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POSITIVITY OF THE T-SYSTEM CLUSTER ALGEBRA

PHILIPPE DI FRANCESCO AND RINAT KEDEM

Abstract. We give the path model solution for the cluster algebra variables of the Ar T -system with
generic boundary conditions. The solutions are partition functions of (strongly) non-intersecting paths
on weighted graphs. The graphs are the same as those constructed for the Q-system in our earlier work,
and depend on the seed or initial data in terms of which the solutions are given. The weights are “time-
dependent” where “time” is the extra parameter which distinguishes the T -system from the Q-system,
usually identified as the spectral parameter in the context of representation theory. The path model is
alternatively described on a graph with non-commutative weights, and cluster mutations are interpreted as
non-commutative continued fraction rearrangements. As a consequence, the solution is a positive Laurent
polynomial of the seed data.

1. Introduction

In this paper we study solutions of the T -system associated to the Lie algebras Ar, which we write in
the following form:

(1.1) Tα,j,k+1Tα,j,k−1 = Tα,j+1,kTα,j−1,k + Tα+1,j,kTα−1,j,k,

where j, k ∈ Z, α ∈ Ir = {1, ..., r}, and with boundary conditions

(1.2) T0,j,k = Tr+1,j,k = 1, j, k ∈ Z.

We consider these equations to be discrete evolution equations for the commutative variables {Tα,j,k} in
the direction of the discrete variable k.

Originally, this relation appeared as the fusion relation for the commuting transfer matrices of the
generalized Heisenberg model [1, 17] associated with a simply-laced Lie algebra g, where it is written in
the form

(1.3) Tα,j,k+1Tα,j,k−1 = Tα,j+1,kTα,j−1,k −
∏

β 6=α

T
−Cβ,α

β,j,k ,

with appropriate boundary conditions. The matrix C is the symmetric Cartan matrix of one of the Lie
algebra of type ADE. Our relation (1.1) is obtained by a rescaling of the variables Tα,j,k and specializing
to the Cartan matrix of Ar.

With special initial condition at k = 0, it has been proved that the solutions to (1.3) are the q-characters

[10] of the Kirillov-Reshetikhin modules of the affine Lie algebra Uq(ŝlr+1) [19].
The T -system also appears in several other contexts. Of particular relevance here is the fact [18] that

the system is a discrete integrable equation, the discrete Hirota equation. It is therefore to be expected
that the system has a complete set of integrals of motion, and that it is exactly solvable. This equation
also appears in a related combinatorial context, as the octahedron equation, which was studied by [16, 21].

In this paper, we do not impose any special boundary conditions, but express the general solution of
the T -system in terms of arbitrary initial conditions. For example, initial conditions can be chosen by
specifying the values of the parameters Tα,j,k at k = 0 and k = 1, or a more exotic boundary can be
specified. To solve the system, we use a path model which is a simple generalization of the path model we
constructed for the solutions of the Q- system of Ar[5, 6].
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2 PHILIPPE DI FRANCESCO AND RINAT KEDEM

In our previous work, we constructed a set of path models, and proved that the solutions of the Q-system
of Ar [15],

Qα,k+1Qα,k−1 = Q2
α,k + Qα−1,kQα+1,k, Q0,k = Qr+1,k = 1; k ∈ Z, α ∈ Ir,

are the generating functions for paths on a positively weighted graph, where the weights are a function of
the initial conditions.

With special initial conditions at k = 0 and k = 1 (together with a rescaling as in (1.3) which restores
the minus sign in the second term on the right hand side of the Q-system), the solutions are the characters
the finite- dimensional, irreducible modules of Ar with highest weights which are multiples of one of the
fundamental weights.

Note that this Q-system is obtained by “forgetting” the spectral parameter j in Equation (1.1). Thus
the T -system can be regarded as an affinization or q-deformation of the Q-system, and the path model we
present here is therefore a deformation of the path model for the Q-system.

Without fixing any special initial conditions, it was shown in [13] that the solutions of the Q-system
are cluster variables in a cluster algebra [8]. We showed in [4] that all Q-systems, corresponding to any
simple Lie algebra, can be formulated as cluster algebras. Thus, the solution of the Q-system in terms of
the statistical model allowed us to prove the positivity conjecture of [8] for these cluster variables. In fact,
as we showed in [6], the solutions are related to the totally positive matrices of [9] corresponding to pairs
of coxeter elements.

Similarly, we showed in [4] that a large class of equations which we call generalized bipartite T -systems
can be formulated as cluster algebras. Equation (1.1) is perhaps the simplest example of such a system.
Motivated by our statistical model introduced in [5], we introduce a path model which provides us with the
solution to the T -system, in terms of a set of initial conditions, as the partition function of a path model
with time-dependent (or non-commutative) weights. Here, we refer to the variable normally identified as
the spectral parameter as the time parameter, as it is a natural interpretation from the point of view of
paths.

This paper is organized as follows. In Section 2, we review the necessary definition of a cluster algebra.
We recall our formulation [4] of T -systems as cluster algebras. We describe the conserved quantities of
the T -system in terms of discrete Wronskian determinants in Section 3. We define a generalized notion
of hard particle models on a graph in Section 4 and identify the conserved quantities as hard particle
partition functions on a specific graph. In Section 5, we use our conserved quantities to write the solutions
of the T -system as the partition functions of paths on a weighted graph. The weight of a step in a path
depends on the order in which the steps are taken, that is, the weights are time-dependent. The solutions
are written as functions of the fundamental initial data, and the graph is the same as the one used in the
Q-system solution. Positivity of the T -system solutions in terms of the fundamental seed variables follows
from this formulation.

To prove the positivity in terms of other seeds, we give a formulation of our model in terms of non-
commutative weights in Section 6. We are then able to describe the solutions of the T -system as a function
of other seed data as partition functions on new graphs with weights which depend on the mutated seeds.
The key to the construction is an operator version of the fraction rearrangement lemmas used in [4]. These
rearrangements are equivalent to mutations in the case of the Q-system. Here, they are equivalent to
compound mutations. We are thus able to write the T -system solution explicitly in terms of its initial
data, for a subset of cluster seeds.

This paper should be considered as a (special case of) non-commutative generalization of our work
on the solutions of Q-system [5, 6]. In particular, the graphs on which we build our path models are
the same as for the Q-system, and the only difference is the time-dependence or non-commutativity of
the weights. The various key properties, such as the rearrangement lemmas for continued fractions and
the generalization of the Lindström-Gessel-Viennot theorem for strongly non-intersecting paths, all have
straightforward non-commutative counterparts which are used here.



POSITIVITY OF THE T-SYSTEM CLUSTER ALGEBRA 3

Acknowledgements: P.D.F.’s research is supported in part by the ANR Grant GranMa, the ENIGMA
research training network MRTN-CT-2004-5652, and the ESF program MISGAM. R.K.’s research is sup-
ported by NSF grant DMS-0802511. R.K. thanks IPhT at CEA/ Saclay for their kind hospitality. We
also acknowledge the hospitality of the Mathematisches Forschungsinstituts Oberwolfach (RIP program),
where this paper was completed.

2. T -systems as cluster algebras

2.1. Cluster algebras. We use the following definition of a cluster algebra [8, 22], slightly specialized to
suit our needs in this paper.

Let S ⊂ S̃ be two discrete sets (possibly infinite) and consider the field F of rational functions over Q

in a set of independent variables indexed by S̃.

We define a seed in F to be a pair (x̃, B̃), where x̃ = {xm : m ∈ S̃} is a set of commuting variables, and

B̃ is an integer matrix, with rows indexed by S̃ and columns indexed by S. The matrix B, which is the

square submatrix of B̃ made up of the rows of B̃ indexed by S, is skew symmetric.

The cluster of the seed (x̃, B̃) is the set of variables {xm : m ∈ S}, and the coefficients are the set of

variables {xm : m ∈ S̃ \ S}.

Next, we define a seed mutation. For any m ∈ S, a mutation in the direction m, µm : (x̃, B̃) 7→ (x̃′, B̃′),
is a discrete evolution of the seed. Explicitly,

• The mutation µm leaves xn with n 6= m invariant, and updates the variable xm only, via the
exchange relation

(2.1) x′
m = x−1

m


∏

n∈eS

x[ eBn,m]+
n +

∏

n∈eS

x[− eBn,m]+
n




where [n]+ = max(n, 0).

• The exchange matrix B̃′ has entries

(2.2) B̃′
i,j =

{
−B̃i,j if i = m or j = m;

B̃i,j + sign(B̃i,m)[B̃i,mB̃m,j]+) otherwise.

Note that we only define mutations for the set S, and not for the coefficient set S̃\S. That is, coefficients
do not evolve.

Fix a seed (x̃, B̃) and consider the orbit X ⊂ F of the cluster variables under all combinations of the
mutations µm, m ∈ S. The cluster algebra is the Z[c±1]- subalgebra of F generated by X, where c is the
common coefficient set of the orbit of the seed.

Remark 2.1. The particular system which we solve in this paper does not require us to have a coefficient

set, that is, we can set S = S̃. However, to make more direct contact with representation theory, it is
desirable to have the coefficient set be enumerated by the roots of the Lie algebra. In this context, we need
to set the values of the coefficients to the special points −1.

Cluster algebras can be considered to be discrete dynamical systems, which is the point of view we adopt
in this paper.

2.2. bipartite T -systems as cluster algebras. In this section we review some of the definitions of
Appendix B of [4], where generalized bipartite T -systems were shown to have a cluster algebra structure.

Definition 2.2. A generalized bipartite T -system is a recursion relation for the commuting, invertible
variables {Tα,j;k}, where α ∈ Ir and j, k ∈ Z, of the form

(2.3) Tα,j;k+1Tα,j;k−1 = Tα,j+1;kTα,j−1;k + qα

∏

j′

∏

α′

(Tα′,j′;k)
Aj′,j

α′,α
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where A is an incidence matrix, that is, a symmetric matrix with positive integer entries.

The matrix A is generally of infinite size, unless special boundary conditions are imposed on the system
which truncate the range of the variables j. We do not impose such boundary conditions in this paper,
although they are clearly of interest [12, 20]. The symmetry of A is required for the bipartite property to
hold (see below). T -systems which are not bipartite can also be defined, and in that case, the matrix A is
not symmetric.

Example 2.3. The first example of such a T system is the one described in (1.3). In that case, we take
the matrix A to be as follows:

(2.4) Aj,j′

α,β = Iα,βδj,j′ ,

where Iα,β = C−2I is the incidence matrix of the Dynkin diagram associated with a simply-laced Lie algebra
g. The coefficients qα are all set to be −1. However, it is always possible to renormalize the variables so
that qα = 1 in these cases [13], and we use this approach here.

In particular, if g = Ar, (I)α,β = δα,β+1 + δα,β−1. This is the case we solve in this paper.

We note that another example of generalized T -systems appeared in the context of preprojective algebras
and the categorification program of [11]. The explicit connection was made in [4], Example 4.4.

Finally, define the (possibly infinite) matrix P with entries

(2.5) P j,l
α,β = δα,β(δi,j+1 + δi,j−1).

Then we can rewrite (2.3) as

(2.6) Tα,j;k+1Tα,j;k−1 =
∏

α,j

T
P j′,j

β,α

β,j′ + qα

∏

j′

∏

α′

(Tα′,j′;k)
Aj′,j

α′,α .

In the systems considered in [4], we allowed the matrix P to be a matrix with positive integer entries, such
that it commutes with the matrix A, together with another condition on the sum of its entries (see Lemma
2.5 below). Such a system is also a generalized bipartite T - system.

