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PLETHYSMS, REPLICATED SCHUR FUNCTIONS AND SERIES, WITH
APPLICATIONS TO VERTEX OPERATORS

BERTFRIED FAUSER, PETER D. JARVIS, AND RONALD C. KING

The characters of the orthogonal and symplectic groups havebeen found by Schur[34] and
Weyl[35] respectively. The method used is transcendental, and depends on integration over
the group manifold. These characters, however, may be obtained by purely algebraic meth-
ods, . . . . This algebraic method would seem to offer a better prospect of successful applica-
tion to other restricted groups than the method of group integration.

D.E. Littlewood, Phil. Trans. Roy. Soc. London, Ser. A, Vol 239, No 809, 1944, p.392

ABSTRACT. Specializations of Schur functions are exploited to defineand evaluate the Schur
functions sλ[αX] and plethysmssλ[αsν(X))] for any α - integer, real or complex. Plethysms
are then used to define pairs of mutually inverse infinite series of Schur functions,Mπ and Lπ ,
specified by arbitrary partitionsπ . These are used in turn to define and provide generating func-
tions for formal characters,s(π)

λ
, of certain groupsHπ , thereby extending known results for

orthogonal and symplectic group characters. Each of these formal characters is then given a ver-
tex operator realization, first in terms of the seriesM = M(0) and variousL⊥

σ dual to Lσ , and
then more explicitly in exponential form. Finally the replicated form of such vertex operators are
written down.

1. INTRODUCTION

The aim here is to exploit the Hopf algebra structure of the ring Λ(X) of symmetric functions
of the independent variables(x1, x2, . . .) , finite or countably infinite in number, that constitute
the alphabetX . An emphasis will be placed on the interconnections betweenthe various prod-
ucts and coproducts that apply to the Schur functionssλ(X) that form an integral basis ofΛ(X) .
These allow us to define certain replicated, rational or scaled plethysms that involve an argument
α in N , Q or R , respectively, or even toC or a sequence of such parameters.
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43A40.
Key words and phrases.plethysm, λ -rings, analytic continuation, algebraic combinatorics,group characters,

vertex operators, algebraic groups, replicated Schur functions.
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The first key result is that, for any alphabetX = (x1, x2, . . . ) and parameterα , and any
partitionsλ and ν , we have

sλ[αsν(X)] =
∑

µ,ρ

gλ
ρ,µ dimµ(α) sµ[sν(X)] , (1-1)

where the coefficientsgλ
ρ,µ are Kronecker coefficients associated with products of characters

of the symmetric groupSm with m = |λ| , the weight of the partitionλ , while dimµ(α) is the
polynomial inα that gives the dimension of the irreducible representationof GL(n) specified by
the partitionµ evaluated atn = α . The mapdim : Λ(X) −→ R is an algebra homomorphism
for any target ringR .

Following some notational preliminaries in Section 2, thisresult is obtained in Section 4
through the use of one of the specializations introduced in Section 3. Section 4 also contains some
examples of replicated plethysms and the computer benchmarking of their calculation, showing
that the formula (1-1) is very efficient. The relevant algorithm is relegated to Appendix C in the
form of appropriate computer pseudo code. In the special case ν = (1) for which sν(X) = X ,
the above plethysms coincide both with the replicated plethysms of Jarvis and Yung [15] and,
setting α = q , with the q -analogues of Schur functions introduced by Brenti [4]. Section 4
includes an account of their orthogonality properties as given by Baker [2] and Brenti [4] but
obtained here by exploiting the Schur-Hall scalar product for the ringΛ(X) .

The next result realizes Littlewood’s hope that an algebraic treatment of character theory
greatly generalizes the scope of the classical approach so as to encompass cases which are very
difficult to treat by analytical methods. This same scalar product, in the form of the Cauchy
identity, is then exploited in Section 5 to derive the character generating function

Lπ(Z) M(XZ) =
∑

λ

s
(π)
λ (X) sλ(Z) (1-2)

for formal characterss(π)
λ (X) of Hπ , each specified by a partitionλ , where Hπ is the sub-

group of the general linear group preserving an invariant form of symmetryπ , as introduced
elsewhere [11]. HereX = (x1, x2, . . . ) is to be evaluated at the sequence of eigenvalues
of group elements ofHπ . The notation is such thatM(XZ) =

∏

i,j≥1(1 − xizj)
−1 , while

Lπ(Z) = L[sπ(Z)] is an infinite Schur function series plethysm, withL(Y ) =
∏

k≥1(1 − yk)
for all Y , including the case for which the elementsyk of Y are the monomials ofsπ(Z) . In
this case, for an alphabetZ of cardinality l , the cardinality ofY is exactlydimπ(l) .

By exploiting the same seriesL , its inverseM and its dualL⊥ (i.e. its adjoint with respect
to the Schur-Hall scalar product), together with the Hopf algebra structure ofΛ(X) , a vertex
operator realization of the characterssλ

(π)(X) is derived in Section 6. This takes the form of
another key result, namely,

s
(π)
λ = [Zλ ] V π(z1) V π(z2) · · · V π(zl) · 1 , (1-3)

where the vertex operators are given by

V π(z) = (1 − zp δπ,(p)) M(z) L⊥(z−1)

p−1
∏

k=1

L⊥
π/(k)(z

k) . (1-4)
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Then by means of exponential expressions for bothM and L⊥ , these vertex operators are
explicitly constructed in exponential form for all partitions π of weight |π| ≤ 3 . The caseπ =
(2, 1) is also given an alternative normal ordering derivation in Section 6. The explicit evaluation
of L⊥

π (w)(M(Z)) is undertaken in Appendix A, with the result expressed, perhaps somewhat
surprisingly, in terms of semistandard Young tableaux of shape specified by the partitionπ .

In Section 7 it is pointed out rather briefly that a wide class of replicated vertex operators may
be obtained very easily through the application of the replicated Schur functions of Section 4 to
parametrized versions of the vertex operators of Section 6.

Finally, Section 8 consists of a few concluding remarks.

2. NOTATIONAL PRELIMINARIES

2.1. Partitions and Young diagrams. Our notation follows in large part that of Macdonald [29].
Partitions are specified by lower case Greek letters. Ifλ is a partition ofn we write λ ⊢ n ,
andλ = (λ1, λ2, . . . , λn) is a sequence of non-negative integersλi for i = 1, 2, . . . , n such that
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 , with λ1 + λ2 + · · · + λn = n . The partitionλ is said to be of
weight |λ| = n and lengthℓ(λ) , whereλi > 0 for all i ≤ ℓ(λ) andλi = 0 for all i > ℓ(λ) . In
specifyingλ the trailing zeros, that is those partsλi = 0 , are often omitted, while repeated parts
are sometimes written in exponent formλ = (· · · , 2m2 , 1m1) whereλ containsmi parts equal
to i for i = 1, 2, . . . . For each such partition,n(λ) =

∑n
i=1(i − 1)λi and zλ =

∏

i≥1 imi mi! .
Each partitionλ of weight |λ| and lengthℓ(λ) defines a Young or Ferrers diagram,F λ ,

consisting of |λ| boxes or nodes arranged inℓ(λ) left-adjusted rows of lengths from top to
bottom λ1, λ2, . . . , λℓ(λ) (in the English convention). The partitionλ′ , conjugate toλ , is the
partition specifying the column lengths ofF λ read from left to right. The box(i, j) ∈ F λ in
the i th row andj th column is said to have contentc(i, j) = j − i and hook lengthh(i, j) =
λi + λ′

j − i − j + 1 .
By way of illustration, if λ = (4, 2, 2, 1, 0, 0, 0, 0, 0) = (4, 2, 2, 1) = (4, 22, 1) then |λ| = 9 ,

ℓ(λ) = 4 , λ′ = (4, 3, 12) ,

F λ = F (4,22,1) = and F λ′

= F (4,3,12) = . (2-1)

The content and hook lengths ofF λ are specified by

0 1 2 3
1 0
2 1
3

and

7 5 2 1
4 2
3 1
1

, (2-2)

where m = −m for all m . In addition, n(4, 22, 1) = 0 · 4 + 1 · 2 + 2 · 2 + 3 · 1 = 9 and
z(4,22,1) = 4 · 22 · 1 · 1! · 2! · 1! = 32 .
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2.2. The ring Λ(X) and Schur functions. There exist various bases ofΛ(X) as described
in [29]: the monomial symmetric functions{mλ}λ , the complete symmetric functions{hλ}λ ,
the elementary symmetric functions{eλ}λ , the power sum symmetric functions{pλ}λ and
the Schur symmetric functions{sλ}λ . Three of these bases are multiplicative, withhλ =
hλ1hλ2 · · ·hλn

, eλ = eλ1eλ2 · · · eλn
and pλ = pλ1pλ2 · · · pλn

. Of the relationships between
the various bases we just mention at this stage the transitions

pρ(X) =
∑

λ⊢n

χλ
ρ sλ(X) and sλ(X) =

∑

ρ⊢n

z−1
ρ χλ

ρ pρ(X) , (2-3)

whereχλ
ρ is the character of the irreducible representation of the symmetric groupsSn specified

by λ in the conjugacy class specified byρ . These characters satisfy the orthogonality conditions
∑

ρ⊢n

z−1
ρ χλ

ρ χµ
ρ = δλ,µ and

∑

λ⊢n

z−1
ρ χλ

ρ χλ
σ = δρ,σ . (2-4)

The significance of the Schur function basis lies in the fact that with respect to the usual
Schur-Hall scalar product〈· | ·〉Λ(X) on Λ(X) we have

〈sµ(X) | sν(X)〉Λ(X) = δµ,ν . (2-5)

From (2-3) and (2-4) it follows that

〈pρ(X) | pσ(X)〉Λ(X) = zρδρ,σ . (2-6)

In what follows we shall make considerable use of several infinite series of Schur functions.
The most important of these are the mutually inverse pair defined by

M(t; X) =
∏

i≥1

(1 − t xi)
−1 =

∑

k≥0

hm(X) tm ; (2-7)

L(t; X) =
∏

i≥1

(1 − t xi) =
∑

k≥0

(−1)m em(X) tm , (2-8)

where as Schur functionshm(X) = s(m)(X) and em(X) = s(1m)(X) . It might be noted that in
Macdonald’s notation andλ -ring notationM(t; X) = H(t) = σt(X) and L(t; X) = E(−t) =
λ−t(X) . For convenience, in the caset = 1 we write M(1; X) = M(X) andL(1; X) = L(X) .

