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Abstract

We give an exact expression for the distribution of the position X(t) of a single
second class particle in the asymmetric simple exclusion process (ASEP) where initially
the second class particle is located at the origin and the first class particles occupy the
sites Z

+ = {1, 2, . . .}.



1 Introduction

The asymmetric simple exclusion process (ASEP) [2, 3] is one of the simplest models of
nonequilibrium statistical mechanics and has been called the “default stochastic model for
transport phenomena” [8]. A useful concept in exclusion processes is that of a second class

particle:1

Imagine that the particles in the system are each called either first class or second
class. The evolution is the same as before, except that if a second class particle
attempts to go to a site occupied by a first class particle, it is not allowed to
do so, while if a first class particle attempts to move to a site occupied by a
second class particle, the two particles exchange positions. In other words, a first
class particle has priority over a second class particle. This rule has no effect on
whether or not a give site is occupied at a given time. The advantage, though, is
that viewed by itself, the collection of first class particles is Markovian, and has
the same law as the exclusion process. The collection of second class particles is
clearly not Markovian. However, the collection of first and second class particles
is Markovian, and again evolves like an exclusion process.

Here we consider ASEP on the integer lattice Z with jumps one step to the right with rate
p and jumps one step to the left with rate q = 1 − p. We assume a leftwards drift, i.e.
q > p. We further assume that the system has one second class particle initially located at
the origin and first class particles initially located at sites in

Y = {0 < y1 < y2 < · · · } ⊂ Z
+.

With the above initial condition, we denote by X(t) the position of the second class particle
at time t. The purpose of this note is to give an exact expression for the probability that
the second class particle is at position x at time t, i.e. PY (X(t) = x). (The subscript Y
denotes the sites of the initial configuration of the first class particles.) Our main result is
for Y = Z

+ and is given below in (9) and in a slightly different form in (11).

1The following quote is taken from Liggett [3].
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2 A Basic Lemma

The single second class particle located at X(t) can be viewed as the (single) discrep-
ancy under basic coupling between two asymmetric simple exclusion processes ηt and ζt

where ζt(X(t)) = 1 and ηt(X(t)) = 0 and initially {x : ζ0(x) = 1} = Y ′ = {0} ∪ Y and
{x : η0(x) = 1} = Y [2, 3].

The following identity we first learned from H. Spohn [5] but presumably it has a long
history:

PY (X(t) = x) = PY ′ (ζt(x) = 1) − PY (ηt(x) = 1) . (1)

For the convenience of the reader, we give a short proof of (1). Let ζt and ηt be as above
evolving together under the basic coupling [2, 3]. Recall that the coupled processes satisfy
ηt ≤ ζt for all t > 0 since they satisfy this inequality at t = 0 [2, 3].2 Define

Jη(x, t) :=
∑

z≤x

ηt(z) = number of particles in configuration ηt with positions ≤ x,

Jζ(x, t) :=
∑

z≤x

ζt(z) = number of particles in configuration ζt with positions ≤ x,

I(x, t) =







1 if X(t) ≤ x,

0 if X(t) > x.

By counting
Jζ(x, t) = Jη(x, t) + I(x, t). (2)

Since
EY ′ (Jζ(x, t)) =

∑

z≤x

EY ′ (ζt(z)) =
∑

z≤x

PY ′(ζt(z) = 1),

EY (Jη(x, t)) =
∑

z≤x

EY (ηt(z)) =
∑

z≤x

PY (ηt(z) = 1),

EY (I(x, t)) = PY (X(t) ≤ x) =
∑

z≤x

PY (X(t) = z),

the expectation of (2) gives
∑

z≤x

P(X(t) = z) =
∑

z≤x

P(ζt(z) = 1) −
∑

z≤x

P(ηt(z) = 1)

2Given two configurations η, ζ ∈ {0, 1}Z we say η ≤ ζ if η(x) ≤ ζ(x) for all x ∈ Z.
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from which (1) follows.

3 Probability for a site to be occupied in ASEP

For ASEP with particles initially at Y we denote by xm(t) the position of the mth left-
most particle at time t (so xm(0) = ym). In Theorem 5.2 of [6] the authors gave an exact
expression for PY (xm(t) = x). To state this result we first recall the definition of the τ -
binomial coefficients. For 0 ≤ τ := p/q < 1 define for each n ∈ Z

+

[n] =
1 − τn

1 − τ
, [n]! = [n][n − 1] · · · [1], [0]! := 1,

[

n

k

]

=
[n]!