2.3. Cluster algebra structure. We recall the formulation found in Appendix B of [4] of the cluster
algebra associated with generalized (bipartite) T -systems.

In the notations of Section 2, let S = (Ir ⊔ Ir) × Z, and S̃ = S ⊔ I ′r . Each set Ir , Ir and I ′r is just the
set with r elements. For convenience, if α ∈ Ir , then by α we mean the αth element of Ir, etc.

We define the fundamental seed (x̃, B̃)0 as follows. The variables x̃0 are

xα,j = Tα,j;0, (α ∈ Ir, j ∈ Z);

xα,j = Tα,j;1, (α ∈ Ir, j ∈ Z);

xα′ = qα, α′ ∈ I ′r ;(2.7)

(2.8)

The elements of the set {xα,j}⊔{xα,j} are the cluster variables and {xα′} are the coefficients. The exchange
matrix of the fundamental seed is defined as follows:

Bα,j;β,l = 0, (α, β ∈ Ir, j, l ∈ Z), Bα,j;β,l = 0, (α, β ∈ Ir, j, l ∈ Z),

Bα,j;β,l = −P j,l
α,β + Aj,l

α,β = −Bβ,l;α,j

B̃α′;β,j = −B̃α′,β,j = −δα,β.(2.9)

The last equation above denotes the entries of the extended B-matrix, corresponding to the coefficients,
which do not mutate. The matrices A, P are those of equation (2.6) for the generalized T -system.
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jj − 1 j + 1 j + 2 · · ·

2k + 1

2k

qα

Figure 2.1. A slice of the quiver graph of B̃, corresponding to constant α. The nodes
in the strip are labeled by (j, k) of Tα,j;k. The two subgraphs with even and odd j + k
decouple in this slice, so we illustrate the only the connectivity of nodes of the same parity
to node qα. The mutation µ reverses all arrows connected to qα.

Example 2.4. In the case of the Ar system (1.1), we have the matrix A as in (2.4), P as in (2.5) and

qα = 1. In that case we do not need to include the coefficients qα, and the matrix B̃ is equal to the matrix
B. To recover the original T -system (1.3), we take qα = −1.

It is clear that each of the mutations µα,j and µα,j exchanges one of the cluster variables in x̃0 via one
of the T -system equation relations (2.6). The mutation µα,j acts on x̃0 as one of the T -system evolutions
(2.6), where we specialize to k = 1: µα,j(Tα,j;0) = Tα,j;2. Similarly, µα,jTα,j;1 = Tα,j;−1 is a T -system
equation specialized to k = 0.

Quite generally, if Ba,b = 0 then µa ◦µb = µb ◦ µa. Since Bα,j;β,l = 0 for all α, β ∈ Ir and j, l ∈ Z, when

acting on the initial seed (x̃, B̃)0, the mutations µα,m commute with each other for all α, m. Similarly the
mutations µα,m also commute among themselves.

Therefore we can define the compound mutations

µ :=
∏

α,m

µα,m, µ :=
∏

α,m

µα,m

which act on (x̃, B̃)0. More generally, Define (x̃, B̃)2k to be the seed with xα,j = Tα,j;2k, xα,j = Tα,j;2k+1

and B̃2k = B̃. Define (x̃, B̃)2k+1 to be the seed with xα,j = Tα,j;2k+2, xα,j = Tα,j;2k and B̃2k+1 = −B̃.
Then it is clear that µ(x̃2k) = x̃2k+1: Each mutation µα,j mutates the variable Tα,j;2k into the variable
Tα,j;2k+2. Similarly, it is easy to check that µ(x̃2k) = x̃2k−1, µ(x̃2k+1) = x̃2k and µ(x̃2k+1) = x̃2k+2.

The following statement is Lemma 4.6 of [4]:

Lemma 2.5. Assume that the matrix A commutes with the matrix P , and that

(2.10)
∑

k

P kj
α,β = 2δα,β

for any j. Then the cluster algebra X which includes the seed (x̃, B̃)0 as in (2.7), (2.9) includes all the
solutions of the T -system (2.6). All the T -system relations are exchange relations in this cluster algebra.

To prove this Lemma, we need
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jj − 1 j + 1

qα

µα,j−1µα,j+1

µα,j

Figure 2.2. The local action of the mutation µ on a section of the quiver graph. The
compound mutation reverses all arrows connected to qα.

Lemma 2.6.

µ
(
(x̃, B̃)2k

)
= (x̃, B̃)2k+1, µ

(
(x̃, B̃)2k

)
= (x̃, B̃)2k−1.

Proof. In light of the preceding discussion, all that needs to be proved is that µ(B̃) = µ(B̃) = −B̃. Let

B̃′ = µ(B̃). Then, since Bα,j;β,k = 0, we have

• µα,i(Bβ,j;γ,k) = sign(Bβ,j;α,i)[Bβ,j;α,iBα,i;γ,k]+ = 0;
• µα,i(Bβ,j;γ,k) = −Bβ,j;γ,k if (α, i) = (γ, k), and is otherwise unchanged, since if (α, i) 6= (γ, k),

µα,i(Bβ,j;γ,k) = Bβ,j;γ,k + sign(Bβ,j;α,i)[Bβ,j;α,iBα,i;γ,k]+ = Bβ,j;γ,k.

Similarly, µα,i(Bβ,j;γ,k) = −Bβ,j;γ,k.
• Recall the restriction that [P, A] = 0. Then

µ(Bβ,j;γ,k) =
∑

α,i

sign(Bβ,j;α,i)[Bβ,j;α,iBα,i;γ,k]+ = (PA − AP )j,k
β,γ = 0.

• We have µα,i(Bβ′;γ,k) = −Bβ′;γ,k, and otherwise, if (α, i) 6= (γ, k) then µα,i

µα,i(B̃β′;γ,k) = B̃β′;γ,k +
∑

α,i

sign(B̃β′;α,i)[B̃β′;α,iBα,i;γ,k] = δβ,γ ,

so that µ(B̃β′;γ,k) = −B̃β′;γ,k.
• Finally, using the restriction (2.10) on the summation of elements of P ,

µ(B̃β′;γ,k) = δβ,γ +
∑

α,i

sign(B̃β′;α,i)[B̃β′;α,iBα,i;γ,k]+ = δβ,γ −
∑

α

δα,β

∑

i

P i,k
α,γ = −δβ,γ.

In the quiver graph corresponding to B̃, the last two statements are about how nodes xα,j = Tα,2k and
xα,j = Tα,j;2k+1 are connected to node xβ′ = qβ. If α 6= β, they are not connected, and if α = β, the
connectivity is illustrated in Figure 2.3 and the mutations in Figure 2.3.
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We have shown that µ(B̃) = −B̃. The proof that µ(B̃) = −B̃ is similar. �

Thus, we have shown that all the variables Tα,j;k appear in the cluster algebra, in fact, within a bipartite

graph composed of the nodes reached from (x̃, B̃)0 via combinations of the compound mutations µ and µ
only.

In this paper, we study the Ar T -system solutions in terms of the fundamental seed cluster x̃0. The
result will be an explicit interpretation of the solutions as partition functions of paths on a graph whose
weights which are positive monomials in the variables x̃0. This will imply the positivity property [8] for
the cluster variables Tα,j;k: They can be expressed as Laurent polynomials with non-negative coefficients
in terms of the initial data.

3. Basic properties of the T -system

From here on, we specialize the discussion to the T -system (1.1). Note that the equation (1.1) is a
three-term recursion in the index k, and allows to determine all the {Tα,j,k+1}α∈Ir ,j∈Z in terms of the
{{Tα,j,k, Tα,j,k−1}α∈Ir ,j∈Z. We wish to first study the solution Tα,j,k to Equation (1.1) in terms of the
“fundamental” initial data x0 = (Tα,j,0, Tα,j,1)α∈Ir ,j∈Z, that is, x0. The techniques used in this section
are a straightforward generalization of the methods used for the Q-system in [5]. We therefore present the
proofs of the theorems in the Appendix, as they use standard techniques in the theory of determinants.

3.1. Discrete Wronskians and conserved quantities. We can express the subset of variables {Tα,j,k :
j, k ∈ Z, α > 1} as polynomials of the variables in the set {T1,j,k : j, k ∈ Z}, cf [17]:

Theorem 3.1.

(3.1) Tα,j,k = det
1≤a,b≤α

(T1,j−a+b,k+a+b−α−1) , α ∈ Ir, j, k ∈ Z

The proof of this theorem uses the standard Plücker relations, and is similar to the case of the Q-system.
We therefore present the details of the proof in the Appendix, Section A.2.

If we consider α = r + 1 in Equation (3.1), since Tr+1,j;k = 1, we have the polynomial relation among
the variables {T1,j;k}:

(3.2) ϕj,k ≡

∣∣∣∣∣∣∣∣∣∣∣

T1,j,k−r T1,j−1,k+1−r · · · T1,j−r+1,k−1 T1,j−r,k

T1,j+1,k+1−r T1,j,k+2−r · · · T1,j−r+2,k T1,j−r+1,k+1

...
...

. . .
...

...
T1,j+r−1,k−1 T1,j+r−2,k · · · T1,j,k+r−2 T1,j−1,k+r−1

T1,j+r,k T1,j+r−1,k+1 · · · T1,j+1,k+r−1 T1,j,k+r

∣∣∣∣∣∣∣∣∣∣∣

= 1

This is the “equation of motion” for the system. Since ϕj,k is a discrete Wronskian determinant, it remains
constant for solutions of a difference equation. The difference equation can be found by taking the difference
of two Wronskians and arguing that a non-trivial linear combination of its columns must vanish.

Theorem 3.2. We have the following linear recursion relations

(3.3)

r+1∑

b=0

T1,j−b,k+b(−1)bcr+1−b(j − k) = 0 j, k ∈ Z

where the coefficients cr+1−b(j − k) depend only on the difference j − k, with c0(m) = cr+1(m) = 1 for all
m ∈ Z, and:

(3.4)

r+1∑

a=0

T1,j+a,k+a(−1)adr+1−a(j + k) = 0 j, k ∈ Z

where the coefficients dr+1−a(j + k) depend only on the sum j + k, with d0(m) = dr+1(m) = 1 for all
m ∈ Z.
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Such linear recursion relations can be obtained by noting that Tr+2,j,k = 0 and expanding the corre-
sponding Wronskian determinant along the first row or column. The key fact to be proven is that the
minors depend only on the difference j − k or the sum j + k. The proof is presented in the Appendix,
Section A.3.

By analogy with the case of the Q-systems [5, 6], we may still call the variables cb(k) and db(k) integrals
of motion of the T -system, as they depend on one less variable than T . Moreover, they can be expressed
entirely in terms of the fundamental initial data for the T -system, x̃0.

Example 3.3. In the A1 case, we have

T1,j,k − c1(j − k)T1,j−1,k+1 + T1,j−2,k+2 = 0

T1,j,k − d1(j + k)T1,j+1,k+1 + T1,j+2,k+2 = 0

with the integrals of motion

c1(j) =
T1,j,0

T1,j−1,1
+

1

T1,j−1,1T1,j−2,0
+

T1,j−3,1

T1,j−2,0

d1(j) =
T1,j,0

T1,j+1,1
+

1

T1,j+1,1T1,j+2,0
+

T1,j+3,1

T1,j+2,0

An explicit expression for the conserved quantities of Theorem 3.2 is as Wronskian determinants with a
“defect”:

Lemma 3.4. The conserved quantities cm(j) (m = 0, 1, ..., r + 1, j ∈ Z) of Equation (3.3) are

(3.5) cm(j) = det
1≤a≤r+1

1≤b≤r+2, b6=r+2−m

(T1,j+n+a−b,n+a+b−2)

for any n ∈ Z.