2.3. Algebraic properties of Λ(X) . The ring, Λ(X) , of symmetric functions overX has a
Hopf algebra structure, and two further algebraic and two coalgebraic operations. For notation
and basic properties we refer for example to [10, 11] and references therein. For the moment, in
the interest of typographical simplicity, the symbolX for the underlying alphabet is suppressed
unless specifically required.

We indicate outer products onΛ either bym , or with infix notation using juxtaposition. Inner
products are denoted either bym or as infix by⋆ , while plethysms (compositions) are denoted
by ◦ or by means of square brackets[ ] . The corresponding coproduct maps are specified by
∆ for the outer coproduct,δ for the inner coproduct, and∇ for the plethysm coproduct. In
Sweedler notation the action of these coproducts is distinguished by means of different brackets,



PLETHYSMS AND VERTEX OPERATORS 5

round, square and angular, around the Sweedler indices – theso-called Brouder-Schmitt conven-
tion. The coproduct coefficients themselves are obtained from the products by duality using the
Schur-Hall scalar product and the self-duality ofΛ(X) . For example, for allA,B ∈ Λ(X) :

m(A ⊗ B) = AB ; ∆(A) = A(1) ⊗ A(2) ;

m(A ⊗ B) = A ⋆ B ; δ(A) = A[1] ⊗ A[2] ;

A ◦ B = A[B] ; ∇(A) = A<1> ⊗ A<2> .

In terms of the Schur function basis{sλ}λ⊢n,n∈N the product and coproduct maps give rise to
the particular sets of coefficients specified as follows:

sµsν =
∑

λ

cλ
µ,νsλ ; ∆(sλ) = sλ(1)

⊗ sλ(2)
=
∑

µ,ν

cλ
µ,νsµ ⊗ sν ;

sµ ⋆ sν =
∑

λ

gλ
µ,νsλ ; δ(sλ) = sλ[1]

⊗ sλ[2]
=
∑

µ,ν

gλ
µ,νsµ ⊗ sν ;

sµ[sν ] =
∑

λ

pλ
µ,νsλ ; ∇(sλ) = sλ〈1〉

⊗ sλ〈2〉
=
∑

µ,ν

pλ
µ,νsµ ⊗ sν .

Here thecλ
µ,ν are Littlewood-Richardson coefficients, thegλ

µ,ν are Kronecker coefficients and the
pλ

µ,ν are plethysm coefficients. All these coefficients are non-negative integers. The Littlewood-
Richardson coefficients can be obtained, for example, by means of the Littlewood-Richardson
rule [27, 25] or the hive model [5]. The Kronecker coefficients may determined directly from
characters of the symmetric group or by exploiting the Jacobi-Trudi identity and the Littlewood-
Richardson rule [31], while plethysm coefficients have been the subject of a variety methods of
calculation [26, 31, 7]. Note that the above sums are finite, since

cλ
µ,ν ≥ 0 iff |λ| = |µ| + |ν| ;

gλ
µ,ν ≥ 0 iff |λ| = |µ| = |ν| ;

pλ
µ,ν ≥ 0 iff |λ| = |µ| |ν| .

The Schur-Hall scalar product may be used to define skew Schurfunctionssλ/µ through the
identities

cλ
µ,ν = 〈 sµ sν | sλ 〉 = 〈 sν | s

⊥
µ (sλ) 〉 = 〈 sν | sλ/µ 〉 , (2-9)

so that

sλ/µ =
∑

ν

cλ
µ,ν sν . (2-10)

Within the outer product Hopf algebra we have a unit Id , a counit ε and an antipodeS such
that1:

Id(1) = s0 ; ε(sλ) = δλ,(0) ; S(sλ) = (−1)|λ|sλ′ . (2-11)

1Macdonald uses the involutionω which differs from the antipode by a sign factor:S(sλ) = (−1)ℓ(λ)ω(sλ) . It
is, however, convenient to employ the antipode if Hopf algebra structures are in use.
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2.4. The Cauchy kernel. It is often convenient to represent an alphabet in an additive manner
X = x1 + x2 + · · · , as itself an element of the ringΛ(X) in the sense that

X = x1 + x2 + · · · = h1(X) = e1(X) = p1(X) = s(1)(X) .

As elements ofΛ(X) ⊗ Λ(Y ) we have

X +Y = x1 + x2 + · · · + y1 + y2 + · · ·

XY = (x1 + x2 + · · · )(y1 + y2 + · · · ) = (x1y1 + x1y2 + · · · + x2y1 + x2yt + · · · ) .

With this notation, the outer coproduct gives

∆(M) = M(1) ⊗ M(2) = M ⊗ M M(X +Y ) =
∏

i

1

1 − xi

∏

j

1

1 − yj

;

∆(L) = L(1) ⊗ L(2) = L ⊗ L L(X +Y ) =
∏

i

(1 − xi)
∏

j

(1 − yj) ,

so that

M(X +Y ) = M(X) M(Y ) and L(X +Y ) = L(X) L(Y ) . (2-12)

For the inner coproduct:

δ(M) = M[1] ⊗ M[2] M(XY ) =
∏

i,j

1

1 − xiyj

;

δ(L) = L[1] ⊗ L[2] L(XY ) =
∏

i,j

(1 − xiyj) .

The expansions of the products on the right hand sides of these expressions is effected remarkably
easily by evaluating the inner coproducts on the left:

δ(M) =
∑

k≥0

δ(hk) =
∑

k≥0

∑

λ⊢k

sλ ⊗ sλ ;

δ(L) =
∑

k≥0

(−1)k δ(ek) =
∑

k≥0

(−1)k
∑

λ⊢k

sλ ⊗ sλ′ .

This gives immediately the well known Cauchy and Cauchy-Binet formulae:

M(XY ) =
∏

i,j

1

1 − xi yj

=
∑

λ

sλ(X) sλ(Y ) ; (2-13)

L(XY ) =
∏

i,j

(1 − xi yj) =
∑

λ

(−1)|λ|sλ(X) sλ′(Y ) . (2-14)

That the Cauchy kernel,M(XY ) , is a dual version of the Schur-Hall scalar product can be
seen by noting that

sµ(X) M(XY ) =
∑

λ

∑

ν

cν
µ,λ sν(X) sλ(Y )
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=
∑

ν

sν(X) sν/µ(Y ) = s⊥µ (Y ) (M(XY )). (2-15)

More generally, for anyF (X) ∈ Λ(X) with dual F⊥(X) , by linearly extending the above result
we have

F (X) M(XY ) = F⊥(Y ) (M(XY )). (2-16)

This is an identity that will be encountered and exploited a number of times in later sections.

2.5. Plethysms. Plethysms are defined as compositions whereby for anyA,B ∈ Λ(X) the
plethysmA[B] is A evaluated over an alphabetY whose letters are the monomials ofB(X) ,
with each letter repeated as many times as the multiplicity of the corresponding monomial. Thus
the Schur function plethysm is defined by

sλ[sµ](X) = sλ(Y ) where Y = sµ(X) . (2-17)

For all A,B,C ∈ Λ(X) we have the following rules, due to Littlewood [25], for manipulating
plethysms:

(A + B)[C] = A[C] + B[C] ; A[B + C] = A(1)[B]A(2)[C] ;

(AB)[C] = A[C]B[C] ; A[BC] = A[1][B]A[2][C] ;

A[B[C]] = (A[B])[C] . (2-18)

To these we can add, see [11]:

A[−B] = (S(A))[B] ; A[S(B)] = S(A[B]) ;

A[∆(B)] = ∆(A[B]) ; A[δ(B)] = δ(A[B]) , (2-19)

and the plethysm of a tensor product:

A[B ⊗ C] = A[1][B] ⊗ A[2][C] . (2-20)

These rules enable us to evaluate plethysms not only of outerand inner products but also of
outer and inner coproducts.

3. SPECIALIZATIONS

3.1. Definition of specializations. Before dealing with the plethysms of interest here, it is ap-
propriate to define certain specializations. We will do thisin some generality so as to be able to
use the technique of specialization in a rather broad context, see also [30, Sect.1.12].

Definition 3.1: A specialization φ is an algebra homomorphism (and thus a 1-cocycle for the
outer Hopf algebra) from the Hopf algebra of the ringΛ(X) of symmetric functions to another
ring R , whereR may be any one ofN, Z, Q, R, C, Z[t], Z[[q]], , Z[t][[q]], . . . . For anyA,B ∈
Λ(X) it is required that we have

φ : Λ → R with φ(AB) = φ(A)φ(B) . (3-1)
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Specializationsφ may be defined either through a map, also denoted byφ , on the lettersxi

of the underlying alphabetX = (x1, x2, . . .) = x1 +x2 + · · · , or through maps on the generators
of Λ(X) such ashn(X) , en(X) or pn(X) .

3.2. Fundamental specialization.We denote byǫ1 the mapǫ1 ◦ A(X) = A(ǫ1(X)) where
ǫ1(X) = (1, 0, . . . ) = 1 , that is to say

ǫ1(xi) =

{

1 if i = 1 ;
0 otherwise.

(3-2)

This fundamental specialization evaluates on Schur functions as the dimension formula forGL(1)
in the sense that

ǫ1(sλ(X)) = sλ(1, 0, . . . ) = dim V λ
GL(1) = dimλ(1) , (3-3)

where dim V λ
GL(1) is the dimension of the irreducible representationV λ

GL(1) of GL(1) having
highest weightλ . This specialization is such that

ǫ1(sλ(X)) =

{

1 if λ = (m) for anym ≥ 0;
0 otherwise.

