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PLETHYSMS, REPLICATED SCHUR FUNCTIONS AND SERIES, WITH
APPLICATIONS TO VERTEX OPERATORS

BERTFRIED FAUSER, PETER D. JARVIS, AND RONALD C. KING

The characters of the orthogonal and symplectic groups een found by SchiiB4] and
Weyl[35] respectively. The method used is transcendental, and depamnintegration over
the group manifold. These characters, however, may be mddady purely algebraic meth-
ods, .... This algebraic method would seem to offer a bettespect of successful applica-
tion to other restricted groups than the method of groupgragon.

D.E. Littlewood, Phil. Trans. Roy. Soc. London, Ser. A, \a8,2No 809, 1944, p.392

ABSTRACT. Specializations of Schur functions are exploited to deéind evaluate the Schur
functions s, [« X] and plethysmss [as, (X))] for any « - integer, real or complex. Plethysms
are then used to define pairs of mutually inverse infiniteesesf Schur functions),, and L ,
specified by arbitrary partitions . These are used in turn to define and provide generating func-
tions for formal characters$§”), of certain groupsH, , thereby extending known results for
orthogonal and symplectic group characters. Each of trarseal characters is then given a ver-
tex operator realization, first in terms of the serigs= M and variousL} dual to L, , and
then more explicitly in exponential form. Finally the regaited form of such vertex operators are
written down.

1. INTRODUCTION

The aim here is to exploit the Hopf algebra structure of thg i(X) of symmetric functions
of the independent variablgs, z», . . .), finite or countably infinite in number, that constitute
the alphabetX . An emphasis will be placed on the interconnections betweewarious prod-
ucts and coproducts that apply to the Schur functigy{s() that form an integral basis of(X).
These allow us to define certain replicated, rational orestplethysms that involve an argument
a in N, Q or R, respectively, or even t& or a sequence of such parameters.
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The first key result is that, for any alphab&t = (z,,9,...) and parametery, and any
partitions A and v, we have

salas, (X)] =) g3, dimy () s,[s,(X)], (1-1)
P
where the coefficient@gu are Kronecker coefficients associated with products ofastiars
of the symmetric grougs,,, with m = |A|, the weight of the partition\, while dim,(«) is the
polynomial in« that gives the dimension of the irreducible representaifad L (n) specified by
the partition,, evaluated atv = «. The mapdim : A(X) — R is an algebra homomorphism
for any target ringR.

Following some notational preliminaries in Section 2, thesult is obtained in Section 4
through the use of one of the specializations introduce@atin 3. Section 4 also contains some
examples of replicated plethysms and the computer bendimgawf their calculation, showing
that the formula (1-1) is very efficient. The relevant altfun is relegated to Appendix C in the
form of appropriate computer pseudo code. In the special gas (1) for which s, (X) = X,
the above plethysms coincide both with the replicated pketis of Jarvis and Yung [15] and,
setting a = ¢, with the g-analogues of Schur functions introduced by Brenti [4]. Bactd
includes an account of their orthogonality properties asmgiby Baker [2] and Brenti [4] but
obtained here by exploiting the Schur-Hall scalar prodacttie ring A(X) .

The next result realizes Littlewood’s hope that an algebte@atment of character theory
greatly generalizes the scope of the classical approach smencompass cases which are very
difficult to treat by analytical methods. This same scaladprct, in the form of the Cauchy
identity, is then exploited in Section 5 to derive the chegagenerating function

L(Z)M(XZ) = s\"(X)s:(2) (1-2)

for formal character$(;r)(X ) of H,, each specified by a partition, where H,. is the sub-

group of the general linear group preserving an invariannhfof symmetryr, as introduced
elsewhere [11]. HereX = (x1,z,,...) iS to be evaluated at the sequence of eigenvalues
of group elements offl,. The notation is such that/(XZ) = [, »,(1 — 2;z;)~", while
L.(Z) = L[sx(Z)] is an infinite Schur function series plethysm, witfY) = [],-,(1 — v)
for all Y, including the case for which the elemenys of Y are the monomials of.(Z). In
this case, for an alphabét of cardinality [, the cardinality ofY” is exactly dim, (/).

By exploiting the same seriek, its inverse)M and its dualL* (i.e. its adjoint with respect
to the Schur-Hall scalar product), together with the Hogleaira structure of\(X), a vertex
operator realization of the characterg™ (X) is derived in Section 6. This takes the form of
another key result, namely,

ST = [ZM V() VT (2) - V(2) - 1, (1-3)
where the vertex operators are given by

p—1

V™ (2) = (1= 2" 6.9) M(2) L (=) T] Ly () - (1-4)
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Then by means of exponential expressions for bbthand L+, these vertex operators are
explicitly constructed in exponential form for all pantitis = of weight |x| < 3. The caser =
(2,1) is also given an alternative normal ordering derivationéct®n 6. The explicit evaluation
of L (w)(M(Z)) is undertaken in Appendix A, with the result expressed, geshsomewhat
surprisingly, in terms of semistandard Young tableaux afghspecified by the partition.

In Section 7 it is pointed out rather briefly that a wide clasieplicated vertex operators may
be obtained very easily through the application of the oapéid Schur functions of Section 4 to
parametrized versions of the vertex operators of Section 6.

Finally, Section 8 consists of a few concluding remarks.

2. NOTATIONAL PRELIMINARIES

2.1. Partitions and Young diagrams. Our notation follows in large part that of Macdonald [29].
Partitions are specified by lower case Greek letters) I§ a partition ofn we write A - n,
and X\ = (A1, A2, ..., \,) IS a sequence of non-negative integgydor i = 1,2,...,n such that
AM > A > >N, > 0,with Ay + Ay +---+ )\, = n. The patrtition X is said to be of
weight |\| = n and length/(\), where\; > 0 forall i < ¢(\) and \; =0 forall ¢ > ¢(\). In
specifying A the trailing zeros, that is those pants= 0, are often omitted, while repeated parts
are sometimes written in exponent forin= (--- ,2™2,1™) where A\ containsm,; parts equal
to i for ¢ = 1,2,.... For each such partitiom(\) = >"" (i — 1)\; and z, = [[,~, ™ mj!.

Each partition) of weight |\| and length/()\) defines a Young or Ferrers diagram;,
consisting of |\| boxes or nodes arranged it\) left-adjusted rows of lengths from top to
bottom Ay, Aa, ..., Ay (in the English convention). The partitioN, conjugate to), is the
partition specifying the column lengths df* read from left to right. The boXi,j) € F* in
the ith row andjth column is said to have contenti, j) = 7 — ¢ and hook length.(i, j) =
A+ N —i—j+1.

By way of illustration, if A = (4,2,2,1,0,0,0,0,0) = (4,2,2,1) = (4,2%,1) then|\| = 9,
(N =4, N =(4,3,1%),

FY = 2% — and IV = F431) = . (2-1)

The content and hook lengths & are specified by

0/1/2]3] 7[5/2]1]
110 412
3] 1]

wherem = —m for all m. In addition,n(4,2%,1) =0-4+1-2+2-2+3-1 =9 and
Zagegy =4-2%-1-11-21-11 = 32.
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2.2. The ring A(X) and Schur functions. There exist various bases of(.X) as described
in [29]: the monomial symmetric functiongm, },, the complete symmetric functionigi, }, ,
the elementary symmetric function:, },, the power sum symmetric functiong,}, and
the Schur symmetric function§s,},. Three of these bases are multiplicative, with =
hahoag -+ hy, s €x = €x€xn, - €y, and px = px,pr, - Dy, - Of the relationships between
the various bases we just mention at this stage the tramsitio

p(X) = x) sa(X) and (X)) =" 2 x) pa(X), (2-3)

AFn pEn

where Xﬁ is the character of the irreducible representation of timensgtric groupss,, specified
by A in the conjugacy class specified by These characters satisfy the orthogonality conditions

D5 XX = O and D30NS = G (24
pn AFn

The significance of the Schur function basis lies in the faet with respect to the usual
Schur-Hall scalar produdt | -)x(x) on A(X) we have

(5u(X) | 5 (X))ax) = Oy - (2-5)
From (2-3) and (2-4) it follows that
<pp(X) |pa(X)>A(X) - zpép,a . (2'6)

In what follows we shall make considerable use of severatitefiseries of Schur functions.
The most important of these are the mutually inverse painddfby

Mt X) = —ta) ™ =) hn(X)t™; (2-7)
L(t; X) = H(1 —taz) =Y (=) en(X)t", (2-8)

where as Schur function’s,,(X) = s.,,)(X) ande,,(X) = sqm)(X). It might be noted that in
Macdonald’s notation and -ring notation M (¢; X) = H(t) = 0¢(X) and L(t; X) = E(—t) =
A_¢(X). For convenience, in the case-= 1 we write M (1; X) = M(X) and L(1; X) = L(X).

