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On selfinjective artin algebras having generalized

standard quasitubes

Maciej Karpicza,∗, Andrzej Skowrońskia, Kunio Yamagatab
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Abstract

We give a complete description of the Morita equivalence classes of all
connected selfinjective artin algebras for which the Auslander-Reiten quiver
admits a family of quasitubes having common composition factors, closed
under composition factors, and consisting of modules not lying on infinite
short cycles.

Keywords: Selfinjective algebra, orbit algebra, quasitilted algebra,
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1. Introduction and the main result

Throughout the paper, by an algebra we mean a basic, connected artin
algebra over a commutative artin ring k. For an algebra A we denote by
modA the category of finitely generated right A-modules. Given a module
M in modA, we denote by [M ] the image of M in the Grothendieck group
K0(A) of A. Thus [M ] = [N ] if and only if the modules M and N have the
same composition factors including the multiplicities. An algebra A is called
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selfinjective if AA is an injective module, or equivalently, the projective and
injective modules in modA coincide.

An important combinatorial and homological invariant of the module
category modA of an algebra A is its Auslander–Reiten quiver ΓA. The
Auslander–Reiten quiver ΓA describes the structure of the quotient category
modA/ rad∞(modA), where rad∞(modA) is the infinite Jacobson radical of
modA. In particular, by a result due to Auslander [6], A is of finite repre-
sentation type if and only if rad∞(modA) = 0. In general, it is important to
study the behavior of the components of ΓA in the category modA. Follow-
ing [45] a component C of ΓA is called generalized standard if rad∞(X, Y ) = 0
for all modules X and Y in C. It has been proved in [45] that every general-
ized standard component C of ΓA is almost periodic, that is, all but finitely
many DTr-orbits in C are periodic. Moreover, by a result of [59], the addi-
tive closure add(C) of a generalized standard component C of ΓA is closed
under extensions in modA. We note that, for A selfinjective, every infinite
generalized standard component C of ΓA is either acyclic with finitely many
DTr-orbits or is a quasitube (the stable part Cs of C is a stable tube).

In the representation theory of selfinjective algebras a prominent role
is played by the selfinjective algebras of quasitilted type, that is, the orbit
algebras B̂/G, where B̂ is the repetitive algebra of a quasitilted algebra B and

G is an admissible group of automorphisms of B̂, which is in fact an infinite
cyclic group generated by a strictly positive automorphism of B̂. Recall that
the quasitilted algebras are those of the form EndH(T ) where T is a tilting
object in a hereditary Ext-finite abelian category H, or equivalently, the
algebras Λ of global dimension at most two and with every indecomposable
module in mod Λ of the projective dimension or the injective dimension at
most one [17]. It has been proved in [16] that the class of quasitilted algebras
consists of the tilted algebras [18] (endomorphism algebras of tilting modules
over hereditary algebras) and the quasitilted algebras of canonical type [31]
(endomorphism algebras of tilting objects in hereditary abelian categories
whose derived categories are equivalent to the derived categories of canonical
algebras in the sense of Ringel [40], [41]). Accordingly the class of selfinjective
algebras of quasitilted type consists of the selfinjective algebras of tilted type
and the selfinjective algebras of canonical type. We refer to the survey article
[58] for the representation theory and the structure of the Auslander–Reiten
quivers of selfinjective algebras of quasitilted type. We also mention that
a selfinjective algebra A over an algebraically closed field is of polynomial
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growth if and only if A is a socle and geometric deformation of an orbit
algebra B̂/G with B a quasitilted algebra having nonnegative Euler form
(see [44], [51]).

In the paper we are concerned with the structure of selfinjective algebras
for which the Auslander–Reiten quiver admits a generalized standard com-
ponent. A distinguished class of such algebras is formed by the selfinjective
algebras of finite type. It is conjectured in [58, Problem 12.4] that these

algebras are socle deformations of the orbit algebras B̂/G of tilted algebras
B of Dynkin type. It has been proved in [54], [55] that the selfinjective
algebras A having an acyclic generalized standard component in ΓA are self-
injective algebras of tilted (Euclidean or wild) type. On the other hand, the
description of selfinjective algebras whose Auslander–Reiten quiver admits a
generalized standard quasitube is an exciting but difficult problem (see [49],
[50]). Namely, every algebra Λ over a field k is a factor algebra of a self-
injective algebra A with ΓA having a generalized standard stable tube (see
[50]).

The aim of the paper is to prove the following theorem characterizing a
wide class of selfinjective algebras whose Auslander–Reiten quiver admits a
family of generalized standard quasitubes satisfying certain conditions.

Theorem 1.1. Let A be a basic, connected, selfinjective artin algebra. The
following statements are equivalent.

(i) ΓA admits a family C = (Ci)i∈I of quasitubes having common composi-
tion factors, closed on composition factors, and consisting of modules
which do not lie on infinite short cycles in modA.

(ii) A is isomorphic to an orbit algebra B̂/G, where B is an almost con-
cealed canonical algebra and G is an infinite cyclic group of automor-
phisms of B̂ of one of the forms

(a) G = (ϕν2
B̂

), for a strictly positive automorphism ϕ of B̂,

(b) G = (ϕν2
B̂

), for B a tubular algebra and ϕ a rigid automorphism of

B̂,
(c) G = (ϕν2

B̂
), for B of Euclidean or wild type and ϕ a rigid auto-

morphism of B̂ acting freely on the nonstable tubes of the unique
separating family T B of ray tubes of ΓB,

where νB̂ is the Nakayama automorphism of B̂.
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Following [48] a family C = (Ci)i∈I of components of ΓA is said to have
common composition factors, if, for each pair i and j in I, there exist modules
Xi ∈ Ci and Xj ∈ Cj with [Xi] = [Xj]. Moreover, C is closed under composi-
tion factors if, for every indecomposable modules M and N in modA with
[M ] = [N ], M ∈ C forces N ∈ C. Further, by a short cycle in modA we

mean a sequence M
f // N

g // M of nonzero nonisomorphisms between
indecomposable modules in modA [38], and such a cycle is said to be infinite
if at least one of the homomorphisms f or g belongs to rad∞(modA). We
also mention that, by a result proved in [38], every indecomposable module
M in modA which does not lie on a short cycle is uniquely determined by
[M ] (up to isomorphism).

As a direct consequence of Theorem 1.1 and results on selfinjective alge-
bras of canonical type, established in Section 6 (Proposition 6.4 and 6.5), we
obtain the following fact.

Corollary 1.2. Let A be a basic, connected, selfinjective artin algebra. The
following statements are equivalent.

(i) ΓA admits a family T = (Ti)i∈I of stable tubes with common composi-
tion factors, closed under composition factors and consisting of modules
which do not lie on infinite short cycles in modA.

(ii) A is isomorphic to an orbit algebra B̂/G, where B is a concealed canon-

ical algebra and G is an infinite cyclic group of automorphisms of B̂ of
the form (ϕν2

B̂
) for a positive automorphism ϕ of B̂.

We refer to [11], [22], [27], [28], [29], [30], [41], [42], [48] for contructions
and basic properties of concealed canonical algebras.

By general theory (see [33], [61]), an infinite component C of the Auslan-
der-Reiten quiver ΓA of a selfinjective algebra A is cyclic (every module in
C lies on an oriented cycle in ΓA) if and only if C is a quasitube. Then we
obtain the following consequence of Theorem 1.1 and the known structure of
the Auslander-Reiten quivers of selfinjective algebras of canonical type (see
Theorem 6.3, Proposition 6.4).

Corollary 1.3. Let A be a basic, connected, selfinjective artin algebra. The
following statements are equivalent.

(i) ΓA is cyclic and admits a family C = (Ci)i∈I of quasitubes having com-
mon composition factors, closed under composition factors, and con-
sisting of modules which do not lie on infinite short cycles in modA.
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(ii) ΓA is cyclic and admits a family T = (Ti)i∈I of stable tubes having com-
mon composition factors, closed under composition factors, and consist-
ing of modules which do not lie on infinite short cycles in modA.

(iii) A is isomorphic to an orbit algebra B̂/G, where B is a tubular algebra

and G is an infinite cyclic group of B̂ of the form (ϕν2
B̂

) for a positive

automorphism ϕ of B̂.

We refer to [23], [24], [25], [26], [27], [40], [41] for constructions and basic
properties of tubular algebras.

As an immediate consequence of Theorem 1.1 and the fact that the or-
dinary valued quivers of quasitilted algebras are acyclic [17] we obtain the
following fact.

Corollary 1.4. Let A be a basic, connected, selfinjective artin algebra whose
Auslander-Reiten quiver ΓA admits a family C of quasitubes with common
composition factors, closed under composition factors, and consisting of mod-
ules which do not lie on infinite short cycles. Then the center of A is a field,
and hence A is a finite dimensional algebra over a field.

The paper is organized as follows. In Section 2 we describe basic proper-
ties of quasitubes which are fundamental for the proofs of the main results. In
Section 3 we recall known characterizations of quasitilted algebras of canon-
ical type, playing a prominent role in the proof of Theorem 1.1. Section 4 is
devoted to quasitube enlargements of concealed canonical algebras, essential
for further considerations. In Section 5 we recall criteria for selfinjective al-
gebras to be orbit algebras of repetitive algebras established by the second
and third named authors, applied in the proof of Theorem 1.1. In Section 6
we describe the module categories of selfinjective algebras of canonical type
as well as prove the implication (ii)⇒ (i) of Theorem 1.1. The final Section
7 is devoted to the proof of the implication (i)⇒ (ii) of Theorem 1.1.

