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A NEW COUNTING FUNCTION FOR THE ZEROS OF HOLOMORPHIC
CURVES

J.M. ANDERSON AND AIMO HINKKANEN

Abstract. Let f1, . . . , fp be entire functions that do not all vanish at any point, so that
(f1, . . . , fp) is a holomorphic curve in CPp−1. We introduce a new and more careful notion
of counting the order of the zero of a linear combination of the functions f1, . . . , fp at any
point where such a linear combination vanishes, and, if all the f1, . . . , fp are polynomials,
also at infinity. This enables us to formulate an inequality, which sometimes holds as an
identity, that sharpens the classical results of Cartan and others.

1. Introduction

The Cartan theory of holomorphic curves in projective spaces in a generalisation of the
value distribution theory of Nevanlinna. If p is an integer with p ≥ 2, and f1, . . . , fp are
entire functions of a complex variable z which are linearly independent over the set of complex
numbers C, and with no common zeros, then the point (f1(z), . . . , fp(z)) may be viewed not
only as a point in the affine space Cp but also as a well defined point in the complex projective
space CPp−1. As is usual, we say that the p−tuple (f1, . . . , fp) defines a holomorphic curve
in CPp−1.

We now form (non-trivial) linear combinations of the functions f1, . . . , fp, that is, entire
functions of the form

g(z) =

p∑
j=1

ajfj(z),

where the complex numbers aj are not all zero. The zeros of such a funcion g play an
important role in the Cartan theory. In particular, if p = 2 the zeros of g are precisely the
points where the meromorphic function f1/f2 assumes the value −a2/a1. It is, of course, of
fundamental importance in the Nevanlinna theory to count the number of such points and
to estimate the growth of the function f1/f2 in some appropriate sense. For p−tuples of
linearly independent entire functions with values in CPn, so that p = n+1, Cartan measures
the growth in terms of the function

T (r) =
1

2π

∫ 2π

0

log max{|fj(re
iθ)| : 1 ≤ j ≤ p} dθ.
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2 J.M. ANDERSON AND AIMO HINKKANEN

Consider now linear combinations g1, . . . , gq, where q > p, of the fj, any p of which are
linearly independent and let np−1(r, 0, gi) denote the number of zeros of gi in the disk B(0, r)
of radius r about the origin, where, however, a zero of multiplicity k is counted min{k, p−1}
times. As usual we introduce the “integrated counting function”

Np−1(r, 0, gi) =

∫ r

0

(np−1(t, 0, gi)− np−1(0, 0, gi))
dt

t
+ np−1(r, 0, gi) log r.

The main result of the Cartan theory states that

(1) (q − p)T (r) ≤
q∑

i=1

Np−1(r, 0, gi)−N(r, H) + S(r).

Here

H =
g1g2 · · · gq

W
where W is the Wronskian determinant of f1, . . . , fp, N(r, H) is the usual integrated counting
function of the poles of H, and S(r) is an error term which is small in a certain sense.

Thus the functions gi must, on the whole, have a large number of zeros, which can then
be interpreted in various ways as a large number of intersections of the holomorphic curve
with hyperplanes, and so on. In the classical case when p = 2 and

F (z) =
f1(z)

f2(z)
,

Cartan showed that

T (r, F ) ≤ T (r) + O(1) as r →∞,

where T (r, F ) is the usual Nevanlinna characteristic, thus providing a generalisation of the
Nevanlinna theory. This is explained in full detail in [4].

We show that the counting functions np−1(r) and Np−1(r) can be replaced by “reduced”
multiplicities νp−1(z) and Np−1(z) associated with functions gi and points z ∈ C. At any
point z ∈ C that is not a zero of the Wronskian determinant W of the functions f1, . . . , fp, the
possible orders of zeros of non-trivial linear combinations g of f1, . . . , fp form the sequence
0, 1, 2, . . . , p− 1. Here the multiplicity of the zero of g at z is said to zero if g(z) 6= 0. At the
zeros z of W , this sequence is replaced by 0, d1, d2, . . . , dp−1 where 1 ≤ d1 < d2 < · · · < dp−1

and the integers d1, d2, . . . , dp−1 depend on z. This leads to the numbers

0 ≤ E j(z) = dj − j ≤ dj+1 − (j + 1)

which we call “excesses” at z. If W (z) 6= 0, then E j(z) = 0 for 1 ≤ j ≤ p − 1. A similar
analysis applies at the point at infinity.

Suppose that f1, . . . , fp are polynomials of maximal degree d. The fundamental identity
regarding excesses states that (compare Theorem 3.2)

(2)

p−1∑
j=1

∑
z∈C

E j(z) = pd− p(p− 1).

If p = 2, then a zero of the linear combination a1f1 + a2f2 corresponds to a point where the
rational function F = f1/f2 of degree d = max {deg f1, deg f2} attains the value −a2/a1 ∈ C.
The possible orders of zeros of non-trivial linear combinations a1f1 + a2f2 at a point z0 are
0, m where m is multiplicity with which the function F takes the value F (z0) at z0. In this
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case there is only one excess at each point z0, and we have E 1(z0) = m − 1, which is the
usual branching index of F at z0. Now (2) reads∑

z∈C

E 1(z) = 2d− 2

which is the well-known Riemann–Hurwitz formula for rational functions. Hence (2) for a
general p may be viewed as a generalisation of the classical Riemann–Hurwitz formula.

The concepts of reduced multiplicities and excesses also lead to a better inequality in (1).
We consider polynomials f1, . . . , fp of highest degree d and linear combinations g1, . . . , gq

any p of which are linearly independent and prove that

(q − p)d ≤
q∑

i=1

∑
z∈C

νp−1(gi, z)− p(p− 1).

The function νp−1(gi, z) is given in Definition 2.9 and is equal to zero except at points z0

which are the zeros of the Wronskian W . The theories of Nevanlinna and Cartan are analytic
in nature with a large role being played by the zeros of the Wronskian. Our theorems clarify
completely why this must be so and how the zeros of the Wronskian should be taken into
account to get the best results, which in some cases amount to identities. Next, we deal with
entire functions following the classical method of Cartan as given, for example in [4].

The Cartan theory has, in a way, been generalised to holomorphic curves in algebraic
varieties in CPn but with lower bounds obtained only for a counting function for intersections
of the curve with subvarieties where the multiplicities have either not been reduced at all or,
in some cases, reduced less than in the classical Cartan theory. The question of the manner in
which one should or could truncate the counting function is one of the central topics in many
recent works in the area. We believe that our new counting function emphasizing as it does
why the zeros of the Wronskian play such a crucial role, provides the correct generalisation
that should give the best results also in the more general situation of algebraic varieties.

In addition to the Nevanlinna theory, there is also the classical theory of Ahlfors which
considers coverings instead of counting functions for points. Although a theory similar to
that of Cartan has not been developed for this it would appear that the reduced counting
function and the characteristic exponents, also defined below, should play an important part
in this theory. It is not clear, however what topological invariants should take the role played
in the Ahlfors theory by the Euler characteristic.

Acknowledgement. This research was performed at the Mathematisches Forschungsin-
stitut Oberwolfach during a visit of the authors from June 14 to July 4, 2009 under the
auspices of the Research in Pairs Programme. The authors would like to thank the Institute
for its generous hospitality.