Again the proof uses the standard techniques, and is found in Section A.4 of the Appendix.

4. Conserved quantities and hard particles

4.1. Recursion relations for conserved quantities. The conserved quantities (3.5) satisfy linear re-
cursion relations, which allow us to express them in terms of the initial data x0. We use recursion relations
on the size r, so we first relax the boundary conditions Tr+1,j,k = 1 for all j, k ∈ Z.

Consider the A∞/2 T -system:

tα,j,k+1tα,j,k−1 = tα,j+1,ktα,j−1,k + tα+1,j,ktα−1,j,k, t0,j,k = 1, (j, k ∈ Z, α ∈ Z>0).(4.1)

Solutions of this system are expressible in terms of the initial data (tα,j,0, tα,j,1)α∈Z>0,j∈Z. By definition,
Tα,j,k = tα,j,k if we impose the boundary condition tr+1,j,k = 1 for all j, k ∈ Z.

The proof of Theorem 3.1 does not involve the boundary condition Tr+1,j;k = 1, so the determinant
expression for tα,j;k still holds:

(4.2) tα,j,k = det
1≤a,b≤α

(t1,j+a−b,k+a+b−α−1) , α > 1.

Define the Wronskians of size N with a defect in position N − m:

(4.3) cN,m,j,k = det
1≤a≤N

1≤b≤N+1, b6=N+1−m

(t1,j+a−b,k+a+b−N−1) ,

where cN,m,j,k = 0 if m > N or m < 0.
Note that cN,0,j,k = TN,j,k, and cN,N,j,k = TN,j−1,k+1 by Theorem 3.1. If we impose the second boundary

condition of the T -system on the t’s, then cr+1,m,j,k = cm(j − k + r).
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Lemma 4.1. The Wronskians with a defect cα,m,j,k satisfy the following recursion relations:

tα−1,j−1,k−1 cα−1,m,j,k = tα,j−1,k cα−2,m−1,j,k−1 + tα−1,j,k cα−1,m,j−1,k−1(4.4)

tα−1,j−1,k cα,m,j,k = tα,j−1,k+1 cα−1,m−1,j,k−1 + tα,j,k cα−1,m,j−1,k(4.5)

for α ≥ 2 and m, j, k ≥ 1.

Proof. The first equation (4.4) follows from the Desnanot-Jacobi relation (A.3), with N = α, i1 = 1,
i2 = α, j1 = α − m, j2 = α, for the matrix M with entries Ma,b = T1,j+a−b−1,k+a+b−α−1, a, b = 1, 2, ..., α.

The second equation (4.5) follows from the Plücker relation (A.2), with N = α, and the N × (N + 2)
matrix P with entries Pa,1 = δa,α, and Pa,b = T1,j+a−b,k+a+b−α−1 for b = 2, 3, ..., α + 2 and a = 1, 2, ..., α,
and by further picking a1 = 1, a2 = 2, b1 = α + 2 − m, and b2 = α + 2. �

Theorem 4.2. The Wronskians with a defect cα,m,j,k defined in Equation (4.3) are uniquely determined
by the following recursion relation, for α ≥ 2:

tα−1,j−1,k−1 tα−1,j,k cα,m,j,k−1 = tα−1,j−1,k−1 tα,j−1,k cα−1,m−1,j+1,k−1

+tα,j,k−1 tα−1,j,k cα−1,m,j−1,k−1 + tα,j,k−1 tα,j−1,k cα−2,m−1,j,k−1(4.6)

and the boundary conditions c0,m,j,k = δm,0, for all j, k ∈ Z and c1,m,j,k = δm,0 t1,j,k + δm,1 t1,j−1,k+1 for
all m, j, k ∈ Z.

Proof. Using Equation (4.4), the second line in (4.6) is equal to tα,j,k−1tα−1,j−1,k−1cα−1,m,j,k. Canceling
the overall factor tα−1,j−1,k−1, we must prove that

(4.7) tα−1,j,k cα,m,j,k−1 − (tα,j−1,k cα−1,m−1,j+1,k−1 + tα,j,k−1 cα−1,m,j,k) = 0.

Multiplying the l.h.s. of (4.7) by tα,j+1,k and using (4.1) we have

tα,j+1,ktα−1,j,kcα,m,j,k−1 − (tα,j,k+1tα,j,k−1 − tα+1,j,ktα−1,j,k)cα−1,m−1,j+1,k−1

−tα,j+1,ktα,j,k−1cα−1,m,j,k

= tα−1,j,k(tα,j+1,kcα,m,j,k−1 + tα+1,j,kcα−1,m−1,j+1,k−1)

−tα,j,k−1(tα,j,k+1cα−1,m−1,j+1,k−1 + tα,j+1,kcα−1,m,j,k)

= tα,j,k−1(tα−1,j,kcα,m,j+1,k − tα,j,k+1cα−1,m−1,j+1,k−1 − tα,j+1,kcα−1,m,j,k) = 0

where we have simplified the third line by use of (4.4), and finally used (4.5). Equation (4.6) follows.
Equation (4.6) is a three-term linear recursion relation in the variable α and therefore has a unique

solution c given the initial conditions at α = 0, 1. Moreover, these initial conditions are identical to those
for (4.3), hence this solution coincides with the definition (4.3) for all α, m, j, k. �

Let us define:

(4.8) Cα+1,m(j, k) =
cα+1,m,j+k−α,k

tα+1,j+k−α,k
, α ≥ 0, m, j, k ∈ Z.

These satisfy Cα+1,0(j, k) = 1 and Cα+1,α+1(j, k) = tα+1,j+k−α−1,k+1/tα+1,j+k−α,k. The conserved quan-
tities of the Ar T -system are obtained by imposing the boundary condition tr+1,j,k = 1, in which case:
cm(j) = Cr+1,m(j, k) for any j ∈ Z, and m = 0, 1, 2, ..., r + 1, independently of k ∈ Z.

Corollary 4.3. The quantities Cα+1,m(j, k) of eq.(4.8) are the solutions of the following linear recursion
relation, for α ≥ 1:

(4.9) Cα+1,m(j, k) = Cα,m(j − 2, k) + y2α+1(j − α, k)Cα,m−1(j, k) + y2α(j − α − 1, k)Cα−1,m−1(j − 2, k)
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Figure 4.1. The graph Gr, with 2r + 1 vertices labeled i = 1, 2, ..., 2r + 1.

with coefficients:

y2α+1(j, k) =
tα+1,j+k−1,k+1 tα,j+1+k,k

tα+1,j+k,k tα,j+k,k+1
(α ≥ 1)

y2α(j, k) =
tα+1,j+k,k+1 tα−1,j+k+1,k

tα,j+k,k tα,j+k+1,k+1
(α ≥ 1)

y1(j, k) =
t1,j+k,k+1

t1,j+k+1,k
,(4.10)

subject to the initial conditions C0,m(j, k) = δm,0 and C1,m(j, k) = δm,0 + δm,1 y1(j − 1, k).

Example 4.4. We have the following first few values of Cα+1,m(j, k):

α = 0 : C1,0(j, k) = 1

C1,1(j, k) = y1(j − 1, k)

α = 1 : C2,0(j, k) = 1

C2,1(j, k) = y1(j − 3, k) + y2(j − 2, k) + y3(j − 1, k)

C2,2(j, k) = y1(j − 1, k)y3(j − 1, k)

α = 2 : C3,0(j, k) = 1

C3,1(j, k) = y1(j − 5, k) + y2(j − 4, k) + y3(j − 3, k) + y4(j − 3, k) + y5(j − 2, k)

C3,2(j, k) = y1(j − 3, k)y3(j − 3, k) + y4(j − 3, k)y1(j − 3, k)

+y5(j − 2, k)(y1(j − 3, k) + y2(j − 2, k) + y3(j − 1, k))

C3,3(j, k) = y1(j − 1, k)y3(j − 1, k)y5(j − 2, k)

Remark 4.5. The Corollary 4.3 allows to interpret the conserved quantities of the Ar T -system as follows.
From the recursion relation (4.9), we deduce that Cr+1,m(j, k) is a homogeneous polynomial of the weights
y1, y2, ..., y2r+1, themselves ratios of products of some ta,b,c’s with c only taking the values k and k + 1. If
we impose tr+1,j,k = 1, we see that, as explained above, Cr+1,m(j, k) = cm(j) is independent of k. We may
therefore write Cr+1,m(j, k) = Cr+1,m(j, 0), the latter involving only Ta,b,c’s with c = 0, 1. These give r
conservation laws for m = 1, 2, ..., r. For r = 1, we have for instance

C2,1(j, k) =
T1,j+k,k

T1,j+k−1,k+1
+

1

T1,j+k−1,k+1T1,j+k−2,k
+

T1,j+k−3,k+1

T1,j+k−2,k

= C2,1(j, 0) =
T1,j,0

T1,j−1,1
+

1

T1,j−1,1T1,j−2,0
+

T1,j−3,1

T1,j−2,0

4.2. Hard particle interpretation. In this paper, we introduce a slightly generalized model of hard
particles on a graph.

4.2.1. Definition of the model. Let Gr be the graph of Figure 4.1, with vertices labeled as shown. When
r = 1, G1 is just the chain with 3 vertices, and when r = 0 G0 is a single vertex.
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To each vertex labeled i in Gr, we associate a height function h, where

h(i) =

⌊
i + 1

2

⌋
, (i > 1), h(1) = 0.

A configuration of hard particles on Gr is a subset S of I2r+1 such that i, j ∈ I implies that vertices i
and j are not connected by an edge. We can think of the elements of I as the vertices occupied by particles.
The set of all hard particle configurations of cardinality m on Gr is called Cm. There is a natural ordering
on the set I2r+1, and in the generalized hard particle model we define in this paper, the set S is considered
to be an ordered set.

In general, a hard particle model on Gr associates weights to the occupied vertices which depend on
the vertex label, and possibly also on the total number of occupied particles. The corresponding partition
function is the sum over all possible hard-particle configurations of the products of the occupied vertex
weights.

For the purpose of this work, we define the partition function for m hard particles as

(4.11) ZGr
m (j, k) =

∑

S∈Cm

m∏

ℓ=1

yiℓ
(j − 2(r + ℓ − m) − 1 + h(iℓ), k)

with the weights yi as in (4.10) and S = {i1, ..., im}.

4.2.2. Conserved quantities as hard particle partition functions. We have the following.

Theorem 4.6. The partition function ZGα
m (j, k) (4.11) for m-hard particles on Gα coincides with the

quantity Cα+1,m(j, k) of (4.8).

Proof. Hard particle partition functions on Gr satisfy a recursion relation in r. Fix m and consider the
configuration of particles on vertices (2r + 1, 2r). There are 3 possible pairs of occupation numbers for
these two neighboring vertices, (0, 0), (1, 0) and (0, 1), respectively contributing to the partition function:

• (0, 0) contributes Z
Gr−1

m (j − 2, k).

• (1, 0) contributes y2r+1(j − r, k)Z
Gr−1

m−1 (j, k).

• (0, 1) contributes y2r(j − r − 1, k)Z
Gr−2

m−1 (j − 2, k).