For basic background on the representation theory of algebras applied in
the paper we refer to the books [2], [7], [15], [40], [42], [43] and to the survey
articles [51], [58], [60].

The main results of the paper have been presented by the first named
author during the Fortheenth International Conference on Representations
of Algebras (ICRA XIV) held in Tokyo in August 2010.

5



2. Quasitubes

The purpose of this section is to present results on quasitubes of Aus-
lander-Reiten quivers of algebras, playing a prominent role in the proof of
Theorem 1.1.

Recall that if A∞ is the quiver 0 → 1 → 2 → · · · , then ZA∞ is the
translation quiver of the form

(i−1,0) (i,0) (i+1,0) (i+2,0)

↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘
. .

.
(i−1,1) (i,1) (i+1,1)

. . .
↗ ↘ ↗ ↘ ↗ ↘

..
.

(i−1,2) (i,2)
. . .

↗ ↘ ↗ ↘
. .

. . . . . .
. . . .

with τ(i, j) = (i − 1, j) for i ∈ Z, j ∈ N. For r ≥ 1, denote by ZA∞/(τ r)
the translation quiver obtained from ZA∞ by identifying each vertex (i, j)
of ZA∞ with the vertex τ r(i, j) and each arrow x → y in ZA∞ with the
arrow τ rx → τ ry, and call it the stable tube of rank r. The τ -orbit of a
stable tube Γ formed by all vertices having exactly one immediate predecessor
(equivalently, successor) is called the mouth of Γ.

Let (Γ, τ) be a translation quiver (with trivial valuations). For some
vertices x in Γ, called pivots, we shall define two admissible operations [4]
modifying (Γ, τ) to a new translation quiver (Γ′, τ ′), depending on the shape
of paths in Γ starting from x.

(ad 1) Suppose that Γ admits an infinite sectional path

x = x0 → x1 → x2 → · · ·

starting at x, and assume that every sectional path in Γ starting at x is a
subpath of the above path. For t ≥ 1, let Γt be the following translation
quiver, isomorphic to the Auslander-Reiten quiver of the full t × t upper
triangular matrix algebra over a field,

◦ ◦ ◦ ◦yt

↘ ↗ ↘ ↗ ↘ ↗◦ . . . ◦yt−1

↘ ↗ ↘ ↗◦ ◦yt−2

↘ ↗. . . . .
.

↘ ↗◦y1
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We then let Γ′ be the translation quiver having as vertices those of Γ, those
of Γt, additional vertices zij and x′i (where i ≥ 0, 1 ≤ j ≤ t) and having
arrows as in the figure below

. .
.

↗ . .
.

◦ ◦ ◦ yt ◦ x′0 ◦ τ−1x0

↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗
◦ ◦ z0t ◦ x′1 ◦ τ−1x1

↘ . . . . .
. ↗ ↘ ↗ ↘ ↗ ↘

◦ z1t ◦ x′2. . . ↘ ↗ . .
. ↗ ↘ ↗ ↘ . . .◦y2 ◦ z2t

↘ ↗ ↘ ↗ . .
. ↗ ↘ . . .◦ y1 ◦ z02

↘ ↗ ↘ ↗ . .
. . . .◦ z01 ◦ z12

↗ ↘ ↗ ↘ ↗◦ x0 ◦ z11 ◦ z22
↗ ↘ ↗ ↘ ↗ ↘◦ x1 ◦ z21

. .
. ↗ ↘ ↗ ↘ . . .◦x2

. .
. ↗ ↘ . . .

. .
. . . .

The translation τ ′ of Γ′ is defined as follows: τ ′zij = zi−1,j−1 if i ≥ 1, j ≥ 2,
τ ′zi1 = xi−1 if i ≥ 1, τ ′z0j = yj−1 if j ≥ 2, z01 is projective, τ ′x′0 = yt, τ

′x′i =
zi−1,t if 1 ≥ 1, τ ′(τ−1xi) = x′i provided xi is not injective in Γ, otherwise
x′i is injective in Γ′. For the remaining vertices of Γ′, τ ′ coincides with the
translation of Γ, or Γt, respectively. If t = 0, the new translation quiver Γ′ is
obtained from Γ by inserting only the sectional path consisting of the vertices
x′i, i ≥ 0.

(ad 2) Suppose that a vertex x in Γ is injective and Γ admits two sectional
paths starting at x, one infinite and the other finite with at least one arrow

yt ← · · · ← y2 ← y1 ← x = x0 → x1 → x2 → · · ·

such that any sectional path starting at x is a subpath of one of these paths.
Then Γ′ is the translation quiver having as vertices those of Γ, additional
vertices denoted by x′0, zij, x

′
i (where i ≥ 1, 1 ≤ j ≤ t), and having arrows as
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in the figure below

yt x′1 τ−1x1◦ ◦ ◦
↗ ↘ ↗ ↘ ↗ ↘

◦ z1t ◦ x′2 ◦ τ−1x2. . . . .
. ↗ ↘ ↗ ↘ ↗ ↘

◦ z2t ◦ x′3. . . ↘ ↗ . .
. ↗ ↘ ↗ ↘ . . .◦ y2 ◦ z3t. . . ↘ ↗ ↘ ↗ . .

. ↗ ↘ . . .◦ y1 ◦ z12
↘ x0↗x′0↘ ↗ ↘ ↗ . .

. . . .◦ →◦→◦ z11 ◦ z22
↗ ↘ ↗ ↘ ↗ ↘ ↗◦ x1 ◦ z21 ◦ z32

. .
. ↗ ↘ ↗ ↘ ↗ ↘◦ x2 ◦ z31
. .

. ↗ ↘ ↗ ↘ . . .◦ x3

. .
. ↗ ↘ . . .

. .
. . . .

The translation τ ′ of Γ′ is defined as follows: x′0 is projective-injective, τ ′zij =
zi−1,j−1 if i ≥ 2, j ≥ 2, τ ′zi1 = xi−1 if i ≥ 1, τ ′z1j = yj−1 if j ≥ 2, τ ′x′i = zi−1,t

if i ≥ 2, τ ′x′1 = yt, τ
′(τ−1xi) = x′i provided xi is not injective in Γ, otherwise

x′i is injective in Γ′. For the remaining vertices of Γ′, τ ′ coincides with the
translation τ of Γ.

We denote by (ad 1∗) and (ad 2∗) the admissible operations dual to the
admissible operations (ad 1) and (ad 2), respectively.

A connected translation quiver Γ is said to be a quasitube if Γ can be ob-
tained from a stable tube by an iterated application of admissible operations
(ad 1), (ad 2), (ad 1∗) or (ad 2∗). A tube (in the sense of [40]) is a quasitube
having the property that each admissible operation in the sequence defining
it is of the form (ad 1) or (ad 1∗). Finally, if we apply only operations of type
(ad 1) (respectively, of type (ad 1∗)) then such a quasitube Γ is called a ray
tube (respectively, a coray tube). Observe that a quasitube without injective
(respectively, projective) vertices is a ray tube (respectively, a coray tube).
A quasitube Γ whose all nonstable vertices are projective-injective is said to
be smooth.

The following proposition provides a characterization of quasitubes in the
Auslander-Reiten quivers of selfinjective algebras ([34, Theorem A], [33] and
[61])

Proposition 2.1. Let A be a selfinjective algebra and Γ a connected compo-
nent of ΓA. The following statements are equivalent.
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(i) Γ is a quasitube.
(ii) Γs is a stable tube.

(iii) Γ contains an oriented cycle.

Here, Γs denotes the stable part of Γ, obtained from Γ by removing the
projective-injective modules and the arrows attached to them.

The following characterization of generalized standard stable tubes of an
Auslander-Reiten quiver has been established in [45, Corollary 5.3] (see also
[47, Lemma 3.1]).

Proposition 2.2. Let A be an algebra and Γ a stable tube of ΓA. The fol-
lowing statements are equivalent:

(i) Γ is generalized standard.
(ii) The mouth of Γ consists of pairwise orthogonal bricks.

(iii) rad∞(X,X) = 0 for any module X in Γ.

Recall that an indecomposable A-module X is called a brick if its endo-
morphism algebra EndA(X) is a division algebra. We note that the division
algebras of all modules lying on the mouth of a generalized standard stable
tube of Γ are isomorphic.

Let A be an algebra and Γ be a stable tube of ΓA. Then Γ has two types of
arrows: arrows pointing to infinity and arrows pointing to the mouth. Hence,
for any module Z lying in Γ, there are a unique sectional path X1 → X2 →
. . . → Xm = Z in Γ with X1 lying on the mouth of Γ (consisting of arrows
pointing to infinity) and a unique sectional path Z = Y1 → Y2 → . . . → Ym
with Ym lying on the mouth of Γ (consisting of arrows pointing to the mouth),
and m is called the quasi-length of Z in Γ, denoted by ql(Z). Observe that
if Γ is of rank 1 and X its unique module lying on the mouth, then for any
module Z in Γ we have [Z] = ql(Z)[X], and hence Γ consists of modules with
pairwise different classes in the Grothendieck group K0(A).