(3-4)

3.3. t -specialization. We generalize the fundamental specialization along the following lines.
For all t ∈ N we denote byǫt ◦ A(X) = A(ǫt(X)) with ǫt(X) = (1, . . . , 1, 0 . . . ) = 1 + 1 +
· · ·+ 1 with t occurrences of the1s. In the sequence notation we thus haveǫt ◦A(X) = A(1t)
while in the additive (ring) notation we haveǫt ◦ A(X) = A[t] . In both cases we make this
precise as

ǫt(xi) =

{

1 if 1 ≤ i ≤ t ;
0 otherwise.

(3-5)

For all t ∈ N the t -specialization of a Schur function can be interpreted by means of aGL(t)
dimension formula, that isǫt(sλ(X)) = sλ(1

t) = sλ(1, 1, . . . , 1) = dim V λ
GL(t) = dimλ(t) .

However, the dimension formula forGL(t) is polynomial int :

dimλ(t) =
∏

(i,j)∈F λ

t + c(i, j)

h(i, j)
, (3-6)

and hence can be generalized by analytic continuation to rational, real or even complext .

3.4. Principal (q; n) -specialization. A further important specialization is given by the map
ǫ1
q;n ◦ A(X) = A(1, q, q2, . . . , qn−1, 0, . . . ) = A[1−qn

1−q
] or

ǫ1
q;n(xi) =

{

qi−1 for 1 ≤ i ≤ n;
0 otherwise.

(3-7)

In the case of Schur functions, with the notation described earlier, we have [29, p.44]

ǫ1
q;n ◦ sλ(X) = sλ(1, q, . . . , q

n−1) = qn(λ)
∏

(i,j)∈F λ

1 − qn+c(i,j)

1 − qh(i,j)
. (3-8)
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In the special case ofλ = (1m) this takes the form

ǫ1
q;n ◦ s(1m)(X) = ǫ1

q;n ◦ em(X) = qm(m−1)/2

[

n
m

]

q

,

where theq -binomial coefficient is given by
[

n
m

]

q

=
(1 − qn)(1 − qn−1) · · · (1 − qn−m+1)

(1 − q)(1 − q2) · · · (1 − qm)
.

3.5. Three parameter specialization.Note that for q → 1 we recover thet -specialization
from the principal(q; t) -specialization. However, we keep these two specializations apart so as
to have the opportunity to employ a combination of both. Thiswill be denoted by

ǫt
q;n ◦ A(X) = A(1, . . . , 1, q, . . . , q, . . . , qn−1, . . . , qn−1, 0, . . .) = A

[

t
1 − qn

1 − q

]

, (3-9)

with t repetitions of each distinct power ofq , while t = 1 + 1 + · · · + 1 with t repetitions of
1 .

4. PARAMETERIZED PLETHYSMS

The idea now is to exploit the above findings to see if we can derive a general formula for the
plethysmsλ[α sν ] for any α : integer, rational or complex.

4.1. Replicated Schur functions as plethysms.First we deal with the caseα = t ∈ N . In this
case we may use the iterated outer coproduct identity

∆(t−1)sλ = (Id ⊗ ∆(t−2))∆sλ = (Id ⊗ ∆(t−2))sλ(1)
⊗ sλ(2)

= sλ(1)
⊗ (∆(t−2)sλ(2)

) = · · · = sλ(1)
⊗ sλ(2)

⊗ · · · ⊗ sλ(t)
, (4-1)

with ∆(2) = ∆ , ∆(1) = Id , ∆(0) = ǫ0 and some relabelling has been applied to the iterated
outer product Sweedler indices. Then using outer product multiplication t − 1 times one finds

sλ[t sν(X)] = sλ[sν(X) + sν(X) + · · · + sν(X)]

= sλ(1)
[sν(X)] sλ(2)

[sν(X)] · · · sλ(t)
[sν(X)] . (4-2)

Example 4.2:

s(2)[2s(2)] = s(2)[s(2) + s(2)] = s(2)[s(2)] + s(1)[s(2)] s(1)[s(2)] + s(2)[s(2)]

= (s(4) + s(2,2)) + (s(4) + s(3,1) + s(2,2)) + (s(4) + s(2,2))

= 3s(4) + s(3,1) + 3s(2,2) ;

s(1,1)[2s(2)] = s(1,1)[s(2) + s(2)] = s(1,1)[s(2)] + s(1)[s(2)] s(1)[s(2)] + s(1,1)[s(2)]

= s(3,1) + (s(4) + s(3,1) + s(2,2)) + s(3,1)

= s(4) + 3s(3,1) + s(2,2) .
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Alternatively, we may use the inner coproduct identityδsλ = sλ[1]
⊗ sλ[2]

to obtain

sλ[t sν(X)] = sλ[1]
[t] sλ[2]

[sν(X)] =
∑

ρ,µ

gλ
ρ,µ sρ[t] sµ[sν(X)]

=
∑

ρ,µ

gλ
ρ,µ dimρ(t) sµ[sν ](X) =

∑

µ

bλ
µ(t) sµ[sν ](X) , (4-3)

where

bλ
µ(t) =

∑

ρ

gλ
ρ,µ dimρ(t) . (4-4)

Example 4.3:

s(2)[2s(2)] = dim(2)(2) s(2)[s(2)] + dim(1,1)(2) s(1,1)[s(2)]

= 3 (s(4) + s(2,2)) + (s(4) + 1 s(3,1)

= 3s(4) + s(3,1) + 3s(2,2) ;

s(1,1)[2s(2)] = dim(1,1)(2) s(2)[s(2)] + dim(2)(2) s(1,1)[s(2)] ;

= 1, (s(4) + s(2,2)) + 3 s(3,1)

= s(4) + 3s(3,1) + s(2,2) ,

as before.

In the special caseν = (1) , for which sν(X) = X , (4-3) gives

sλ[t X] =
∑

ρ,µ

gλ
ρ,µ dimρ(t) sµ(X) =

∑

µ

bλ
µ(t) sµ(X) . (4-5)

Example 4.4:

s(2)[2 X] = dim(2)(2) s(2)(X) + dim(1,1)(2) s(1,1)(X)

= 3 s(2)(X) + s(1,1)(X) ;

s(1,1)[2 X] = dim(1,1)(2) s(2)(X) + dim(2)(2) s(1,1)(X)

= s(2)(X) + 3s(1,1)(X) .

4.2. Benchmarking replicated plethysm calculations.The above shows that we may use ei-
ther iterated outer coproducts, or a single inner coproductaugmented by a dimensionality for-
mula, to evaluate replicated plethysms. Although the aboveexamples might suggest that these
two methods are comparable in complexity, this is far from being the case. The iteration may
be very tedious, with the second method much more efficient, at least for sufficiently largen .
Symbolic computations show a dramatic increase of speed foreven modestly largen (greater
than 10). The relevant algorithm is given in the form of computer pseudo code in Appendix C.
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We have investigated this process via the use of both Maple using theSchurFkt package [1]
and the open source softwareSCHUR [36]. In arbitrary time units we can compare the computa-
tion of the plethysms as shown in Table 1. Both algorithms makeuse of Maple remember tables,

TABLE 1. Timing of the iterated and directly evaluated plethysmss(3)[n · s(1,1)]
usingSchurFkt. (Note that figures are obscured by Maple’s garbage collection
and not as accurate as shown)

multiplicity recursive direct
n=1 0.01 0.02
n=10 0.08 0.02
n=100 0.89 0.01
n=1000 7.32 0.01
n=10000 — 0.01

so a plethysm is never computed twice. It is clear that the second method isO(1) with respect
to n , while the first one increases rapidly. Maple fails to do the iteration forn = 10000 . Very
similar results can be obtained by usingSCHUR, but the inner coproduct case has to be carried
out in two stages in order to insert the dimensionality factors appropriately.

4.3. α -plethysms andα -Schur functions. Since the coefficientsbλ
µ(t) are polynomials int ,

the formulae (4-3) and (4-5) may be extended so as to defineα -plethysms andα -Schur functions
by means of the formulae

sλ[α sν(X)] =
∑

µ

bλ
µ(α) sµ[sν ](X) (4-6)

and

sλ[α X] =
∑

µ

bλ
µ(α) sµ(X) , (4-7)

where

bλ
µ(α) =

∑

ρ

gλ
ρ,µ dimρ(α) . (4-8)

The symmetric functionssλ[αX] are precisely those that were introduced and studied by
Baker [2] as replicated Schur functions, and independently by Brenti [4] asq -analogues of Schur
functions. Our notation is such thatsλ[α X] is identical to Baker’ssλ(x

(α)) and Brenti’ssλ[x]q
under the identificationsx = X and q = α .



12 BERTFRIED FAUSER, PETER D. JARVIS, AND RONALD C. KING

The case of replicated andα -power sum functions is even easier. Sincepn(X) = xn
1 + xn

2 +
· · · , it follows immediately that for anyt, n ∈ N we have

pn(t X) = pn(X + X + · · · + X) = t (xn
1 + xn

2 + · · · ) = t pn(X) , (4-9)

so that, replacingX by Y = pµ(X) , we have

pn(t pµ(X)) = t pn[pµ(X)] . (4-10)

The multiplicative nature ofpλ = pλ1 pλ2 · · · pλℓ(λ)
, whereℓ(λ) is the number of non-zero parts

of λ , is then such that:

pλ[t X] = tℓ(λ) pλ(X) ; (4-11)

pλ[t pµ(X)] = tℓ(λ) pλ[pµ(X)] . (4-12)

Once again we are at liberty to extend the domain oft to give, as a matter of definition:

pλ[α X] = αℓ(λ) pλ(X) ; (4-13)

pλ[α pµ(X)] = αℓ(λ) pλ[pµ(X)] . (4-14)

The first of these is really the starting point in Brenti’s development ofq -analogues of symmetric
functions, and both Baker [2] and Brenti [4] have pointed out that the Jack symmetric functions
J(n)(X; α−1) can be expressed in the form

J(n)(X; α−1) =
n!

αn
s(n)[α X] , (4-15)

which specialize to zonal symmetric functions forα = 2 .