2. Zeros of linear combinations of the functions f1, . . . , fp

Let f1, . . . , fp be linearly independent entire functions such that for each z ∈ C, at least
one of the functions fj does not vanish, and let g be a non-trivial linear combination of
f1, . . . , fp. Suppose that z0 ∈ C. The condition that g(z0) = 0, ignoring the multiplicity of
the zero, can always be satisfied by choosing the numbers aj, not all zero, in an appropriate
way. We can ensure that not all aj are zero since by assumption, at least one of the numbers
fj(z0) is non-zero.
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More generally, suppose that we look for a linear combination g that has a zero of order
(exactly) k at z0, where 1 ≤ k ≤ p − 1. In the sequel, when we say that a function has a
zero of order k at a point, we mean that the order of the zero is exactly k. This amounts to
requiring that the following k linear equations are satisfied by the variables a1, . . . , ap, not
all equal to zero:

(3)

p∑
j=1

ajf
(m)
j (z0) = 0, 0 ≤ m ≤ k − 1.

In addition, we require that

(4)

p∑
j=1

ajf
(k)
j (z0) 6= 0.

We now analyse whether or not this can be achieved.
Recall that the Wronskian determinant W = W (z0) at the point z0 is defined to be the

determinant of the p× p matrix A = A(z0) whose i, j−entry, for 1 ≤ i, j ≤ p is given by

f
(i−1)
j (z0).

Suppose first that W (z0) 6= 0. Then the rank of the matrix A is p, so that any k of its
rows are linearly independent, if 1 ≤ k ≤ p. In particular, the first k rows are linearly
independent, which implies that the linear system (3) has a non-zero solution a1, . . . , ap if
1 ≤ k ≤ p− 1. Since row k + 1 of A is linearly independent of the first k rows, it is possible
to choose this solution so that the inequality (4) holds.

We conclude that at each point z0 at which W (z0) 6= 0, for each k with 1 ≤ k ≤ p − 1,
there is a non-trivial linear combination g of the functions f1, . . . , fp that has a zero of order
k at z0.

2.1. Characteristic exponents. In order to discuss the situation at points z0 where the
Wronskian W vanishes, it is convenient to make some preliminary observations that apply
to every point.

At each point z0, by assumption, there is j with 1 ≤ j ≤ p such that fj(z0) 6= 0. Let us
choose one such j and, if necessary, multiply fj by a non-zero complex constant depending
on z0, to obtain a function, say g0, such that g0(z0) = 1.

Suppose that there are other functions fi, where i 6= j, that do not vanish at z0. We
replace each fi(z) by the function fi(z) − fi(z0)g0(z), then multiply this new function by a
suitable non-zero complex constant depending on z0, and obtain a function of the form

(z − z0)
m + O((z − z0)

m+1)

at z0. Here m ≥ 1, and m depends on the function fi. The effect of the last multiplication
of the function by a suitable non-zero complex constant has been to arrange so that the
coefficient of (z − z0)

m is equal to 1.
At this point, ignoring the initial fj and the resulting function g0, we have p−1 functions,

each being either one of the original functions fk or one of the new linear combinations of
the functions f1, . . . , fp. It is clear from the process used that these p− 1 functions together
with g0 form a set of p linearly independent functions, since the original functions f1, . . . , fp

were assumed to be linearly independent.
Among these p− 1 functions, each of which vanishes at z0, there is a function whose order

of zero at z0 is minimal. We multiply this function by a suitable non-zero complex constant,
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if necessary (this will be necessary perhaps only if the function is one of the original functions
that has not yet been modified in any way), so that the resulting function, say g1, can be
written as

(z − z0)
d1 + O((z − z0)

d1+1)

at z0. Here d1 ≥ 1. If among the other p− 2 functions h there are any that also have a zero
of order d1 at z0, we replace each of them by h − λg1 for a suitable λ ∈ C \ {0} depending
on h, so that each of these new functions has a zero of order at least d1 + 1 at z0.

We now continue in this way, obtaining distinct non-negative integers dj for 0 ≤ j ≤ p− 1
such that

d0 = 0 < 1 ≤ d1 < d2 < · · · < dp−1,

and linearly independent functions gj for 0 ≤ j ≤ p − 1 such that each gj is a linear
combination of the functions f1, . . . , fp and such that

gj(z) = (z − z0)
dj + O((z − z0)

dj+1)

at z0. In particular, none of the functions gj vanishes identically.

Definition 2.1. We call the integers dj for 0 ≤ j ≤ p− 1, as obtained above, the character-
istic exponents of (f1, . . . , fp) at z0.

If we wish to emphazise dependence on the point z0, we may also denote dj by dj(z0).

Remark 1. We note that the concept that we call characteristic exponents is by no means
new. For example, the same exponents are pointed out in the book by Griffiths and Harris
[3], p. 266, in the context of writing down the normal form at a point of a curve whose
components are all polynomials. An examination of the fundamental paper of Ahlfors [1],
pp. 5–6, shows that these exponents are mentioned, at least implicitly, there also. In both
cases, the concept is obtained by discussing the so-called associated curves of f = (f1, . . . , fp),

defined in terms of the derivatives (f
(i)
1 , . . . , f

(i)
p ) for i ≥ 1.

Now let g be any non-trivial linear combination of f1, . . . , fp. Then g can also be expressed
as a linear combination of the functions gj for 0 ≤ j ≤ p− 1, say as

g =

p−1∑
j=0

ajgj.

Let m be the smallest integer j such that aj 6= 0. Then g has a zero of order dm at z0

(which we interpret to mean that g(z0) 6= 0 if m = 0). Since some aj must be non-zero, this
implies that if g(z0) = 0, then the order of the zero of g at z0 must be one of the numbers
d1, . . . , dp−1.

Our previous analysis at a point z0 where W (z0) 6= 0 shows that then dj = j for all j with
1 ≤ j ≤ p− 1. Thus, then, dj(z0) = j for 0 ≤ j ≤ p− 1.

Consider now an arbitrary point z0. If we replace the p−tuple (f1, . . . , fp) by (g0, . . . , gp−1),
then the Wronskian determinant is only multiplied by a non-zero constant, which does not
affect the location and order of the zeros of W . Therefore, for our purposes, we may now
consider the Wronskian in the form

det |g(i)
j | = det |dj(dj − 1) · · · (dj − (i− 1))(z − z0)

dj−i + O((z − z0)
dj−i+1)|,

where 0 ≤ i, j ≤ p− 1.
If we perform a formal expansion of this determinant according to the powers of z − z0,

we see that there will be a term of the form α(z − z0)
b, where the integer b is minimal for
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formal reasons, while α is a complex number of which it is yet to be determined whether or
not it vanishes.

Since for each term in the expansion of the determinant we are taking exactly one term
from each row and from each column, we see that

b =

p−1∑
j=0

dj −
p−1∑
i=0

i =

p−1∑
j=1

dj −
p(p− 1)

2
.

The number α is equal to the determinant

det |dj(dj − 1) · · · (dj − (i− 1))|p−1
i,j=0

This is true even if some of the entries of this determinant were equal to zero. In the first
row of this determinant, each entry is equal to 1. In the second row, the general entry is
dj, and in the third row, the general entry is dj(dj − 1) = d2

j − dj. Without changing the
value of the determinant, we may replace the third row by the sum of the second and third
rows, causing the new third row to have the general entry d2

j . In the same way, we may

cause the general entry of row k to be dk−1
j . We see that the determinant is equal to the

Vandermonde determinant of the distinct numbers d0, d1, . . . , dp−1, and hence not equal to
zero. Thus α 6= 0, so that α(z−z0)

b is indeed the lowest order term in W at z0. We conclude
that the order of the zero of W at z0 is b. Since 1 ≤ d1 < d2 < · · · < dp−1, we have dj ≥ j for
all j. Thus b = 0 if, and only if, we have dj = j for all j. This recaptures the result that we
obtained before, to the effect that if W (z0) 6= 0, then it is possible for a linear combination
g of f1, . . . , fp to have a zero of order j at z0, for each j with 1 ≤ j ≤ p − 1. We now see
that if W (z0) 6= 0, then it is not possible for such a g to have a zero of order ≥ p at z0.