For stable tubes of ranks bigger that one, we have following theorem (see
[47, Theorem 4.3]).

Theorem 2.3. Let A be an algebra, Γ a generalized standard stable tube of
ΓA of rank r > 1, and M , N nonisomorphic modules from Γ. Then [M ] = [N ]
if and only if ql(M) = ql(N) = cr for some c ≥ 1.

For stable tubes consisting of modules which do not lie on infinite short
cycles we have the following results established in [47, Corollaries 4.4 and
4.6].
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Theorem 2.4. Let A be an algebra, Γ a stable tube of rank r > 1 in ΓA
consisting of modules which do not lie on infinite short cycles in modA, and
M a module in Γ. Then M is uniquely determined (up to isomorphism) by
[M ] if and only if r does not divide ql(M).

Theorem 2.5. Let A be an algebra, Γ and Γ′ different stable tubes in ΓA
consisting of modules which do not lie on infinite short cycles in modA. Let
r be the rank of Γ and r′ be the rank of Γ′. Assume that [M ] = [N ] for some
modules M in Γ and M ′ in Γ′. Then r divides ql(M), r′ divides ql(M ′), and
the tubes Γ and Γ′ are orthogonal.

Observe that, by Proposition 2.2, every stable tube Γ of an Auslander-
-Reiten quiver ΓA consisting of modules which do not lie on infinite short
cycles is generalized standard [47, Corollary 3.2]. We shall show that it is
also the case for the smooth quasitubes. We need some results on the degrees
of irreducible homomorphisms proved by Liu in [33].

By a result of Bautista [8] a homomorphism f : M → N between inde-
composable modules in modA is irreducible if and only if f ∈ rad(M,N) \
rad2(M,N). The following more general result has been established by Igusa
and Todorov in [21].

Proposition 2.6. Let A be an algebra and

X0
f1 // X1

f2 //// . . . // Xn−1
fn // Xn

be a path of irreducible homomorphisms between indecomposable modules in
modA corresponding to a sectional path of ΓA. Then we have fn . . . f2f1 ∈
radn(X0, Xn) \ radn+1(X0, Xn).

Let A be an algebra and f : X → Y be an irreducible homomorphism in
modA with X and Y indecomposable modules. Following Liu [33], f is said
to be of infinite left degree if, for any integer n ≥ 1 and a homomorphism
g : M → X in radn(M,X) \ radn+1(M,Y ), we have fg ∈ radn+1(M,Y ) \
radn+2(M,Y ). Dually, f is said to be of infinite right degree if, for any integer
n ≥ 1 and a homomorphism h : Y → N in radm(Y,N) \ radn+1(Y,N), we
have hf ∈ radn+1(X,N) \ radn+2(X,N).

The following facts are consequences of [33, Corollary 1.6 and its dual].

Proposition 2.7. Let A be an algebra. The following statements hold.
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(i) Assume ΓA admits a full translation subquiver

· · · // Xi+1
//

��

Xi
//

��

· · · // X1
//

��

X0 = X

��
· · · // Yi+1

// Yi // · · · // Y1
// Y0 = Y

where the upper and lower infinite paths are sectional. Then every
irreducible homomorphism f : X → Y in modA is of infinite left degree.

(ii) Assume ΓA admits a full translation subquiver

M = M0
//

��

M1
//

��

· · · // Mj
//

��

Mj+1
//

��

· · ·

N = N0
// N1

// · · · // Nj
// Nj+1

// · · ·

where the upper and lower infinite paths are sectional. Then every
irreducible homomorphism g : M → N in modA is of infinite right
degree.

Let A be an algebra and C a smooth quasitube in ΓA. Then the stable
part Cs of C is a stable tube, and we may define the stable quasi-length sql(X)
of a stable module X in C as the quasi-length ql(X) of X in Cs. Moreover,
the stable quasi-length of a projective-injective module in C is defined to be
0.

Lemma 2.8. Let A be an algebra and C be a smooth quasitube in ΓA. More-
over, let r be the rank of Cs and m be the maximum of stable quasi-length
of the radicals of projective-injective modules in C. Then, for all modules X
and Y in C of stable quasi-length bigger than m+ r, we have rad(X, Y ) 6= 0.

Proof. Let X and Y be modules in C with sql(Y ) and sql(X) bigger than
m+ r. Then there are in C sectional paths

X = U0 → U1 → . . .→ Up−1 → Up = Z,

consisting of arrows of Cs pointing to the mouth, and

Z = V0 → V1 → . . .→ Vq−1 → Vq = Y,
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consisting of arrows of Cs pointing to infinity. Moreover, C admits full trans-
lation subquivers

· · · // W
(j−1)
s+1

//

��

W
(j−1)
s

//

��

. . . // W j−1
1

//

��

W
(j−1)
0 = Vj−1

��
· · · // W

(j)
s+1

// W
(j)
s

// . . . // W j
1

// W
(j)
0 = Vj

for j ∈ {1, . . . , q}, formed by parallel infinite sectional paths, consisting
of indecomposable modules of stable quasi-length > m. Take irreducible
homomorphisms in modA

ϕi : Ui−1 → Ui and ψj : Vj−1 → Vj,

for i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. Then it follows from Proposition
2.6 that ϕ = ϕp . . . ϕ1 ∈ radp(X,Z) \ radp+1(X,Z). On the other hand,
by Proposition 2.7, the irreducible homomorphisms ψ1, . . . , ψq are of infinite
left degree. Then, for ψ = ψq . . . ψ1 ∈ HomA(Z, Y ), we obtain that ψϕ ∈
radp+q(X, Y ) \ radp+q+1(X, Y ). Therefore, we conclude that rad(X, Y ) 6= 0.

�

We need also the following lemma (see [46, Lemma 2.1]).

Lemma 2.9. Let A be an algebra and X, Y be indecomposable modules in
modA with rad∞(X, Y ) 6= 0. Then the following statements hold.

(i) There exists an infinite path

X = X0
f1 // X1

f2 // X2
// . . . // Xi−1

fi // Xi
// . . .

of irreducible homomorphisms between indecomposable modules in modA
and homomorphisms gi ∈ rad∞(Xi, Y ), i ≥ 1, such that gifi . . . f1 6= 0
for all i ≥ 1.

(ii) There exists an infinite path

. . . // Yj
hj // Yj−1

// . . . // Y2
h2 // Y1

h1 // Y0 = Y

of irreducible homomorphisms between indecomposable modules in modA
and homomorphisms uj ∈ rad∞(X, Yj), j ≥ 1, such that h1 . . . hjuj 6= 0
for all j ≥ 1.
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Proposition 2.10. Let A be an algebra and C be a smooth quasitube in ΓA
consisting of modules which do not lie on infinite short cycles in modA.
Then C is a generalized standard component of ΓA.

Proof. Since C is a smooth quasitube of ΓA, the stable part Cs of C is a
stable tube, say of rank r. Denote by m the maximum of stable quasi-lengths
sql(radP ) of the radicals radP of projective-injective modules P in C. Con-
sider the positive integer n = m + 2r, and denote by Γ the full translation
subquiver of C consisting of all modules of stable quasi-length ≥ n. More-
over, let M be the direct sum of all indecomposable modules in C \Γ. Clearly
M is a module in modA, and hence EndA(M) is an artin algebra over k.

Assume that there are modules X and Y in C such that rad∞(X, Y ) 6= 0.
Then it follows from Lemma 2.9(i) that there exist an infinite path

X = X0
f1 // X1

f2 // X2
// . . . // Xs−1

fs // Xs
// . . .

of irreducible homomorphisms between indecomposable modules in modA
and homomorphisms gs ∈ rad∞(Xs, Y ), s ≥ 1, such that gsfs . . . f1 6= 0 for
any s ≥ 1. Since rad EndA(M) is nilpotent and fi ∈ rad(Xi−1, Xi) for all
i ≥ 1, we conclude that there is an integer s0 ≥ 1 such that all modules Xs,
s ≥ s0, belong to Γ. Since rad∞(Xs0 , Y ) 6= 0, applying Lemma 2.9(ii), we
conclude that there exist an infinite path

. . . // Yt
ht // Yt−1

// . . . // Y2
h2 // Y1

h1 // Y0 = Y

of irreducible homomorphisms between indecomposable modules in modA
and homomorphisms ut ∈ rad∞(Xs0 , Yt), t ≥ 1, such that h1 . . . htut 6= 0 for
all t ≥ 1. Moreover, we conclude as above that, for some integer t0 ≥ 1, all
modules Yt, t ≥ t0, belong to Γ. Clearly, by our choice of Γ, the modules
Xs0 and Yt0 have stable quasi-length bigger than m + r. Then it follows
from Lemma 2.8 that there is a nonzero homomorphism v ∈ rad(Yt0 , Xt0).
Summing up, there is an infinite short cycle in modA of the form

Xs0
u // Yt0

v // Xs0 ,

where u = ut0 , with Xs0 and Yt0 in C, a contradiction. Therefore, C is a
generalized standard component of ΓA. �
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Lemma 2.11. Let A be an algebra and C a quasitube in ΓA. Assume there
exist indecomposable modules X, Y , M in modA such that rad∞(X,M) 6= 0,
rad∞(M,Y ) 6= 0, and X, Y lie in C. Then there is an infinite short cycle
N →M → N in modA with N in C.