4.4. Orthogonality properties of α -Schur functions. We may use the Schur-Hall scalar prod-
uct to extract from (4-7) the formula

bλ
µ(α) = 〈 sµ(X) , sλ[α X] 〉Λ(X)

=
∑

σ,τ

χµ
σ χλ

τ 〈 pσ(X) , pτ (α X) 〉Λ(X)

=
∑

σ,τ

χµ
σ χλ

τ αℓ(τ)〈 pσ(X) , pτ (X) 〉Λ(X)

=
∑

σ,τ

χµ
σ χλ

τ αℓ(τ) z−1
τ δσ,τ =

∑

σ

z−1
σ χµ

σ χλ
σ αℓ(σ) , (4-16)

where use has been made of (2-3) and (4-13).
With this determination of the coefficientsbλ

µ(α) we can establish the following result due to
Baker [2] and Brenti [4]:

Theorem 4.5: For all non-zeroα

〈 sµ(α X) , sλ(α
−1 X) 〉Λ(X) = δµ,λ . (4-17)
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Proof:

〈 sµ(α X) , sλ(β X) 〉Λ(X)

=
∑

σ,τ

χµ
σ χλ

τ 〈 pσ(α X) , pτ (β X) 〉Λ(X)

=
∑

σ,τ

χµ
σ χλ

τ αℓ(σ)βℓ(τ)〈 pσ(X) , pτ (X) 〉

=
∑

σ,τ

χµ
σ χλ

τ αℓ(σ)βℓ(τ) z−1
τ δσ,τ =

∑

σ

z−1
σ χµ

σ χλ
σ (αβ)ℓ(σ) .

Hence, takingβ = 1/α we have the Baker-Brenti orthogonality condition

〈 sµ(α X) , sλ(α
−1 X) 〉Λ(X) =

∑

σ

z−1
σ χµ

σ χλ
σ = δµ,λ .

�

Now consider the following technical result.

Lemma 4.6: For any positive integern and any partitionsν andρ of the same weight

nℓ(ρ) χν
ρ =

∑

µ,σ,τ,...,ζ

χµ
ρ cµ

σ,τ,...,ζ cν
σ,τ,...,ζ , (4-18)

where the sum is overn + 1 partitionsµ, σ, τ, . . . , ζ .

Proof: Consider

pρ(X,Y, . . . , Z) =
∑

µ

χµ
ρ sµ(X,Y, . . . , Z)

=
∑

µ,σ,τ,...,ζ

χµ
ρ cµ

σ,τ ...,ζ sσ(X) sτ (Y ) · · · sζ(Z)

where the coproduct∆ has been appliedn − 1 times. If we now apply the multiplication
operatorn − 1 times, that is we setX = Y = · · · = Z and take outer products, we obtain

pρ(X,X, . . . , X) = pρ(nX) = nℓ(ρ) pρ(X) = nℓ(ρ)
∑

ν

χν
ρ sν(X)

=
∑

µ,σ,τ,...,ζ

χµ
ρ cµ

σ,τ ...,ζ cν
σ,τ ...,ζ sν(X) .

Comparing the coefficients ofsν(X) and using (4-18) proves the Lemma. �

This Lemma allows us to prove the following more general orthogonality theorem:
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Theorem 4.7: [2] For n alphabetsX,Y, . . . , Z , let

s̃λ(X,Y, . . . , Z) =
∑

µ

bλ,µ(1/n) sµ(X,Y, . . . , Z) . (4-19)

Then

〈 s̃λ(X,Y, . . . , Z) , sν(X,Y, . . . , Z) 〉Λ(X)⊗Λ(Y )⊗···⊗Λ(Z) = δλ,ν . (4-20)

Proof:

〈 s̃λ(X,Y, . . . , Z) , sν(X,Y, . . . , Z) 〉Λ(X)⊗Λ(Y )⊗···⊗Λ(Z)

=
∑

µ

bλ,µ(1/n) 〈 sµ(X,Y, . . . , Z) , sν(X,Y, . . . , Z) 〉Λ(X)⊗Λ(Y )⊗···⊗Λ(Z)

=
∑

µ

bλ,µ(1/n)
∑

σ,τ,...,ζ,η,θ...,φ

cµ
σ,τ,...,ζ cν

η,θ...,φ δσ,η δτ,θ · · · δζ,φ

=
∑

µ,ρ

z−1
ρ χλ

ρ χµ
ρ n−ℓ(ρ)

∑

σ,τ,...,ζ

cµ
σ,τ,...,ζ cν

σ,τ,...,ζ

=
∑

ρ

z−1
ρ χλ

ρ χν
ρ

= δλ,ν .

�

5. SERIES PLETHYSMS AND CHARACTER GENERATING FUNCTIONS

5.1. Series defined by plethysms.Given

M(t; X) =
∏

i≥1

(1 − t xi)
−1 =

∞
∑

k=0

tk s(k)(X) , (5-1)

new Schur function series may be generated fromM(t; X) by means of the plethysm operation,
as explained elsewhere [11]. For each fixed partitionπ one merely replacesX by Y = sπ(X)
to give

Mπ(t; X) = M(t; [sπ])(X) = M(t; sπ(X))

= M(t; Y ) =
∏

j≥1

(1 − t yj)
−1 =

∞
∑

k=0

tk s(k)[sπ](X) , (5-2)

where the product is taken over all monomialsyj of sπ(X) . Similarly, from

L(t; X) =
∏

i≥1

(1 − t xi) =
∞
∑

k=0

(−1)ktk s(1k)(X) , (5-3)
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one obtains

Lπ(t; X) = L(t; [sπ])(X) = L(t; sπ(X))

= L(t; Y ) =
∏

j≥1

(1 − t yj) =
∞
∑

k=0

(−1)ktk s(1k)[sπ](X) . (5-4)

5.2. Character generating functions and theMπ and Lπ series. The Cauchy kernelM(XZ)
serves as a generating function for characters ofGL(n) in the sense that

M(XZ) =
∏

i,j

(1 − xizj)
−1 =

∑

λ

sλ(X) sλ(Z) , (5-5)

wheresλ(X) is the character of the irreducible representationV λ
GL(n) of highest weightλ eval-

uated at group elements whose eigenvalues are the elements of X . As pointed out earlier this
implies, and is implied by

sλ(X) = [sλ(Z)]( M(XZ) ) = 〈 sλ(Z) |M(XZ) 〉Λ(Z) , (5-6)

where [sλ]( · · · ) denotes the coefficient ofsλ(Z) in ( · · · ) .
Now we are in a position to determine the analogous generating functions for certain formal

characters,s(π)
λ (X) , of subgroupsHπ(n) of GL(n) introduced elsewhere [11] by exploiting the

mutually inverse seriesMπ = M [sπ] andLπ = L[sπ] . To be more precise, we let

s
(π)
λ (X) = L⊥

π (X) (sλ(X)). (5-7)

The generating function for these characters may then be found as follows:

s
(π)
λ (X) = L⊥

π (X) (sλ(X)) = L⊥
π (X) ([sλ(Z)] M(XZ))

= [sλ(Z)] L⊥
π (X) (M(XZ)) . (5-8)

It then follows from (2-16) that

s
(π)
λ (X) = [sλ(Z)] Lπ(Z) M(XZ) , (5-9)

and hence

Lπ(Z) M(XZ) =
∑

λ

s
(π)
λ (X) sλ(Z) . (5-10)

Example 5.8:
∏

i≤j

(1 − zizj)
∏

i,j

(1 − xizj)
−1 =

∑

λ

s
(2)
λ (X) sλ(Z) ;

∏

i<j

(1 − zizj)
∏

i,j

(1 − xizj)
−1 =

∑

λ

s
(12)
λ (X) sλ(Z) ;
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∏

i≤j≤k

(1 − zizjzk)
∏

i,j

(1 − xizj)
−1 =

∑

λ

s
(3)
λ (X) sλ(Z) ;

∏

i6=j

(1 − z2
i zj)

∏

i<j<k

(1 − zizjzk)
2
∏

i,j

(1 − xizj)
−1 =

∑

λ

s
(21)
λ (X) sλ(Z) ;

∏

i<j<k

(1 − zizjzk)
∏

i,j

(1 − xizj)
−1 =

∑

λ

s
(13)
λ (X) sλ(Z) .

In the first two cases,s(2)
λ (X) ands

(12)
λ (X) , with the appropriate specification ofX , are noth-

ing other than the irreducible orthogonal and symplectic group characters, variously denoted by
oλ(X) = [λ](X) and spλ(X) = 〈λ〉(X) , respectively [25, 3]. In the remaining cases,s

(3)
λ (X) ,

s
(21)
λ (X) and s

(13)
λ (X) , again with appropriate specifications ofX , are formal, not necessarily

irreducible, characters of the subgroupsH3(n) , H21(n) andH13(n) of GL(n) that leave invari-
ant cubic forms of symmetry specified by the partitions(3) , (21) and (13) , respectively [11].