[k]![n − k]!
, 0 ≤ k ≤ n,

and if k > n we set
[

n
k

]

= 0. Equation (5.12) of [6] can be written in the following way3,4

PY (xm(t) = x) =

|Y |
∑

k=1

∑

S⊂Y

|S|=k

cm,k τσ(S,Y )

∫

CR

· · ·

∫

CR

I(x, k, ξ)

k
∏

i=1

ξ−si

i dkξ (3)

where, if S := {s1, . . . , sk} then

cm,k = qk(k−1)/2(−1)m+1τm(m−1)/2τ−km

[

k − 1

k − m

]

,

σ(S, Y ) = # {(s, y) : s ∈ S, y ∈ Y, and y ≤ s}

= sum of the positions of the elements of S in Y,

I(x, k, ξ) =
∏

1≤i<j≤k

ξj − ξi

p + qξiξj − ξi

(

1 −
k
∏

i=1

ξi

)

k
∏

i=1

ξx−1
i eε(ξi)t

1 − ξi
,

ε(ξ) =
p

ξ
+ q ξ − 1

3We make some changes in the notation in (5.12) of [6]. The (p, q)-binomial coefficient
[

n

k

]

of [6] equals

qk(n−k) times the τ -binomial coefficient
[

n

k

]

defined above. The second change is a little more subtle. The
sum in (5.12) is over all finite subsets S ⊂ {1, 2, . . . , |Y |} with |S| ≥ m. If S = {s1, . . . , sk} the subset
YS := {ys1

, . . . , ysk
} and the factor

∏

i∈S ξ−yi

i appears in the integrand of (5.12). Thus we can equivalently

sum over all finite subsets S ⊂ Y where now the factor
∏

1≤i≤k ξ−si

i appears in the integrand. The factor
σ(S) =

∑

i∈S i of (5.12) becomes σ(S, Y ) given above.
4All contour integrals are to be given a factor of 1/2πi.
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and CR is a circle of radius R centered at the origin with R ≫ 1 so that all (finite) singularities
of the integrand are enclosed by CR. Observe that cm,k = 0 when m > k.

Since

PY (ηt(x) = 1) =

|Y |
∑

m=1

PY (xm(t) = x) , (4)

we sum the right side of (3) over all m ≤ k. To carry out this sum recall the τ -binomial
theorem

n
∑

j=0

[

n

j

]

(−1)jzjτ j(j−1)/2 = (1 − z)(1 − zτ) · · · (1 − zτn−1).

Using this a simple calculation shows

k
∑

m=1

(−1)m+1τm(m−1)/2τ−km

[

k − 1

k − m

]

= (−1)k+1τ−k(k+1)/2

k−1
∏

j=1

(1 − τ j).

Thus

PY (ηt(x) = 1) =

|Y |
∑

k=1

(−1)k+1qk(k−1)/2τ−k(k+1)/2
k−1
∏

j=1

(1 − τ j)

×
∑

S⊂Y

|S|=k

τσ(S,Y )

∫

CR

· · ·

∫

CR

I(x, k, ξ)
k
∏

i=1

ξ−si

i dkξ. (5)

Remark: The above formula holds for either |Y | finite or infinite. For |Y | = N , the integral
of order N in (5) is gotten from the summand S = Y . Since σ(Y, Y ) = N(N + 1)/2, we get
for the coefficient of this integral

(−1)N+1qN(N−1)/2
N−1
∏

j=1

= (−1)N+1
N−1
∏

j=1

(qj − pj). (6)

4 Probability for a site to be occupied by a second class

particle

As above, suppose that our initial configuration consists of a second class particle at site
0 and first class particles at sites in Y . As above, set Y ′ = Y ∪ {0}. The process ζt has
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initially its particles at sites in Y ′. We apply formula (5) to the initial configurations Y ′ and
Y and by (1) we subtract to obtain PY (X(t) = x). If |Y ′| = N there is one N -dimensional
integral that comes from the expansion of PY ′(ζt(x) = 1) when S = Y ′. The coefficient of
the integral of highest order equals (6).

We now consider the special case of step initial condition; that is, Y = Z
+, and use

Corollary (5.13) of [6] to obtain a more compact expression for PZ+(xm(t) = x). To find
PZ+(ηt(x) = 1) we again apply (4) but use (5.13) of [6]. As above we interchange the sums
over k and m, use the τ -binomial theorem ([4], pg. 26), to conclude

PZ+(ηt(x) = 1) = −
∑

k≥1

qk2

k!

k−1
∏

j=1

(1 − τ j)

∫

CR

· · ·

∫

CR

J̃k(x, ξ) dξ1 · · · dξk (7)

where

J̃k(x, ξ) =
∏

i6=j

ξj − ξi

p + qξiξj − ξi

(1 −
∏

i

ξi)
∏

i

ξx−1
i eε(ξi)t

(1 − ξi) (qξi − p)
.