Proof. Since rad∞(X,M) 6= 0, then it follows from Lemma 2.9(i) that
there exist an infinite path

Θ : X = X0
f1 // X1

f2 // X2
// . . . // Xs−1

fs // Xs
// . . .

of irreducible homomorphisms between indecomposable modules in modA
and homomorphisms gs ∈ rad∞(Xs,M), s ≥ 1, such that gsfs . . . f1 6= 0 for
any s ≥ 1. Now, suppose that there is a finite family {Zi}i∈I of indecom-
posable modules in C which are isomorphic with infinitely many modules
from the family {Xs}s≥0. Let Z be the direct sum of all modules from the
family {Zi}i∈I . Clearly, Z is a module in modA, and hence EndA(Z) is an
artin algebra over k. Since fs ∈ rad(Xs−1, Xs) for all s ≥ 1, we get then
arbitrary large nonzero compositions of homomorphisms from rad EndA(Z),
and hence, because radA(Z) is nilpotent, a contradiction. Moreover, since
rad∞(M,Y ) 6= 0, applying Lemma 2.9(ii), we conclude that there exist an
infinite path

Σ : . . . // Yt
ht // Yt−1

// . . . // Y2
h2 // Y1

h1 // Y0 = Y

of irreducible homomorphisms between indecomposable modules in modA
and homomorphisms ut ∈ rad∞(M,Yt), t ≥ 1, such that h1 . . . htut 6= 0 for
all t ≥ 1. Similarly as above, we conclude that there is no finite family {Zi}i∈I
of indecomposable modules from C which are isomorphic with infinitely many
modules from the family {Yt}t≥0. Therefore, we conclude that the path Θ
intersects the path Σ.

Let N be a module in Θ ∩ Σ. Then there are s ≥ 0 and t ≥ 0
such that Xs = N = Yt, and hence we obtain an infinite short cycle

N
gs // M

ut // N .
�

Let A be an algebra and C be a family of components of ΓA. Then C is
said to be sincere if any simple A-module occurs as a composition factor of
a module in C, and faithful if its annihilator annA(C) in A (the intersection
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of the annihilators of all modules in C) is zero. Observe that if C is faithful
then C is sincere. Moreover, in general annA(C) is an ideal of A and C is a
faithful family of components in the Auslander-Reiten quiver ΓA/ annA(C) of
the quotient algebra A/ annA(C) of A. Further, by an external short path in
modA, with respect to a family C of components in ΓA, we mean a sequence
X → Y → Z of nonzero nonisomorphisms between indecomposable modules
with X and Z from C but Y not in C [37].

Lemma 2.12. Let A be an algebra, C and C ′ two different ray tubes in ΓA
having infinitely many modules with common composition factors and con-
sisting of modules which do not lie on infinite short cycles. Then there are
no external short paths in modA with respect to the components C and C ′.

Proof. Assume that there is an external short path M → L→ M ′, where
M is in C, M ′ is in C ′ and L is neither in C nor in C ′. First we will show that
then there is an external short path M → L → N with N in C. It follows
from Lemma 2.9(i) that there exist an infinite path

Θ : · · · // Xs
hs // Xs−1

// · · · // X2
h2 // X1

h1 // X0 = M ′

of irreducible homomorphism between indecomposable modules from C ′ and
homomorphisms us ∈ rad∞(L,Xs), s ≥ 1, such that h1 . . . hsus 6= 0 for all
s ≥ 1. Now, assume that there is a finite family {Zi}i∈I of indecomposable
modules in C ′ which are isomorphic with infinitely many modules from the
family X = {Xs}s≥1. Let Z be the direct sum of all modules from the family
{Zi}i∈I . Clearly, Z is a module in modA, and hence EndA(Z) is an artin
algebra over k. Since hs ∈ rad(Xs, Xs−1) for all s ≥ 1, we get then arbitrary
large nonzero compositions of homomorphisms from rad EndA(Z), and hence,
because rad EndA(Z) is nilpotent, a contradiction. Therefore, we conclude
that the path Θ intersects each ray in C ′ at least once. Moreover, it follows
from our assumption that there is a ray in C ′ with infinitely many modules N ′

such that [N ] = [N ′] for a module N in C. Using the fact that the irreducible
homomorphisms lying on rays of the ray tube C ′ are monomorphisms, we
conclude that there are an external short path M → L→M ′, with M in C,
M ′ in C ′, L neither in C nor in C ′, and a module N in C such that [M ′] = [N ].
Because [M ′] = [N ], applying [47, Proposition 4.1], we obtain the equality

|HomA(L,N)| − |HomA(N, τL)| = |HomA(L,M ′)| − |HomA(M ′, τL)|,
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where |V | denotes the length of a k-module |V |. If Hom(M ′, τL) 6= 0, then,
by [38, Theorem 1.6], M ′ is the middle of a short chain, so is on a short cycle
M ′ → E → M ′, with E an indecomposable direct summand of the middle
term of an almost split sequence with the left term L, and so E does not
belong to C ′. Hence this cycle is infinite what contradicts our assumption.
Thus HomA(M ′, τL) = 0 and so HomA(L,N) 6= 0. Therefore, we get an
external short path M → L → N , with M and N in C. Obviously, then
we have rad∞(M,L) 6= 0 and rad∞(L,N) 6= 0, and hence, applying Lemma
2.11, we conclude that there exist an infinite short cycle X → Z → X in
modA with X in C. �

Lemma 2.13. Let A be an algebra, B = A/I a quotient algebra of A, and
T a stable tube of ΓB. Assume that the modules of T belong to a stable tube
C of ΓA. Then C = T .

Proof. In order to prove that C = T it suffices to show that every module
M in C is a B-module. Because T ⊆ C and the stable tube T consists of
infinitely many B-modules, then for every A-module M in C there are an
A-module monomorphism f : M → N , where N is a module lying on a
ray in C containing M , and an A-module epimorphism g : Z → N , where
Z is a B-module from T lying on a coray in C containing N . Therefore,
NI = g(Z)I = g(ZI) = g(0) = 0. Hence, f(MI) = f(M)I = 0, and so
MI = 0, because f is a monomorphism. Therefore, M is a B-module. �

Lemma 2.14. Let A be an algebra, Λ a quotient algebra of A, and T a
stable tube of ΓΛ. Assume that the modules of T belong to a family C of
smooth quasitubes of ΓA consisting of modules which do not lie on infinite
short cycles. Then the modules of T belong to one quasitube of C.

Proof. Assume that there are two different quasitubes Cx and Cy in C and
modules M,N ∈ T such that M ∈ Cx and N ∈ Cy. Let Θ be the infinite
sectional path in T starting atM and pointing to infinity and Σ be the infinite
sectional path in T from infinity to N . Let Z be a module in Θ ∩ Σ and
f : M → Z the composition of irreducible monomorphism corresponding to
arrows of the subpath of Θ from M to Z and g the composition of irreducible
epimorphisms corresponding to arrows of the subpath of Σ from Z to N .
Then f ∈ rad∞A (M,Z) or g ∈ rad∞A (Z,N), because N ∈ Cy or N ∈ Cx or
N ∈ Cz, where z 6= x, y. Assume, without lost of generality, that Z is not
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in Cx, and hence f ∈ rad∞A (M,Z). Let L be a module in T , lying on Θ,
with ql(Z) < ql(L), and such that there is a sectional path in T from L to
M . Then the composed monomorphism h : M → L belongs to rad∞A (M,L).

Hence, we have the infinite short cycle M
h // L

v // M in modA, where
v is the composition of irreducible epimorphism corresponding to the arrows
of the sectional path from L to M , which contradicts our assumption on C.

�

Lemma 2.15. Let A be an algebra, Λ a quotient algebra of A, and T and T ′
be orthogonal stable tubes of ΓΛ. Assume that there exist smooth quasitubes
C and C ′ of ΓA such that C contains all modules of T and C ′ contains all
modules of T ′. Then C is different from C ′.

Proof. Suppose C = C ′. Let r be the rank of Cs and m the maximum of sta-
ble quasi-lengths of the radicals of projective-injective modules in C. Since T
and T ′ have infinitely many modules, there existX ∈ T andX ′ ∈ T ′ of stable
quasi-length > m+r in Cs. Then, by Lemma 2.8, we have HomA(X,X ′) 6= 0,
which contradicts the orthogonality of T and T ′ in mod Λ. �

Lemma 2.16. Let A be an algebra, Λ a quotient algebra of A, and T =
(Tx)x∈X a generalized standard family of stable tubes of ΓΛ with common
composition factors and consisting of modules which do not lie on infinite
short cycles. Assume that there exists a stable tube Tx in T such that the
modules of Tx belong to a family C of smooth quasitubes of ΓA closed under
composition factors and consisting of modules which do not lie on infinite
short cycles. Then all modules of T belong to the family C.