2.3. Algebraic properties of A(X). The ring, A(X), of symmetric functions oveX has a
Hopf algebra structure, and two further algebraic and twalgebraic operations. For notation
and basic properties we refer for example to [10, 11] andeefses therein. For the moment, in
the interest of typographical simplicity, the symh¥l for the underlying alphabet is suppressed
unless specifically required.

We indicate outer products ok either bym , or with infix notation using juxtaposition. Inner
products are denoted either lny or as infix by, while plethysms (compositions) are denoted
by o or by means of square brackdts |. The corresponding coproduct maps are specified by
A for the outer coproducty for the inner coproduct, an® for the plethysm coproduct. In
Sweedler notation the action of these coproducts is disismgd by means of different brackets,
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round, square and angular, around the Sweedler indicessetballed Brouder-Schmitt conven-
tion. The coproduct coefficients themselves are obtair@d the products by duality using the
Schur-Hall scalar product and the self-duality/ofX’) . For example, for allA, B € A(X):

m(A® B) = AB; A(A) = Aqy ® Ay ;
m(A®B):A*B; 5(14):14[1]@14[2};
AoB = A[B] ) V(A) = A<1> X A<2> .

In terms of the Schur function bas{s }x-...en the product and coproduct maps give rise to
the particular sets of coefficients specified as follows:

A . _ _ A .

SuSy = E CruS\; A(s)) = Say) @ Sxyy = E CowSu ® Su;
A [TRY

Sy xS, = T d(8x) = Sary; @ Sxpy = A 5,8,

I v ngV A A) — )\[1] /\[2] - gu7y 12 v
A TR

Sulsy] = A Sa; V(sxn) = Sa,y, @ Sxpy = A 5D 8

plSvl = 2 Puusxs A T Sy B SNgy T 2 PuySn & Sy

A w,v

Here thec) , are Littlewood-Richardson coefficients, thg, are Kronecker coefficients and the
pi‘w are plethysm coefficients. All these coefficients are nagatiee integers. The Littlewood-
Richardson coefficients can be obtained, for example, by smehathe Littlewood-Richardson
rule [27, 25] or the hive model [5]. The Kronecker coefficentay determined directly from
characters of the symmetric group or by exploiting the Jadaldi identity and the Littlewood-
Richardson rule [31], while plethysm coefficients have béensubject of a variety methods of
calculation [26, 31, 7]. Note that the above sums are finiteges

Cup 20 Hff A= [ul + [v]

Grw 20 it A =1 =

Dpy 20 A= |pl|v].

The Schur-Hall scalar product may be used to define skew Sohations s, /,, through the

identities

Cuw = (sususx) = (0] 53(0)) = (] sam) (2-9)

so that
Sx/p = Z cﬁjy Sy (2-10)

Within the outer product Hopf algebra we have a unit Id, a doarand an antipodé& such
that':
Id(1) = sp; £(sx) = o0 ; S(sy) = (—1)"\‘3)\/ ) (2-11)

IMacdonald uses the involutian which differs from the antipode by a sign factd®{sy) = (—1)*Mw(sy). It
is, however, convenient to employ the antipode if Hopf aftgedtructures are in use.



6 BERTFRIED FAUSER, PETER D. JARVIS, AND RONALD C. KING

2.4. The Cauchy kernel. It is often convenient to represent an alphabet in an additianner
X = +x9 + -+, as itself an element of the ring(.X') in the sense that

X=zi+z2+ - =h(X)=e(X)=pi(X) = s0)(X).
As elements ofA(X) ® A(Y') we have

X+Y:x1~|—a:2+---+y1+yg+---
XY = (x1+1:2—|—---)(y1+y2+--~) = (x1y1+x1y2+---+x2y1+x2yt+~-~).
With this notation, the outer coproduct gives

1 1
AM)=Muy & Mgy =M e M M(X+Y):H1_x_ T
i v J
A(L)=Ly®@Loy=L®L LIX+Y)=]J =) [T —w).
i j
so that
M(X+Y)=MX)MY) and L(X+Y)=L(X)L(Y). (2-12)
For the inner coproduct:
1
(M) = My @ My M(XY):Hl—xiyj;
2y}
6(L) = Ly ® Ly LXY) =[] - ;).

irj
The expansions of the products on the right hand sides of thgwessions is effected remarkably
easily by evaluating the inner coproducts on the left:

SM)=>"0(h) =D sx®sx;

k>0 k>0 AFk
S(L) =D (D! 3(e) = D (~1F Y si@sx.
E>0 E>0 Ak
This gives immediately the well known Cauchy and Cauchy-Bioghtilae:
1
MXY)=]] = T Y (X)) s (Y); (2-13)
i, tIJ A
LXY) =[]0 =ziy) =D (—)Msp(X) s (Y). (2-14)
%, A

That the Cauchy kernel)/(XY'), is a dual version of the Schur-Hall scalar product can be
seen by noting that

5.0 M(XY) =30 37 ¢ 5,(X) sa(Y)
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=D (X)) s (Y) = s, (Y) (M(XY)). (2-15)

More generally, for any?'(X) € A(X) with dual F+(X), by linearly extending the above result
we have

F(X)M(XY)=F-Y)(M(XY)). (2-16)
This is an identity that will be encountered and exploitedimnher of times in later sections.

2.5. Plethysms. Plethysms are defined as compositions whereby for ang € A(X) the
plethysm A[B] is A evaluated over an alphab®t whose letters are the monomials B{ X ),
with each letter repeated as many times as the multipli¢ithecorresponding monomial. Thus
the Schur function plethysm is defined by

sa[su)(X) = sx(Y) where Y =5,(X). (2-17)

Forall A, B,C € A(X) we have the following rules, due to Littlewood [25], for mpniating
plethysms:

(A+ B)[C] = A[C] + BIC; A[B + O = Ap)[BlA@)[C];
(AB)[C] = A[C]BIC]; A[BC] = Ap[BlA[C1;
A[BIC]] = (A[B])[C] (2-18)
To these we can add, see [11]:
A[=B] = (S(A))[B]; A[S(B)] = S(A[B]);
A[A(B)] = A(A[B]) ; Al6(B)] = 6(A[B]), (2-19)
and the plethysm of a tensor product:
AB® (] = A[l] [B] ® A[Q] [C]. (2-20)

These rules enable us to evaluate plethysms not only of antkinner products but also of
outer and inner coproducts.

3. SPECIALIZATIONS

3.1. Definition of specializations. Before dealing with the plethysms of interest here, it is ap-
propriate to define certain specializations. We will do thisome generality so as to be able to
use the technique of specialization in a rather broad ctrger also [30, Sect.1.12].

Definition 3.1: A specialization ¢ is an algebra homomorphism (and thus a 1-cocycle for the
outer Hopf algebra) from the Hopf algebra of the ringX) of symmetric functions to another

ring R, where R may be any one oN, Z, Q,R, C, Z[t], Z[[q]], , Z[t][[q]], - . .. Forany A, B €
A(X) itis required that we have
¢:AN— R with ®(AB) = ¢(A)op(B) . (3-1)



8 BERTFRIED FAUSER, PETER D. JARVIS, AND RONALD C. KING

Specializationsp may be defined either through a map, also denoted pgn the letterse;
of the underlying alphabeX’ = (z1,xs,...) = 1 +x9+- -, or through maps on the generators
of A(X) such ash,(X), e,(X) or p,(X).

