is assumed to belong to the class S∗, so it is in particular
long-tailed. Hence, it is sufficient to establish the upper bound in (5.15). Given ε > 0 and
A > a, define renewal times 0 =: τ0 < τ1 ≤ τ2 ≤ . . . for the process {Sk} as in the proof
of Theorem 5.4.

Analogously to (5.10), we obtain that

P{Sτ1∧n > x} ≤
n−1∑
k=0

F (x−A+ k(a− ε)) ≤ 1
a− ε

∫ x+na

x
F (y −A− a+ ε)dy.

Since F is long-tailed,

P{Sτ1∧n > x} ≤ 1 + ε

a− ε

∫ x+na

x
F (y)dy (5.18)

for all sufficiently large x uniformly in n ≥ 1. This means that we can choose x0 such that
(5.18) holds for all x ≥ x0 and for all n = 1, 2, . . ..

Let ϕn,1, ϕn,2, . . . be independent identically distributed random variables such that

P{ϕn,1 > x} = P{Sτ1∧n > x | τ1 <∞}, x ∈ R.

Then, from (5.18), for x ≥ x0,

P{ϕn,1 > x} ≤
∫ x+na

x
Gn(y)dy, x ∈ R, n ≥ 1, (5.19)

for some distribution function Gn on R satisfying

lim
x→∞

Gn(x)
F (x)

=
1 + ε

γ(a− ε)
. (5.20)

From the condition F ∈ S∗ and Corollary 3.26, we have Gn ∈ S∗. We may now apply
Corollary 3.40 with a geometrically distributed stopping time (which is independent of the
sequence of random variables ξi) to obtain that

(1− γ)
∞∑
k=0

γkG∗kn (x) ∼ γ

1− γ
Gn(x)
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as x → ∞ uniformly in n ≥ 1. Using also the conditions (5.19) and (5.20), we get the
following asymptotic upper bound:

∞∑
k=1

γkP{ϕn,1 + . . .+ ϕn,k > x} ≤ γ + o(1)
(1− γ)2

Gn(x)

≤ 1 + ε+ o(1)
(1− γ)2(a− ε)

∫ x+na

x
F (y)dy (5.21)

as x→∞ uniformly in n ≥ 1.

If Mn > x then there exist τk ≤ n and j ∈ [τk, τk+1) such that Sj > x. Then, exactly as
in the proof of Theorem 5.4, we have that necessarily Sτk > x−A+ a− ε. It follows that

{Mn > x} ⊆
∞⋃
k=1

{Sτk∧n > x−A+ a− ε}.

Therefore,

P{Mn > x} ≤
∞∑
k=1

P{Sτk∧n > x−A+ a− ε}

≤
∞∑
k=1

γkP{ϕn,1 + . . .+ ϕn,k > x−A+ a− ε},

by the construction of the random variables ϕi. Using (5.21) we obtain

lim sup
x→∞

sup
n≥1

P{Mn > x}∫ x+na
x F (y)dy

≤ 1 + ε

(a− ε)(1− γ)2
.

No let first A → ∞, so that γ → 0 by (5.9). Then let ε → 0 to obtain the required upper
bound

lim sup
x→∞

sup
n≥1

P{Mn > x}∫ x+na
x F (y)dy

≤ 1
a
,

which, together with the lower bound (5.14), implies the required uniform asymptotics
(5.15).

5.4 Comments

Theorem 5.4 was proved for regularly varying distributions by Callaert and Cohen in [11]
and by Cohen in [16]. For dominated-varying distributions, it was proved by Borovkov in
[9, Sec. 22]. In its present form, it was proved by Veraverbeke in [43] and by Embrechts,
Goldie and Veraverbeke in [22]. The proof given here follows an idea of Zachary [44].
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