Proof. For each x ∈ X, we denote by rx the rank of Tx. It follows from
Lemma 2.14 that the modules of Tx belong to one quasitube Cx of C. Because
T is a family of stable tubes with common composition factors, then, for any
y ∈ X, there are modules My in Tx and Ny in Ty such that [My] = [Ny].
Now, using the fact that the modules from T do not lie on infinite short
cycles in modA, we conclude, by Theorem 2.5, that ry divides ql(Ny) and rx
divides ql(My). It follows from Theorem 2.3 that for any two modules N,N ′

in a stable tube Ty with ql(N) = ql(N ′) = cry, for some c ≥ 1, we have
[N ] = [N ′]. Moreover, for any N in Ty and M in Tx with ql(N) = c ql(Ny)
and ql(M) = c ql(My), we get [N ] = [M ]. Now, because the family C is
closed on composition factors, we conclude that, for all y ∈ X and for any N
in Ty with ql(N) = c ql(Ny), for some c ≥ 1, N is in the family C.
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Let N be any module in Ty with y ∈ X. We will show that N belongs
to the family C. Suppose N is not in C. We may choose a module Ny in Ty
such that [Ny] = [My] for a module My ∈ Tx and with ql(N) < n = ql(Ny).
Then there are sectional paths in Ty

N ′′y = M0 →M1 → . . .→Mm → N

and
N → Nm → . . .→ N1 → N0 = N ′y,

where ql(N ′y) = n = ql(N ′′y ). Since ry divides n, we conclude that the modules
N ′y and N ′′y belong to the family C. Hence we obtain a nonzero homomorfizm
from rad∞(N ′′y , N

′
y), what contradicts Proposition 2.10. �

For convenience of the reader, we give a proof of the following well known
fact, which we need in further considerations.

Lemma 2.17. Let A be an algebra and T a faithful stable tube of ΓA. Then
all but finitely many indecomposable modules in T are faithful A-modules.

Proof. First notice that for any ray Σ in T and a module M lying on Σ,
we have ann(M) ⊆ ann(M ′) for every module M ′ lying on Σ with ql(M ′) >
ql(M). Now, because T is a faithful stable tube of ΓA, then there are inde-
composable modules M1, . . . ,Ms in T such that ann(

⊕s
i=1Mi) = 0. Let n be

the maximum of quasi-lengths of modules M1, . . . ,Ms. Then for every mod-
ule Z with quasi-length bigger than n+r, where r is the rank of T , the unique
sectional path in T starting at Z and pointing to the mouth, intersects every
ray containing modules from {M1, . . . ,Ms} and consists of empimorphisms.
Note, that for an epimorphism f : X → Y we have ann(X) ⊆ ann(Y ), be-
cause Y ann(X) = f(X) ann(X) = f(X ann(X)) = f(0) = 0. Therefore,
ann(Z) ⊆ ann(

⊕s
i=1Mi) = 0, and hence Z is a faithful module. �

3. Quasitilted algebras of canonical type

The purpose of this section is to present characterizations of quasitilted
algebras of canonical type.

Let A be an algebra. Then a family C of components of ΓA is said to be
separating in modA if the indecomposable modules in modA split into three
disjoint classes PA, CA = C and QA such that:
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(S1) CA is a sincere generalized standard family of components;

(S2) HomA(QA,PA) = 0, HomA(QA, CA) = 0, HomA(CA,PA) = 0;

(S3) any homomorphism from PA to QA factors through the additive cate-
gory add CA of CA.

Algebras with a separating family of stable tubes have attracted much
attention. A prominent class of algebras with this property is formed by
the canonical algebras, introduced by Ringel (see [40], [41]). Hence, for
a canonical algebra Λ, ΓΛ admits a decomposition ΓΛ = PΛ ∨ T Λ ∨ QΛ,
where T Λ is a (canonical) family of stable tubes separating PΛ from QΛ.
Following [28], an algebra C is called concealed canonical of type Λ if C
is the endomorphism algebra EndΛ(T ) for a tilting module from addPΛ.
Then the images of all modules from T Λ via the functor HomΛ(T,−) form
a separating family T C of stable tubes of ΓC . In particular, we have a
decomposition ΓC = PC ∨ T C ∨ QC . We note that T C is a family of stable
tubes T Cx , x ∈ X, where the index set X is in a natural bijection with the set

of stable tubes of a tame hereditary algebra

[
F M
0 G

]
, where F and G are

finite central skew field extensions of a field k and the F -G-bimodule FMG

satisfies (dim FM)(dimMG) = 4 (see [10], [39], [41]). Moreover, if k is an
algebraically closed field, then X is in a natural bijection with the projective
line P1(k) [40], and is equipped with the structure of a weighted projective
line [14]. It has been proved in [30, Theorem 1.1] that an algebra C is a
concealed canonical algebra if and only if ΓC admits a separating family of
stable tubes.

An algebra A is said to be a quasitilted algebra of canonical type if A =
EndH(T ), where T is a tilting object in an abelian hereditary category H
whose derived category Db(H) is equivalent (as a triangulated category) to
the derived category Db(mod Λ) of the module category mod Λ of a canonical
algebra Λ.
An algebra A is said to be an almost concealed canonical algebra if A is
the endomorphism algebra EndΛ(T ) of a tilting module T from the additive
category add(PΛ∨T Λ), for the canonical decomposition ΓΛ = PΛ∨T Λ∨QΛ

with T Λ the canonical family of stable tubes separating PΛ from QΛ over
a canonical algebra Λ. It has been proved in [31, Theorem 3.4] that A is
quasitilted if and only if ΓA admits a separating family of semiregular (ray
or coray) tubes. Moreover, the class of almost concealed algebras coincides
with the class of tubular extensions of concealed canonical algebras (using
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modules from the canonical family of stable tubes), and with the class of
algebras having a separating family of ray tubes (see [28, Theorem 3.1] and
[31, Theorem 3.4]).

We will need the following deeper characterization of almost concealed
canonical algebras (see [47, Proposition 3.5] and [49, Theorem 1.6]).

Theorem 3.1. An algebra A is an almost concealed canonical algebra if and
only if ΓA has a sincere generalized standard family of ray tubes without
external short paths.

We have also the following characterization of concealed canonical alge-
bras (see [37, Theorem 3.1], [48, Theorem C] and [49, Theorem 1.6]).

Theorem 3.2. An algebra A is a concealed canonical algebra if and only if
ΓA has a sincere family of pairwise orthogonal stable tubes without external
short paths.

We will need the following consequence of the above theorem (see [49,
Corollary 1.7]).

Corollary 3.3. Let A be an algebra and T a sincere stable tube in ΓA without
external short cycles. Then T is a faithful generalized standard stable tube
and A is a concealed canonical algebra.

4. Quasitube enlargements of algebras

In this section we introduce quasitube enlargements of algebras, essential
for our further considerations.

Let A be an algebra, F a division algebra and FMA an F -A-bimodule
such that MA is in modA and k acts centrally on FMA. Then the one-point
extension of A by M is the matrix algebra of the form

A[M ] =

[
F FMA

0 A

]
=

{(
f m
0 a

)
: f ∈ F, a ∈ A,m ∈M

}
with the usual addition and multiplication. Dually, one defines also the
one-point coextension of A by FMA as the matrix algebra

[M ]A =

[
A D(FMA)
0 F

]
.
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Let A be an algebra and Γ a generalized standard component of ΓA.
For each indecomposable module X in Γ which is a pivot of an admissi-
ble operation of type (ad 1), (ad 2), (ad 1∗), or (ad 2∗), we shall define the
corresponding admissible operation on A in such a way that the modified
translation quiver Γ′ is a component of the Auslander-Reiten quiver ΓA′ of
the modified algebra A′ (see [4], [5]). Since Γ is generalized standard, such
a pivot X is necessarily a brick, and we denote by F the division algebra
EndA(X). Clearly, X is F -A-bimodule. Suppose X is the pivot of an ad-
missible operation of type (ad 1) and t ≥ 1. Denote D = Dt the full t × t
upper triangular matrix algebra over the division algebra F and by Y the
unique indecomposable projective-injective D-module, which we consider as
an F -D-bimodule. Then A′ = (A × D)[X ⊕ Y ] is the required modified
algebra. If X is the pivot of an admissible operation of type (ad 2) then
the modified algebra A′ is defined to be A′ = A[X]. Dually, invoking the
one-point coextensions, one defines the modified algebra A′, if X is a pivot
of an admissible operation of type (ad 1∗) or (ad 2∗). Then the following fact
mentioned above holds (see [4, Section 2]).

Lemma 4.1. The modified translation quiver Γ′ of Γ is a component of ΓA′.

Let C be an algebra and T a generalized standard family of stable tubes
in ΓC . Following [5] an algebra B is said to be a quasitube enlargement
of C using modules from T if there is a finite sequence of algebras A0 =
C,A1, . . . , Am = B such that, for each 0 ≤ j < m, Aj+1 is obtained from
Aj by an admissible operation of type (ad 1), (ad 2), (ad 1∗), or (ad 2∗), with
pivot either in a stable tube of T or in a quasitube of ΓAj

obtained from a
stable tube of T by means of the sequence of admissible operations (of types
(ad 1), (ad 2), (ad 1∗), (ad 2∗)) done so far. We note that a tubular extension
(respectively, tubular coextension) of C (in the sense of [40]), using modules
from T , is just an enlargement of C invoking only admissible operations of
type (ad 1) (respectively, of type (ad 1∗)).

We have the following proposition (see [4, Lemmas 2.2 and 2.3] and [35,
Theorem C]).