3.2. Fundamental specialization. We denote bye' the mape! o A(X) = A(e!(X)) where
e'(X) = (1,0,...) =1, that is to say

oy 1 ifi=1y ]
€ () = { 0 otherwise (3-2)
This fundamental specialization evaluates on Schur fanstas the dimension formula f6rL(1)
in the sense that

€' (sx(X)) = 5x(1,0,...) = dim VZy,q) = dimy (1), (3-3)

where dim VGAL(U is the dimension of the irreducible representatm(l) of GL(1) having
highest weight\. This specialization is such that

1 | 1 if A= (m)foranym > 0; )
e (sn(X)) = { 0 otherwise (3-4)

3.3. t-specialization. We generalize the fundamental specialization along tHevihg lines.
For all t € N we denote by’ o A(X) = A(¢'(X)) with ¢/(X) =(1,...,1,0...)=1+1+
---+ 1 with ¢ occurrences of thé s. In the sequence notation we thus have A(X) = A(1%)
while in the additive (ring) notation we hawe o A(X) = A[t]. In both cases we make this

precise as
o1 if1<i <t ]
€ (@) = { 0 otherwise (3-5)
For all t € N the t-specialization of a Schur function can be interpreted bamseof aG' L(t)
dimension formula, that ig*(sy(X)) = s\(1) = sA(1,1,...,1) = dim Vg, = dimy(t).
However, the dimension formula fa¥ L(¢) is polynomial int:
y .
dimy(t) = [ M (3-6)
e h(i, j)
4,j)EF

and hence can be generalized by analytic continuationitmids real or even complex.

3.4. Principal (g¢;n)-specialization. A further important specialization is given by the map
eém 0o A(X)=A,q,¢* ...,¢"10,...) = A[%] or

i—1 .
1 N forl1 <i:<mn; )
€gin (i) = { 0 otherwise (3-7)
In the case of Schur functions, with the notation descrilzetiez, we have [29, p.44]

1
1 . n—1\ _ n(\ ||
Eq;nOS/\(X)—S)\<17Q7"'7q >—q() W
(.)€

_ o ntc(ig)
1 (3-8)
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In the special case of = (1) this takes the form

E;m © 3(1m)(X) = e;m 0 ep(X) = qm(m—l)/2 l;] :
q

where theg -binomial coefficient is given by

[ n ] _ (=g —g¢) Q=g
m], (I-g)(1=¢* - (1—qm)
3.5. Three parameter specialization. Note that forq — 1 we recover thet-specialization

from the principal(q; t) -specialization. However, we keep these two specialinatapart so as
to have the opportunity to employ a combination of both. Tiilsbe denoted by
1 —qg"

! } NGRS
l—q

with ¢ repetitions of each distinct power qf, while t =1+ 1 4 --- + 1 with ¢ repetitions of
1.

ez;noA(X>:A(L'"717q7"~7Q7~--aqnila-“aqnilaoa---):A |:t

4. PARAMETERIZED PLETHYSMS

The idea now is to exploit the above findings to see if we caivel@rgeneral formula for the
plethysms,[«a s,] for any «: integer, rational or complex.

4.1. Replicated Schur functions as plethysmsFirst we deal with the case =t € N.. In this
case we may use the iterated outer coproduct identity

A, = (1d @ A2)Asy = (Id © A5y, @ sy,
=0 ® (A(t_2)3)‘<2)) = =8 @ Sag, ® B8y, (4-1)

with A®@ = A, AW = 1d, A® = ¢ and some relabelling has been applied to the iterated
outer product Sweedler indices. Then using outer produttiptication ¢ — 1 times one finds

salt su(X)] = sa[su(X) + 5, (X) + -+ + 5,(X)]
=S\ [SV(X)] X2 [SV(X)] TS [S,,(X)] . (4-2)

Example 4.2

s@[25¢)] = selse) + 5@ = selse)l +solse)] solse] + selse)
= (@) +522) + (s + 531) + 522) + (s) + 522)
= 38(4) + 53,1 + 38(272) ;
s (25@)] = saplse) + 5@l = sanlsel +solsel solse)l + sanlse)
= 5@y + (S@ + 56y +522) T 56
= Su) + 38(371) + S(2,2) -
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Alternatively, we may use the inner coproduct identity = s, ® sy, to obtain

salt s,(X)] = sxy[t] s Z I Splt] sl (X)]
= Z gy, dim,(t) s,[s.]( Z b (1) sulsu] (X)), (4-3)
Pyt
where
=> g, dim,(t). (4-4)
p
Example 4.3
5(2)[28()] = dim(g)(2) s2)[s2)] + dima1)(2) s,1)[5(2)]
=3(s@) +522) + (@) + 5@
= 35(4) +53,1) T 35(2,2) 3
8(1’1)[28(2)] = dim(l,l)(Q) 8(2) [S(Q)] + dim(g)(Z) 8(1’1)[8(2)] 3
=1, (5@ + S22)) + 35,1
= 8(4) + 38(3,1) + 5(2’2) s
as before. -

In the special case = (1), for which s, (X) = X, (4-3) gives
= Z g;\’ﬂ dim, () s,(X Z b’\ ) su(X). (4-5)
Pt

Example 4.4
8(2) [2 X] = dim(g)(Z) S(Q)(X) + dim(171)(2) 8(171)(X)
= 352)(X) + 50,1 (X);

sa,n[2 X] = dimg 1)(2) s2)(X) + dim2)(2) s(1,1)(X)

= 5(2) (X) + 38(171)(X) . -

4.2. Benchmarking replicated plethysm calculations. The above shows that we may use ei-
ther iterated outer coproducts, or a single inner coprodugmented by a dimensionality for-
mula, to evaluate replicated plethysms. Although the alexamples might suggest that these
two methods are comparable in complexity, this is far fronmipehe case. The iteration may
be very tedious, with the second method much more effici¢neaat for sufficiently large. .
Symbolic computations show a dramatic increase of speedviem modestly large: (greater
than 10). The relevant algorithm is given in the form of comeppseudo code in Appendix C.
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We have investigated this process via the use of both Mapig tise Schur Fkt package [1]
and the open source softweB€HUR [36]. In arbitrary time units we can compare the computa-
tion of the plethysms as shown in Table 1. Both algorithms meleeof Maple remember tables,

TABLE 1. Timing of the iterated and directly evaluated plethysmgin - s 1)

usingSchur Fkt . (Note that figures are obscured by Maple’s garbage cadiecti
and not as accurate as shown)

multiplicity recursive direct

n=1 0.01 0.02
n=10 0.08 0.02
n=100 0.89 0.01
n=1000 7.32 0.01
n=10000 — 0.01

so a plethysm is never computed twice. It is clear that thersethod isO(1) with respect

to n, while the first one increases rapidly. Maple fails to do tieeation forn = 10000. Very
similar results can be obtained by usiBGHUR, but the inner coproduct case has to be carried
out in two stages in order to insert the dimensionality fescappropriately.

4.3. a-plethysms and «-Schur functions. Since the coefﬁcientéﬁ(t) are polynomials irt,

the formulae (4-3) and (4-5) may be extended so as to defipethysms andv-Schur functions
by means of the formulae

salasy (X)) = ) b(a) sufsu](X) (4-6)
and
s\l X] =) (@) s,(X), (4-7)
where
() =Y gy, dim,(a). (4-8)

The symmetric functionss,[aX| are precisely those that were introduced and studied by
Baker [2] as replicated Schur functions, and independengtBrinti [4] asq-analogues of Schur
functions. Our notation is such that[a X] is identical to Baker'ss (z(®)) and Brenti'ss,[z],
under the identificationg = X andq = «.
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The case of replicated and-power sum functions is even easier. Singg¢X) = z} + 24 +
.-+, it follows immediately that for any, n € N we have

Pt X)=p(X+ X+ +X)=t(2] +a5+-) =t p.(X), (4-9)
so that, replacingX’ by Y = p,(X), we have
Pr(tpu(X)) =t pulpu(X)] . (4-10)

The multiplicative nature op, = py, px, - - - Phiay o where/(\) is the number of non-zero parts
of A, is then such that:

palt X] = ™ pr(X); (4-11)
At pu(X)] =t palpu(X)] (4-12)
Once again we are at liberty to extend the domain tf give, as a matter of definition:
paX] = a'™ pA(X); (4-13)
pAlapu(X)] = o™ palp,(X)]. (4-14)

The first of these is really the starting point in Brenti’'s depenent of g -analogues of symmetric
functions, and both Baker [2] and Brenti [4] have pointed oat the Jack symmetric functions
Jmy(X;a™t) can be expressed in the form

n!