In contrast, when W (z0) = 0, so that b > 0, then we necessarily have dj > j for at least
one value of j with 1 ≤ j ≤ p− 1 and hence, in particular, dp−1 ≥ p, so that then there are
non-trivial linear combinations g of f1, . . . , fp with a zero of order ≥ p at z0.

It is convenient to record some of these observations as a lemma.

Lemma 2.2. If W (z0) = 0, then the order of the zero of W at z0 is equal to

p−1∑
j=1

dj(z0)−
p(p− 1)

2
.

Definition 2.3. Suppose that a non-trivial linear combination g of f1, . . . , fp has a zero of
order m ≥ 1 at z0, so that m = dj for a unique j with 1 ≤ j ≤ p − 1. We say that j is the
reduced multiplicity of the zero of g at z0, and that

(5) E (g, z0) ≡ dj − j ≥ 0

is the excess of g at z0.

Lemma 2.4. At any point z0, the excesses form a (finite) non-decreasing sequence, that is,

(6) E j(z0) = dj − j ≤ dj+1 − (j + 1)

for all j with 0 ≤ j ≤ p− 2.

For the proof of Lemma 2.4, we note that (6) is equivalent to dj+1 − dj ≥ 1, which is true
since dj < dj+1.

The content of Lemma 2.4 is clear also from the notation used in [3], p. 266, for polyno-
mials, and in [1], pp. 5–6.
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Definition 2.5. Let dj ≥ 1 be one of the characteristic exponents of (f1, . . . , fp) at z0. We
denote by Yj or Yj(z0) the space consisting of the constant function zero together with all
non-trivial linear combinations of f1, . . . , fp that have a zero of order at least dj at z0. Thus
the dimension of Yj as a complex vector space is equal to p− j, and 1 ≤ p− j ≤ p− 1.

In view of Lemma 2.4, for all g ∈ Yj(z0) \ {0}, the excess is at least dj − j at z0.
By the above analysis, the following result is now clear.

Lemma 2.6. If W (z0) 6= 0, then the excess of every non-trivial linear combination of the
functions f1, . . . , fp at z0 is equal to zero.

If the Wronskian W has a zero of order m ≥ 1 at z0, then m is equal to the sum of all the
excesses of the non-trivial linear combinations of the functions f1, . . . , fp at z0 in any set of
p− 1 such linear combinations corresponding to distinct characteristic exponents dj.

2.2. Polynomials at the point at infinity. We proceed to perform a similar analysis at
infinity under the assumption that all the functions fj are polynomials. As pointed out by
Gundersen and Hayman in [4], (3.3), p. 436, if we were to start merely with the assumption
that each ratio fi/fj is a rational function, we would find an entire function h such that every
fi = ehFi, where each Fi is a polynomial. Since replacing (f1, . . . , fp) by (F1, . . . , Fp) does
not change the problems that we are considering, we may assume that such a replacement
has been made automatically whenever possible. Thus our considerations also cover the case
when each ratio fi/fj is a rational function.

This time we begin with the polynomials fj of highest possible degree. We set

(7) d = max{deg fj : 1 ≤ j ≤ p }
and choose j so that deg fj = d. We let g1 be equal to λfj where λ ∈ C \ {0} is so chosen
that the leading coefficient of g1 is equal to 1.

Analogously to the previous operation for a finite point z0, if there are polynomials fi with
i 6= j such that deg fi = d, we subtract from each of them a suitable multiple of g1 and then
multiply the resulting function by a non-zero complex constant so that the final function has
leading coefficient equal to 1 and is of degree < d.

Among the p − 1 remaining functions, obtained by ignoring g1, choose one of highest
possible degree and multiply it by a non-zero complex number so as to get a function g2

with leading coefficient equal to 1. If there are other functions remaining of the same degree,
add a suitable multiple of g2 to each of them to get a polynomial of lower degree and then
normalize it so that it will have leading coefficient equal to 1.

All functions obtained in this way are non-trivial linear combinations of the original func-
tions f1, . . . , fp and the p functions we have at each time are linearly independent. In
particular, when we continue this process, we never encounter the constant function zero.

Continuing in this way we find linearly independent polynomials gj of degree δj, say, for
1 ≤ j ≤ p, each of leading coefficient 1:

(8) gj(z) = zδj + O(zδj−1)

as z →∞.
The Wronskian W of f1, . . . , fp is equal to the Wronskian of g1, . . . , gp multiplied by a

non-zero complex constant.
We clearly have

(9) d = δ1 > δ2 > · · · > δp ≥ 0.
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We get two consequences from these concepts: the definition of characteristic exponents
at infinity, and a formula for the degree of the Wronskian W , which is a polynomial when
each fj is a polynomial.

2.2.1. Characteristic exponents at infinity. Firstly, we note that since, as points in the pro-
jective space CPp−1, the points (f1(z), . . . , fp(z)) and (f1(z)/zn, . . . , fp(z)/zn) are equal, for
any integer n, whenever z 6= 0, we may apply this with n = d = δ1. Assuming that s is
chosen so that deg fs = d, we find that as z →∞, the point (f1(z)/zd, . . . , fp(z)/zd) tends to
a point all of whose coordinates are finite and whose s−th coordinate (at least) is non-zero,
so that it corresponds to a well defined point in CPp−1. We define this point to be the image
of (f1(z), . . . , fp(z)) at z = ∞.

The same linear combinations that lead us from (f1, . . . , fp) to (g1, . . . , gp), will lead us
from (f1/z

d, . . . , fp/z
d) to (g1/z

d, . . . , gp/z
d). In (g1/z

d, . . . , gp/z
d), the j−th component, for

1 ≤ j ≤ p, is of the form zδj−δ1 +O(zδj−δ1−1) as z →∞. Thus, for 2 ≤ j ≤ p, this component
has a zero of order δ1 − δj at infinity.

Since any non-trivial linear combination of f1, . . . , fp can also be written as a non-trivial
linear combination of g1, . . . , gp, it is clear that every non-trivial linear combination of
f1, . . . , fp that vanishes at infinity, has a zero at infinity whose order is one of the num-
bers δ1 − δj for 2 ≤ j ≤ p.

Definition 2.7. We call the numbers dj−1(∞) = δ1 − δj for 1 ≤ j ≤ p the characteristic
exponents of (f1, . . . , fp) at infinity.

Clearly

0 = d0(∞) < d1(∞) < · · · < dp−1(∞).

Definition 2.8. Let g be a non-trivial linear combination of f1, . . . , fp. If g(z)/zd = az−m +
O(z−m−1) as z →∞, where a 6= 0 and m ≥ 1, we say that g has a zero of order m at infinity.

Definition 2.9. Let g be a non-trivial linear combination of f1, . . . , fp. If g has a zero of
order m ≥ 1 at infinity, so that m = δ1 − δj for a unique j with 2 ≤ j ≤ p, we call

νp−1(g,∞) = j − 1 ∈ { 1, 2, . . . , p− 1 }

the reduced multiplicity of the zero of g at infinity, and we call

(10) E (g,∞) = δ1 − δj − (j − 1)

the excess of g at infinity. We also write

E j(∞) = dj(∞)− j.

If g has an excess t ≥ 1 at a point z0 ∈ C, we say that g realizes the excess t at z0, or that
the excess t at z0 is covered by g.

We note that the sum of the excesses at infinity, corresponding to the different values of
j for 2 ≤ j ≤ p, is equal to

(11) (p− 1)d−
p∑

j=2

δj −
p(p− 1)

2
,

where, as before, d = max {deg fj : 1 ≤ j ≤ p}.
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2.2.2. The degree of the Wronskian for a polynomial holomorphic curve. We continue to
assume that each fj is a polynomial. To study the degree of W , we may assume that W has
been formed as the Wronskian of the functions g1, . . . , gp as defined above making use of the
point at infinity.