This implies that ZGr
m satisfies the recursion relation

(4.12) ZGr+1

m (j, k) = ZGr
m (j − 2, k) + y2r+1(j − r, k)ZGr

m−1(j, k) + y2r(j − r − 1, k)Z
Gr−1

m−1 (j − 2, k).

But this is the same relation satisfied by Cr,m(j, k), Equation (4.9), with the same initial conditions,

ZGr

0 (j, k) = 1 (for any r) and and ZG0

1 (j, k) = y1(j − 1, k) = C1,1(j, k). The theorem follows. �

Setting tr+1,j,k = 1, we have:

Corollary 4.7. The conserved quantities cm(j) of the Ar T -system are the partition functions for m-hard
particles on Gr, with the weights:

y2α+1(j, k) =
Tα+1,j+k−1,k+1 Tα,j+1+k,k

Tα+1,j+k,k Tα,j+k,k+1
(1 ≤ α ≤ r)

y2α(j, k) =
Tα+1,j+k,k+1 Tα−1,j+k+1,k

Tα,j+k,k Tα,j+k+1,k+1
(1 ≤ α ≤ r)

y1(j, k) =
T1,j+k,k+1

T1,j+k+1,k
(4.13)

where T0,j,k = Tr+1,j,k = 1 for all j, k ∈ Z.

As the resulting hard-particle partition functions are independent of k, we may set k = 0 in the expression
for the weights.
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rG
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9
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3

10

12

13

5s

4s

3s

2s

1s

13

11

6

j−5j−6

h(v)

6

7

3

2

0 t
j−4j−8j−10j−12j−14

3

1

Figure 4.2. A graphical interpretation of a hard-particle configuration on the graph G6, with
m = 5 particles at positions {1, 3, 6, 11, 13}. The label of the occupied vertex is indicated in a
circle, and the time and height coordinates in rectangles. A distinct diagonal stripe corresponds
to each particle. The leftmost stripe has x-intercept j − 2(r + 1) = j − 14, and the rightmost is
at j − 2(r + 1 − m) = j − 4. The weight of this configuration is y1(j − 5, k)y3(j − 5, k)y6(j −
6, k)y11(j − 5, k)y13(j − 6, k).

4.3. A pictorial representation for the hard particle partition function. The hard particle con-
figurations which give rise to the partition function of the form (4.11) can be represented graphically as in
Figure 4.2.

• A particle at a spine vertex v (v ∈ {1, 2, 4, 6, ..., 2r− 2, 2r, 2r + 1}) is represented by a diamond on
the two-dimensional lattice, its center at the height of the vertex, at the point (t, h(v)) for some
t ∈ Z, and its vertices at the four neighboring lattice sites.

• A particle a vertex v ∈ {3, 5, 7, ..., 2r − 1} is represented by the lower half of such a diamond.

We call t the time coordinate, and h(v) the height. Each polygon is at (t, h(v)) contained in a diagonal
stripe s, bordered by the lines y = x − (t + 1 − h(v)) and y = x − (t − 1 − h(v)). We denote s by its
x-intercepts, s = {t − 1 − h(v), t + 1 − h(v)}.

Given a configuration S ∈ Cm, with S = {i1 < i2 < · · · < im}, the polygon representing the particle
i1 is drawn in the stripe s1 = {t − 2, t}; that of i2 in the stripe immediately above and to the left,
s2 = {t− 4, t− 2}, and the k-th polygon representing ik lies in stripe sk = {t− 2k, t− 2k + 2}. The height
of each polygon is determined by h(ij) and its time coordinate by its stripe: tk = h(ik)− 1 + t− 2(k − 1).

If we choose t = j − 2(r + 1 − m), then Equation (4.11) can be written as

(4.14) ZGr
m (j, k) =

∑

S∈Cm

m∏

ℓ=1

yiℓ
(tℓ, k)

5. Path formulation and positivity

We now give an expression for Tα,j,k as a function of the initial data x0 = (Tβ,j,0, Tβ,j,1)β∈Ir ,j∈Z. It can
be interpreted as the partition function of weighted paths on a certain graph, with time-dependent weights.
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Figure 5.1. The graph G̃r, with 2r + 2 vertices.

0

3

5

4

2

1

G3

0

1

2

3

4

5

2’

3’

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 5.2. The planar representation of a typical path in P
0,0
0,16 on the graph G̃3.

That is, we generalize the notion of a weighted path, so that the weight of a step in the path depends on
the time at which it is taken.

As a corollary of the formulation in this section, we have the positivity Theorem 5.7 for the variables
Tα,j,k as a function of the initial data.

5.1. Definitions. Let G̃r be the graph in Figure 5.1. It has 2r + 2 vertices, which are ordered as
(0, 1, 2, 2′, 3, 3′, ...r, r′, r + 1, r + 2). Its incidence matrix A is

Am,m′ = Am′,m = 1, (2 ≤ m ≤ r); Am,m+1 = Am+1,m = 1, (0 ≤ m ≤ r + 1).

The vertex labelled 0 is called the origin of the graph. We call the vertices i the spine vertices of G̃r, and
the edges which connect i → ı ± 1 spine edges.

We consider the set P
a,b
t1,t2 of paths p on the graph G̃r, starting at time t1 and vertex a, and ending

at time t2 ≥ t1 at vertex b. We take ti ∈ Z, and each step takes one time unit. The path p may be
represented by the succession of visited vertices, p = (p(t))t=t1,t1+1,...,t2, with p(t1) = a and p(t2) = b and
Ap(s),p(s+1) = 1 for any s.

Let wi,j(t) be the weight of a step vertex i to vertex j at time t. We define the weight of a path p ∈ P
a,b
t1,t2

to be

(5.1) w(p) =

t2−1∏

s=t1

wp(s),p(s+1)(s), p(t1) = a, p(t2) = b.

The partition function for weighted paths in P
a,b
t1,t2 is

(5.2) Z
a,b
t1,t2 =

∑

p∈P
a,b
t1,t2

w(p).

For later use, we define Z
a,b
t1,t2 = 0 if t1 > t2.

Paths can be represented on the lattice Z2 as in Figure 5.2. We associate a vertical coordinate h(i) =

h(i′) = i to each vertex of G̃r. The horizontal axis is the time. A step a → b at time t on G̃r is a step
(t, h(a)) → (t + 1, h(b)).
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p’

(b)(a)

S p

S’ p’
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S’

Figure 5.3. The involution ϕ between pairs of m- hard particle configurations and paths in
P

0,0
j−2(r+1−m),j+2k

. Case (a): the first stripe traversed by p is absorbed into S′, which has m + 1

particles, and p′ ∈ P
0,0
j−2(r+1−m)+2,j+2k

. Case (b): The bottom stripe of S is absorbed into p′,

now in P
0,0
j−2(r+1−m)−2,j+2k

, while S′ has only m − 1 particles.

We claim (see Theorem 5.5) that there exists a choice of weights wa,b(s), as functions of x0 = (Tα,j,0, Tα,j,1)α∈Ir ,j∈Z,

such that T1,j,k/T1,j+k,0 is equal to the partition function Z
0,0
j−k,j+k.

Dividing a path, which takes place from time t to time t′, into a first part from t to t′, and a second
part, from t′ to t′′, we have

(5.3) Z
a,b
t,t′ =

∑

x∈ eGr

Z
a,x
t,t′ Z

x,b
t′,t′′ , t′ ∈ [t, t′′].

In particular, the matrix of one-step partition functions Z
a,b
t,t+1 is called the transfer matrix T(t), with

entries

(5.4) (T(t))a,b = Z
a,b
t,t+1 = wa,b(t)Aa,b.

The transfer matrix is a decorated adjacency matrix. The recursion relation (5.3) implies

(5.5) Z
a,b
t1,t2 = (T(t1)T(t1 + 1) · · ·T(t2 − 1))a,b .

We use the following definition for weights wa,b(s) of paths on G̃r:

wm,m′(s) = 1, wm′,m(s) = y2m+1(s, 0), (m ∈ {1, ..., r}),

wm,m+1(s) = 1, wm+1,m(s) = y2m(s, 0), (m ∈ {1, ..., r − 1}),(5.6)

w0,1(s) = 1, w1,0(s) = y1(s, 0),

in terms of the weights yi(s, k) of Equation (4.13).

5.2. An involution on pairs of weights. We define an involution ϕ on the set Cm ×P
0,0
j−2(r+1−m),j+2k,

consisting of hard-particle configurations on Gr and paths on G̃r.
Let (S, p) ∈ Cm × P

0,0
j−2(r+1−m),j+2k, with m ∈ {0, ..., r + 1}, k ∈ Z+. We refer to the graphical

representations of Figures 4.2 and 5.2, and we draw S and p on the same lattice (see Figure 5.3), where
S is represented between the diagonal lines y = x − (j − 2(r + 1)) and y = x − (j − 2(r + 1 − m)), and p
starts at (j − 2(r + 1 − m), 0), the x-intercept of the bottom stripe of S.
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The path p has an initial section p0 within the diagonal stripe {j − 2(r + 1 − m), j − 2(r − m)},
consisting of u consecutive up steps and (i) a down step (s, u) → (s + 1, u − 1) or (ii) two horizontal steps
(s, u) → (s + 1, u) → (s + 2, u), where s = j − 2(r + 1 − m) + u. p \ p0 is then to the right of this initial
stripe.

Let σ be a map from path steps of type (i) or (ii) on G̃r to the vertex set of Gr. It is defined as follows:

σ((s, u) → (s + 1, u − 1)) =





2u − 2, 2 ≤ u ≤ r + 1;
1, u = 1;
2r + 1, u = r + 2.

σ((s, u) → (s + 2, u)) = 2u − 1.

Remark 5.1. Graphically, steps of type (i) and (ii) in p can mapped precisely to the polygons representing
particles on Gr. A step of type (i) is the NE edge of a diamond (hence a particle on a spine vertex) and a
step of type (ii) the upper edge of a half-diamond. The map σ represents this correspondence.

Denote by i the image of a step under the map σ. We must now distinguish between two cases.

• Case (a): If i < i1 and S′ := {i, i1, i2, ..., im} ⊂ Cm+1, define p′ ∈ P
0,0
j−2(r+1−m)+2,j+2k to be the

path with p′(j − 2(r + 1 − m) + 2 + x) = x for x = 0, 1, ..., u (case (i)) or x = 0, 1, ..., u − 1 (case
(ii)), and p′(x) = p(x + 2) otherwise.

• Case (b): If i ≥ i1 or {i, i1, ..., im} /∈ Cm+1, define S′ = {i2, i3, ..., im} ∈ Cm−1, the hard particle
configuration with the right stripe removed. It is now drawn between the diagonal lines y =
x − (j − 2(r + 1)) and y = x − (j − 2(r + 1 − (m − 1))). As for the path p′,

– If i1 ∈ {3, 5, ..., 2r − 1}, define p′(j − 2(r + 2 − m) + x) = x for x = 0, 1, ..., h(i1), p′(j − 2(r +
2 − m) + h(i1) + y) = h(i1) for y = 1, 2.

– Otherwise, p′(j − 2(r + 2 − m) + x) = x for x = 0, 1, ..., h(i1) + 1, and p′(j − 2(r + 2 − m) +
h(i1) + 2) = h(i1).

In both cases, p′(x) = p(x − 2) for the remaining times.

Remark 5.2. Graphically the map can be visualized as follows. If the particle represented by p0 can be
added to S while keeping the hard-particle condition, then we do this, while changing p0 so that it consists
only of up steps, starting two steps to the right of the original starting point of p. Otherwise, perform the
opposite operation, changing the first particle to a path segment.