J(n) (X7 a_l) = J s(n) [a X] ’ (4-15)
which specialize to zonal symmetric functions for= 2.

4.4. Orthogonality properties of «-Schur functions. We may use the Schur-Hall scalar prod-
uct to extract from (4-7) the formula

bu(@) = {5,(X), sxla X])acx)
= XX (po(X), pr(@ X)) acx)

=Y i " pe(X), pr(X) ) acx)
- Z Xé—L Xi O/(T) Z;l 60,7’ = Z 2;1 XZL Xg O/(U) ) (4_16)

where use has been made of (2-3) and (4-13).
With this determination of the coefficients(«) we can establish the following result due to
Baker [2] and Brenti [4]:

Theorem 4.5 For all non-zeroo
(sulaX), sx(ofl X))ax)y = Oun- (4-17)
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Proof:

(su(aX), sx(BX) )acx)
= Z Xg Xi <p0(04X> ) pT(ﬂX) >A(X)

_Z Xo' X'r 0)63(7')<p0(X)’p7_(X)>
= Z Xe X2 a3 s, =3 2 X X (aB) )

o

Hence, takings = 1/a we have the Baker-Brenti orthogonality condition

(su(@X), sx(@ X))a) =D 2 XaXo = Gunr-

g

U
Now consider the following technical result.
Lemma 4.6 For any positive integer. and any partitions’ and p of the same weight
Z Xp 0,7, Cor,( (4'18)
O,
where the sum is ovet + 1 partitionsu, o, 7,...,C. [

Proof: Consider

pp(X,Y,...,Z):Z Xb s (XY, Z)
Z Xp Cor..c 50(X) 82(Y) - 5¢(2)

yO,\ T

where the coproduciA has been appliedh — 1 times. If we now apply the multiplication
operatorn — 1 times, thatiswe sek =Y = -.- = Z and take outer products, we obtain

(X, X, ..., X) =p,(nX) =n"? p,(X)=n" Z X su(X

Z Xp UT...,C O'T..., SV(X)‘

4,0, T,

Comparing the coefficients of,(X) and using (4-18) proves the Lemma. O
This Lemma allows us to prove the following more general @gtimality theorem:
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Theorem 4.7 [2] For n alphabetsX,Y, ..., 7, let

SAXY ., 2) =D b(l/n) su(X)Y,... Z). (4-19)
I
Then
<§,\(X, Y, ey Z) y S,,(X,K ey Z) >A(X)®A(Y)®~~-®A(Z) = 5)\71, . (4-20)
| |
Proof:

(5A(X)Y, ..., Z), 5,(X,Y, ..., Z) )A(x)eA(Y)2--0A(Z)
= bau(1/n) (su(X, Y, . Z), 5,(X)Y, . Z) ) ax)oa(y)e-—eA2)
I

= Z bau(1/n) Z CZ,T ..... ¢ CZ,G...,qb Oo 070 =+ Oce
u . .

= Z O D I WA .

- Z L X

= 5%1,.

5. SERIES PLETHYSMS AND CHARACTER GENERATING FUNCTIONS

5.1. Series defined by plethysmsGiven
Mt X) =J[—ta) Z t* 500 (X (5-1)

new Schur function series may be generated frofy; X) by means of the plethysm operation,
as explained elsewhere [11]. For each fixed partittoone merely replaceX by Y = s,(X)
to give

Mo (t; X) = M(t; [s7])(X) = M(#; s-(X))

=MEY) =[] -ty Z t* s (5-2)

j>1
where the product is taken over all monomiglsof s, (X ). Slmllarly, from

[e.e]

Lt X) = [J(1 = ta) =D (—D)F* 500 (X), (5-3)

i>1 k=0
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one obtains

La(t; X) = L(t; [52])(X) = L(; 5x(X))

— L) =[] (1 - ty) =

Jj=1

WE

(=1)"" s [sx)(X) - (5-4)

il

0

5.2. Character generating functions and theM,. and L, series. The Cauchy kerneM (X 7)
serves as a generating function for character§ 6fn) in the sense that

MXZ) =] —ziz)™ =) s\(X) sa(2), (5-5)

1,7 A

where s, (X) is the character of the irreducible representafigh,,, of highest weight\ eval-
uated at group elements whose eigenvalues are the elenieits As pointed out earlier this
implies, and is implied by

S (X) = [sA(2)(M(XZ)) = (sx(2) | M(X Z) )az) (5-6)

where[s,](---) denotes the coefficient ofy(Z) in (---).
Now we are in a position to determine the analogous generéiinctions for certain formal

characterss(f) (X), of subgroupsH,.(n) of GL(n) introduced elsewhere [11] by exploiting the
mutually inverse seried/, = M|s,| and L, = L[s,|. To be more precise, we let

SU(X) = Ly (X) (2 (X)) (5-7)
The generating function for these characters may then beifasa follows:
X)) = Ly(X) (s3(X) = Lz (X) ([sx(2)] M(X 2))
= [s2(2)] Lz (X) (M(XZ)). (5-8)
It then follows from (2-16) that
S(X) = [57(2)] Le(2) M(X2Z), (5-9)
and hence

L(Z)M(XZ) =Y s\7(X) sx(2). (5-10)

Example 5.8
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[T (1= ziziz) JJA =2z =D sP(X) sa(2);

i<j<k iJ A
[T =222 J] = zzma)? [JQ—ziz) ™ = s8V(X) sa(2);
1#£j i<j<k ,J
H (1—zizj2) H — x2;)" Z EN 13) (Z).
i<j<k ,J

|
In the first two casess(f)(X ) and 3&12) (X), with the appropriate specification &f , are noth-
ing other than the irreducible orthogonal and symplectaugrcharacters, variously denoted by
ox(X) = [N(X) and spy(X) = (\)(X), respectively [25, 3]. In the remaining caseg,)(X)
sV (X) and s (X), again with appropriate specifications &f, are formal, not necessarily
irreducible, characters of the subgroufig(n), H»(n) and Hys(n) of GL(n) that leave invari-
ant cubic forms of symmetry specified by the partitid$, (21) and (1%), respectively [11].

6. VERTEX OPERATORS

6.1. Vertex operators associated with formal characters.Let X be the underlying alphabet
of all our Schur functions and Schur function series unlébsravise indicated, withX itself
suppressed unless it is necessary to exhibit it. In addiéblf = (2, 29, ..., 2), and for any
partition \ of length £(\) < let Z* = 2" 22 ... 2 and let[Z*](---) be the coefficient of
Z*in (---). Forany non-zera let 7 = 1/z. Then the vertex operatdr(z) is defined by

V(z) = M(z)L*-(2). (6-1)

If phrased in the language of symmetric functions, see fangde [29, Ex.29 p.95] and [6],
vertex operators are also sometimes called Bernstein vepesators, or simply Bernstein op-
erators, a name coined by Zelevinsky [37, p.69]. The follmniormula is well-known [29, 3]:

Proposition 6.9 Let A = (A, Ao, ..., A;) be a partition of lengtt{(\) < . Then

sy =12 V(2) V() - V(z)-1. (6-2)
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Proof: One way to see this is as follows:

[ZMV(2) V(z) --- V(z) -1
= [Z*] M(21) L* () M(2) LH(Z) -+ M(2) L (7) -1. (6-3)

However, since the outer coproduct bfis just AL = L ® L, we have
L*(2) (M(w) G) = (M(w)/L(z)) (G/L(2)) (6-4)
for any G, w and non-zero:, while
M(w)/L(Z) = M(w)/(so — Zs1) = M(w) — Zw M (w). (6-5)
Noting that L+ (z) - 1 = 1 for all non-zeroz, this implies that
(22 V() V(z) - V(a) -1
=227 JI (G =zz)M(z) M(z) - M(2)