By (8), we may express W as a p× p matrix A whose rows and columns are indexed by i
and j with 0 ≤ i ≤ p− 1, 1 ≤ j ≤ p, such that the ij−element of A is equal to

δj(δj − 1) · · · (δj − (i− 1))zδj−i + O(zδj−i−1).

As in the case of a finite point z0, we deduce that the determinant W can be written as

W (z) = αzb + O(zb−1)

as z →∞, where α 6= 0 (since the numbers δj are all distinct) and

deg W = b =

p∑
j=1

δj −
p(p− 1)

2
.

For future reference, we formalize this result as a lemma.

Lemma 2.10. If all the functions fj, for 1 ≤ j ≤ p, are polynomials, then their Wronskian
determinant W is a polynomial of degree

(12)

p∑
j=1

δj −
p(p− 1)

2

where the numbers δj are as defined above.

2.3. Counting functions for zeros of linear combinations. Let f1, . . . , fp be linearly
independent entire functions, not all of them vanishing at any point. Let g be a non-trivial
linear combination of f1, . . . , fp, and suppose that g has a zero of order dj ≥ 1 at a point
z0 ∈ C. Thus j is the reduced multiplicity of g at z0.

Definition 2.11. We denote the order of the zero of g at z0 ∈ C by n(g, z0); when z0 = ∞,
we use this notation only if the functions f1, . . . , fp are all polynomials.

We denote the reduced multiplicity of g at z0 ∈ C by νp−1(g, z0), that is,

νp−1(g, z0) = j.

If the functions f1, . . . , fp are all polynomials, we denote the reduced multiplicity of g at
infinity by νp−1(g,∞), that is,

νp−1(g,∞) = j − 1

if n(g,∞) = δ1 − δj, where 2 ≤ j ≤ p.

Remark 2. It follows from the definitions that whenever g is a non-trivial linear combination
of f1, . . . , fp and z0 ∈ C, we have

(13) n(g, z0) = νp−1(g, z0) + E (g, z0).

The counting function νp−1 is our new counting function for the zeros of g. We note that
in order to evaluate νp−1(g, z0), it is necessary to know more than just the actual order of
the zero of g at z0. It is, on the other hand, not necessary to know anything about any other
specific linear combination at z0. Of course, this is distinct from the fact that to know the
entire set of the numbers dk, which is necessary for knowing the location of the number dj in
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this set, one must know something about the behaviour of the set of all linear combinations
of the functions f1, . . . , fp at z0.

If g(z0) 6= 0, we write νp−1(g, z0) = 0.
For r > 0, we denote the new non-integrated counting function of the zeros of g by

νp−1(r, g) =
∑
|z|≤r

νp−1(g, z),

where the sum is finite since g has only finitely many zeros of modulus ≤ r.
Even though the term “reduced counting function” has been used before in the literature in

various meanings, and often to mean a quantity obtained by considering min{n(g, z0), p−1},
we shall, for lack of a better term, call νp−1(r, g) the (non-integrated) reduced counting
function of the zeros of g.

Definition 2.12. We write

Np−1 (r, g) =

∫ r

0

νp−1(t, g)− νp−1(0, g)

t
dt + νp−1(0, g) log r

and call Np−1 (r, g) the integrated reduced counting function of the zeros of g.

It could be argued that the notations νp−1(g, z0), νp−1(r, g), and Np−1 (r, g) do not ade-
quately indicate the fact that the values of these functions do not depend on g, p, and z0

alone but also on the properties of the entire set f1, . . . , fp at z0. However, in spite of this,
we do not want to adopt an even longer notation.

If g has a zero of order k ≥ 1 at z0 ∈ C, we clearly have

νp−1(g, z0) ≤ min{k, p− 1},
but it is possible to have νp−1(g, z0) < p − 1 even if we were to have k ≥ p. It depends on
the details of the situation whether this occurs or not.

It seems that in earlier literature, the authors have used exclusively the counting function

np−1(g, z0) = min{k, p− 1},
which counts a zero at least as many times as νp−1(g, z0), and sometimes a strictly greater
number of times; and the corresponding non-integrated counting function

np−1(r, g) =
∑
|z|≤r

np−1(g, z)

and, by analogy with the Nevanlinna theory, the integrated counting function

Np−1(r, g) =

∫ r

0

np−1(t, g)− np−1(0, g)

t
dt + np−1(0, g) log r.

One of our contributions is to show that one can obtain the same inequalities as in the
classical Cartan theory by replacing the counting functions np−1(r, g) and Np−1(r, g) used
there by νp−1(r, g) and Np−1 (r, g).

3. The inequality for the new counting function

When at least one of the functions f1, . . . , fp is transcendental, and this cannot be changed
by replacing (f1, . . . , fp) by (hf1, . . . , hfp) for some zero-free entire function, it makes sense
to consider (f1, . . . , fp) only in a disk of radius r at any one time, so that the number of
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zeros that one counts would be finite. We will do this when we improve Cartan’s theory in
Section 7.

Suppose for the time being that each fj is a polynomial. Thus we may consider f1, . . . , fp

on the entire Riemann sphere C = C ∪ {∞} at once. In this case we obtain the following
inequality.

Theorem 3.1. Inequality for excesses realized by functions satisfying a linear
independence condition. Suppose that p ≥ 2, and let f1, . . . , fp be polynomials in C,
linearly independent over the set of complex numbers, such that for each z ∈ C, at least one
fj assumes a non-zero value. Set d = max { deg fj : 1 ≤ j ≤ p }.

Suppose that q ≥ 1, and let g1, g2, . . . , gq be non-trivial linear combinations of f1, . . . , fp

such that any min{p, q} of g1, g2, . . . , gq are linearly independent.
Then

(14) (q − p)d ≤
q∑

j=1

∑
z∈C

νp−1(gj, z)− p(p− 1).

Equivalently, we have

(15)

q∑
j=1

∑
z∈C

E (gj, z) ≤ pd− p(p− 1),

where the excesses are defined by (5) and (10), respectively.

Remark 3. For results such as Theorem 3.1, it has been customary to assume that q > p so
that the left hand side of (14) would be positive. Due to the presence of the term −p(p− 1),
the inequality (14) might be non-trivial in some situations even if we were to have q ≤ p.
The inequality (15) does not involve q on the right hand side and hence may be worth stating
for any value of q.

Theorem 3.1 has its basis in the following identity, which refers to the individual excesses
without a reference to how they might be realized by functions.

Theorem 3.2. Identity for excesses. Suppose that p ≥ 2, and let f1, . . . , fp be polynomials
in C, linearly independent over the set of complex numbers, such that for each z ∈ C, at
least one fj assumes a non-zero value. Set d = max { deg fj : 1 ≤ j ≤ p }.

Then

(16)
∑
z∈C

p−1∑
j=1

E j(z) =
∑
z∈C

p−1∑
j=1

(dj(z)− j) = pd− p(p− 1).

As mentioned in the Introduction, when p = 2, the identity (16) reduces to the Riemann-
Hurwitz formula for rational functions.

3.1. Proof of Theorem 3.2. Let the assumptions of Theorem 3.2 be satisfied. We have
shown earlier that at each finite z0, the sum of the excesses is equal to the order of the zero
of the Wronskian W at z0 (and that in particular, we have

∑p−1
j=1(dj(z0)− j) = 0 if, and only

if, W (z0) 6= 0). Thus ∑
z∈C

p−1∑
j=1

(dj(z)− j) = deg W =

p∑
j=1

δj −
p(p− 1)

2
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by (12) in Lemma 2.10.
By (11), we have

p−1∑
j=1

(dj(∞)− j) = (p− 1)d−
p∑

j=2

δj −
p(p− 1)

2
.