6. VERTEX OPERATORS

6.1. Vertex operators associated with formal characters.Let X be the underlying alphabet
of all our Schur functions and Schur function series unless otherwise indicated, withX itself
suppressed unless it is necessary to exhibit it. In additionlet Z = (z1, z2, . . . , zl) , and for any
partition λ of length ℓ(λ) ≤ l let Zλ = zλ1

1 zλ2
1 · · · zλl

l and let [Zλ ](· · · ) be the coefficient of
Zλ in (· · · ) . For any non-zeroz let z = 1/z . Then the vertex operatorV (z) is defined by

V (z) = M(z) L⊥(z) . (6-1)

If phrased in the language of symmetric functions, see for example [29, Ex.29 p.95] and [6],
vertex operators are also sometimes called Bernstein vertexoperators, or simply Bernstein op-
erators, a name coined by Zelevinsky [37, p.69]. The following formula is well-known [29, 3]:

Proposition 6.9: Let λ = (λ1, λ2, . . . , λl) be a partition of lengthℓ(λ) ≤ l . Then

sλ = [Zλ ] V (z1) V (z2) · · · V (zl) · 1 . (6-2)
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Proof: One way to see this is as follows:

[Zλ ] V (z1) V (z2) · · · V (zl) · 1

= [Zλ ] M(z1) L⊥(z1) M(z2) L⊥(z2) · · · M(zl) L⊥(zl) · 1 . (6-3)

However, since the outer coproduct ofL is just ∆L = L ⊗ L , we have

L⊥(z) (M(w) G) = (M(w)/L(z)) (G/L(z)) (6-4)

for any G , w and non-zeroz , while

M(w)/L(z) = M(w)/(s0 − zs1) = M(w) − z w M(w). (6-5)

Noting thatL⊥(z) · 1 = 1 for all non-zeroz , this implies that

[Zλ ] V (z1) V (z2) · · · V (zl) · 1

= [Zλ ]
∏

1≤i<j≤l

(1 − zi zj)M(z1) M(z2) · · · M(zl)

= [Zλ+δ ]
∏

1≤i<j≤l

(zi − zj) M(Z) = [sλ(Z)] M(Z) , (6-6)

whereδ = (n − 1, . . . , 1, 0) and use has been made of the fact that

sλ = (Zλ+δ + · · · )/
∏

i<j

(zi − zj),

while M(z1) M(z2) · · · M(zl) = M(Z) . Restoring theX dependence for the moment,

M(XZ) =
n
∏

i=1

l
∏

j=1

(1 − xizj)
−1 =

∑

λ

sλ(X) sλ(Z) , (6-7)

so that[sλ(Z)] M(XZ) = sλ(X) . That is to say, without the explicitX -dependence, we have
[sλ(Z)] M(Z) = sλ , as required to complete the proof of (6-2). �

In order to generalise Proposition 6.9 to the characterss
(π)
λ for arbitrary partitionsπ , it is

helpful to first establish

Lemma 6.10: For all w , z and all partitionsπ of weight |π| = p ≥ 1 ,

L⊥
π (w) M(z) = (1 − w zp δπ,(p)) M(z)

p−1
∏

k=1

L⊥
π/(k)(wzk) L⊥

π (w) , (6-8)

where the product overk is absent ifp = 1 , that is to say ifπ = (1) .
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Proof: For arbitraryG ,

L⊥
π (w) (M(z) G) = (M(z) G)/Lπ(w)

= M(z)/(Lπ(w))(1) G/(Lπ(w))(2) , (6-9)

where, in Sweedler notation,

∆Lπ(w) = (Lπ(w))(1) ⊗ (Lπ(w))(2) . (6-10)

More explicitly, in terms of Littlewood-Richardson coefficients,

∆Lπ(w) = ( Lπ(w) ⊗ Lπ(w) )
∏

06=ξ,η 6=π

cπ
ξη
∏

c=1

∑

ρ(ξ,η,c)

(−w)|ρ(ξ,η,c)| sρ(ξ,η,c)[sξ] ⊗ sρ(ξ,η,c)′ [sη]

= (Lπ(w))(1) ⊗ (Lπ(w))(2) . (6-11)

However, sinceM(z) =
∑

m≥0 s(m) zm , we have

M(z)/sλ =

{

zk M(z) if λ = (k) with k ≥ 0;
0 otherwise.

(6-12)

Moreover, for any partitionsρ and ξ , the plethysmsρ[sξ] is such that

M(z)/( sρ[sξ] ) =

{

zrk M(z) if ρ = (r) andξ = (k) with r, k ≥ 0;
0 otherwise.

(6-13)

It follows first from this that

M(z)/Lπ(w) =
∑

r≥0

(−w)rM(z)/( s1r [sπ] ) = (1 − w zp δπ,(p)) M(z) . (6-14)

Then in evaluating all other contributions of the formM(z)/(Lπ(w))(1)) , with (Lπ(w))(1) iden-
tified as in (6-11), the domain ofξ may be restricted to one-part partitions(k) with 0 < k < p ,
for which all non-zerocπ

(k),η are equal to1 , so thatc = 1 . In addition all ρ(ξ, η, c) may be
restricted to partitions of the form(r) , with ρ(ξ, η, c)′ = (1r) . If for fixed π we let m(k) be
such thatsπ/(k) =

∑m(k)
m=1 sη(k,m) for eachk = 1, 2, . . . , p − 1 , then

L⊥
π (w) ( M(z) G ) =

∑

r(k,m)

( M(z)/(Lπ(w)

p−1
∏

k=1

m(k)
∏

m=1

s(r(k,m))[s(k)] ) )

( G/(Lπ(w)

p−1
∏

k=1

m(k)
∏

m=1

(−w)r(k,m) s(1r(k,m))[sη(k,m)] ) ) .
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Then from (6-13) it follows that

L⊥
π (w) ( M(z) G ) =

∑

r(k,m)

(

p−1
∏

k=1

m(k)
∏

m=1

zk r(k,m) M(z)/Lπ(w) )

( G/(Lπ(w)

p−1
∏

k=1

m(k)
∏

m=1

(−w)r(k,m) s(1r(k,m))[sη(k,m)] ) )

=
∑

r(k,m)

( M(z)/Lπ(w) )

( G/(Lπ(w)

p−1
∏

k=1

m(k)
∏

m=1

(−w)r(k,m) zk r(k,m) s(1r(k,m))[sη(k,m)] ) ) .

(6-15)

Hence

L⊥
π (w)( M(z) G ) = ( M(z)/Lπ(w) ) ( G/(Lπ(w)

p−1
∏

k=1

m(k)
∏

m=1

Lη(k,m)(wzk) ) )

= ( M(z)/Lπ(w) ) ( G/(Lπ(w)

p−1
∏

k=1

Lπ/(k)(wzk) ) ) . (6-16)

From (6-14) it follows that for allG

L⊥
π (w) ( M(z) G ) = (1 − w zp δπ,(p)) M(z) ( G/(Lπ(w)

p−1
∏

k=1

Lπ/(k)(wzk) ) ) , (6-17)

which implies the validity of (6-8). �

This Lemma leads immediately to the following generalization of Proposition 6.9

Proposition 6.11: Let λ = (λ1, λ2, . . . , λl) be a partition of lengthℓ(λ) ≤ l , and letπ be a
partition of weight|π| = p ≥ 1 . Then

s
(π)
λ = [Zλ ] V π(z1) V π(z2) · · · V π(zl) · 1 , (6-18)

where

V π(z) = (1 − zp δπ,(p)) M(z) L⊥(z−1)

p−1
∏

k=1

L⊥
π/(k)(z

k) . (6-19)

Proof: Proceeding as in the proof of Proposition 6.9, one can make use of the fact that

L⊥(z) ((1 − wp δπ,(p)) M(w) G) = L⊥(z) ( (M(w)/Lπ) G)

= M(w)/(Lπ L(z) (G/L(z)) = (1 − w z) (M(w)/Lπ) (G/L(z))
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= (1 − w z) (1 − wp δπ,(p)) M(w) (G/L(z)) , (6-20)

for any G , w and non-zeroz , to show that

[Zλ ] V π(z1) V π(z2) · · · V π(zl) · 1

= [Zλ ]
∏

1≤i<j≤l

(1 − zi zj)
l
∏

k=1

(1 − zp
k δπ,(p))

M(z1)

p−1
∏

k=1

L⊥
π/(k)(z

k
1 ) · · ·M(zl)

p−1
∏

k=1

L⊥
π/(k)(z

k
l ) · 1

= [Zλ+δ ]
∏

1≤i<j≤l

(zi − zj)
l
∏

k=1

(1 − zp
k δπ,(p))

M(z1)

p−1
∏

k=1

L⊥
π/(k)(z

k
1 ) · · ·M(zl)

p−1
∏

k=1

L⊥
π/(k)(z

k
l ) · 1

= [sλ ]
l
∏

k=1

(1 − zp
k δπ,(p))

M(z1)

p−1
∏

k=1

L⊥
π/(k)(z

k
1 ) · · ·M(zl)

p−1
∏

k=1

L⊥
π/(k)(z

k
l ) · 1

= [sλ ] L⊥
π M(z1) · · · M(zl) · 1 = [sλ] L⊥

π (M(Z)) = sπ
λ , (6-21)

as required, where the first step in the last line involves theuse of (6-8) extended iteratively, and
the final step is a consequence of (5-8). �

6.2. Vertex operators in exponential form. Given

M(z; X) =
∏

i≥1

(1 − z xi)
−1 , (6-22)

it follows that

ln M(z; X) = −
∑

i≥1

ln(1 − z xi) =
∑

i≥1

(z xi +
(z xi)

2

2
+

(z xi)
3

3
+ · · · )

= z p1(X) +
z2

2
p2(X) +

z3

3
p3(X) + · · · =

∑

k≥1

zk

k
pk(X) . (6-23)

Hence

M(z; X) = exp

(

∑

k≥1

zk

k
pk(X)

)

. (6-24)

It follows that for any partitionπ

ln Mπ(z; X) =
∑

k≥1

zk

k
pk(Y ) =

∑

k≥1

zk

k
pk[sπ(X)] =

∑

k≥1

zk

k
sπ[pk(X)]
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=
∑

k≥1

zk

k

(

∑

ρ

1

zρ

χπ
ρ pρ[pk(X)]

)

=
∑

k≥1

zk

k

(

∑

ρ

1

zρ

χπ
ρ pkρ(X)

)

, (6-25)

where we have used the identitiespk[sπ(X)] = sπ[pk(X)] and pr[pk(X)] = prk(X) that apply
for all π , k , r andX , and the notationkρ = (kρ1, kρ2, . . .) if ρ = (ρ1, ρ2, . . .) .