1<i<j<l
=27 ] (5 —2) M(2) = s\ M(2), (6-6)
1<i<j<l
whereé = (n —1,...,1,0) and use has been made of the fact that

sy = ZA—HS /H

1<j

while M (z,) M(zs) --- M(z) = M(Z). Restoring theX dependence for the moment,

n 1
=[III -z =) sx(X) sa(2), (6-7)
i=1 j=1 A
so that[s)(Z)]| M (X Z) = s,(X). That is to say, without the explicik -dependence, we have
[sx(Z)] M(Z) = sy, as required to complete the proof of (6-2). O

In order to generalise Proposition 6.9 to the characbéff% for arbitrary partitionsr, it is
helpful to first establish

Lemma 6.1Q For all w, =z and all partitionsr of weight |x| =p > 1,

Ly(w) M(2) = (1= w2" 6, ) M(2) [ [ Lajpy(w?*) L (w), (6-8)

where the product over is absent ifp = 1, that is to say ifr = (1). ]
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Proof: For arbitraryG,

Ly (w) (M(2) G) = (M(2) G) / Lx(w)
= M(2)/(Lz(w))a) G/(Lx(w))e) (6-9)
where, in Sweedler notation,
ALz(w) = (Lx(w)) 1) @ (Lr(w))2) - (6-10)

More explicitly, in terms of Littlewood-Richardson coefgits,

ALz(w) = (Lz(w) H H Z w)PEPN 56 .00 l5e] ® Spemer[si]
0#£&,n#m c=1 p(&,n,c)
= (La(w)) (1) ® (Lx(w))2) - (6-11)

However, sinceM (z) = >, ~o S@m) 2™, We have

[ ZEM(z) if A= (k) with k > 0;
M{(z)/sx = { 0 otherwise (6-12)
Moreover, for any partitiong and ¢, the plethysms,[s,] is such that
™k M if p = (r) and¢ = (k) with r, k > 0;
ME(lse) ={ 7 Gn s b ande = (Wwii k> 6-13)
It follows first from this that
M (2)/La(w) = > (=w)"M(2)/(s1r[sz]) = (1 = w 2" 6 ) M(2) . (6-14)

r>0

Then in evaluating all other contributions of the fot(z) /(L. (w)))), With (L. (w))() iden-
tified as in (6-11), the domain &f may be restricted to one-part partitiof¥s) with 0 < k& < p,
for which all non-zerocf,, , are equal tol, so thatc = 1. In addition all p(¢,n,c) may be
restricted to partitions of the fornv), with p(§,n,¢)’ = (1"). If for fixed = we let m(k) be

such thats, g = 3" s, .m) foreachk =1,2,...,p— 1, then

(k)

Ly(w) (M(2)G) = ) (M(z)/ Seriem) 53] ))

=1

”?
L

=N
£
3
=
>
Il
—_

—1m

bS]

EA

S(lr(k m)) [Sn(k m)] ) )

>
—
3
ﬂ‘
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Then from (6-13) it follows that

p—1 m(k)
Li(w)(M(2)G)= Y ( T M (2) )/ Le(w) )
r(k,m) k=1 m=1
p—1 m(k)
(G/(La(w) TT TT (=) ™™ surtamy) [snkam) )

r(k,m)
p—1 m(k)
(G/(Lﬂ(w) (_w)r(k,m) Skr(km) 3(1r(k7m))[5n(k7m)] ) ) '
k=1 m=1
(6-15)
Hence
p—1 m(k)
Lo (w)(M(2)G) = (M(2)/La(w) ) (G/(Ln(w) Lnemy(wz") )
k=1 m=1
= (M(2)/La(w)) (G/(La(w) || Lajay(wz"))). (6-16)
k=1
From (6-14) it follows that for allz
Li(w) (M(2)G) = (1= w2" by ) M(2) (G/(La(w) [ Lajwy(wz*))), — (6-17)
k=1
which implies the validity of (6-8). O

This Lemma leads immediately to the following generalmaif Proposition 6.9

Proposition 6.1 Let A = (A, A2,...,\;) be a partition of length/(\) < [, and letw be a
partition of weight|x| = p > 1. Then

ST = [ZM V() VT (29) - VT (2) - 1, (6-18)
where
V7T(2) = (1 = 2" r ) M(2) LH(z71) H L#/(k)(zk) : (6-19)
k=1
| |

Proof: Proceeding as in the proof of Proposition 6.9, one can ma&efithe fact that

L) (1 = w” br ) M(w) G) = LH(2) ((M(w)/Lz) G)
= M(w)/(Lz L(Z) (G/L(Z)) = (1 —wZ) (M(w)/Lz) (G/L(Z))
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= (1= w2) (1 = w?or ) M(w) (G/L(Z)), (6-20)
forany G, w and non-zero:, to show that
(Z2 VT (21) VT (22) - V() - 1

!
=[2*] H (1—7%z) H (1= 2} 6z p
k=1

1<i<j<l
p—1 p—1
M(z1) H Lyyay(20) - M(z2) H Lyya(2) - 1
iy Pty

l

=127 JI Gi—=) [T~ 26w

1<i<j<l k=1
p—1

p—1
M (z1) H Ly (21) -+ M(z) H Ly (2) -1
k1

=[] JJ

k=1

p—1 p—1
M (z1) H L#/(k)(zf) - M(z) H L#/(k)(zzk)
k=1 k=1

= [sa] Ly M(z1) -+ M(2) -1 = [s3] Ly (M(Z)) = 53, (6-21)
as required, where the first step in the last line involvesigeeof (6-8) extended iteratively, and
the final step is a consequence of (5-8). O

6.2. Vertex operators in exponential form. Given
M(zX) =[] -zz)", (6-22)
i>1
it follows that

2 33
In M(z; X) Zln (1—zx;) —Z(zxi—i—(Z%) +(Z$l> +--)

: 2 3
i>1 1>1
2* 23 2*
:Zp1(X)+EP2(X)+§P3(X)+'“2; ?pk:(X)- (6-23)
Hence
Zk
M . — - . -
(2 X) = exp <Z - pk<X>> (6-24)
E>1
It follows that for any partitionr
Zk Zk Zk
I M(2X) =37 oY) =D T ulsa(X)] = Y = salpe(X)

E>1 k>1 k>1
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= % (Z Zipx;r pp[pk(X)]> => % (Z Z%)XZ Pkp(X)) , (6-25)

where we have used the identitigg]s,(X)] = s-[pr(X)] and p,[pr(X)] = px(X) that apply
forall 7, k, r and X, and the notatiorkp = (kp1, kps,...) if p= (p1,p2,...).

Example 6.12 Suppressing th&X' dependence
In Mey(z) =D (i) 2 /k;

k>1

lnM(g)(Z):Z ( (kk)—i-pzk)) /2/{3

k>1

In M 1)(2) = Z (p(k,k) — P(2k) ) zk/Qk:;

k>1

In M3)(2) = Z (Do) + 3P@kk) + 2DG0) ) 2 F/6k;

k>1

In Mz1)(2) = Z (p(k,k,k:) Sk)) /3]C

E>1
In Mq1,1)(2) = Z (PGt k) — 3PEkk) + 2Dk ) 2 ¥ /6k . (6-26)
k>1
|
Since
L(zX) =[]0 - z2:) = 1/M( X), (6-27)
i>1
it follows that
k
z
1 . — _ . — _ - -
nL(zX)=—InMz; Z) > (X)), (6-28)
E>1
and more generally
P 1 .
InLn(zX) = —InM(2;2) = =) o (Z % pkp(X)> . (6-29)
k>1 P
Then, if we recall that for all positive integeks[29, p.76],
0
LX) =k—nun, 6-30

we are in a position to see that

Lt (2 X) = Ly( —exp< > e ) , (6-31)

k>1
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while, exploiting the data of Example 6.12, we have:

E o 0? 0
Ly (2 X) = - g (— + ) ;
(2)(2 ) = exp ( ; z 2 Ope(X)2 " Opar(X)

I k02 0
L(lz)(Z,X) = exp (— ; ok (5 () — ap%(X))) ) (6-32)
Proposition 6.11 implies:

VO(2) = (1= 2) M(2) L (z71);
VO(2) = (1-2%) M(z) L( ) Ly (2);
VI9(z) = M(2) L (=71 L) (2)
VO(2) = (1-2°) M(2) L( ‘1)L2>(z> Ly ()
V() = M(2) L (27) Ligy(2) Lz (2) Ly ()5
V() = M(2) L* (= —1>L<12)< 2). (6-33)

The results (6-31) and (6-32) are then sufficient for us taesgpthe vertex operators of (6-33)
in exponential form as follows:

V() = (1-2) exp (Z Z—;pk> exp (— P i) ;

k>1 E>1

V(2) =1 - 2% exp (Z %pk> exp (— Z(z*k + zk)i) ;

0
E>1 E>1 Pk

(52 Yo (2

E>1 E>1 Opi

VO() = (1- %) exp (Z zp)

k>1
0 kzF 0? 0
ex — 27k 4 % + + 2k ) ;
p( ,; (( )5‘pk 2 Op; Opar,
Ve = exp (3 2 pe ) oo (-3 ((z—uz%) O | oot ‘3’—) -
k>1 e k>1 Opk Ip;, 7
k k92
(13) _ Z_ . _k 8 kz a Lk a 34
VE(z) = exp (; ’ pk> exp( ; (z r + 2 Oyt z oo . (6-34)

where once again the explicit dependenceXrhas been omitted.
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The first result expresses the fact thdt) (z) = (1—2) V(z) . Atfirst sight this appears rather
surprising, but it should be noted that it yields

Sg\l) = [Z)‘] V(l) (21) V(l) (22) to V(l) (Zl) -1

Hl—zz DV(z) - V(z)-1

l
7)) T] = =) . (6-35)
=1

Implicit in this is the dependence on an arbitrary alphal¥et= (z;,xs,...). Making this
explicit gives

sVX 2)] T](1 — z) M(XZ) = [sx(2)] L(Z) M(XZ)

=1

= [sx(2)] L(X) (M(XZ)) = [sx(Z)] L(X) (Z su(X) SM(Z)>

= LH(X) (sx(X)) = Ly (5a(X) | (6-36)

as required by the definition (5-7) of such a character.

The next two results in (6-34) have been derived by Baker [B]gudifferent techniques in-
volving rather more traditional operator reordering metthan what follows next, this operator
ordering approach is outlined and is used, by way of examplescover the formula foi/ (2!
as given in (6-34). However, it is clear that our Propositohl allows further vertex operators
V™ specified by partitionsr of weight higher thars to be written down rather easily.

6.3. Vertex operators via normal ordering. The expressioné(w; X)(M (X Z)) can be eval-
uated rather easily using (2-16), or more explicitly for gmyen 7= as in Appendix A. However,
from the point of view of operator ordering the more genexakessions. (w; X)M (X Z) are
not in so-called normal-ordered form since they involveangntials of various partial deriva-
tives with respect to power sum symmetric functions stagptirthe left of other exponentials of
power sum symmetric functions.

Algebraically, if we introduce operator& and P such thate® = L (w;X) ande? =
M(XZ), the normal ordering problem can be tackled using the fotigvfiormula:

KP:€P(€PKP)

Ko K eP) = oF oK + [K.P) + 3[[K.PL.P] + Gl[K.PLPLP] + - (6-37)

Even though we suspect the formula used in making the sedepdnzay be well known as
an adjoint action result in the theory of Lie groups and tladgebras, we have been unable to
locate a statement or proof of this result. We thereforechttastrictly combinatorial proof in
Appendix B.
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In our case, K symbolises the partial derivative operator of degge¢hat is defined by
L (w; X) = exp K with p = |x|, and P is the usual infinite sum of power sum symmetric
functions appearing as the exponent in the formul@X 7) = exp P. One must retain terms
up to those involvingl /p! in the expansion of the exponent that appears in (6-37) ierax
extract all scalar and differential contributions arisfrgm the reordering. Note that none of the
surviving terms in the exponent of the final term will contaymmetric functions in the alphabet
X, but only scalars and partial derivatives that all mutuatiynmute. This enables this term to
be written as a product of exponentials, each with a singlé+oommutator argument.

As an illustration of this method, we deal with the case- (21) for which p = 3. For ease
of writing, we suppress the alphab&t and abbreviaté)/0p,(X) as o, for all positive integers
k. In this case

k

Mo1)(w) = exp (Z ;Uk( Pak + pk)> ; Lor)(w) = exp <Z ;Uk (s — pk)) ;

k>1 k>1

Lél)(w) = exp (Z w" (Osp, — %k%)};’)) ; M(Z) = exp (Z W) . (6-38)

k>1 m>1

ThisgivesK = ., w" (95 — 3k*03) and P = Y, | pm - pm(Z)/m.. We calculate directly

1
[83]67 ] 3k p3k<Z>
[k*0}, P] = 3k pp(Z) 03;
[[K20;, P], P] = 6 pp(Z)? Oh;
(202, P), P} P] = 2 pu(2)° (6-39
Hence
(K, P =Y w* (SikpSk(Z> kpr(Z) 82) : (6-40)

which clearly commutes withi{' as claimed. Moreover,

K+ K, P+ %[[K, PP+ é[[[K, PP, Pl

=> wh ( (psk(Z) — pk(Z)3)+83k—p2(2)ak—kpk(2)a,§—%k?@,ﬁ). (6-41)

k>1
It follows that

Lé1)<w)M(Z):M(Z)L(21)w Z) exp( Zw pk ) Ok + kpi(Z )&k)) 21)( w).

(6-42)
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There are a number of special cases of this normal orderedifarthat are of interest. First,
acting on1, or any other scalar, this gives

L(21)( w)M(Z)-1= M(Z) L(zl)(w; Z)-1 (6-43)

in agreement with the identity (2-16).
Second, restricting to the one letter alphabet gives

pr(z) = 2F por(2) = 22k and pae(2) — pr(2)® = 23k — (z"c)3 =0, (6-44)

forall k£ > 1, sothatL(z) = 1, and (6-42) reduces to
L(21 (w) M(z) = ) exp ( Zw E 0, + k2F 8k)> (21 (w) (6-45)
k>1

This is nothing other than an illustrative example of Lemni&ince the identity
1 1
22k 9 + k2F 8,3 = (51{:2’“ 0,3 + zka%) + (Ekzk 8,3 — zkagk) + 22k 9, (6-46)

enables (6-45) to be rewritten in the form

Loy (w) M(2) = M(2) Ly (w2) Lﬁ%(wZ) Ly (=) Ly (w)
(2) D Ligiyy(wz") Ligyy (w), (6-47)
k=1

where use has been made of (6-31) and (6-32).
In addition, it follows from (6-45) that if we now set = 1 and Z = (21, z»,..., %) once
again and reverse the sequence of steps used in (6-21) we obta

s = [sa] Ly M(Z) - 1= [ZN VO (2) VB (25) - V(2 - 1, (6-48)
with

V) (2) = M(2) exp (‘ Z (2% O + k2" 6,3))

k>1
2" _
= exp (Z ?pk> exp (— Z ((—= M 22K 0 + k2 8,%)) , (6-49)
k>1 k>1

precisely as in (6-34).
The other results of (6-34) may be obtained in the same way.
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7. REPLICATED VERTEX OPERATORS

Since their introduction in string theory, vertex operatbave played a fruitful role in math-
ematical constructions of group representations as wetbasbinatorial objects. We cite for
example applications to affine Lie algebras [24, 13], quan&ffine algebras [12] and sporadic
discrete groups [14], see also [22, Chapter 14]. Variatianshe theme of symmetric func-
tions [29] are applications t@) -functions [19, 32], Hall-Littlewood functions [20], Maodald
functions [28, 29, 21, 9], Jack functions [6] and Kerov synmedunctions [2, Chapter 6].