Hence ∑
z∈C

p−1∑
j=1

(dj(z)− j) =

p∑
j=1

δj −
p(p− 1)

2
+ (p− 1)d−

p∑
j=2

δj −
p(p− 1)

2

= δ1 + (p− 1)d− p(p− 1) = pd− p(p− 1)

since δ1 = d.
This completes the proof of Theorem 3.2.

3.2. Lemmas for the proof of Theorem 3.1. To structure the proof of Theorem 3.1
better, it is convenient to formulate the following lemmas.

Lemma 3.3. Suppose that p ≥ 2, and let f1, . . . , fp be polynomials in C, linearly independent
over the set of complex numbers, such that for each z ∈ C, at least one fj assumes a non-zero
value. Set d = max { deg fj : 1 ≤ j ≤ p }.

Suppose that q ≥ 1, and let g1, g2, . . . , gq be non-trivial linear combinations of f1, . . . , fp

such that any min{p, q} of g1, g2, . . . , gq are linearly independent.
Suppose that the Wronskian determinant W of f1, . . . , fp has a zero of order m ≥ 1 at

z0 ∈ C.
Then

(17)

q∑
j=1

E (gj, z0) ≤ m.

At infinity, we have

(18)

q∑
j=1

E (gj,∞) ≤ (p− 1)d−
p∑

j=2

δj −
p(p− 1)

2
.

Lemma 3.4. Suppose that p ≥ 2, and let f1, . . . , fp be polynomials in C, linearly independent
over the set of complex numbers, such that for each z ∈ C, at least one fj assumes a non-zero
value. Set d = max { deg fj : 1 ≤ j ≤ p }.

Let g be a non-trivial linear combinations of f1, . . . , fp.
Then

(19) d−
∑
z∈C

νp−1(g, z) =
∑
z∈C

E (g, z).

3.3. Proof of Lemma 3.3. Let the assumptions of Lemma 3.3 be satisfied.
Recall that for 0 ≤ j ≤ p− 1, the space Yj = Yj(z0) consists of the constant function zero

together with those non-trivial linear combinations of f1, . . . , fp that have a zero of order at
least dj(z0) at z0. We have dim Yj(z0) = p− j ≤ p− 1. Thus, for each j with 1 ≤ j ≤ p− 1,
at most p − j of the functions gk can lie in Yj. This is clear if q ≤ p − j. If more than
p − j of the functions gk lie in Yj while q > p − j, then certain p − j + 1 functions gk with
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p − j + 1 ≤ min{p, q} lie in Yj, and they are thus linearly dependent. This contradicts our
assumption that any min{p, q} of the functions g1, . . . , gq are linearly independent.

The union of Yj for 1 ≤ j ≤ p− 1 is Y1, which can therefore contain at most p− 1 of the
functions gk. Hence at most p − 1 of the functions gk can vanish at z0, and the remaining
functions gk cannot contribute to the excesses at z0.

Suppose that actually ` ≤ p − 1 of the functions gk lie in Y1, and label them as hs, for
1 ≤ s ≤ `, and assume that h1, . . . , hrp−1 lie in Yp−1, hrp−1+1, . . . , hrp−2 lie in Yp−2 \ Yp−1, and
so on. If rj+1 = rj, this means that no function gk lies in Yj \ Yj+1. The functions that lie
in a certain Yj are precisely the functions h1, . . . , hrj

, so that rj ≤ p − j. Also r1 = `. Set
rp = 0. Thus

q∑
j=1

E (gj, z0) =

p−1∑
j=1

(rj − rj+1)(dj − j) =

p−1∑
j=1

rj(dj − dj−1 − 1)

≤
p−1∑
j=1

(p− j)(dj − dj−1 − 1) = p

p−1∑
j=1

(dj − dj−1)− p(p− 1)−
p−1∑
j=1

j(dj − dj−1) +
p(p− 1)

2

= pdp−1 −
p(p− 1)

2
−

p−1∑
j=1

j(dj − dj−1)

= pdp−1 −
p(p− 1)

2
−

(
(p− 1)dp−1 −

p−2∑
j=1

dj − d0

)

=

p−1∑
j=1

dj −
p(p− 1)

2
= m

by Lemma 2.2 and the fact that d0 = 0. This proves (17).
At infinity, the same proof as above applies, except that each number dj must be replaced

by δ1 − δj+1, for 0 ≤ j ≤ p− 1. Thus the upper bound

p−1∑
j=1

dj −
p(p− 1)

2

above is replaced by

p−1∑
j=1

(δ1 − δj+1)−
p(p− 1)

2
= (p− 1)δ1 −

p∑
j=2

δj −
p(p− 1)

2
,

which yields (18) since δ1 = d.
This completes the proof of Lemma 3.3.

3.4. Proof of Lemma 3.4. By (13), we have

(20)
∑
z∈C

n(g, z) =
∑
z∈C

νp−1(g, z) +
∑
z∈C

E (g, z).

Set deg g = δ, so that 0 ≤ δ ≤ d. Then

δ =
∑
z∈C

n(g, z).
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Furthermore, since g(z)/zd = azd−δ + O(zd−δ−1) for some a ∈ C \ {0} as z → ∞, it follows
that n(g,∞) = d− δ ≥ 0. Thus

(21) d =
∑
z∈C

n(g, z).

Combining (20) and (21) we obtain (19). This completes the proof of Lemma 3.4.

3.5. Proof of Theorem 3.1. Let the assumptions of Theorem 3.1 be satisfied. Let gj have
degree tj ≥ 0. The assumptions imply that no gj vanishes identically and at most one gj

can be a (non-zero) constant function.
By Lemma 3.4 we have

qd−
q∑

j=1

∑
z∈C

νp−1(gj, z) =

q∑
j=1

∑
z∈C

E (gj, z).

Consider any finite point z0 such that some gj vanishes at z0. This can happen only if the
Wronskian W of f1, . . . , fp vanishes at z0. Thus, also interchaging the order of summation,
we get

q∑
j=1

∑
z∈C

E (gj, z) ≤
∑

W (z)=0

q∑
j=1

E (gj, z).

Since any min{p, q} of the functions g1, . . . , gq are linearly independent, it follows from
Lemma 3.3 that whenever W (z) = 0 and W has a zero of order m at z, we have

q∑
j=1

E (gj, z) ≤ m.

Summing over all zeros z of W we see that the sum of the numbers m does not exceed

deg W =

p∑
j=1

δj −
p(p− 1)

2
,

where we have used (12).
By (18), we have

q∑
j=1

E (gj,∞) ≤ (p− 1)d−
p∑

j=2

δj −
p(p− 1)

2
.

Combining these results, we see that∑
W (z)=0

q∑
j=1

E (gj, z) +

q∑
j=1

E (gj,∞) ≤
p∑

j=1

δj −
p(p− 1)

2
+ (p− 1)d−

p∑
j=2

δj −
p(p− 1)

2

= δ1 + (p− 1)d− p(p− 1) = pd− p(p− 1)

since δ1 = d.
These inequalities prove both (14) and (15), so that the proof of Theorem 3.1 is now

complete.
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4. The identity for the new counting function

We consider briefly the cases when equality is attained in the inequality (14).

Theorem 4.1. Identity for distinct excesses realized by functions. Suppose that
p ≥ 2, and let f1, . . . , fp be polynomials in C, linearly independent over the set of complex
numbers, such that for each z ∈ C, at least one fj assumes a non-zero value. Set d =
max { deg fj : 1 ≤ j ≤ p }.