In view of the graphical description, the map ϕ is clearly an involution. Moreover it is weight-preserving:
In Equation (5.6), only the steps of type (i) or (ii) have a non-trivial weight. Moreover, w(σ(step)) =
w(step) according to Equation (4.13) (setting k = 0). Therefore, w(S, p) = w(S)w(p) = w(S′)w(p′) =
w(S′, p′). We have

Lemma 5.3.

(5.7)

r+1∑

m=0

(−1)r+1−mZGr
m (j, 0)Z

0,0
j−2(r+1−m),j+2k = 0, (j ∈ Z, k ≥ 0).

Proof. This is the partition function for pairs (S, p) ∈ ∪r+1
m=0Cm × P

0,0
j−2(r+1−m),j+2k, with an extra factor

(−1)r+1−m which ensures that the contributions of (S, p) and ϕ(S, p) cancel each other. �

We can also consider the sum in Equation (5.7) in the case where k < 0. The sum is non-trivial in those

cases only if k ≥ −r − 1, since Z
a,b
t,t′ = 0 if t > t′. We extend the definition of ϕ: ϕ(S, p) = (S, p) if S = ∅

or if the path p has length zero and i1 > 1.

Lemma 5.4.

(5.8)

r+1−i∑

m=0

(−1)r+1−mZGr
m (j, 0)Z

0,0
j−2(r+1−m),j−2i = (−1)iZ

G′
r

r+1−i(j, 0)
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where Z
G′

r
m (j, k) is the partition function of m hard particles on G′

r, the graph Gr with vertex 1 removed
(or the contribution to ZGr

m in which vertex 1 is unoccupied).

Proof. We apply the involution argument in the previous Lemma for k in the range −r− 1 ≤ k < 0. Pairs
(S, p) which are not invariant under ϕ cancel each other. We are left with the contribution of the invariant
pairs. The latter always have p = ∅ and the vertex 1 unoccupied. �

Equations (5.8) are an expression for the initial conditions of the partition functions Z
0,0
j−2(r+1−m),j−2i

with 1 ≤ i ≤ r − 1 in terms of hard-particle partition functions.

5.3. The T -system solution T1,j,k as a partition function of paths. Our main result in this section
is the following.

Theorem 5.5.

(5.9) T1,j,k = T1,j+k,0 Z
0,0
j−k,j+k .

Proof. We will show that Sj,k = T1,j+k,0 Z
0,0
j−k,j+k satisfies the linear recursion relation (3.3) and coincides

with T1,j,k when k ∈ {0, . . . , r} for any j ∈ Z. Given that (3.3) has r + 1 terms, this implies Sj,k = T1,j,k

for all other k.
The sum

r+1∑

m=0

(−1)mcr+1−m(j − k)Z
0,0
j−k−2m,j+k

is equal to the sum in Equation (5.7), since ZGr
m (j, 0) = cm(j). Therefore, it vanishes for all j ∈ Z and

k ∈ Z+. This implies that Sj,k satisfies the same recursion relation (3.3) as T1,j,k.
As for the initial conditions, we see from Equation (5.8) that Sj,k satisfies

(5.10)

i∑

m=0

(−1)mZGr

i−m(j, 0)Sj−m−2(r+1−i),m = Z
G′

r

i (j, 0)T1,j−2(r+1−i),0.

We will show that the variables T1,j,k satisfy the same relations. Let

(5.11) WGα

i (j) =

i∑

m=0

(−1)mZGα

i−m(j, 0)
T1,j−2(α+1−i)−m,m

T1,j−2(α+1−i),0
, (0 ≤ i ≤ α + 1)

Using the recursion relations (4.12), we find

W
Gα+1

i (j) = WGα

i (j − 2) + y2α+1(j − α)WGα

i−1(j) + y2α(j − α − 1)W
Gα−1

i−1 (j − 2).

This is identical to the recursion relations (4.12) for ZGα

i (j, 0). Comparing the initial terms, we find

that WG0

0 (j) = 1 and WG0

1 (j) = ZG0

1 (j, 0) − T1,j−1,1

T1,j,0
ZG0

0 (j, 0) = 0, so that WG0

i (j) = ZG0

i (j, 0)|y1(j−1)=0.

Moreover,

WG1

0 (j) = 1,

WG1

1 (j) = ZG1

1 (j, 0) −
T1,j−3,1

T1,j−2,0
ZG0

0 (j, 0) = ZG1

1 (j, 0)|y1(j−3)=0,

WG1

2 (j) = ZG1

2 (j, 0) −
T1,j−1,1

T1,j,0
ZG1

1 (j, 0) +
T1,j−2,2

T1,j,0
ZG1

0 (j, 0) = 0,

where we have used the identity between Z and C, Example 4.4, the definitions (4.13), and T -system

relations. In short, we have WGα

i (j) = ZGα

i (j, 0)|y1=0, valid for all initial data α = 0, 1. This implies

(5.12) WGα

i (j) = ZGα

i (j, 0)|y1=0 for all α.
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Thus, WGα

i (j) is the partition function for i hard particles on Gα with weight 0 on vertex 1, or alternatively,

vertex 1 unoccupied. Therefore, WGr

i (j) = Z
G′

r

i (j, 0).
Therefore, T1,j,k and Sj,k satisfy the same recursion relation and have the same boundary conditions.

The Theorem follows. �

The reasoning of Theorem 5.5 can be carried through by considering paths with weights yα(j) replaced
by the weights yα(j, k) of eq.(4.10). We therefore have the following.

Corollary 5.6. If we define the weights wa,b(s, p) as follows:

wm,m′(s, p) = 1, wm′,m(s, p) = y2m+1(s, p), (m ∈ {1, ..., r}),

wm,m+1(s, p) = 1, wm+1,m(s, p) = y2m(s, p), (m ∈ {1, ..., r − 1}),

w0,1(s, p) = 1, w1,0(s, p) = y1(s, p),

with the yi(s, p) as in (4.13), then the following identity holds:

(5.13) T1,j,k = T1,j+p,k−p Z0,0
j−p,j+p({yα(s, k − p), j − p ≤ s ≤ j + p, 1 ≤ α ≤ 2r + 1}) .

Proof. We may view this as a particular case of the translational invariance Tα,j,k → Tα,j,k+1 of the T -
system, namely that Tα,j,k is expressed as the same function of the initial data {Tβ,j,k−p, Tβ,j,k−p+1}β∈Ir,j∈Z

as Tα,j,p is expressed in terms of {Tβ,j,0, Tβ,j,1}β∈Ir,j∈Z. We deduce that T1,j,p = T1,j+p,0Z
0,0
j−p,j+p({yα(s, 0)})

has the same expression as T1,j,k = T1,j,p+k−p in terms of yα(s, k − p), and the corollary follows, as the
prefactor itself comes from the substitution T1,j+p,0 → T1,j+p,k−p. �

5.4. General T -system solution Tα,j,k: families of non- intersecting paths. We may interpret Tα,j,k

directly in terms of paths by use of the determinant expression of Theorem 3.1 for Tα,j,k in terms of the
T1,ℓ,m. Indeed, given weighted paths on an acyclic graph Γ, say with partition function Zs,e for paths
starting at vertex s and ending at vertex e, the Lindström-Gessel-Viennot formula gives an expression
for the partition function of α non-intersecting paths on Γ (i.e. such that no to paths share a vertex) as
Zs1,...,sα;e1,...,eα

= det1≤i,j≤α Zsi,ej
. We obtain:

Tα,j,k = det
1≤a,b≤α

(
T1,j+k+2b−α−1,0 Z

0,0
j−k+α+1−2a,j+k+2b−α−1

)

=

(
α∏

b=1

T1,j+k+2b−α−1,0

)
Z

0,0
s1,...,sα;e1,...,eα

(5.14)

where Z0,0
s1,...,sα;e1,...,eα

stands for the partition function of families of α non-intersecting paths in the plane
representation of Section 5.1, starting at the points sa = (j − k + 2a− α − 1, 0), a = 1, 2, ..., α and ending
at the points eb = (j + k + α + 1 − 2b, 0), b = 1, 2, ..., α. Alternatively, one may think of the partition

function Zs1,...,sα;e1,...,eα
as that of α “vicious” walkers (i.e. never meeting at a vertex) on G̃r, going from

the root to the root, respectively starting at times j−k+2a−α−1 and ending at times j +k+α+1−2a,
a = 1, 2, ..., α, each step corresponding to a unit of time.

Interpreted in this way, the Tα,j,k are manifestly positive Laurent polynomials of the initial data, via
the weights yβ(t) and the prefactor in (5.14). We therefore have the:

Theorem 5.7. The solution Tα,j,k of the T -system is expressed as a positive Laurent polynomial of the
initial data x0 = {Tβ,j,0, Tβ,j,1}β∈Ir,j∈Z for all α ∈ Ir and all j, k ∈ Z.

Proof. The statement is clear from the above discussion for k ≥ α + 1 for which all the partition functions
in the determinant (5.14) have the form Z

0,0
t,u with t ≤ u, and therefore can be interpreted within the LGV

framework. For k ≥ 0 however, from the structure of the T -system, it is clear that Tα,j,k only depends on
a finite part of the initial data {Tβ,ℓ,0, Tβ,ℓ,1, |β −α| < k, |ℓ− j| < k}. In particular, if 0 < k < α + 1, then
as only the β ≥ α + 1 − k > 0 are involved, we may truncate the size of the T -system to some Ar′ , with
r′ = r − (α + 1 − k) < r. Upon renaming the initial data accordingly, we may interpret Tα,j,k as Tα′,j,k
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in this new T -system, where α′ = α − (α + 1 − k) = k − 1. For this α′ ≥ k − 1 the LGV formula applies,
and positivity follows. Finally, note that the expression of Tα,j,1−k in terms of {Tβ,j,0, Tβ,j,1} is the same
as that of Tα,j,k in terms of the reflected initial data {Tβ,j,1, Tβ,j,0}, hence positivity follows for k < 0 as
well. �

6. Operator formulation and positivity in terms of mutated initial data

Let A be the space of Laurent polynomials in the variables {Tα,j,k}. We consider the invertible “shift
operator” d acting on the infinite-dimensional vector space over A with basis {|t〉 : t ∈ Z}, with d|t〉 = |t−1〉.
It acts on the restricted dual space V ∗, with basis 〈t| such that 〈t|t′〉 = δt,t′ , as 〈t|d = 〈t + 1|. We consider
the algebra of formal Laurent series in d with coefficients in A acting on V . All operator relations which
we derive below are considered in the weak sense, as identities between matrix elements. We also adopt
the operator notation for diagonal operators in this basis, for example, wa,b|t〉 = wa,b(t)|t〉.

6.1. An expression using operator continued fractions. Theorem 5.5 implies

(6.1) T1,j,k = T1,j+k,0 (T(j − k)T(j − k + 1) · · ·T(j + k − 1))0,0

where the transfer matrix T(s) is defined in Equation (5.6).
We define the operator-valued transfer matrix T to be the matrix with entries 〈t|Ta,b = Ta,b(t)〈t + 1|.

We also define operator-valued weights Yα, such that

(6.2) 〈t|Yα = yα(t, 0)〈t + 1|

where the y’s are defined in (4.13).
Using these, we can write

(6.3) T1,j,k = T1,j+k,0 〈j − k|
(
T2k
)
0,0

|j + k〉 = T1,j+k,0 〈j − k|
(
(I − T)−1

)
0,0

|j + k〉,

where (I − T)−1 :=
∑

n≥0(T)n. Therefore, the operator F =
(
(I − T)−1

)
0,0

generates the variables T1,j,k.