As a modest approach to generalising the vertex operat@saiion 6, the observations made
in Section 4 allow us to write down immediately expressiomsréplicated or parameterized
vertex operators. In the simplest case, this is exemplifjed b

Vo(2) = M(az) L (az™)
=exp | « Z —pk> exp (—a Z -k ) (7-1)
( k>1 k>1 apk
for any «, integer, rational, real or complex. Here, making the usieglendence oX quite
explicit,

M(az; X) = M(z; X)* = H(l —zx;)

i>1

= Z So(az) s5(X
=Y ZFldim, (@) s,(X), (7-2)

while
Llaz ™ X) = L(z"5 X)> = H(l — 2ty

= Z ITl 1) S (X)
= Z “IMldim, (@) s (X)), (7-3)

as given firstin [16].
More generally, we can define in a similar way:

VI (2) = (1 — 2P 8p )" M(az) L (az™ H Lt (7-4)
where each term on the right has an expansion of the type shbawe involving sums over
partitions o, 7, . ... Still more variations may be constructed in which & on the right are
not all identical. It should be stressed that the normal mnderelations for products of such
vertex operators are very much more complicated than thussuatered in Section 6.
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8. CONCLUSION

This work allows us to conclude that Littlewood’s attemptievelop character theory alge-
braically, instead of using a group manifold integratiopm@ach, leads much further than ex-
pected. In particular, it allows us to obtain generatingctions for formal characters of a range
of subgroupsH,. of the general linear group, well beyond the classical gtmal and symplec-
tic subgroups. Furthermore, we see that the algebraic appmoes not suffer from the infinities
encountered using analytic methods. Instead, the algelfaities are just those associated
with readily manipulated infinite series of Schur functioAdurther advantage of this approach
is that the results of these manipulations take very confpauis if carried out in Hopf algebraic
terms, as illustrated in the proof of Proposition 6.11, bywalLemma 6.10, that was based on
a knowledge of the coproduct of an infinite Schur functioneseWhile the explicit exponential
form of vertex operators cannot easily yield such genemllts, it can be used to express the
algebraic results in a physically more desirable form, aseified in (6-34). Moreover, thanks
to the plethystic approach to replication and parameteoizathese exponential forms can be
readily generalized, while still remaining susceptibl@atbual (machine) calculations.

Moreover we have shown in Table 1 that the use of inner comtscand the dimension map
can dramatically speed up the computation of plethysmss dpproach has two major benefits.
It allows us i) to compute plethysms with large multipliesi for examples,[n s,] for large
integersn, and ii) to extend plethysms to those involving an arguménctiwvneed not be integral,
but can be in a ring extension, and evaluate them. This ogensvay for dealing withg-
deformations, as introduced by Jarvis and Yung [16], Bakpaf2l Brenti [4], who considered
plethysms of the forms,[q s.)], which correspond to scalings. In Appendix C we provide
pseudo code to implement an algorithm for their evaluation.

An extension of algebraic and operator methods in combiiztsettings, which we have
not pursued in the present work, invokes the fermion-bosmmnespondence (see for exam-
ple [33, 8, 18]). In the present case, our explicit vertexrafme constructions for the formal
H, characterSS(;) can be expected to have their equivalents in terms of fremides, and
hence via Wick’s theorem, to be amenable to determinantdliations [17]. The resulting de-
terminantal expressions can be expected to be helpful intackaon the notorious problem of
determining the modification rules fat,, characters involving a finite alphabet [11]. We leave
further developments along these lines to future work.
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APPENDIXA. AN EXPLICIT EXPRESSION FORL: (w) (M(Z))

Proposition A.13 For any partition7, any w and any alphabef = (z1, 2o, . ..
positive integer,

,z1) with [ a

Lyw)(M(2))= ]I (—-wz"s®)M(2), (A-1)

TeT™|l]

where the product is taken over all tableai, in the set,7"[l], of all semistandard or column-
strict tableaux [29] with entries taken from the ddt 2,...,[}. For each tablead’ its weight
is defined to bewgt(7) = (#1,#2,...,#1)), with #k the number of entries: in T for
k=1,2,...,1. [

Proof: The proof is by induction with respect o, the weight ofr .
Forp =1 we haver = (1) and L, = L(;) = L sothat

Liyy(w) (M(2)) = L (w) (M (1) M (22) - - M(Zz))
= M(z1)/L(w) M(z1)/L(w) - -+ M(z)/L(w)
=(l—-wz)l—-wz) - (1 —wz) M(z) M(29) -+ M(z)
= [JU-wz)M2z) = ] (-wzve)M(Z), (A-2)

1<i<l TeTO][]

since each semistandard tableau of shape (1) consists of a single box whose entry is to be
taken from{1,2,...,{}. This proves the required result in the case 1.
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Now we assume the result to be true for all partitiong/ith weight || < p. Then by means
of the coproduct argument used in the proof of Lemma 6.10 we ha

Ly (w) (M(Z)) = L (w) (M(21) -+ M(22) M(21))
p—1 m(k)
= (M(21)/La(w)) (M(Z))(La(w) [T T] Logmy(w2))),  (A-3)
k=1 m=1
whereZ’' = (z1,29,...,2-1).
Consider the first factob/ (z;) / L. (w) . The use of (6-14) implies that/ (z;) /L, (w) = M(z)
unlessm = (p) in which case one obtains

M(2)/Lgy(w) = (1 —w2?) M(z) = (1 —wz"*") M(z), (A-4)

whereT is the single semistandard tableau of one-rowed sliap&hose entries are all.
Turning to the second factor involving/ (Z') , by the induction hypothesis

M(Z)/Lygmy(wzf) =[] (—wzf 27=0) M(Z). (A-5)

T’ ETU(kmz) [l—l]

It remains to take the product over &ll=1,2,...,p—1 andm = 1,2,...,m(k), but thisis a
product over all shapesg(k, m) that are obtained by the removal of a horizontal strip [29] pf
k-boxes from the shape of. For each semistandard table@l of shapen(k, m) with entries
from {1,2,...,1 — 1}, if we then fill the £ boxes of the horizontal strip witlk entries! we
obtain a semistandard tableduof shaper with entries from{1,2,...,(}. All semistandard
tableaux' of shaper containing at least oneand no more thap—1 entries/ can be obtained
in this way.
Combining this with our earlier result on the first factor, irep that

m(k)
II L, knl1uzl )))
k=1 m=1

=M(z) J] Q—wz" ") (M(Z)/Lo(w)), (A-6)

TeT (I,

M(Z)/Lx(w) = (M(2)/ L)

p 1
1

where the subscript on [/] is intended to indicate that the product is taken over abé&wemis-
tandard tableauf” of shaper containing at least one entiy

By applying the same process o/ (Z’)/L,(w), one obtains factors corresponding to all
semistandard” of shaper containing no entry but at least one entry— 1. Continuing with
this iteration procedure one obtains the result

M(Z)/Le(w) = [[ (1 —wZ"D) M(z) M(z1) -+ M(z1), (A7)

TeT™|l]

thereby completing the proof of (A-1). O
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It should be noted that, as one possible definition of Schuetfans,

so(Z) =Y zvh, (A-8)

TeT™ ]

since the monomials in the expansiongfZ) are precisely the varioug “¢"(") specified by
all the semistandard tableadx appearing in7 *[] . Then, thanks to the plethystic definition of
L.(w; Z), (A-1) immediately implies the validity of:

Corollary A.14:

L (w) (M(2)) = Lo(w; 2)M(Z). (A-9)

Once itis recalled that the dependenceXrhas been omitted, this can be seen to be nothing
other than an exemplification of the more general resuligRassociated with the Cauchy kernel.