Proposition 4.2. Let B be a quasitube enlargement of an algebra C using
modules from a generalized standard family T of stable tubes of ΓC, and
C the family of components of ΓB obtained from T by means of admissible
operations leading from C to B. Then C is a generalized standard family of
quasitubes of ΓB.
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Moreover, we have the following theorem (see [5, Theorem 3.5] and [35,
Theorem C]).

Theorem 4.3. Let C be a concealed canonical algebra and T a separating
family of stable tubes of ΓC. Let B be a quasitube enlargement of C, using
modules from T , and C the associated generalized standard family of qua-
situbes of ΓB. Then the following statements hold:

(i) There is a unique maximal tubular coextension Bl of C inside B and
a generalized standard family Cl of coray tubes of ΓBl

such that B is
obtained from Bl (respectively, C is obtained from Cl) by a sequence of
admissible operations of types (ad 1) and (ad 2), using modules from Cl.

(ii) There is a unique maximal tubular extension Br of C inside B and
a generalized standard family Cr of ray tubes of ΓBr such that B is
obtained from Br (respectively, C is obtained from Cr) by a sequence of
admissible operations of types (ad 1∗) and (ad 2∗), using modules from
Cr.

For a quasitube enlargement B of a concealed canonical algebra C, the
maximal tubular extension Br of C inside B is an almost concealed canonical
algebra, called the right quasitilted part of B. Similarly, the maximal tubular
coextension Bl of C inside B is the opposite algebra of an almost concealed
algebra, called the left quasitilted part of B.

We note that a quasitube of an Auslander-Reiten quiver is an almost
cyclic coherent component in the sense of [34]. The following theorem is
then a special case of a characterization of algebras with separating families
of almost cyclic coherent Auslander-Reiten components established in [35,
Theorem A].

Theorem 4.4. Let A be a basic, connected, artin algebra. The following
statements are equivalent.

(i) ΓA admits a separating family of quasitubes.

(ii) ΓA admits a sincere generalized standard family of quasitubes without
external short paths.

(iii) A is a quasitube enlargement of a concealed canonical algebra C.

5. Selfinjective orbit algebras

For an algebra Λ, we denote by D the standard duality Homk(−, E) on
mod Λ, where E is a minimal injective cogenerator in mod k. Then an algebra
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Λ is selfinjective if and only if Λ ∼= D(Λ) in mod Λ. If Λ is selfinjective, then
the left and the right socle of Λ coincide, and we denote them by soc Λ. Two
selfinjective algebras A and Λ are said to be socle equivalent if the factor
algebras A/ socA and Λ/ soc Λ are isomorphic.

Let A be a selfinjective algebra and {ei | 1 ≤ i ≤ s} a complete set of
orthogonal primitive idempotents of A. We denote by ν = νA the Nakayama
automorphism of A inducing an A-bimodule isomorphism A ∼= D(A)ν , where
D(A)ν denotes the right A-module obtained from D(A) by changing the right
operation of A as follows: f ·a = fν(a) for each a ∈ A and f ∈ D(A). Hence
we have soc(ν(ei)A) ∼= top(eiA) (= eiA/ rad(eiA)) as right A-modules for all
i ∈ {1, . . . , s}. Since {ν(ei)A | 1 ≤ i ≤ s} is a complete set of representa-
tives of indecomposable projective right A-modules, there is a (Nakayama)
permutation of {1, . . . , s}, denoted again by ν, such that ν(ei)A ∼= eν(i)A for
all i ∈ {1, . . . , s}. Invoking the Krull-Schmidt theorem, we may assume that
ν(eiA) = ν(ei)A = eν(i)A for all i ∈ {1, . . . , s}.

Let B be an algebra. The repetitive algebra B̂ of B [20] is an algebra
(without identity) whose k-module structure is that of⊕

m∈Z

(Bm ⊕D(B)m)

where Bm = B and D(B)m = D(B) for all m ∈ Z, and the multiplication is
defined by

(am, fm)m · (bm, gm)m = (ambm, amgm + fmbm−1)m

for am, bm ∈ Bm, fm, gm ∈ D(B)m. For a fixed set E = {ei | 1 ≤ i ≤ n}
of orthogonal primitive idempotents of B with 1B = e1 + · · · + en, consider
the canonical set Ê = {em,i | m ∈ Z, 1 ≤ i ≤ n} of orthogonal primitive

idempotents of B̂ such that em,iB̂ = (eiB)m ⊕ (ei D(B))m for m ∈ Z and

1 ≤ i ≤ n. By an automorphism of B̂ we mean a k-algebra automorphism
of B̂ which fixes the chosen set Ê of orthogonal primitive idempotents of B̂.
A group G of automorphisms of B̂ is said to be admissible if the induced
action of G on Ê is free and has finitely many orbits. Then the orbit algebra
B̂/G is a finite dimensional selfinjective algebra and the G-orbits in Ê form a

canonical set of orthogonal primitive idempotents of B̂/G whose sum is the

identity of B̂/G. We denote by νB̂ the Nakayama automorphism of B̂ such
that νB̂(em,i) = em+1,i for all m ∈ Z, 1 ≤ i ≤ n. Then the infinite cyclic
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group (νB̂) generated by νB̂ is admissible and B̂/(νB̂) is the trivial extension

B n D(B) of B by D(B). An automorphism ϕ of B̂ is said to be positive
(respectively, rigid) if ϕ(Bm) ⊆

∑
j≥mBj (respectively, ϕ(Bm) = Bm) for

any m ∈ Z. Finally, ϕ is said to be strictly positive if ϕ is positive but not
rigid.

Let A be a selfinjective algebra, I an ideal of A, B = A/I, and e an
idempotent of A such that e + I is the identity of B. We may assume that
e = e1 + · · · + en, where {ei | 1 ≤ i ≤ n} is a complete set of orthogonal
primitive idempotents of A which are not in I. Then such an idempotent e
is uniquely determined by I, up to an inner automorphism of A, and we call
it a residual identity of B [52]. Note that B ∼= eAe/eIe and 1 − e ∈ I. We
denote by lA(I) and rA(I) the left and right annihilator of I in A, respectively.
Following [52, (2.1)] the ideal I is said to be deforming if eIe = leAe(I) =
reAe(I) and A/I is triangular (the ordinary quiver of A/I has no oriented
cycles). The following lemma has been proved in [57, Lemma 4.1].

Lemma 5.1. Let A be a selfinjective algebra, e an idempotent of A, and
assume that lA(I) = Ie or rA(I) = eI. Then e is a residual identity of the
factor algebra A/I.

Moreover, the following proposition has been proved in [52, Proposition
2.3].

Proposition 5.2. Let A be a selfinjective algebra, I an ideal of A, B = A/I,
e a residual identity of B, and assume that IeI = 0. Then the following
conditions are equivalent.

(i) Ie is an injective cogenerator in modB.

(ii) eI is an injective cogenerator in modBop.

(iii) lA(I) = Ie.

(iv) rA(I) = eI.

Moreover, under these equivalent conditions, we have eIe = leAe(I) =
reAe(I).

Let A be a selfinjective algebra, I a deforming ideal of A and e a resid-
ual identity of A/I. Then I can be considered as a (not necessarily uni-
tary) (eAe/eIe)-bimodule. Denote by A[I] the direct sum of k-modules
(eAe/eIe)⊕ I with the multiplication

(b, x) · (b′, x′) = (bb′, bx′ + xb′ + xx′)
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for b, b′ ∈ eAe/eIe and x, x′ ∈ I. Then A[I] is an algebra with the identity
(e, 1− e) and, by identifying x ∈ I with (0, x) ∈ A[I], we may consider I as
an ideal of A[I].

The following combination of results proved in [52, Theorem 4.1], [53,
Theorem 3] and [56, Proposition 3.2] establishes the relationship between A
and A[I].

Theorem 5.3. Let A be a selfinjective algebra, I a deforming ideal of A,
and e a residual identity of A/I. Then the following statements hold.

(i) A[I] is a selfinjective algebra, I is a deforming ideal of A[I], and the
Nakayama permutations of A and A[I] are the same.

(ii) A and A[I] are socle equivalent.

(iii) Assume IeI = 0 and ei 6= eν(i) for any primitive summand ei of e.
Then A and A[I] are isomorphic.

The following criterion is a direct consequence of [54, Theorems 3.8 and
4.1] and Proposition 5.2.

Theorem 5.4. Let A be a selfinjective algebra, I an ideal of A, B = A/I and
e a residual identity of B. Assume that B is triangular and lA(I) = Ie. Then

A[I] is isomorphic to an algebra B̂/(ψνB̂), for some positive automorphism

ψ of B̂.

6. Selfinjective algebras of canonical type

A selfinjective algebra A is said to be a selfinjective algebra of canonical
type if A is isomorphic to an orbit algebra B̂/G, where B is a quasitilted
algebra of canonical type and G is an admissible torsion-free automorphism
group of B̂.

The following general result is a consequence of results proved in [1], [12],
[13], [32], [36], [44].

Theorem 6.1. Let B be a quasitilted algebra of canonical type, G an admis-
sible torsion-free group of automorphisms of B̂, and A = B̂/G the associated
orbit algebra. Then the following statements hold.

(i) G is an infinite cyclic group generated by a strictly positive automor-

phism ψ of B̂.
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(ii) The push-down functor Fλ : mod B̂ → modA associated to the Galois

covering F : B̂ → B̂/G = A with Galois group G is dense.