To compute F, we row-reduce the matrix I − T. The result can be written as a non-commutative
continued fraction:

F =(6.4)
(

1 − d

(
1 − d

(
1 − dY3 − d

(
· · · (1 − dY2r−1 − d(1 − dY2r+1)

−1Y2r)
−1 · · ·

)−1
Y4

)−1

Y2

)−1

Y1

)−1

.

Alternatively, we can write F = F0 where the operators Fi are defined inductively:

Fr+2 = 0,

Fk = (1 − dY2k−1 − dFk+1Y2k)
−1

, (k = r + 1, r, ..., 3, 2),

F1 = (1 − dF2Y2)
−1, F0 = (1 − dF1Y1)

−1 = F,

where each term is understood formal power series in d.
This expression is easily understood in terms of paths. Note that each time increment corresponds to

an insertion of an operator d. An up step at height k followed by a down step contributes a weight dY2k,
while a level step at height k contributes the weight dY2k−1.

The operator generating function for paths above height k, Fk, is obtained by shuffling the two following
possibilities: (i) a level step pair k → k → k (ii) insertion of a path above height k + 1 between steps
k → k + 1 and k + 1 → k (see Figure 6.1).
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....
k

F
k+1

F
k+1

y2k−1 y2k

k

d d d d

....
k+1=k k

F

Figure 6.1. The enumeration of paths on eGr with time-dependent weights yα(t). The paths
from and to height k which stay above height k (generated by Fk) are related to those from
height k +1 by arranging any number of horizontal step-pairs k → k → k and up-down step-pairs
k → k + 1 → k, in-between which we insert any path from and to height k + 1 staying above
height k + 1. The operator weights are indicated on the bottom.

6.2. Mutations and operator continued fractions. As with the Q-system of [5], we would like to
have expressions for Tα,j,k as functions of other possible initial data of cluster seeds in the cluster algebra.
Cluster positivity means that they are positive Laurent polynomials in this data, and we can prove this
by giving path generating functions on graphs with positive weights for them. The operator formulation
introduced above was designed to allow us to do this in the case of special seeds of the form

(6.5) xM = {Tα,j,mα+i|i = 0, 1, α ∈ Ir , j ∈ Z},

where M is a Motzkin path of length r: M = (m1, ..., mr) with |mi − mi+1| ≤ 1.
This case is special, because it the non-commutative version of our construction in [5] for the Q-system.

The only difference is that we must now use the operator-valued transfer matrix, instead of a scalar, to
account for time-dependent weights.

6.2.1. Compound mutations and restricted initial data. The cluster seeds in Equation (6.5) are obtained
from x0 by acting on it with a sequence of the compound mutations of the form

(6.6) µα =
∏

j∈Z

µα,j , µα =
∏

j∈Z

µα,j .

Note that the mutation matrix B0 has the property that Bj,j′

α,α = 0 if j 6= j′, hence µα,j commutes with
µα,j′ , so the compound mutations are well-defined.

The mutations (6.6) act on initial data x0 via the simultaneous use of all relations (1.1) for all j ∈ Z to
transform Tα,j;k−1 → Tα,j;k+1 (forward mutation) or Tα,j;k+1 → Tα,j;k−1 (backward mutation), the action
being that of µα when k is odd and µα when k is even. Starting from the seed x0, and acting only with
(6.6) generates a restricted set of cluster seeds. If, moreover, we require that each of the mutations be one
of the T -system equations, we obtain only seeds of the form xM as in (6.5).

Remark 6.1. This is very similar to the situation of Reference [5], where seeds of type xM consist of
variables {Rα,mα

; Rα,mα+1}. Here, we replace each variable Rα,m with the infinite sequence (Tα,j,m)j∈Z.

6.2.2. Operator continued fraction rearrangements. In [5], we have shown that the generating function for
R1,n may be expressed in terms of any mutated seed xM via local rearrangements of the initial continued
fraction in terms of the seed x0. Here, we give the non-commutative version of the starting point, which is
operator version of the two rearrangement lemmas for fractions used in [5].
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The following are operator identities to be understood as identities between matrix elements of Laurent
series in d. They are proved by a simple calculation.

Lemma 6.2. Let A, B be elements in A((d)). Then

(6.7) 1 + d(1 − Ad − dB)−1A =
(
1 − d(1 − dB)−1A

)−1

Lemma 6.3. Let A, B, C, U be elements in A((d)), with A + B invertible. Then

(6.8) A + (1 − d(1 − U)−1C)−1B =
(
1 − U − d(1 − dC′)−1B′

)−1
A′

where

(6.9) A′ = A + B, B′ = CB(A + B)−1, C′ = d−1CA(A + B)−1d

Remark 6.4. Lemma 6.2 has a path interpretation. The r.h.s. of equation (6.7) is the generating function
for paths on the integer segment [0, 2], from vertex 0 to 0, with operator-valued weights:

w(0 → 1) = w(1 → 2) = d, w(2 → 1) = B, w(1 → 0) = A

The l.h.s. of equation (6.7) decomposes these paths into the trivial one (length 0, contribution 1), and all
the others, which start with a step 0 → 1 and end up with a step 1 → 0, with respective weights d and A

(in this order). In-between, we have the generating function for “rerooted” paths, from vertex 1 to vertex
1, which consist of arbitrary sequences of either steps 1 → 0 → 1 (with weight Ad) or steps 1 → 2 → 1
(with weight dB). We call the rearrangement of this Lemma a “rerooting”.

6.2.3. General case: mutations as rearrangements. For each Motzkin path M, the solution of the T -system
is can be expressed in terms of the initial data at xM as

(6.10) T1,j,k = T1,j+k−m1,m1
〈j − k + m1|FM|j + k − m1〉

for some operator continued fraction FM. Our main claim is that this fraction is obtained from F (6.4) via
a succesion of applications of Lemmas 6.2 and 6.3.

For each Motzkin path we will define weights Yi(M), (i ∈ I2r+1), which are monomials in xM and d.
The fraction FM is a function of these. As in [5], we find that the effect of mutations on FM 7→ FM′ is the
following:

• If α = 1, use Lemma 6.2 to write

(6.11) FM = 1 + dF′
M

Y1(M).

where 〈t|Y1(m) = T1,t,m1+1/T1,t+1,m1
〈t + 1|. Then Lemma 6.3 enables us to rewrite F′

M
as FM′ ,

a function of xM′ .
• If α > 1, apply Lemma 6.3 to the part of FM involving the weights Yβ(M) with β ≥ 2α − 1.

In both cases, the weights Yβ(M) are transformed into weights Yβ(M′).
We will provide the precise construction and proof in Section 6.3, but for clarity, we refer the reader to

Appendix B, where the example of A2 is worked out completely.

6.3. Paths on graphs with non-commutative weights. In this section, we define graphs with weights
in A[d, d−1]. The generating functions FM are path partition functions on these graphs. The graphs are
identical to those introduced in [5], and the weights contain exactly the same information contained in
the two-dimensional representation of paths on these graphs introduced in [5]. The construction presented
here is therefore a rephrasing of these paths in terms of operators.

Remark 6.5. Although the two-dimensional representation of paths used here is identical to the one we
used in [5], we did not, in the earlier paper, have use for the full information contained in this path
representation. In particular, the horizontal coordinate (“time” in our language) had no interpretation in
the context of Q-systems. Here, it corresponds to what is known as the spectral parameter in the T -system
equations.
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Figure 6.2. The construction of the graph ΓM (c) for some sample Motzkin path M (a) for
A9. All the pieces glued (b) are represented vertically. The skeleton edges in (c) are labelled 1 to
19, the spine vertices 0 to 13.

Since one is used to reading lattice paths from left to right, we have chosen to act on the space V ∗

instead of V . In that way, the order in which they act on the space is the same as the order the path is
traversed.

6.4. The target graphs Γm. Let M be a Motzkin path. We decompose it into pieces which do not
change direction: M = M1∪M2 ∪ · · · , where Mi = (a, a+ k, a+2k, · · · , a+(li − 1)k) with k = 0, 1 or −1.
The type of subpath is called k. All the graphs used below must be drawn vertically (see Fig.6.2), which
makes unambiguous the notion of top and bottom edges.

We construct a graph ΓMi
for each i as follows:

• If k = 0 then ΓMi
= G̃′′

li
, the graph G̃li of Figure 5.1 (represented vertically), with its bottom and

top edges removed.
• If k = 1, then ΓMi

is a simple (vertical) chain with 2li vertices.

• If k = −1, then ΓMi
is the graph G̃′′

li
(represented vertically) decorated with additional oriented

“descending” edges b → a with li + 1 ≥ b > a + 1 > 1.

We then glue the graphs: ΓMi
|ΓMi+1

is the graph obtained by identifying the top edge of ΓMi
with the

bottom edge of ΓMi+1
. Define Γ′′

M
= ΓM1

|ΓM2
| · · · , and ΓM is Γ′′

M
together with one additional bottom

and top edge and vertex. The graph ΓM is rooted at its bottom vertex.
Each graph thus constructed has a spine, namely a maximal vertical chain of vertices consisting of the

unprimed vertices of the various pieces glued. We label the spine vertices consecutively starting from 0 at
the bottom (see Fig.6.2(c)). The vertices off the spine, which are attached only to a vertex i are labeled
i′. We define the skeleton of ΓM as the graph with all edges i → j removed where i > j + 1. The edges of
the skeleton, referred to as skeleton edges are labeled 1, 2, ..., 2r + 1 from bottom to top (see Fig.6.2(c)).
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A path traverses each edge of a graph in one direction or another, and in our formulation, we weight steps
in each direction differently. Therefore, we now consider the non-oriented edges in ΓM as doubly-oriented
edges, each orientation corresponding to a different weight.

Assign a weight Ya,b(M) to the edge a → b. The weight of any edge away from the root, Yi,i+1 =
Yj,j′ = d. Skeleton edges Yα(M) pointing towards the root are independent weights, which we define
below. Weights on edges i → i− k with k > 1 are defined as the following product involving only skeleton
weights or their inverses:

(6.12) Yi,i−k =

(
i−k+1∏

a=i−1

Ya+1,a (Ya,a′)−1(Ya′,a)−1

)
Yi−k+1,i−k.

The ordered product is taken over edges from top to bottom, along a path from vertex i to i − k. Note
that Ya,a′ = d. By inspection of (6.12) we see that 〈t|Yi,i−k ∝ 〈t−k+2|, hence Yi,i−k “goes back in time”
by k − 2 units.

6.5. The positivity theorems for {Tα,j,k}. We now write T1,j,k as the partition function for paths on
ΓM. The values of the skeleton weights are determined by considering the effect of a mutation on the seed
data – They are determined by a recursion relation, which can be solved explicitly.

6.5.1. Transfer matrices and mutations. As we illustrated in [5], any Motzkin path has a unique expression
as a sequence of forward mutations, mβ 7→ m′

β = mβ +δβ,α where M = (m1, ..., mr) and M′ = (m′
1, ..., m

′
r).

We restrict the mutations to those which increase mα by +1 only in the following two cases:

• Case (i): mα−1 = mα = mα+1 − 1,
• Case (ii): mα−1 = mα = mα+1,

(together with their boundary versions). This restricted set of mutations is sufficient to construct all
Motzkin paths in the fundamental domain.