We can get the corresponding formula for Y ′ = Z
+∪{0} by observing that there is a one-one

correspondence between subsets S ′ ⊂ Y ′ and subsets S ⊂ Y given by S = S ′ + 1. Then
σ(S ′, Y ′) = σ(S, Y ) and, with obvious notation,

∏

ξ−si
′

i =
∏

ξi ·
∏

ξ−si

i . It follows that for
the difference PY ′(ζt(x) = 1) − PY (ηt(x) = 1) we multiply the integrand J̃k(x, ξ) in (7) by
∏

ξi − 1.

Thus

PZ+(X(t) = x) =
∑

k≥1

qk2

k!

k−1
∏

j=1

(1 − τ j)

∫

CR

· · ·

∫

CR

˜̃Jk(x, ξ) dξ1 · · · dξk (8)

where
˜̃Jk(x, ξ) =

∏

i6=j

ξj − ξi

p + qξiξj − ξi
(1 −

∏

i

ξi)
2
∏

i

ξx−1
i eε(ξi)t

(1 − ξi) (qξi − p)
.

From this it follows that the distribution function is (on CR, |ξ−1| ≪ 1)

PZ+(X(t) ≤ x) =
∑

k≥1

qk2

k!

k−1
∏

j=1

(1 − τ j)

∫

CR

· · ·

∫

CR

Jk(x, ξ) dξ1 · · · dξk (9)

where

Jk(x, ξ) =
∏

i6=j

ξj − ξi

p + qξiξj − ξi

(
∏

i

ξi − 1)
∏

i

ξx
i eε(ξi)t

(1 − ξi) (qξi − p)
.
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Since
1

p + qξξ′ − ξ
=

1

ξ(ξ′ − 1)
+ O(τ), τ → 0,

the TASEP limit of Jk(x, ξ) is

JTASEP

k (x, ξ) := lim
τ→0

Jk(x, ξ) =
∏

i6=j

(ξj − ξi) (
∏

ξi − 1)
∏

i

ξx
i eε(ξi)t

(ξi(1 − ξi))
k

where now ε(ξ) = ξ − 1; and hence,

lim
τ→0

PZ+(X(t) ≤ x) =
∑

k≥1

1

k!

∫

CR

· · ·

∫

CR

JTASEP

k (x, ξ) dξ1 · · · dξk. (10)

Expression (9) for the distribution function can be simplified somewhat. Define the kernel

Kx,t(ξ, ξ
′) = q

(ξ′)xeε(ξ′)t

p + qξξ′ − ξ
,

and the associated operator Kx,t on L2(CR) by

f(ξ) −→

∫

CR

Kx,t(ξ, ξ
′)f(ξ′) dξ′, ξ ∈ CR.

Then using the identity [7]

det

(

1

p + qξiξj − ξi

)

1≤i,j≤k

= (−1)k(pq)k(k−1)/2
∏

i6=j

ξj − ξi

p + qξiξj − ξi

∏

i

1

(1 − ξi)(qξi − p)

we have

PZ+(X(t) ≤ x) =
∑

k≥1

τ−k(k−1)/2
k−1
∏

j=1

(1 − τ j) ×

(−1)k

k!

∫

CR

· · ·

∫

CR

[

det (Kx+1,t(ξi, ξj))1≤i,j≤k − det (Kx,t(ξi, ξj))1≤i,j≤k

]

=
∑

k≥1

τ−k(k−1)/2

k−1
∏

j=1

(1 − τ j)

∫

CR

1

λk+1
[det(I − λKx+1,t) − det(I − λKx,t)] dλ (11)

where det(I−λKx,t) is the Fredholm determinant and the last line follows from the Fredholm
expansion.
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Remarks:

1. One cannot interchange the sum and the integration in (11) as was possible in an
analogous calculation in [7]. This is the case even though (9) converges absolutely for
all 0 ≤ τ ≤ 1 (recall one may take R ≫ 1). Thus we do not have a representation
of PZ+(X(t) ≤ x) as a single integral whose integrand involves the above Fredholm
determinants as was the case in [7].

2. ASEP with first and second class particles is integrable in the sense that the Yang-
Baxter equations are satisfied [1]. Using this integrable structure, it is possible to
compute directly, i.e. without using the basic lemma (1), PZ+(X(t) = x) using methods
similar to that of [6]. We have carried this out to the extent that (6) was computed
by this approach. However, this route is much more involved than the one presented
here.
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