APPENDIXB. PROOF OF ADJOINT ACTION IDENTITY

Theorem B.15 Let x and y be arbitrary elements of a rin§ with identity 1 but which is in
general non-commutative. Then

1
exp(x) eXp(y) exp(—x) = exXp (Z ﬁ[xv Tty [$7 [1‘7 y“ o ]) ) (B'l)
n=0
where the displayed commutatpr, - - - |, [z, [z,y]] - - -] is of degreen in z. ]

Proof: Forall x € R the mutully inverse functionsxp andIn are defined by

exp(x) = Z % 2" and In(x) = Z % (x —1)™. (B-2)
k=0 "

m=1

Now let exp(z) exp(y) exp(—z) = exp(z) so thatz = In(exp(z) exp(y) exp(—=z)). It follows
that

B o] (_1 m—1 Txpyqx’r‘ m
o7 Z m Z (=1) plglrl !

p,q,r>0

B i (_1)7”*1 Z 1y P ych "t 1y P2 QQQ$T2 1)7_m xpmy(Imme

pilqi!ry! a D2!qa!rs!
Disqis T Z O

pi+q +1; >0
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In this expansion as a signed sum of products of triples denshose contributions for which
a triple contains ngy that is to say a triple of the formiw?y°z") with p +7 =n > 0. For each
suchn, if we collect together all those terms that differ only i tvalues ofp and » their sum
contains the factor

I A 1 0
r=0
It follows that in (B-3) we need retain only those terms for@bhiy, > 0 forall K =1,2,...,m.

Now consider those terms for which there are two neighbgutiiples (- - - yz")(zPy - - -)
with » +p =n > 0. Then as before, for each sueh if we collect together all those terms that
differ only in the values ofp and r their sum contains once again the factor

- ,ot Tt 1 n
Z(—n s —(@—2)" =0, (B-5)
r=0
It follows that in (B-3) we need retain only those terms for @fhno two y’s are separated by
any z'’s.

This leaves only terms of the foraPy?z" , with ¢ > 0 andp,r > 0. As far as the constituent
triples are concerned the? and " must be attached to at least opeon their right and left,
respectively, since all triples consisting of jus®s have been eliminated. Thus the contribution
of the z’s is a fixed common factor, namely-1)"z*" /(plr!). Apart from this common factor
the contribution of all terms:Py%z" to z in (B-3) is given by

o] 1 m—1
ey

m=1 qi>0; q1+q2+-+qm=q

- (Y q
_Z m a ) Z B (Q1Q2---qm>

yQ1+q2+~~-+qm

Qe g

m=1 q;>0; q1+q2++qgm=q
b (—1)m=t g1 Y7 Y1

— — T m!S(g,m) == = g1 - B-6
mz:l m q! q l Z ) q! q,1 ( )

where s(m, 1) and S(g, m) are Stirling numbers of the first and second kind, respdgtive
It follows that the only surviving terms in (B-3) are those bétform xzPyx" with p,r > 0,
and each of these terms must constitute a single triple, with 1. Thus

= TS = e (e -7

p,r>0

To complete the proof of Theorem B.15 it only remain to proweftiilowing:
Lemma B.16 For all x andy and all non-negative integers

RN A RN SV () EES ®8)

T
r=0
where the commutator on the left is of degreen . [



32 BERTFRIED FAUSER, PETER D. JARVIS, AND RONALD C. KING

Proof: We offer a proof by induction with respect to. For n = 0 the right hand side of (B-8)
is just i, and this is how the left hand side must be interpreted inithis0 case. Perhaps more
significantly, forn = 1 the right hand side of (B-8) reducesig — yz = [z, y|, as required.

Now, for convenience, lefz(®), y| denote the commutatdr:, - - - , [z, [z,]] - - -] of degreek
for any positive integek: . Then assuming the validity of (B-8) in the case= k& we have

(2", y] = [z, [+, )]

r=0 r=0
"k k
:xk—&-ly_i_; (( . ) + ( o )) xk+1—ryxr+ (_1>k+1yxk+1
k+1
= Z(—l)r ( & 1— 1 ) oy (B-9)
r=0
This proves the required result far = k£ + 1 and completes the induction argument, thereby
proving Lemma B.16 and hence also Theorem B.15. O

APPENDIXC. A GENERAL ROUTINE TO COMPUTE SCALED PLETHYSMS

In this appendix we want to give pseudo code for an algorithraampute plethysms with
scaled arguments. Such an algorithm was implemented in devpackag&chur Fkt [1].
To the best knowledge of the authors no other computer adgalstem uses this fast algorithm,
So it seems appropriate to present this method here.

We assume that we have a basis, } of the ring of symmetric functiong\ (X)) in countably
many variables. We distinguish basis monomg&lsB, termsSy ml' and polynomialSy nFkt .
We need also types for the tensor product and call$iisBx B for tensor basis monomials and
SynFkt BxB for general tensor polynomials. We also assume that we capuite the following
functions for this basis:

e dim: A(X) x R — R the dimension function for vector spacgs having anG'L(«)

action fora € R. Such vector spaces need not be irreducible. We call this map
dim:: SynB, Ring -> R ng

o A:A(X)— A(X)® A(X) the outer coproduct. Due to self duality this is equivalent
to computing skew products. This function is called
Delta :: SynB -> Syn¥kt BxB.
The fast evaluation of outer coproducts is done using, famgle, the Lascoux-Sak
zenberger algorithm for skew Schur functions, see [23].
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e 0:A(X) — A(X) ® A(X) the inner coproduct. Due to self duality this is equivalent

to computing an inner product. This function is called
delta :: SynB -> Syn¥kt BxB.

The inner coproduct is computed from the Kronecker coefiisief inner products eval-

uated, for example in the Schur basis, by the method of Robif&4.

e We also assume that we can compute plethysms for basis malsdmj, } , choosing our

favorite method. This map is called
plethB :: SynmB, SynB -> SynFkt.

Good algorithms for plethysms in standard bases are ala{ab23].

Let us further assume, that a symmetric function (tensolgnmmonial is stored so that we can
access terms by a functidn st O Ter ns and that a term is a pair (triple) consisting of a
coefficientin R and a basis monomial ifu, } (a pair of basis monomials) which we can access
by functionsf i r st for the coefficient andecond (andt hi r d) for the basis monomial(s).

We know from the properties of plethysms displayed in (2-1&t the plethysm is linear in
the first argument but not linear in the second argument. &ikris hence to provide a procedure
for expanding with respect to a general symmetric functiothe second argument. This reads

as follows:

LISTING 1
I/l Declarations of predefined functions
SymFkt plethysmB (SymB, SymB);
SymFktBxB delta (SymB), Delta(SymB);
Ring dim (SymB, Ring);
I/l Declarations
SymFkt plethysmRight (SymB, SymFkt);
SymFkt plethysm (SymFkt, SymFkt);

Il Procedures
I/ right non-linear expansion
plethysmRight (sMon, sPoly)

SymB tyl; // local variables
SymT term , head;

SymFktBxB coProd;

SymFkt res;

List[SymFKkt] tail ;

List[SymFkiBxB] IstTerms;
if zero=second(sMon){ return (sMon); };
IstTerms := listOfTerms(sPoly);
if #lstTerms=1{
coProd := delta(sMon);//inner coproduct
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23 IstTerms := listOfTerms(coProd);

24 res = 0;

25 for term in IstTermsdo{

26 res = res +

27 dim(second(term), first (sPoly))

28 xplethysmB (third (term),sPoly);

29 }

30 return (res);

31 } else {

32 head := first(lstTerms);

33 tail := rest(lstTerms);

34 coProd := Delta(sMon);// outer coproduct
35 IstTerms := listOfTerms(coProd);

36 res = 0;

37 for term in IstTermsdo{

38 res := res +

39 first (termxplethysmRight(second(term), head)
40 xplethysmRight(third (term), tail);
41 }

42 return (res);

43 }

44

45 }

46

47 |1 left linearity
48 plethysm(sPlolyl, sPoly2)

49 SymT term;

50 SymFkt res :=0;

51 if sPolyl=0 or sPoly2=0 then{ return 0 };

52 for term in listOfTerms(sPolyl)do {

53 res = res +

54 first (termxplethysmRight(second(term),sPoly2);
55 }

56 return (res);

57 }

We end this Appendix by noting that many standard maps havethygtic interpretation
and hence are available via the above algorithm. Among thentha identity map Id seen as
plethysm withs(;) and the antipode maf seen as plethysms witf{—1)sy)).
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