The initial step in the induction is the Motzkin path M0. The path interpretation on ΓM0
= G̃r was

given in Section 5. The operator transfer matrix TM0
= T and the operator generating function FM0

= F

are expressed entirely in terms of the d operator and the skeleton weights Yα(M0) = Yα (6.2).
The inductive step is as follows. Given ΓM and its operator weights, consider a forward mutation µα or

µα: M 7→ M′. These have associated transfer matrices TM and TM′ corresponding to the graphs ΓM and
ΓM′ . We compare the associated generating functions FM = (I − TM)−1

0,0 and FM′ = (I − TM′)−1
0,0 using

the row reduction process. Both are operator continued fractions, which differ locally due to the struction
of the graphs. We find that the two operator continued fractions are equal to each other if and only if the
weights of the graph ΓM′ are related to those of ΓM as follows.

Theorem 6.6. Let Y′ = Y(M′) and Y = Y(M), where M′ = µα(M) or µα(M). If α 6= 1, then,

• Case (i):

Y′
2α−1 = Y2α−1 + Y2α

Y′
2α = Y2α+1Y2α(Y′

2α−1)
−1(6.13)

Y′
2α+1 = d−1Y2α+1Y2α−1(Y

′
2α−1)

−1d

• Case (ii): in addition to the previous, we have

(6.14) Y′
2α+2 = d−1Y2α+2Y2α−1(Y

′
2α−1)

−1d, and Y′
β = d−1Yβd, ∀β ≥ 2α + 3

If α = 1, we simply have to substitute Y1 → d−1Y1d in the above formulas.

Proof. The proof is by Gaussian elimination as in [5]. The case α = 1 is special, as it requires a rerooting
of the generating function. The transformation of weights must be applied on F′

M
= (I − TM)−1

1,1 as in

(6.11), which induces the substitution Y1 → d−1Y1d. �
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Let

(6.15) λα,t,m =
Tα,t,m+1

Tα,t+1,m
, µα,t,m =

Tα,t,m

Tα−1,t+1,m

Corollary 6.7. The skeleton weights obeying the recursions of Theorem 6.6, subject to the initial condition
(6.2) are the operators Yβ(M), acting as 〈t|Yβ(M) = yβ(M; t)〈t + 1|, with:

y2α−1(M; t) =
λα,t+mα−m1−1,mα

λα−1,t+mα−1−m1,mα−1

(6.16)

y2α(M; t) =
µα+1,t+mα−m1,mα+1

µα,t+mα−m1,mα

×

{
λα+1,t+mα+1−m1,mα+1

λα+1,t+mα−m1,mα
if mα = mα+1 + 1

1 otherwise

}
(6.17)

×

{
λα−1,t+mα−m1,mα

λα−1,t+mα−1−m1,mα−1

if mα = mα−1 − 1

1 otherwise

}
(6.18)

Proof. By direct check of the recursion relations (6.13-6.14). �

Thus, we have two expressions for the generating function of T1,j,k, one in terms of the seed data xM and
the other in terms of the seed data xM′ . We call the transition between the two expressions a mutation: It
acts on the graph ΓM and on its weights. Alternatively, it acts on the operator continued fraction expresson
for FM as a rearrangement.

6.5.2. Positivity of T1,j,k. We note that the weights (6.16) yα(M; t) are positive Laurent monomials of the
initial data at xM. We therefore have a positivity result:

Theorem 6.8. T1,j,k+m1
/T1,j+k,m1

is the partition function for paths on the rooted graph ΓM with the
weights of Theorem 6.7, starting from the root at time j − k and ending at the root at time j + k. As such
it is a positive Laurent polynomial of the mutated data at xM.

6.5.3. General solution and strongly non-intersecting paths. We now turn to the expression of Tα,j,k in
terms of the mutated initial data xM. We will interpret the determinant formula Theorem 3.1 for Tα,j,k à
la Gessel-Viennot, in terms of the strongly non-intersecting paths on the graph ΓM introduced in [5].

Let us briefly recall the two-dimensional ΓM-lattice paths used to represent paths on ΓM, given in [5].
There are fundamentally three kinds of oriented edges in ΓM: the horizontal and vertical “skeleton” edges,
and down-pointing long edges, with weights which depend on the skeleton weights. The steps taken along
these edges on ΓM are represented in Z2 as follows (see Fig.6.3 for an illustration):

• A skeleton step i → i + ǫ, ǫ = ±1, at time t becomes the segment from (t, i) to (t + 1, i + ǫ)
• A skeleton step i → i′ or i′ → i at time t becomes the segment from (t, i) to (t + 1, i)
• A long step j → i, j > i + 1 at time t becomes the segment from (t, j) to (t + j − i − 2, i)

Note that the increment of x-coordinate for each step coincides with the time shift we have associated with
each step. Indeed, all steps advance by one unit of time, except the long ones, which go back in time by
j− i−2 ≤ 0. The only difference with [5] is that we now attach time-dependent weights to the steps namely
a weight ya,b(t) for a step a → b starting at time t (In the operator language, we have operator weights
Ya,b that act as 〈t|Ya,b = ya,b(t)〈t + h|, where h is the time-shift of the corresponding step, h = +1 for all
steps except the long ones, for which h = a − b − 2.). We conclude that this representation is perfectly
adapted to our weighted paths, as the x-coordinate is nothing but the time-coordinate.

Let us consider Tα,j,k as a function of the initial data at xM. Writing

(6.19)
Tα,j,k+m1∏α

b=1 T1,j+k+2b−α,m1

= det
1≤a,b≤α

T1,j−a+b,k+a+b−α−1+m1

T1,j+k+2b−α−1,m1

Using Theorem 6.8, we may interpret T1,j−a+b,k+a+b−α−1+m1
/T1,j+k+2b−α−1,m1

as the partition function
for ΓM-lattice paths from sa = (j − k + α + 1 − 2a, 0) to eb = (j + k + 2b − α − 1, 0). The determinant is
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down stepsup stepstarget

path

Figure 6.3. Two-dimensional lattice path representation on the graph ΓM, M = (2, 1, 0) of
the A3 case. We have indicated the “up” steps (i.e. away from the root) and the “down” steps
(towards the root).

h+v,vy i+k+v,i+vy h+v,i+vy
i+k+v,vy

(a) (b)

(u,v)

(u+h−2,v+h)

(u+i,v+i)

(u+i+k−2,v+i+k)

1

P
2

P’
2

P
1

P’

Figure 6.4. A typical edge intersection of ΓM-paths (a) and the result of the flipping operation
on it (b). We have indicated the weights of the steps. The paths in (b) are said to be “too close”
to each other.

simply a signed sum of products of such path partition functions, corresponding in turn to the partition
function for families of paths starting at {sa}α

a=1 and ending at {eb}α
b=1, with the usual weights times the

signature of the permutation of endpoints induced by the configuration.
In the standard Gessel-Viennot case, these signs produce the necessary cancellations to only leave us

with the contribution of non-intersecting paths, namely families in which no two paths share a vertex. This
is best proved by introducing a sign-reversing involution that pairs up and cancels all the unwanted terms
in the expansion of the determinant.
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In the case of ΓM-paths, the situation is more subtle, as paths may intersect without sharing a vertex.
In [5], we have produced an involution, which allows to interpret an analogue of the determinant (6.19)
as the partition function of strongly non-intersecting ΓM-lattice paths. This involution consists in flipping
paths as follows. We consider the first intersection between two paths within a family. If the intersection is
at a common vertex, we interchange the portions of paths before the intersection. If it is not at a common
vertex, we flip the two paths as indicated in Fig.6.4, by switching their beginnings until the crossing.

We make then the following crucial observation:

Lemma 6.9. In the generic flipping situation of Fig.6.4, the flipped pair of paths has the same (time-
dependent) weight as the original one, up to the sign of the permutation of starting points, due to the
following relation:

yh+v,v(u + h − 2)yi+k+v,i+v(u + i + k − 2) = yh+v,i+v(u + h − 2)yi+k+v,v(u + i + k − 2)

Proof. By direct application of the formula (6.12) for the long edge weights. �

The only invariant families under this involution are those where the paths do not lie “too close” to
each-other, as otherwise they get cancelled by applying a flip.

Therefore all the conclusions of [5] still hold in the present case, and we have:

Theorem 6.10. Tα,j,k+m1
/
∏α

b=1 Tα,j+k+2b−α−1,m1
is the partition function for configurations of α strongly

non-intersecting ΓM-lattice paths, with the weights of Theorem 6.7. As such, Tα,j,k+m1
is a positive Laurent

polynomial of the mutated data at xM.

7. Conclusion

The T -system equations are a special case of a non-commutative Q-system. That is, one can write a Q-
system for non-commutative variables such that its matrix elements coincide with the T -system equations.
One can think of the non-commutative Q-system as a “non-commutative” cluster algebra. Special cases
of non-commutative cluster algebras have been considered in several contexts, for example the quantum
cluster algebras of Berenstein and Zelevinsky [3], or the more general recursion relation introduced by
Kontsevich [14] (in rank 2), with similar Laurent properties, and which can be solved in some special
“affine” cases using our methods [7]. The main idea is that the path formulation seems to be particularly
well adapted to the explicit solution of such problems, and makes Laurentness and positivity manifest.
This will be discussed in a future publication.

We should mention that there has been a great deal of interest in T -systems with more restrictive
boundary conditions [20, 12]. We hope that the construction introduced in this paper will provide a simple
way of treating such boundary conditions and their consequences.

Appendix A. Discrete Wronskians

A.1. Plücker relations. Let P be an N×(N +k)-matrix. Let |P b1,...,bk | be the determinant of the matrix
obtained by deleting the k columns b1, ..., bk of P , times the signature of the permutation that reorders
these column indices in increasing order. Then we have:

(A.1) |P a1,...,ak | |P b1,...,bk | =
k∑

p=1

|P bp,a2...,ak | |P b1,...,bp−1,a1,bp+1,...,bk |.

for any choice of 2k columns a1, ..., ak and b1, ..., bk of P . In particular, when k = 2, we have

(A.2) |P a1,a2 | |P b1,b2 | = |P b1,a2 | |P a1,b2 | + |P b2,a2 | |P b1,a1 |.

for any N × (N + 2) matrix P .

Equation (A.2) implies the Desnanot-Jacobi relation. Let M be an N × N matrix, and let |M |, M j
i ,

|M j1,j2
i1,i2

| denote the determinants of M , the minor obtained by erasing row i and column j of M , and the
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double minor obtained by erasing rows i1, i2 and columns j1, j2 of M , respectively. Let 1 ≤ i1 < i2 ≤ N
and 1 ≤ j1 < j2 ≤ N, then

(A.3) |M | |M j1,j2
i1,i2

| = |M j1
i1
| |M j2

i2
| − |M j2

i1
| |M j1

i2
|

It is easily obtained as a particular case of eq.(A.2), for a2 = j1, b2 = j2, Pi,a1
= δi,i1 , Pi,b1 = δi,i2 , and

M is the matrix P with columns a1 and b1 erased. Indeed, one checks directly that: |P a1,b1 | = |M |,

|P a2,b2 | = |M1,N
1,N |, |P a1,a2 | = |M1

N |, |P b2,b1 | = −|MN
1 |, |P a1,b2 | = |MN

N |, and |P b1,a2 | = −|M1
1 |.

A.2. T -system as discrete Wronskians. Here present the proof of Theorem 3.1 which uses the relations
in the previous subsection.