Suppose that q ≥ 1, and let g1, g2, . . . , gq be non-trivial linear combinations of f1, . . . , fp.
Suppose that for each (finite) zero z0 of the Wronskian determinant W of f1, . . . , fp, and
for each characteristic exponent dj(z0) ≥ 1, 1 ≤ j ≤ p − 1, there is exactly one function
among g1, . . . , gq that has a zero of order dj(z0) at z0. Suppose, in addition, that for each
characteristic exponent dj(∞) ≥ 1 at infinity, 1 ≤ j ≤ p − 1, there is exactly one function
among g1, . . . , gq that has a zero of order dj(z0) at infinity.

Then

(22) (q − p)d =

q∑
j=1

∑
z∈C

νp−1(gj, z)− p(p− 1),

and, equivalently, we have

(23)

q∑
j=1

∑
z∈C

E (gj, z) = pd− p(p− 1).

Considering Theorem 3.1 and its proof we see that Theorem 4.1 is obvious, since each
excess is used exactly once. Note that in Theorem 4.1, there is no assumption concerning
the linear independence of the functions gj. Obviously there has to be a sufficient number
of the functions gj so that each excess would be exactly realized by some function gj. Also
there cannot be too many functions gj of the same nature, since each excess is realized only
once.

The question now arises as to whether for a given set of polynomials f1, . . . , fp it is possible
to realize this identity. One can certainly find a set of functions gj such that every excess is
realized by at least one of them. A problem arises if it is not possible to cover every excess
in such a way that then no excess is covered more than once. In Section 5, we will see that
there are situations where such precise coverage is not possible.

On the other hand, even in such a situation, the equalities (22) and (23) may hold coinci-
dentally. For example, a certain excess may not be covered at all, and another excess of the
same size may be covered exactly twice, while all excesses other than these two are covered
exactly once. An example in Section 5 will illustrate this possibility also.

5. Examples

To see how the concepts and results discussed above work in specific cases, we consider
several examples based on the same set-up.

We set p = 3, f1 = 1, f2 = z3(z − 1)3, and f3 = z3(z + 1)3. Then d = 6. The Wronskian
determinant of f1, f2, f3 is equal to

W (z) =

∣∣∣∣∣∣
f1 f2 f3

f ′
1 f ′

2 f ′
3

f ′′
1 f ′′

2 f ′′
3

∣∣∣∣∣∣ = −36z4(z − 1)(z + 1)(5z2 − 2).
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Thus W has a zero of order 4 at the origin, and a simple zero at each of the points ±1 and
±
√

2/5. We have deg W = 8.
The function

f2 + f3 = 2z4(z2 + 3)

has a zero of order 4 at the origin. Each of the functions f2 and f3 has a zero of order 3
at the origin. The sequence of all possible orders of a zero at the origin, attainable by any
non-trivial linear combination of f1, f2, f3 and including the number zero (corresponding to
a linear combination not having a zero at the origin) must be of the form (0, d1, d2) where
1 ≤ d1 < d2. We see that we must have d1 = 3 and d2 = 4. This gives rise to the excesses
d1− 1 = 2 and d2− 2 = 2, making the total excess equal to 4. Thus the total excess is equal
to the order of the zero of W at the origin, in accordance with the theory.

At the point z = 1, the total excess is 1. This can only be if (d0, d1, d2) = (0, 1, 3). The
excess is realized by the function f2, which has a zero of order 3 at z = 1.

Similarly, at the point z = −1, the only excess arises from the function f3 (and its non-zero
constant multiples), which has a zero of order 3 at z = −1.

At each of the points z = ±
√

2/5, the total excess is 1, so that (d0, d1, d2) = (0, 1, 3). A
zero of order 3 is realized by the function

F1(z) = 24(8
√

10 + 25)f1 + 125(80
√

10 + 253)f2 − 375f3

at z =
√

2/5, and by the function

F2(z) = 24(8
√

10− 25)f1 + 125(80
√

10− 253)f2 + 375f3

at the point z = −
√

2/5.
At infinity, the function f1 has a zero of order 6. The function f2 − f3 is a polynomial

of degree 5 and therefore has a simple zero at infinity. Thus (δ1, δ2, δ3) = (6, 5, 0), and
(δ1 − δ1, δ1 − δ2, δ1 − δ3) = (0, 1, 6). There is only one excess at infinity, realized by the
function f1, and it is equal to 6− 2 = 4.

The sum of the distinct excesses is therefore

2 + 2 + 1 + 1 + 1 + 1 + 4 = 12,

in accordance with Theorem 3.2.
For any q non-trivial linear combinations g1, . . . , gq of f1, f2, f3 such that any min{p, q} of

them are linearly independent, Theorem 3.1 gives
q∑

j=1

∑
z∈C

E (gj, z) ≤ pd− p(p− 1) = 18− 6 = 12.

We use this basic set-up in all the examples that now follow.

Example 5.1. We choose q = 5 and take the functions gj to be the functions f1, f2, f3, F1, F2.
Then the sum of all possible excesses for these functions is 4 + 2 + 2 + 1 + 1 + 1 + 1 = 12.
These five functions have the property that any three of them are linearly independent, so
that by Theorem 3.1, the total excess is at most 12. That the total excess is equal to 12 is
due to a coincidence. The excess equal to 2 at the origin is counted twice, for both f2 and
f3. On the other hand, the excess equal to 2 for functions that have a zero of order 4 at the
origin is not taken into account at all, since that can happen only if among the functions we
consider, we have a non-zero constant multiple of f2 + f3. Each other excess is taken into
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account exactly once. Counting a quantity equal to 2 twice but omitting a quantity equal
to 2 have effects that cancel out each other. Hence the total excess is still equal to 12.

Example 5.2. We choose q = 6 and take the functions gj to be the functions f1, f2, f3, f2 +
f3, F1, F2. Then the sum of all possible excesses for these functions is 4+2+2+2+1+1+1+1 =
14 > 12. These six functions do not have the property that any three of them are linearly
independent (since f2, f3, f2 + f3 are linearly dependent), so that Theorem 3.1 cannot be
applied, and one can certainly expect it to be the case that the total excess is > 12. This
indeed happens since each excess is counted at least once, and the excess, equal to 2, for
functions that have a zero of order 3 at the origin is counted twice, due to the presence of
both f2 and f3.

This choice of functions is not unreasonable since both f2 and f3 must be included if the
excesses at the points 1 and −1 are to be counted. On the other hand, it is then unavoidable
that the excess, equal to 2, for functions that have a zero of order 3 at the origin is counted
twice. Next, it is not possible to include the excess for functions that have a zero of order
4 at the origin without including (a non-zero constant multiple of) f2 + f3. Hence if all
excesses are to be included, we are forced to give up the property that any three of the
functions chosen are linearly independent. Giving up this property can understandably lead
to certain excesses being counted more than once, and while that need not happen in every
such situation, it does happen here.

Example 5.3. We choose q = 4 and take the functions gj to be the functions f1, f2, f3, f2+f3.
Then the sum of all possible excesses for these functions is 4 + 2 + 2 + 2 + 1 + 1 = 12. These
four functions do not have the property that any three of them are linearly independent.
Yet the sum of all the excesses realized by these functions is 12 since excesses at the points
±
√

2/5 are not taken into account.

Example 5.4. We choose q = 3 and take the functions gj to be the functions f2, f3, f2 + f3.
Then the sum of all possible excesses for these functions is 2+2+2+1+1 = 8. These three
functions are not linearly independent. Yet the sum of all the excesses realized by these
functions is < 12 since excesses at the points ±

√
2/5 and ∞ are not taken into account.