Example 6.12: Suppressing theX dependence

ln M(1)(z) =
∑

k≥1

( pk ) zk/k ;

ln M(2)(z) =
∑

k≥1

(

p(k,k) + p(2k)

)

zk/2k ;

ln M(1,1)(z) =
∑

k≥1

(

p(k,k) − p(2k)

)

zk/2k ;

ln M(3)(z) =
∑

k≥1

(

p(k,k,k) + 3p(2k,k) + 2p(3k)

)

zk/6k ;

ln M(2,1)(z) =
∑

k≥1

(

p(k,k,k) − p(3k)

)

zk/3k ;

ln M(1,1,1)(z) =
∑

k≥1

(

p(k,k,k) − 3p(2k,k) + 2p(3k)

)

zk/6k . (6-26)

Since

L(z; X) =
∏

i≥1

(1 − z xi) = 1/M(z; X) , (6-27)

it follows that

ln L(z; X) = − ln M(x; Z) = −
∑

k≥1

zk

k
pk(X) , (6-28)

and more generally

ln Lπ(z; X) = − ln Mπ(x; Z) = −
∑

k≥1

zk

k

(

∑

ρ

1

zρ

χπ
ρ pkρ(X)

)

. (6-29)

Then, if we recall that for all positive integersk [29, p.76],

p⊥k (X) = k
∂

∂pk(X)
, (6-30)

we are in a position to see that

L⊥(z; X) = L⊥
(1)(z) = exp

(

−
∑

k≥1

zk ∂

∂pk(X)

)

, (6-31)
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while, exploiting the data of Example 6.12, we have:

L⊥
(2)(z; X) = exp

(

−
∑

k≥1

zk

(

k

2

∂2

∂pk(X)2
+

∂

∂p2k(X)

)

)

;

L⊥
(12)(z; X) = exp

(

−
∑

k≥1

zk

(

k

2

∂2

∂pk(X)2
−

∂

∂p2k(X)

)

)

. (6-32)

Proposition 6.11 implies:

V (1)(z) = (1 − z) M(z) L⊥(z−1) ;

V (2)(z) = (1 − z2) M(z) L⊥(z−1) L⊥
(1)(z) ;

V (12)(z) = M(z) L⊥(z−1) L⊥
(1)(z) ;

V (3)(z) = (1 − z3) M(z) L⊥(z−1) L⊥
(2)(z) L⊥

(1)(z
2) ;

V (21)(z) = M(z) L⊥(z−1) L⊥
(2)(z) L⊥

(12)(z) L⊥
(1)(z

2) ;

V (13)(z) = M(z) L⊥(z−1) L⊥
(12)(z) . (6-33)

The results (6-31) and (6-32) are then sufficient for us to express the vertex operators of (6-33)
in exponential form as follows:

V (1)(z) = (1 − z) exp

(

∑

k≥1

zk

k
pk

)

exp

(

−
∑

k≥1

z−k ∂

∂pk

)

;

V (2)(z) = (1 − z2) exp

(

∑

k≥1

zk

k
pk

)

exp

(

−
∑

k≥1

(z−k + zk)
∂

∂pk

)

;

V (12)(z) = exp

(

∑

k≥1

zk

k
pk

)

exp

(

−
∑

k≥1

(z−k + zk)
∂

∂pk

)

;

V (3)(z) = (1 − z3) exp

(

∑

k≥1

zk

k
pk

)

exp

(

−
∑

k≥1

(

(z−k + z2k)
∂

∂pk

+
k zk

2

∂2

∂p2
k

+ zk ∂

∂p2k

)

)

;

V (21)(z) = exp

(

∑

k≥1

zk

k
pk

)

exp

(

−
∑

k≥1

(

(z−k + z2k)
∂

∂pk

+ k zk ∂2

∂p2
k

)

)

;

V (13)(z) = exp

(

∑

k≥1

zk

k
pk

)

exp

(

−
∑

k≥1

(

z−k ∂

∂pk

+
k zk

2

∂2

∂p2
k

− zk ∂

∂p2k

)

)

, (6-34)

where once again the explicit dependence onX has been omitted.
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The first result expresses the fact thatV (1)(z) = (1−z) V (z) . At first sight this appears rather
surprising, but it should be noted that it yields

s
(1)
λ = [Zλ] V (1)(z1) V (1)(z2) · · · V (1)(zl) · 1

= [Zλ ]
l
∏

i=1

(1 − zi) V (z1) V (z2) · · · V (zl) · 1

= [sλ(Z)]
l
∏

i=1

(1 − zi) M(Z) . (6-35)

Implicit in this is the dependence on an arbitrary alphabetX = (x1, x2, . . . ) . Making this
explicit gives

s
(1)
λ (X) = [sλ(Z)]

l
∏

i=1

(1 − zi) M(XZ) = [sλ(Z)] L(Z) M(XZ)

= [sλ(Z)] L⊥(X) (M(XZ)) = [sλ(Z)] L⊥(X)

(

∑

µ

sµ(X) sµ(Z)

)

= L⊥(X) (sλ(X)) = L⊥
(1) (sλ(X)) , (6-36)

as required by the definition (5-7) of such a character.
The next two results in (6-34) have been derived by Baker [3] using different techniques in-

volving rather more traditional operator reordering methods. In what follows next, this operator
ordering approach is outlined and is used, by way of example,to recover the formula forV (21)

as given in (6-34). However, it is clear that our Proposition6.11 allows further vertex operators
V π specified by partitionsπ of weight higher than3 to be written down rather easily.

6.3. Vertex operators via normal ordering. The expressionsL⊥
π (w; X)(M(XZ)) can be eval-

uated rather easily using (2-16), or more explicitly for anygiven π as in Appendix A. However,
from the point of view of operator ordering the more general expressionsL⊥

π (w; X)M(XZ) are
not in so-called normal-ordered form since they involve exponentials of various partial deriva-
tives with respect to power sum symmetric functions standing to the left of other exponentials of
power sum symmetric functions.

Algebraically, if we introduce operatorsK and P such thateK = L⊥
π (w; X) and eP =

M(XZ) , the normal ordering problem can be tackled using the following formula:

eKeP = eP
(

e−P eKeP
)

= eP eK + [K,P ] + 1
2
[[K,P ],P ] + 1

6
[[[K,P ],P ],P ] + ··· . (6-37)

Even though we suspect the formula used in making the second step may be well known as
an adjoint action result in the theory of Lie groups and theiralgebras, we have been unable to
locate a statement or proof of this result. We therefore attach a strictly combinatorial proof in
Appendix B.
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In our case,K symbolises the partial derivative operator of degreep that is defined by
L⊥

π (w; X) = exp K with p = |π| , and P is the usual infinite sum of power sum symmetric
functions appearing as the exponent in the formulaM(XZ) = exp P . One must retain terms
up to those involving1/p! in the expansion of the exponent that appears in (6-37) in order to
extract all scalar and differential contributions arisingfrom the reordering. Note that none of the
surviving terms in the exponent of the final term will containsymmetric functions in the alphabet
X , but only scalars and partial derivatives that all mutuallycommute. This enables this term to
be written as a product of exponentials, each with a single multi-commutator argument.

As an illustration of this method, we deal with the caseπ = (21) for which p = 3 . For ease
of writing, we suppress the alphabetX and abbreviate∂/∂pk(X) as∂k for all positive integers
k . In this case

M(21)(w) = exp

(

∑

k≥1

wk

3k
(−p3k + p3

k)

)

; L(21)(w) = exp

(

∑

k≥1

wk

3k
(p3k − p3

k)

)

;

L⊥
(21)(w) = exp

(

∑

k≥1

wk (∂3k −
1

3
k2∂3

k)

)

; M(Z) = exp

(

∑

m≥1

pm · pm(Z)

m

)

. (6-38)

This givesK =
∑

k≥1 wk
(

∂3k −
1
3
k2∂3

k

)

andP =
∑

m≥1 pm · pm(Z)/m . We calculate directly

[∂3k, P ] =
1

3k
p3k(Z) ;

[k2∂3
k, P ] = 3k pk(Z) ∂2

k;

[[k2∂3
k, P ], P ] = 6 pk(Z)2 ∂k;

[[[k2∂3
k, P ], P ], P ] =

6

k
pk(Z)3 . (6-39)

Hence

[K,P ] =
∑

k≥1

wk

(

1

3k
p3k(Z) − k pk(Z) ∂2

k

)

, (6-40)

which clearly commutes withK as claimed. Moreover,

K + [K,P ] +
1

2
[[K,P ], P ] +

1

6
[[[K,P ], P ], P ]

=
∑

k≥1

wk

(

1

3k

(

p3k(Z) − pk(Z)3
)

+ ∂3k − p2
k(Z) ∂k − k pk(Z) ∂2

k −
1

3
k2∂3

k

)

. (6-41)

It follows that

L⊥
(21)(w) M(Z) = M(Z) L(21)(w; Z) exp

(

−
∑

k≥1

wk
(

p2
k(Z) ∂k + k pk(Z) ∂2

k

)

)

L⊥
(21)(w) .

(6-42)
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There are a number of special cases of this normal ordered formula that are of interest. First,
acting on1 , or any other scalar, this gives

L⊥
(21)(w) M(Z) · 1 = M(Z) L(21)(w; Z) · 1 (6-43)

in agreement with the identity (2-16).
Second, restrictingZ to the one letter alphabetz gives

pk(z) = zk, p2k(z) = z2k and p3k(z) − pk(z)3 = z3k − (zk)3 = 0 , (6-44)

for all k ≥ 1 , so thatL(21)(z) = 1 , and (6-42) reduces to

L⊥
(21)(w) M(z) = M(z) exp

(

−
∑

k≥1

wk
(

z2k ∂k + kzk ∂2
k

)

)

L⊥
(21)(w) . (6-45)

This is nothing other than an illustrative example of Lemma 6.10 since the identity

z2k ∂k + kzk ∂2
k =

(1

2
kzk ∂2

k + zk∂2k

)

+
(1

2
kzk ∂2

k − zk∂2k

)

+ z2k ∂k (6-46)

enables (6-45) to be rewritten in the form

L⊥
(21)(w) M(z) = M(z) L⊥

(2)(wz) L⊥
(12)(wz) L⊥

(1)(wz2) L⊥
(21)(w)

= M(z)
2
∑

k=1

L⊥
(21/k)(wzk) L⊥

(21)(w) , (6-47)

where use has been made of (6-31) and (6-32).
In addition, it follows from (6-45) that if we now setw = 1 and Z = (z1, z2, . . . , zl) once

again and reverse the sequence of steps used in (6-21) we obtain

s
(21)
λ = [sλ] L⊥

(21) M(Z) · 1 = [Zλ] V (21)(z1) V (21)(z2) · · · V (21)(zl) · 1 , (6-48)

with

V (21)(z) = M(z) exp

(

−
∑

k≥1

(

z2k ∂k + kzk ∂2
k

)

)

= exp

(

∑

k≥1

zk

k
pk

)

exp

(

−
∑

k≥1

(

(−z−k + z2k) ∂k + kzk ∂2
k

)

)

, (6-49)

precisely as in (6-34).
The other results of (6-34) may be obtained in the same way.
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7. REPLICATED VERTEX OPERATORS

Since their introduction in string theory, vertex operators have played a fruitful role in math-
ematical constructions of group representations as well ascombinatorial objects. We cite for
example applications to affine Lie algebras [24, 13], quantum affine algebras [12] and sporadic
discrete groups [14], see also [22, Chapter 14]. Variations on the theme of symmetric func-
tions [29] are applications toQ -functions [19, 32], Hall-Littlewood functions [20], Macdonald
functions [28, 29, 21, 9], Jack functions [6] and Kerov symmetric functions [2, Chapter 6].