Proof. Consider Equation (A.3). Let N = α + 1, i1 = j1 = 1, i2 = j2 = N and choose the matrix M with
entries Ma,b = T1,j+a−b,k+a+b−α−2 for a, b = 1, 2, ..., α+1. We denote by Wα+1,j,k = |M | the corresponding
“discrete Wronskian” determinant. Substituting this definition into eq. (A.3), we have

(A.4) Wα+1,j,kWα−1,j,k = Wα,j,k−1Wα,j,k+1 − Wα,j−1,kWα,j+1,k

valid for α ∈ Ir, provided we set W0,j,k = 1. Note that W1,j,k = T1,j,k by definition. Comparing eq.(A.4)
with the T -system (1.1), we deduce that the T ’s and W ’s obey the same recursion relations and share the
same initial conditions at α = 0 and 1. As the system is a three-term recursion in α this determines the
solution uniquely and therefore we have Wα,j,k = Tα,j,k for all α ∈ Ir, j, k ∈ Z. �

A.3. Linear recursion relations. Here, we present a proof of Theorem 3.2, that the variables Tα,j;k

satisfy linear recursion relations, with constant coefficients which are the conserved quantities.

Proof. We perform the discrete analog of differentiating the Wronskian, and compute ϕj−1,k+1 −ϕj,k = 0.
Denoting by ϕj,k = |g1,g2, · · · ,gr+1| and ϕj−1,k+1 = |f1, f2, · · · , fr+1| as the determinants of column
vectors gi, fi, we note that gi+1 = fi for i = 1, 2, ..., r. We may therefore rewrite

(A.5) ϕj−1,k+1 − ϕj,k = 0 = |f1, f2, · · · fr, fr+1 − (−1)rg1|

with (fb)a = T1,j−1+a−b,k+a−r−1+b and (g1)a = T1,j−1+a,k+a−r−1. Therefore, there must exist a non-trivial
linear combination of the columns of the matrix which vanishes. We write it as

(A.6)

r∑

b=1

(−1)bcr+1−b(j, k)fb + c0(j, k) (fr+1 − (−1)rg1) = 0.

Recall that the entries of the vectors fb depend on j, k in a very particular way, namely (fb(j, k))a+1 =
(fb(j + 1, k + 1))a, and similarly for g1. In order for the above linear combination to be non-trivial, we
must therefore have cb(j, k) = cb(j − 1, k − 1) = · · · = cb(j − k, 0) for all j, k ∈ Z, hence the coefficients cb

only depend on the difference j − k. Finally, we may normalize the coefficients in such a way that c0 = 1
identically, and the first part of the Theorem follows.

The second part is treated analogously, by considering the difference of Wronskians ϕj+1,k+1 −ϕj,k = 0
and reasoning on the rows of the corresponding matrices. �

A.4. Conserved quantities as Wronskian determinants with defect. Here, we give the proof of
Lemma 3.4 expressing the conserved quantities of the T -system as Wronskian determinants with defects.

Proof. Let γm(j, n) denote the right hand side of of eq.(3.5).
It is clear that that γ0(j, n) = Tr+1,j+n,n+r = 1 and γr+1(j, n) = Tr+1,j+n−1,n+r+1 = 1 as consequences

of Theorem 3.1 and of the Ar boundary condition.
Let p ∈ Z and define the (r+2)×(r+2) matrix D to be the matrix with entries D1,b = T1,j+p+1−b,p+b−1,

and Da,b = T1,j+n+a−b,n+a+b−2 for a = 2, 3, ..., r+2 and b = 1, 2, ..., r+2. The identity (3.3) may be recast
into a vanishing non-trivial linear combination of the columns of D, with coefficients cr+2−b(j)(−1)b−1,
b = 1, 2, ..., r + 2, hence the determinant of D vanishes.
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Expanding the determinant along the first row, we find that

(A.7) 0 = det(D) =

r+2∑

b=1

(−1)b+1D1,b|D
b
1| =

r+2∑

b=1

(−1)b−1γr+2−b(j, n)T1,j+p+1−b,p+b−1,

as the determinants γm(j, n) are the minors |P r+2−m
1 |.

Since the Wronskian determinant Tr+1,j,k = 1 is non-zero, there exist no other non-trivial linear recursion
relation than Equation (3.3) with strictly fewer terms, hence the coefficients in Equation (A.7) must be
proportional to those in Equation (3.3). As c0(j) = γ0(j, n) = 1, we deduce that γm(j, n) = cm(j) for all
m = 0, 1, 2..., r + 1, and the Lemma follows. �

Appendix B. Example of A2: rearrangements, graphs and paths

Here, we illustrate the program of Section 6.2.3 in the case r = 2. We first present the rearrangements
of the operator continued fraction F , which make positivity of R1,n manifest in all three cases. Next, we
interpret these in terms of partition functions for operator-weighted paths on graphs, to illustrate Section
6.3.

B.0.1. Rearrangements. The fundamental domain for the action of mutations on the fundamental seed x̃0

is coded by the following three Motzkin paths with 2 vertices: m0 = (0, 0), m1 = µ1(m0) = (1, 0) and
m2 = µ2(m0) = (0, 1). We give below the three operator continued fractions corresponding to these points.

Seed x0: The continued fraction F0(y) reads for the fundamental seed corresponding to the Motzkim
path m0 is:

(B.1) F0(y) =

(
1 − d

(
1 − d

(
1 − dY3 − d(1 − dY5)

−1Y4

)−1
Y2

)−1

Y1

)−1

with operators Yi, i ∈ I5, acting as 〈t|Yi = yi(t) 〈t + 1|, and:

y1(t) =
T1,t,1

T1,t+1,0
, y2(t) =

T2,t,1

T1,t,0T1,t+1,1
, y3(t) =

T1,t+1,0T2,t−1,1

T1,t,1T2,t,0

y4(t) =
T1,t+1,0

T2,t,0T2,t+1,1
, y5(t) =

T2,t+1,0

T2,t,1

Seed x2 = µ2(x0): Following Section 6.2.3, we apply the Lemma 6.3 to F0, with A = Y3, B = Y4,
C = Y5 and U = 0: This yields F0(y) = F2(w), where

(B.2) F2(w) =


1 − d

(
1 − d

(
1 − d

(
1 − d(1 − dW5)

−1W4

)−1
W3

)−1

W2

)−1

W1




−1

with operators Wi, i ∈ I5, acting as 〈t|Wi = wi(t)〈t + 1|, with:

w1(t) =
T1,t,1

T1,t+1,0
, w2(t) =

T2,t,1

T1,t,0T1,t+1,1
, w3(t) =

T1,t+1,0T2,t,2

T1,t,1T2,t+1,1

w4(t) =
T1,t+1,1

T2,t,1T2,t+1,2
, w5(t) =

T2,t+1,1

T2,t,2

To obtain this, we have written W1 = Y1, W2 = Y2, and W3 = Y3 + Y4, while W4 = Y5Y4W−1
3 and

W5 = d−1Y5Y3W−1
3 d, and used the T -system to simplify the expressions.

Seed x1 = µ1(x0): Following Section 6.2.3, we first apply the rerooting Lemma 6.2, with A = Y1 and
B = VY2, where

V =
(
1 − dY3 − d(1 − dY5)

−1Y4

)−1
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Figure B.1. The fundamental domain for A2, coded by the Motzkin paths m0,m1,m2,
and the corresponding target graphs for the path interpretation, with their edge labels.
Mutations are indicated by arrows.

This allows to rewrite F0(y) = 1 + dF ′
0(y)Y1, with F ′

0(y) = (1 − Y1d − dUY2)
−1. We may now apply the

rearrangement Lemma 6.3, with A = d−1Y1d, B = Y2, C = Y3 + (1 − dY5)
−1Y4, and U = 0: this yields

F0(y) = 1 + dF1(z)Y1, where:

(B.3) F1(z) =


1 − d

(
1 − d

(
1 − dZ3 − d(1 − dZ5)

−1Z4

)−1(
Z2 + (1 − dZ5)

−1Z6

))−1

Z1




−1

where Zi, i ∈ I5 act as 〈t|Zi = zi(t)〈t + 1|, with:

z1(t) =
T1,t,2

T1,t+1,1
, z2(t) =

T2,t−1,1T2,t+1,1

T1,t,1T1,t+1,2T2,t,0
, z3(t) =

T1,t+1,1T2,t−2,1

T1,t,2T2,t−1,0

z4(t) =
T1,t−1,1T1,t+1,1

T2,t−1,0T2,t,1T1,t,2
, z5(t) =

T2,t,0

T2,t−1,1

and Z6 is a long step weight, expressed in terms of the skeleton weights as: Z6 = Z4(dZ3)
−1Z2 (a particular

case of Eq.(6.12)). Note that it is diagonal, namely:

〈t|z6 = z6(t)〈t|, where z6(t) =
z4(t)

z3(t)
z2(t − 1) =

1

T1,t,2T2,t−1,0

The above weights follow from the identifications: Z1 = d−1Y1d + Y2, Z2 = Y3Y2Z−1
1 , Z6 = d−1Y4Y2Z−1

1 ,
Z3 = d−1Y3d

−1Y1dZ−1
1 , Z4 = d−1Y4d

−1Y1dZ−1
1 and Z5 = d−1Y5d, and the use of the T -system to simplify

the expressions.

B.0.2. Paths on graphs with operator weights. Recall first that the continued fractions F0(y), F2(w) are
such that T1,j,k/T1,j+k,0 = 〈j−k|Fi|j+k〉, i = 0, 2, while, due to the re-rooting, we have T1,j,k/T1,j+k−1,1 =
〈j − k + 1|F1|j + k − 1〉.
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The three above operator continued fractions may be interpreted in terms of path counting as follows.
We have represented in Figure B.1 the three rooted target graphs Γm, attached to the three Motzkin paths
m = m0,m1,m2, together with their edge labelings. We have the following

Theorem B.1. For i = 0, 1, 2, the quantities 〈t|Fi|t′〉 are the partition functions for paths on the graphs
Γmi

, from and to the root, starting at time t and ending at time t′, and with operator weights defined as
the product over the operator weights for each successive step of the path, in the same order. The weights
are d per step away form the root, and respectively Yi, Zi and Wi per step towards the root, along the edge
labeled i.

Proof. The proof is a straightforward adaptation of the argument of Section 6.1: it uses operator trans-
fer matrices Ti, and amounts to performing the Gaussian elimination of I − Ti, in order to compute(
(I − Ti)

−1
)
0,0

, where 0 indexes the root vertex on Γmi
. We give explicit expressions below. �

We now list the transfer matrices for the three cases above. In all cases, we have Fi =
(
(I − Ti)

−1
)
0,0

.

T0 =




0 d 0 0 0 0
Y1 0 d 0 0 0
0 Y2 0 d 0 0
0 0 Y3 0 d d

0 0 Y4 0 0 0
0 0 0 0 Y5 0




T1 =




0 d 0 0 0 0
Z1 0 d 0 0 0
0 Z2 0 d 0 0
0 0 Z3 0 d d

0 Z6 Z4 0 0 0
0 0 0 0 Z5 0




T2 =




0 d 0 0 0 0
W1 0 d 0 0 0
0 W2 0 d 0 0
0 0 W3 0 d 0
0 0 0 W4 0 d

0 0 0 0 W5 0




Remark B.2. Note that, as opposed to the two other cases, the transfer matrix T1 is not made of diagonal
operators times d, as Z6 is diagonal, hence goes back one step in time compared to the other operators Zi,
i = 1, 2, ..., 5. This necessity for the longer descending steps to go back in time was already observed in [5]
in the two-dimensional representation of the Γm-paths.
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