6. The counting function of unrealized excesses

We start by observing that Lemma 3.3 remains valid, with the same proof, at a finite
point z0 also for entire functions f1, . . . , fp that are not necessarily polynomials.

Lemma 6.1. Suppose that p ≥ 2, and let f1, . . . , fp be entire functions in C, linearly inde-
pendent over the set of complex numbers, such that for each z ∈ C, at least one fj assumes
a non-zero value.

Suppose that q ≥ 1, and let g1, g2, . . . , gq be non-trivial linear combinations of f1, . . . , fp

such that any min{p, q} of g1, g2, . . . , gq are linearly independent.
Suppose that the Wronskian determinant W of f1, . . . , fp has a zero of order m ≥ 1 at

z0 ∈ C.
Then

(24)

q∑
j=1

E (gj, z0) ≤ m.
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Theorem 3.1 gives a lower bound for the new counting function of the functions gj where
zeros are taken into account according to their reduced multiplicities. However, in any
application one may wonder how sharp that result is. As the theory we have developed
makes clear, there is still space in this inequality if not all excesses are realized. Thus, in any
specific application it might be worth taking this factor into account, if possible at all. In a
theoretical consideration this may sometimes be difficult, while when considering a special
case it might be easier to incorporate such an effect.

Therefore it may be worth defining the concept of the counting function of unrealized
excesses. The idea is that if any functions gj are given as in Lemma 6.1 above, then at a
point z0 where the Wronskian W of f1, . . . , fp vanishes, some of the excesses might not be
covered by g1, . . . , gq, that is, the quantity

m−
q∑

j=1

E (gj, z0)

arising from (24) may be positive. This difference represents the unrealized excesses. It seems
simplest to discuss this total amount of unrealized excesses at a point instead of attempting
to divide the total among several functions.

Definition 6.2. Suppose that p ≥ 2, and let f1, . . . , fp be entire functions in C, linearly
independent over the set of complex numbers, such that for each z ∈ C, at least one fj

assumes a non-zero value.
Suppose that q ≥ 1, and let g1, g2, . . . , gq be non-trivial linear combinations of f1, . . . , fp

such that any min{p, q} of g1, g2, . . . , gq are linearly independent. Write G = (g1, . . . , gq).
Suppose that the Wronskian determinant W of f1, . . . , fp has a zero of order m ≥ 1 at

z0 ∈ C.
Then we call the number

(25) V (G, z0) = m−
q∑

j=1

E (gj, z0) ≥ 0

the total excess at z0 unrealized by the functions g1, . . . , gq.
We call

V(r, G) =
∑
|z|≤r

V (G, z)

the non-integrated counting function of the unrealized excesses, and call

U(r, G) =

∫ r

0

V(t,G)− V(0, G)

t
dt + V(0, G) log r

the integrated counting function of the unrealized excesses for G.

Even though the unrealized excesses depend also on (f1, . . . , fp), we suppress this in the
notation.

In view of our earlier results and their proofs, the following statement is immediately
obvious.

Theorem 6.3. Suppose that p ≥ 2, and let f1, . . . , fp be polynomials in C, linearly indepen-
dent over the set of complex numbers, such that for each z ∈ C, at least one fj assumes a
non-zero value.
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Suppose that q ≥ 1, and let g1, g2, . . . , gq be non-trivial linear combinations of f1, . . . , fp

such that any min{p, q} of g1, g2, . . . , gq are linearly independent. With G = (g1, . . . , gq), we
have

(26) (q − p)d =

q∑
j=1

∑
z∈C

νp−1(gj, z)−
∑
z∈C

V(G, z)− p(p− 1)

and

(27)

q∑
j=1

∑
z∈C

E (gj, z) +
∑
z∈C

V(G, z) = pd− p(p− 1).

7. An improved version of the Cartan theory

We now explain how a sharper form of the Cartan theory for the value distribution of
holomorphic curves, itself a generalisation of the Nevanlinna theory, can be obtained by
using our new counting function for the zeros of linear combination of the given functions.
Even though the changes in the proofs from the original form of Cartan’s argument are
minor, it seems best for the sake of clarity to produce a complete proof. In doing so, we
mainly follow the exposition of the Cartan theory given by Gundersen and Hayman in [4]
without further reference. We indicate the differences when we come to them.

We make use of the standard notation of the Nevanlinna theory as given, for example, in
[5].

Suppose that p ≥ 2 and that f1, . . . , fp are linearly independent entire functions in C such
that for each z0 ∈ C, there is an index j such that fj(z0) 6= 0.

We define, for z ∈ C, the real number

u(z) = max{log |f(reiθ)| : 1 ≤ j ≤ p }.

For r > 0, we define the Cartan characteristic (function) T (r) of f = (f1, . . . , fp) by

T (r) =
1

2π

∫ 2π

0

u(reiθ) dθ − u(0).

Suppose that q > p, and let g1, . . . , gp be linear combinations of f1, . . . , fp, any p of which
are linearly independent.

We consider the auxiliary function

(28) H =
g1g2 · · · gq

W

where W is the Wronskian determinant of f1, . . . , fp.
Now we perform a more careful analysis on the orders of the zeros of H than has been

done in previous literature. We write again G = (g1, . . . , gq).
Both the numerator and denominator of H are entire functions. Thus, if z0 ∈ C is a zero

of H, then at least one gj must have a zero at z0.
Suppose first that W (z0) 6= 0. Then there are no excesses and if a function gj vanishes at

z0, then its zero is taken into account in νp−1(r, gj) according to its actual multiplicity. Thus

n(H, z0) =

q∑
j=1

n(gj, z0) =

q∑
j=1

νp−1(gj, z0).
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Suppose then that W (z0) = 0 and let W have a zero of order m at z0. By (25), we have

m =

q∑
j=1

E (gj, z0) + V(G, z0) =

q∑
j=1

n(gj, z0)−
q∑

j=1

νp−1(gj, z0) + V(G, z0).

It follows that if r > 0, then

(29) N(r, 0, H) =

q∑
j=1

Np−1 (r, gj)− U(r, G).

In order to estimate the size of an error term, we note, following [2] and [4], Lemma 8.2,
p. 449, that for each z ∈ C there is a permutation m1, . . . ,mq of the integers 1, 2, . . . , q such
that

(30) |gm1(z)| ≥ |gm2(z)| ≥ · · · ≥ |gmq(z)|.
Moreover there is a fixed positive constant A depending only on the coefficients of the
linear combinations that the gj form in terms of the fi such that whenever 1 ≤ j ≤ p and
1 ≤ ` ≤ q − p + 1, we have

(31) |fj(z)| ≤ A|gm`
(z)|.

In particular, at least q − p + 1 of the functions gj do not vanish at z0, which fact we have
already noted in the proof of Lemma 3.3.

For each z ∈ C, we define

v(z) = max{ log |gk1(z)gk2(z) · · · gkq−p(z)| : 1 ≤ k1 < k2 < · · · < kq−p ≤ q }
so that v(z) is a real number.

If 1 ≤ a1 < a2 < · · · < aq−p ≤ q and {b1, b2, . . . bp} = {1, 2, . . . , q} \ {a1, a2, . . . , aq−p}, then
the Wronskian

CW (gb1 , . . . , gbp) ≡ W = W (f1, . . . , fp)

for some non-zero complex constant C = C(b1, . . . , bp) belonging to a certain finite set of
numbers since there are only finitely many possibilities for the set {b1, b2, . . . bp}. We may
thus write, at the point z,

H =
g1 · · · gq

CW (gb1 , . . . , gbp)
=

ga1 · · · gaq−p

CG
,

where

G =

∣∣∣∣∣∣∣∣∣
1 1 . . . 1

g′b1/gb1 g′b2/gb2 . . . g′bp
/gbp

...
...