As a modest approach to generalising the vertex operators ofSection 6, the observations made
in Section 4 allow us to write down immediately expressions for replicated or parameterized
vertex operators. In the simplest case, this is exemplified by

Vα(z) = M(αz) L⊥(αz−1)

= exp

(

α
∑

k≥1

zk

k
pk

)

exp

(

−α
∑

k≥1

z−k ∂

∂pk

)

. (7-1)

for any α , integer, rational, real or complex. Here, making the usualdependence onX quite
explicit,

M(αz; X) = M(z; X)α =
∏

i≥1

(1 − z xi)
−α

=
∑

σ

sσ(αz) sσ(X)

=
∑

σ

z|σ| dimσ(α) sσ(X) , (7-2)

while

L(αz−1; X) = L(z−1; X)α =
∏

i≥1

(1 − z−1 xi)
α

=
∑

τ

(−1)|τ | sτ (αz−1) sτ ′(X)

=
∑

τ

(−z)−|τ | dimτ (α) sτ ′(X) , (7-3)

as given first in [16].
More generally, we can define in a similar way:

V π
α (z) = (1 − zp δπ,(p))

α M(αz) L⊥(αz−1)

p−1
∏

k=1

L⊥
π/(k)(αzk) , (7-4)

where each term on the right has an expansion of the type shownabove involving sums over
partitions σ, τ, . . . . Still more variations may be constructed in which theα ’s on the right are
not all identical. It should be stressed that the normal ordering relations for products of such
vertex operators are very much more complicated than those encountered in Section 6.
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8. CONCLUSION

This work allows us to conclude that Littlewood’s attempt todevelop character theory alge-
braically, instead of using a group manifold integration approach, leads much further than ex-
pected. In particular, it allows us to obtain generating functions for formal characters of a range
of subgroupsHπ of the general linear group, well beyond the classical orthogonal and symplec-
tic subgroups. Furthermore, we see that the algebraic approach does not suffer from the infinities
encountered using analytic methods. Instead, the algebraic infinities are just those associated
with readily manipulated infinite series of Schur functions. A further advantage of this approach
is that the results of these manipulations take very compactforms if carried out in Hopf algebraic
terms, as illustrated in the proof of Proposition 6.11, by way of Lemma 6.10, that was based on
a knowledge of the coproduct of an infinite Schur function series. While the explicit exponential
form of vertex operators cannot easily yield such general results, it can be used to express the
algebraic results in a physically more desirable form, as exemplified in (6-34). Moreover, thanks
to the plethystic approach to replication and parameterization, these exponential forms can be
readily generalized, while still remaining susceptible toactual (machine) calculations.

Moreover we have shown in Table 1 that the use of inner coproducts and the dimension map
can dramatically speed up the computation of plethysms. This approach has two major benefits.
It allows us i) to compute plethysms with large multiplicities, for examplesµ[n sν ] for large
integersn , and ii) to extend plethysms to those involving an argument which need not be integral,
but can be in a ring extension, and evaluate them. This opens the way for dealing withq -
deformations, as introduced by Jarvis and Yung [16], Baker [2] and Brenti [4], who considered
plethysms of the formsµ[q s(1)] , which correspond to scalings. In Appendix C we provide
pseudo code to implement an algorithm for their evaluation.

An extension of algebraic and operator methods in combinatorial settings, which we have
not pursued in the present work, invokes the fermion-boson correspondence (see for exam-
ple [33, 8, 18]). In the present case, our explicit vertex operator constructions for the formal
Hπ characterss(π)

λ can be expected to have their equivalents in terms of free fermions, and
hence via Wick’s theorem, to be amenable to determinantal evaluations [17]. The resulting de-
terminantal expressions can be expected to be helpful in an attack on the notorious problem of
determining the modification rules forHπ characters involving a finite alphabet [11]. We leave
further developments along these lines to future work.
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APPENDIX A. A N EXPLICIT EXPRESSION FORL⊥
π (w) (M(Z))

Proposition A.13: For any partitionπ , any w and any alphabetZ = (z1, z2, . . . , zl) with l a
positive integer,

L⊥
π (w) (M(Z)) =

∏

T∈T π [l]

(1 − w Zwgt(T )) M(Z) , (A-1)

where the product is taken over all tableaux,T , in the set,T π[l] , of all semistandard or column-
strict tableaux [29] with entries taken from the set{1, 2, . . . , l} . For each tableauT its weight
is defined to bewgt(T ) = (#1, #2, . . . , #l)) , with #k the number of entriesk in T for
k = 1, 2, . . . , l .

Proof: The proof is by induction with respect top , the weight ofπ .
For p = 1 we haveπ = (1) andLπ = L(1) = L so that

L⊥
(1)(w) (M(z)) = L⊥(w) ( M(z1) M(z2) · · · M(zl) )

= M(z1)/L(w) M(z1)/L(w) · · · M(zl)/L(w)

= (1 − w z1)(1 − w z2) · · · (1 − w zl) M(z1) M(z2) · · · M(zl)

=
∏

1≤i≤l

(1 − w zi) M(Z) =
∏

T∈T (1)[l]

(1 − w Zwgt(T )) M(Z) , (A-2)

since each semistandard tableau of shapeπ = (1) consists of a single box whose entry is to be
taken from{1, 2, . . . , l} . This proves the required result in the casep = 1 .
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Now we assume the result to be true for all partitionsη with weight |η| < p . Then by means
of the coproduct argument used in the proof of Lemma 6.10 we have

L⊥
π (w) (M(Z)) = L⊥

π (w) ( M(zl) · · · M(z2) M(z1) )

= ( M(zl)/Lπ(w) ) ( M(Z ′)/(Lπ(w)

p−1
∏

k=1

m(k)
∏

m=1

Lη(k,m)(w zk
l ) ) ) , (A-3)

whereZ ′ = (z1, z2, . . . , zl−1) .
Consider the first factorM(zl)/Lπ(w) . The use of (6-14) implies thatM(zl)/Lπ(w) = M(zl)

unlessπ = (p) in which case one obtains

M(zl)/L(p)(w) = (1 − w zp) M(zl) = (1 − w z
wgt(T )
l ) M(zl) , (A-4)

whereT is the single semistandard tableau of one-rowed shape(p) whose entries are alll .
Turning to the second factor involvingM(Z ′) , by the induction hypothesis

M(Z ′)/Lη(k,m)(w zk
l ) =

∏

T ′∈T η(k,m)[l−1]

(1 − w zk
l Z ′wgt(T ′)) M(Z ′) . (A-5)

It remains to take the product over allk = 1, 2, . . . , p − 1 andm = 1, 2, . . . ,m(k) , but this is a
product over all shapesη(k,m) that are obtained by the removal of a horizontal strip [29, p.5] of
k -boxes from the shape ofπ . For each semistandard tableauT ′ of shapeη(k,m) with entries
from {1, 2, . . . , l − 1} , if we then fill the k boxes of the horizontal strip withk entries l we
obtain a semistandard tableauT of shapeπ with entries from{1, 2, . . . , l} . All semistandard
tableauxT of shapeπ containing at least onel and no more thanp−1 entriesl can be obtained
in this way.

Combining this with our earlier result on the first factor, implies that

M(Z)/Lπ(w) = ( M(zl)/L(p)(w) ) (

p−1
∏

k=1

m(k)
∏

m=1

Lη(k,m)(w zk
l ) ) )

= M(zl)
∏

T∈T π[l]l

(1 − w Z wgt(T )) ( M(Z ′)/Lπ(w) ) , (A-6)

where the subscriptl on [l] is intended to indicate that the product is taken over all those semis-
tandard tableauxT of shapeπ containing at least one entryl .

By applying the same process toM(Z ′)/Lπ(w) , one obtains factors corresponding to all
semistandardT of shapeπ containing no entryl but at least one entryl − 1 . Continuing with
this iteration procedure one obtains the result

M(Z)/Lπ(w) =
∏

T∈T π [l]

(1 − w Z wgt(T )) M(zl) M(zl−1) · · · M(z1) , (A-7)

thereby completing the proof of (A-1). �
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It should be noted that, as one possible definition of Schur functions,

sπ(Z) =
∑

T∈T π [l]

Z wgt(T ) , (A-8)

since the monomials in the expansion ofsπ(Z) are precisely the variousZ wgt(T ) specified by
all the semistandard tableauxT appearing inT π[l] . Then, thanks to the plethystic definition of
Lπ(w; Z) , (A-1) immediately implies the validity of:

Corollary A.14:

L⊥
π (w) (M(Z)) = Lπ(w; Z)M(Z) . (A-9)

Once it is recalled that the dependence onX has been omitted, this can be seen to be nothing
other than an exemplification of the more general result (2-16) associated with the Cauchy kernel.

APPENDIX B. PROOF OF ADJOINT ACTION IDENTITY

Theorem B.15: Let x and y be arbitrary elements of a ringR with identity 1 but which is in
general non-commutative. Then

exp(x) exp(y) exp(−x) = exp

(

∞
∑

n=0

1

n!
[x, · · · , [x, [x, y]] · · · ]

)

, (B-1)

where the displayed commutator[x, · · · , [x, [x, y]] · · · ] is of degreen in x .