(iii) The Auslander-Reiten quiver ΓA of A is isomorphic to the orbit quiver

ΓB̂/G of the Auslander-Reiten quiver ΓB̂ of B̂ with respect to the in-
duced action of G on ΓB̂.

The following proposition (see [1], [32], [36], [44]) relates the selfinjective
algebras of canonical type with almost concealed canonical algebras.

Proposition 6.2. Let B be a quasitilted algebra of canonical type. Then
there exists an almost concealed canonical algebra B∗ such that B̂ = B̂∗.

We note that in general we may have several almost concealed canonical
algebras whose repetitive algebras are isomorphic.

The class of selfinjective algebras of canonical type may be divided into
three disjoint classes, according to the natural division of almost concealed
canonical algebras into three disjoint classes.

Let B be an almost concealed canonical algebra, G an admissible infinite
cyclic automorphism group of B̂, and A = B̂/G. Then A is said to be

• a selfinjective algebra of Euclidean type, if B is a tilted algebra of Eu-
clidean type;

• a selfinjective algebra of tubular type, if B is a tubular algebra;

• a selfinjective algebra of wild canonical type, if B is of wild canonical
type

(see [58, Section 7]).
The following theorem gives more precise information on the structure of

the Auslander-Reiten quiver of a selfinjective algebra of canonical type (see
[1], [32], [36], [44]).

Theorem 6.3. Let A be a selfinjective algebra of canonical type. Then the
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Auslander-Reiten quiver ΓA of A has the form

C(0)
X (0)

C(1)

X (1)

. . .

X (r−1)

C(r−1)

X (r−2)

. . .

for some integer r ≥ 1, where each C(i), i ∈ {0, . . . , r − 1}, is an infinite
family of quasitubes, and

(1) If A is of Euclidean type, then every X (i), i ∈ {0, . . . , r−1}, is an acyclic
component of Euclidean type (the stable part is of the form Z∆ for an
Euclidean quiver ∆);

(2) If A is of tubular type, then every X (i), i ∈ {0, . . . , r − 1}, is a disjoint

union
∨
q∈Qi

i+1
C(i)
q , where C(i)

q is an infinite family of stable tubes for each

q ∈ Qi
i+1 = Q ∩ (i, i+ 1);

(3) If A is of wild canonical type, then every X (i), i ∈ {0, . . . , r − 1}, is an
infinite family of components whose stable parts are of the form ZA∞.

We call the above decomposition of ΓA a canonical decomposition of ΓA.
The main aim of the remaining part of this section is to prove two propo-

sitions which show the implication (ii)⇒ (i) of Theorem 1.1.

Proposition 6.4. Let B be a tubular algebra, G an infinite cyclic admissible
group of automorphisms of B̂, and A = B̂/G. Then the following statements
are equivalent:

(i) ΓA admits a family of quasitubes with common composition factors,
closed under composition factors, and consisting of modules which do
not lie on infinite short cycles.

(ii) ΓA admits a family of stable tubes with common composition factors,
closed under composition factors, and consisting of modules which do
not lie on infinite short cycles.
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(iii) G = (ϕν2
B̂

) for a positive automorphism ϕ of B̂.

Proof. It follows from the results established in [14], [19], [36], [44] (see

also [9], [24]) that the Auslander-Reiten quiver ΓB̂ of B̂ has a decomposition

ΓB̂ =
∨
q∈Q

CB̂q =
∨
q∈Q

∨
x∈Xq

CB̂q,x

such that

(1) For each q ∈ Z, CB̂q is an infinite family CB̂q,x, x ∈ Xq, of quasitubes
containing at least one projective module.

(2) For each q ∈ Q \Z, CB̂q is an infinite family CB̂q,x, x ∈ Xq, of stable tubes.

(3) For each q ∈ Q, CB̂q is a family of pairwise orthogonal generalized stan-
dard quasitubes with common composition factors, closed under com-
position factors, and consisting of modules which do not lie on infinite
short cycles in mod B̂.

(4) There is a positive integer m such that 3 ≤ m ≤ rkK0(B) and νB̂(CB̂q ) =

CB̂q+m for any q ∈ Q.

(5) HomB̂(CB̂q , CB̂r ) = 0 for all q > r in Q.

(6) HomB̂(CB̂q , CB̂r ) = 0 for all r > q +m in Q.

(7) For q ∈ Q, we have HomB̂(CB̂q , CB̂q+m) 6= 0 if and only if q ∈ Z.

(8) For p < q in Q with HomB̂(CB̂p , CB̂q ) 6= 0, we have HomB̂(CB̂p , CB̂r ) 6= 0 and

HomB̂(CB̂r , CB̂q ) 6= 0 for any r ∈ Q with p ≤ r ≤ q.

(9) For all p ∈ Q \ Z and all q ∈ Q with HomB̂(CB̂p , CB̂q ) 6= 0, we have

HomB̂(CB̂p,x, CB̂q,y) 6= 0 for all x ∈ Xp and y ∈ Xq.

(10) For all p ∈ Q and all q ∈ Q \ Z with HomB̂(CB̂p , CB̂q ) 6= 0, we have

HomB̂(CB̂p,x, CB̂q,y) 6= 0 for all x ∈ Xp and y ∈ Xq.

We know also from [44] (see Theorem 6.1(i)) that G is generated by strictly

positive automorphism g of B̂. Consider the canonical Galois covering F :
B̂ → B̂/G = A and the associated push-down functor Fλ : mod B̂ → modA.
Since Fλ is dense, we obtain natural isomorphisms of k-modules⊕

i∈Z

HomB̂(X, g
i

Y )
∼→ HomA(Fλ(X), Fλ(Y )),
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⊕
i∈Z

HomB̂(g
i

X, Y )
∼→ HomA(Fλ(X), Fλ(Y )),

for all indecomposable modules X and Y in mod B̂.
We first show that (iii) implies (ii). Assume that g = ϕν2

B̂
for some

positive automorphism ϕ of B̂. Then it follows from (4) that there is a

positive integer l ≥ 2m such that g(CB̂q ) = CB̂q+l for any q ∈ Q. Since

g = ϕν2
B̂

= (ϕνB̂)νB̂ with ϕνB̂ a strictly positive automorphism of B̂, invok-

ing the knowledge of the supports of indecomposable modules in mod B̂ (see
[36, Section 3]), we conclude that the images Fλ(S) and Fλ(T ) of any noni-

somorphic simple B̂-modules S and T which occur as composition factors of
modules in a fixed family CB̂q are nonisomorphic simple A-modules. There-
fore, it follows from Theorem 6.1 and properties (1)-(4), that, for each q ∈ Q,

CAq = Fλ(CB̂q ) is an infinite family CAq,x = Fλ(CB̂q,x), x ∈ Xq, of quasitubes of
ΓA with common composition factors and closed under composition factors.
Take now p ∈ Q \ Z. Then, by (2), CAp = (CAp,x)x∈Xp is a family of stable
tubes of ΓA. We claim that CAp consists of indecomposable A-modules which
do not lie on infinite short cycles in modA. Observe first that, for two inde-
composable modules M and N in CAp , we have M = Fλ(X) and N = Fλ(Y ),

for some indecomposable modules X and Y in CB̂p , and Fλ induces an iso-

morphism of k-modules HomA(M,N)
∼→ HomB̂(X, Y ), by (5) and (6), and

q+ l ≥ q+ 2m > q+m. In particular, by Theorem 2.5 and (3), CAp is a fam-
ily of pairwise orthogonal generalized standard stable tubes of ΓA. Suppose
now that there is an infinite short cycle M → L → M in modA with M in
CAp,x for some x ∈ Xp. Since CAp is a family of pairwise orthogonal generalized
standard stable tubes of ΓA, we conclude that L does not belong to CAp . Then

M = Fλ(X) for some X in CB̂p,x and L = Fλ(Z) for some Z in CB̂r with r > p.
We have an isomorphism of k-modules, induced by Fλ,

HomA(M,L)
∼→
⊕
i∈Z

HomB̂(X, g
i

Z).

Since HomA(M,L) 6= 0, we may choose, invoking (5), a minimal r > p and

Z ∈ CB̂r such that L = Fλ(Z) and HomB̂(X,Z) 6= 0. Since p ∈ Q \ Z and X

lies in CB̂p , applying (6) and (7), we infer that p < r < p + m. Further, we
have also an isomorphism of k-modules, induced by Fλ,

HomA(L,M)
∼→
⊕
i∈Z

HomB̂(Z, g
i

X).
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Observe that, for each i ∈ Z, g
i
X is an indecomposable module from CB̂p+li,

and clearly with Fλ(
gi
X) = Fλ(X) = M . Since HomA(L,M) 6= 0, L =

Fλ(Z) for Z ∈ CB̂r with r > p and X ∈ CB̂p , applying (5), we conclude that

HomB̂(Z, g
i
X) 6= 0, for some i ≥ 1. But then p+ li ≥ p+ l ≥ p+2m > r+m,

because r < p+m, and we obtain a contradiction with (6).

Summing up, we have proved that CAp = Fλ(CB̂p ) is a family of stable tubes
of ΓA with common composition factors, closed under composition factors,
and consisting of modules which do not lie on infinite short cycles in modA.
Therefore, (iii) implies (ii).