. . .
...

g
(p−1)
b1

/gb1 g
(p−1)
b2

/gb2 . . . g
(p−1)
bp

/gbp

∣∣∣∣∣∣∣∣∣ .
In the sequel, note that G depends on the choice of b1, . . . , bp, even though we do not indicate
this in the notation.

For z ∈ C, we define

w(z) = max{ log |G(z)C(b1, . . . , bp)| : 1 ≤ b1 < b2 < . . . bp ≤ q }.
As in [4], p. 451, it follows that for r > 0,∫ 2π

0

v(reiθ) dθ =

∫ 2π

0

log |H(reiθ)| dθ +

∫ 2π

0

w(reiθ) dθ.
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By Jensen’s formula,

1

2π

∫ 2π

0

log |H(reiθ)| dθ = N(r, 0, H)−N(r, H) + B,

where B is a real constant.
For each z ∈ C, choose for {a1, . . . , aq−p} the particular set of distinct integers in {1, 2, . . . , q}

satisfying

v(z) = log |ga1(z)ga2(z) · · · gaq−p(z)|
so that, in particular, ga1(z)ga2(z) · · · gaq−p(z) 6= 0. Obviously, {a1, . . . , aq−p} = {m1, . . . ,mq−p},
where the numbers mj were defined in (30).

By (31), we have

u(z) ≤ log A + log |gas(z)|
whenever 1 ≤ s ≤ q − p. Adding up and integrating, we get

(q − p)T (r) ≤ 1

2π

∫ 2π

0

v(reiθ) dθ + O(1).

Further, there is a fixed positive constant D, depending only on the coefficients of the
linear combinations used to form the gj in terms of the fi, such that for each z ∈ C, we have

w(z) ≤ D + max{log |G(z)| : 1 ≤ b1 < b2 < . . . bp ≤ q}.

As in [4], p. 452, we note that (given the integers b1, . . . , bp) the function G does not change

if we replace each function g
(k)
bj

/gbj
in the definition of G by (gbj

/g1)
(k)/(gbj

/g1), and that

this then implies that∫ 2π

0

w(reiθ) dθ ≤ O(log r) +

q∑
j=2

O(log T (r, gj/g1))

as r →∞ outside a set of finite linear measure. Here T (r, F ) is the Nevanlinna characteristic
of the meromorphic function F .

Combining there results, we find that

(q − p)T (r) ≤ N(r, 0, H)−N(r, H) +
1

2π

∫ 2π

0

w(reiθ) dθ

≤ N(r, 0, H)−N(r, H) + O(log r) +

q∑
j=2

O(log T (r, gj/g1))

=

q∑
j=1

Np−1 (r, gj)− U(r, G)−N(r, H) + O(log r) +

q∑
j=2

O(log T (r, gj/g1)).

As in [4], p. 452, we now obtain the following theorem, which encapsulates our sharper
form of Cartan’s theory.

Theorem 7.1. Suppose that p ≥ 2 and that f1, . . . , fp are linearly independent entire func-
tions in C such that for each z0 ∈ C, there is an index j such that fj(z0) 6= 0.

Suppose that q > p, and let g1, . . . , gp be linear combinations of f1, . . . , fp, any p of which
are linearly independent. Write G = (g1, . . . , gq). Let H be as in (28).
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Then

(32) (q − p)T (r) ≤
q∑

j=1

Np−1 (r, gj)− U(r, G)−N(r, H) + O(log r) + O(log T (r))

as r →∞ outside a set of finite linear measure.

If the ratios fj/f1 are all rational functions, in which case, as we have mentioned, we may
assume that each fj is a polynomial, we can obtain a sharper result. In this case, for each
choice of the integers b1, . . . , bp, the function G is a rational function.

For a more careful analysis of G, it is now useful to write G as

G = (gb1 · · · gbp)
−1W (gb1 , . . . , gbp).

Since W (gb1 , . . . , gbp) is a constant multiple of W = W (f1, . . . , fp), its analysis at infinity
is the same as we have already performed. As in (12), we see that W (gb1 , . . . , gbp) is a
polynomial of degree

p∑
j=1

δj −
p(p− 1)

2

where the δj have the same meaning as before for (f1, . . . , fp).
We next ask how low the degrees of the gbj

can be. Low degrees imply a zero at infinity,
and the lowest possible result is obtained if the gbj

realize all the excesses at infinity. Thus, by
the proof of (18) rather than by (18) itself, but still keeping track of the possibly unrealized
excess at infinity, we see that

p∑
j=1

deg gbj
≥ pd− p(p− 1)

2
−

p∑
j=1

E (gbj
,∞)

≥ pd− p(p− 1)

2
−

(
(p− 1)d−

p∑
j=2

δj −
p(p− 1)

2

)
+ V(G,∞)

= d +

p∑
j=2

δj + V(G,∞).

Hence G(z) = O(z−a) as z →∞, where, since δ1 = d,

a =

p∑
j=1

δj −
p(p− 1)

2
−

(
d +

p∑
j=2

δj + V(G,∞)

)
= −

(
p(p− 1)

2
+ V(G,∞)

)
.

Thus we recover the same estimate as Gundersen and Hayman in [4], (7.8), p. 445. We
may sharpen it by taking into account the unrealized excess at infinity, if any.

Theorem 7.2. Suppose that p ≥ 2 and that f1, . . . , fp are linearly independent polynomials
in C such that for each z0 ∈ C, there is an index j such that fj(z0) 6= 0.

Suppose that q > p, and let g1, . . . , gq be linear combinations of f1, . . . , fp, any p of which
are linearly independent. Write G = (g1, . . . , gq). Let H be as in (28).

Then for all r > 0, we have

(33) (q − p)T (r) ≤
q∑

j=1

Np−1 (r, gj)− U(r, G)−N(r, H) + S(r),
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where

S(r) ≤ −
(

1

2
p(p− 1) + V(G,∞)

)
log r + O(1)

as r →∞.

7.1. Waring’s problem for functions. Hayman [6] (see also [4] for a survey) used the
classical Cartan theory to study Waring’s problem

p∑
j=1

fk
j (z) = 1 or

p∑
j=1

fk
j (z) = z

when f1, . . . , fp belong to a particular class of functions: polynomials, rational functions,
entire functions, or functions meromorphic in the plane. An important goal is to obtain a
lower bound for p in terms of k.

We have not been able to improve Hayman’s results by using our more refined form of
Cartan’s theory. The reason may be that by adding multiplicities of zeros, in whatever form,
one is not making sufficiently effective use of the assumption that the order of each zero of
every fk

j is exactly an integral multiple of k. This suggests that new and different methods
may need to be developed to make further progress on Waring’s problem for functions.
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[2] H. Cartan, Sur les zéros des combinaisons linéaires de p fonctions holomorphes données’, Mathematica
Cluj 7 (1933), 5–31.

[3] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York, 1978.
[4] G.G. Gundersen and W.K. Hayman, The strength of Cartan’s version of Nevanlinna theory, Bull.

London Math. Soc. 36 (2004), no. 4, 433–454.
[5] W.K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
[6] W. K. Hayman, Waring’s problem für analytische Funktionen, Bayer. Akad. Wiss. Math.- Natur. Kl.

Sitzungsber, 1984 (Bayer. Akad. Wiss., Munich, 1985), 1–13.

Department of Mathematics, University College London, Gower Street, London WC1E
6BT, U.K.

Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green
St., Urbana, IL 61801, U.S.A.

E-mail address: aimo@illinois.edu


	OWP2009_25Deckblatt.pdf
	OWP 2009 - 25
	J. M. Anderson and Aimo Hinkkanen
	A new Counting Function for the Zeros of Holomorphic Curves