Proof: For all x ∈ R the mutully inverse functionsexp and ln are defined by

exp(x) =
∞
∑

k=0

1

k!
xk and ln(x) =

∞
∑

m=1

(−1)m−1

m
(x − 1)m . (B-2)

Now let exp(x) exp(y) exp(−x) = exp(z) so thatz = ln(exp(x) exp(y) exp(−x)) . It follows
that

z =
∞
∑

m=1

(−1)m−1

m

(

∑

p,q,r≥0

(−1)r xpyqxr

p!q!r!
− 1

)m

=
∞
∑

m=1

(−1)m−1

m

∑

pi, qi, ri ≥ 0
pi + qi + ri > 0

(−1)r1
xp1yq1xr1

p1!q1!r1!
(−1)r2

xp2yq2xr2

p2!q2!r2!
· · · (−1)rm

xpmyqmxrm

pm!qm!rm!
.

(B-3)
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In this expansion as a signed sum of products of triples consider those contributions for which
a triple contains noy that is to say a triple of the form(xpy0xr) with p + r = n > 0 . For each
suchn , if we collect together all those terms that differ only in the values ofp and r their sum
contains the factor

n
∑

r=0

(−1)r xn−rxr

(n − r)!r!
=

1

n!
(x − x)n = 0. (B-4)

It follows that in (B-3) we need retain only those terms for which qk > 0 for all k = 1, 2, . . . ,m .
Now consider those terms for which there are two neighbouring triples (· · · yxr)(xpy · · · )

with r + p = n > 0 . Then as before, for each suchn , if we collect together all those terms that
differ only in the values ofp and r their sum contains once again the factor

n
∑

r=0

(−1)r xn−rxr

(n − r)!r!
=

1

n!
(x − x)n = 0. (B-5)

It follows that in (B-3) we need retain only those terms for which no two y ’s are separated by
any x ’s.

This leaves only terms of the formxpyqxr , with q > 0 andp, r ≥ 0 . As far as the constituent
triples are concerned thexp and xr must be attached to at least oney on their right and left,
respectively, since all triples consisting of justx ’s have been eliminated. Thus the contribution
of the x ’s is a fixed common factor, namely(−1)rxp+r/(p!r!) . Apart from this common factor
the contribution of all termsxpyqxr to z in (B-3) is given by

∞
∑

m=1

(−1)m−1

m

∑

qi>0; q1+q2+···+qm=q

yq1+q2+···+qm

q1!q2! · · · qm!

=
∞
∑

m=1

(−1)m−1

m

yq

q!

∑

qi>0; q1+q2+···+qm=q

(

q
q1 q2 . . . qm

)

=
∞
∑

m=1

(−1)m−1

m

yq

q!
m! S(q,m) =

yq

q!

∞
∑

m=1

s(m, 1) S(q,m) =
yq

q!
δq,1 . (B-6)

wheres(m, 1) andS(q,m) are Stirling numbers of the first and second kind, respectively.
It follows that the only surviving terms in (B-3) are those of the form xpyxr with p, r ≥ 0 ,

and each of these terms must constitute a single triple, withm = 1 . Thus

z =
∑

p,r≥0

(−1)r xpyxr

p!r!
=

∞
∑

n=0

1

n!

n
∑

r=0

(−1)r

(

n
r

)

xn−ry xr . (B-7)

To complete the proof of Theorem B.15 it only remain to prove the following:

Lemma B.16: For all x and y and all non-negative integersn

[x, · · · , [x, [x, y]] · · · ] =
n
∑

r=0

(−1)r

(

n
r

)

xn−r y xr , (B-8)

where the commutator on the left is of degreen in x .
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Proof: We offer a proof by induction with respect ton . For n = 0 the right hand side of (B-8)
is just y , and this is how the left hand side must be interpreted in thisn = 0 case. Perhaps more
significantly, forn = 1 the right hand side of (B-8) reduces toxy − yx = [x, y] , as required.

Now, for convenience, let[x(k), y] denote the commutator[x, · · · , [x, [x, y]] · · · ] of degreek
for any positive integerk . Then assuming the validity of (B-8) in the casen = k we have

[x(k+1), y] = [x, [x(k), y]]

=
k
∑

r=0

(−1)r

(

k
r

)

xk−r+1 y xr −

k
∑

r=0

(−1)r

(

k
r

)

xk−r y xr+1

= xk+1 y +
k
∑

r=1

((

k
r

)

+

(

k
r − 1

))

xk+1−r y xr + (−1)k+1y xk+1

=
k+1
∑

r=0

(−1)r

(

k + 1
r

)

xk+1−r y xr . (B-9)

This proves the required result forn = k + 1 and completes the induction argument, thereby
proving Lemma B.16 and hence also Theorem B.15. �

APPENDIX C. A GENERAL ROUTINE TO COMPUTE SCALED PLETHYSMS

In this appendix we want to give pseudo code for an algorithm to compute plethysms with
scaled arguments. Such an algorithm was implemented in the Maple packageSchurFkt [1].
To the best knowledge of the authors no other computer algebra system uses this fast algorithm,
so it seems appropriate to present this method here.

We assume that we have a basis{uλ} of the ring of symmetric functionsΛ(X) in countably
many variables. We distinguish basis monomialsSymB, termsSymT and polynomialsSymFkt.
We need also types for the tensor product and call thisSymBxB for tensor basis monomials and
SymFktBxB for general tensor polynomials. We also assume that we can compute the following
functions for this basis:

• dim : Λ(X)×R −→ R the dimension function for vector spacesV λ having anGL(α)
action forα ∈ R . Such vector spaces need not be irreducible. We call this map
dim :: SymB, Ring -> Ring

• ∆ : Λ(X) −→ Λ(X) ⊗ Λ(X) the outer coproduct. Due to self duality this is equivalent
to computing skew products. This function is called
Delta :: SymB -> SymFktBxB.
The fast evaluation of outer coproducts is done using, for example, the Lascoux-Schüt-
zenberger algorithm for skew Schur functions, see [23].
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• δ : Λ(X) −→ Λ(X) ⊗ Λ(X) the inner coproduct. Due to self duality this is equivalent
to computing an inner product. This function is called
delta :: SymB -> SymFktBxB.
The inner coproduct is computed from the Kronecker coefficients of inner products eval-
uated, for example in the Schur basis, by the method of Robinson [31].

• We also assume that we can compute plethysms for basis monomials {uλ} , choosing our
favorite method. This map is called
plethB :: SymB, SymB -> SymFkt.
Good algorithms for plethysms in standard bases are available [7, 23].

Let us further assume, that a symmetric function (tensor) polynomial is stored so that we can
access terms by a functionlistOfTerms and that a term is a pair (triple) consisting of a
coefficient inR and a basis monomial in{uλ} (a pair of basis monomials) which we can access
by functionsfirst for the coefficient andsecond (andthird) for the basis monomial(s).

We know from the properties of plethysms displayed in (2-18), that the plethysm is linear in
the first argument but not linear in the second argument. Our task is hence to provide a procedure
for expanding with respect to a general symmetric function in the second argument. This reads
as follows:

L ISTING 1
1 / / D e c l a r a t i o n s o f p r e d e f i n e d f u n c t i o n s
2 SymFkt plethysmB (SymB , SymB ) ;
3 SymFktBxB d e l t a (SymB) , D e l t a (SymB ) ;
4 Ring dim (SymB , Ring ) ;
5
6 / / D e c l a r a t i o n s
7 SymFkt p le thysmRigh t (SymB , SymFkt ) ;
8 SymFkt p le thysm ( SymFkt , SymFkt ) ;
9

10 / / P rocedures
11 / / r i g h t non− l i n e a r expans ion
12 p le thysmRigh t ( sMon , sPo ly ){
13 SymB ty1 ; / / l o c a l v a r i a b l e s
14 SymT term , head ;
15 SymFktBxB coProd ;
16 SymFkt r e s ;
17 L i s t [ SymFkt ] t a i l ;
18 L i s t [ SymFktBxB ] l s t T e r m s ;
19 i f ze ro =second ( sMon ){ re turn ( sMon ) ; } ;
20 l s t T e r m s := l i s t O f T e r m s ( sPo ly ) ;
21 i f # l s t T e r m s =1 {
22 coProd := d e l t a ( sMon ) ; / / i n n e r cop roduc t
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23 l s t T e r m s := l i s t O f T e r m s ( coProd ) ;
24 r e s := 0 ;
25 f o r te rm i n l s t T e r m s do{
26 r e s := r e s +
27 dim ( second ( term ) , f i r s t ( sPo ly ) )
28 ∗plethysmB ( t h i r d ( term ) , sPo ly ) ;
29 }
30 re turn ( r e s ) ;
31 } e l s e {
32 head := f i r s t ( l s t T e r m s ) ;
33 t a i l := r e s t ( l s t T e r m s ) ;
34 coProd := D e l t a ( sMon ) ; / / o u t e r cop roduc t
35 l s t T e r m s := l i s t O f T e r m s ( coProd ) ;
36 r e s := 0 ;
37 f o r te rm i n l s t T e r m s do{
38 r e s := r e s +
39 f i r s t ( term )∗ p le thysmRigh t ( second ( term ) , head )
40 ∗ p le thysmRigh t ( t h i r d ( term ) , t a i l ) ;
41 }

42 re turn ( r e s ) ;
43 }

44
45 }
46
47 / / l e f t l i n e a r i t y
48 p le thysm ( sP lo l y1 , sPo ly2 ){
49 SymT term ;
50 SymFkt r e s : = 0 ;
51 i f sPo ly1 =0 or sPo ly2 =0 then{ re turn 0 } ;
52 f o r te rm i n l i s t O f T e r m s ( sPo ly1 )do {
53 r e s := r e s +
54 f i r s t ( term )∗ p le thysmRigh t ( second ( term ) , sPo ly2 ) ;
55 }

56 re turn ( r e s ) ;
57 }

We end this Appendix by noting that many standard maps have a plethystic interpretation
and hence are available via the above algorithm. Among them are the identity map Id seen as
plethysm withs(1) and the antipode mapS seen as plethysms with((−1)s(1)) .
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