Since clearly (ii) implies (i), it remains to show that (i) implies (iii). As-
sume that ΓA admits a family C = (Cx)x∈X of quasitubes with common com-
position factors, closed under composition factors, and consisting of modules
which do not lie on infinite short cycles in modA. We know from the prop-
erty (3) that, for each q ∈ Q, CAq = Fλ(CB̂q ) is a family CAq,x = Fλ(CB̂q,x), x ∈ Xq,
of quasitubes with common composition factors. Moreover, the push-down
functor Fλ induces an isomorphism of translation quivers ΓB̂/G

∼→ ΓA (see
Theorem 6.1), and hence every component of ΓA is a quasi-tube of the form

CAq,x = Fλ(CB̂q,x) for some q ∈ Z and x ∈ Xq. Then, since the family C is
closed under composition factors, we conclude that there is r ∈ Q such that
C contains all quasitubes CAr,x, x ∈ Xr, of CAr . In particular, we conclude that
the family CAr = (CAr,x)x∈Xr consists of modules which do not lie on infinite
short cycles in modA. We claim that this forces g to be of the form g = ϕν2

B̂

for some positive automorphism ϕ of B̂. Suppose it is not the case. Since
g is a strictly positive automorphism of B̂ and all projective B̂-modules lie
in
∨
p∈Z CB̂p , invoking (4), we conclude that there exists a positive integer

s < 2m such that g(CB̂q ) = CB̂q+s for any q ∈ Q. Let p be the natural number
such that r ∈ [p, p+ 1) ∩Q. We have two cases to consider.

Assume s < m. Take q ∈ (Q \ Z) ∩ (p + 1, p + s). Since m ≥ 3, we have
the inequalities

p ≤ r < p+ 1 < q < p+ s ≤ r + s < p+m

which, together with (7) and (8), implies that HomB̂(CB̂r , CB̂q ) 6= 0 and

HomB̂(CB̂q , CB̂r+s) 6= 0. Moreover, from the properties (9) and (10), we ob-
tain that

HomB̂(CB̂r,x, CB̂q,y) 6= 0 for any x ∈ Xr and y ∈ Xq,

HomB̂(CB̂q,y′ , CB̂r+s,x′) 6= 0 for any x′ ∈ Xr+s and y′ ∈ Xq,
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because q ∈ Q \ Z. Since CB̂r+s = g(CB̂r ), there exist x ∈ Xr, y ∈ Xq and

modules X ∈ CB̂r,x, Y ∈ CB̂q,y and X ′ ∈ CB̂r+s,x such that HomB̂(X, Y ) 6= 0,
HomB̂(Y,X ′) 6= 0 and Fλ(X) = Fλ(X

′). Hence we have an infinite short
cycle Fλ(X)→ Fλ(Y )→ Fλ(X

′) = Fλ(X) in modA with Fλ(X) in CAr , what
contradicts our assumption.

Finally assume that m ≤ s < 2m. Take q = p + m. We have the
inequalities

p ≤ r < p+ 1 < q ≤ p+ s ≤ r + s < p+ 2m.

Because p+m−1 ∈ Z, then HomB̂(CB̂p+m−1, CB̂p+2m−1) 6= 0, and hence from the

property (8) we get HomB̂(CB̂q , CB̂p+2m−1) 6= 0, and so HomB̂(CB̂q , CB̂r+s) 6= 0.
Using the properties (9) and (10) we obtain

HomB̂(CB̂r,x, CB̂q,y) 6= 0 for any x ∈ Xr and y ∈ Xq,

HomB̂(CB̂q,y′ , CB̂r+s,x′) 6= 0 for any x′ ∈ Xr+s and y′ ∈ Xq,

because q ∈ Q \ Z. Similarly as above we conclude that there is an infinite
short cycle Fλ(X)→ Fλ(Y )→ Fλ(X

′) = Fλ(X) in modA with Fλ(X) in CAr ,
a contradiction with our assumption. �

Proposition 6.5. Let B be an almost concealed canonical algebra of Eu-
clidean or wild type, G an infinite cyclic admissible group of automorphisms
of B̂, and A = B̂/G. Then the following statements are equivalent:

(i) ΓA admits a family of quasitubes with common composition factors,
closed under composition factors, and consisting of modules which do
not lie on infinite short cycles.

(ii) G is one of the forms

(a) G = (ϕν2
B̂

), for a strictly positive automorphism ϕ of B̂,

(b) G = (ϕν2
B̂

), for a rigid automorphism ϕ of B̂ whose restriction
to B does not fix any nonstable ray tube of the unique separating
family T B̂ of ray tubes of ΓB̂.

Proof. It follows from [1], [3], [32] that the Auslander-Reiten quiver ΓB̂ of

B̂ has a decomposition

ΓB̂ =
∨
q∈Z

(CB̂q ∨ X B̂
q )

such that
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(1) For each q ∈ Z, CB̂q is an infinite family CB̂q,x, x ∈ Xq, of quasitubes.

(2) For each q ∈ Z, X B̂
q is either an acyclic component of Euclidean type, if

B is of Euclidean type, or an infinite family of components whose stable
parts are of the form ZA∞, if B is of wild type.

(3) For each q ∈ Z, CB̂q is a family CB̂q,x, x ∈ Xq, of pairwise orthogonal gen-
eralized standard quasitubes with common composition factors, closed
under composition factors, and consisting of modules which do not lie
on infinite short cycles in mod B̂.

(4) For each q ∈ Z, we have νB̂(CB̂q ) = CB̂q+2 and νB̂(X B̂
q ) = X B̂

q+2.

(5) For each q ∈ Z, we have HomB̂(X B̂
q , CB̂q ∨

∨
r<q(CB̂r ∨ X B̂

r )) = 0 and

HomB̂(CB̂q ,
∨
r<q(CB̂r ∨ X B̂

r )) = 0.

(6) For each q ∈ Z, we have HomB̂(CB̂q ,X B̂
q+2 ∨

∨
r>q+2(CB̂r ∨ X B̂

r )) = 0 and

HomB̂(X B̂
q ,
∨
r>q+2(CB̂r ∨ X B̂

r )) = 0.

(7) For q ∈ Z, x ∈ Xq and y ∈ Xq+2, we have HomB̂(CB̂q,x, CB̂q+2,y) 6= 0 if and

only if the quasitube CB̂q,x is nonstable and νB̂(CB̂q,x) = CB̂q+2,y.

(8) For all q ∈ Z, x ∈ Xq and y ∈ Xq+1, we have HomB̂(CB̂q,x, CB̂q+1,y) 6= 0.

(9) For each q ∈ Z and any stable tubes CB̂q,x in CB̂q and CB̂q+3,y in CB̂q+3,

there is an indecomposable projective B̂-module P in X B̂
q+1 such that

HomB̂(CB̂q,x, P ) 6= 0 and HomB̂(P, CB̂q+3,y) 6= 0.

We know also from [1], [3], [32], [44] that G is generated by a strictly positive

automorphism g of B̂. Hence there exists a positive integer l such that
g(CB̂q ) = CB̂q+l and g(X B̂

q ) = X B̂
q+l for any q ∈ Z. Consider the canonical

Galois covering F : B̂ → B̂/G = A and the associated push-down functor

Fλ : mod B̂ → modA. Since Fλ is dense, we obtain natural isomorphisms of
k-modules ⊕

i∈Z

HomB̂(X, g
i

Y )
∼→ HomA(Fλ(X), Fλ(Y )),

⊕
i∈Z

HomB̂(g
i

X,Y )
∼→ HomA(Fλ(X), Fλ(Y )),

for all indecomposable modules X and Y in mod B̂.
We show first that (i) ⇒ (ii). Assume that ΓA admits a family

C = (Cx)x∈X of quasitubes with common composition factors, closed under
composition factors, and consisting of modules which do not lie on infinite
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short cycles in modA. It follows from Proposition 2.10 that the quasitubes
Cx, x ∈ X, are generalized standard. In fact they are also pairwise orthog-
onal. Indeed, because A = B̂/G, where B is an almost concealed canonical
algebra with a separating family of ray tubes T = (Ti)i∈I , we infer that
the quasitubes Cx, x ∈ X, are obtained from the ray tubes Ti by admissible
operations of types (ad 1∗) and (ad 2∗). Therefore, using Lemma 2.9 and
arguments as in the proof of Lemma 2.11, we obtain that the quasitubes
Cx, x ∈ X, are pairwise orthogonal, because the ray tubes Ti are pairwise
orthogonal.

We know from the property (3) that, for each q ∈ Z, CAq = Fλ(CB̂q )

is an infinite family CAq,x = Fλ(CB̂q,x), x ∈ Xq, of quasitubes with common
composition factors. Moreover,

ΓA = CA0 ∨ XA
0 ∨ CA1 ∨ XA

1 ∨ . . . ∨ CAl−1 ∨ XA
l−1,

with XA
q = Fλ(X B̂

q ) for q ∈ {0, 1, . . . , l−1}, since Fλ induces an isomorphism

of translation quivers ΓB̂/G
∼→ ΓA, G = (g), and g(CB̂q ) = CB̂q+l, g(X B̂

q ) =

X B̂
q+l, for any q ∈ Z. Then, since C is the family of quasitubes in ΓA closed

under composition factors, we conclude that there is r ∈ {0, 1, . . . , l−1} such
that C contains all quasitubes CAr,x, x ∈ Xr, of CAr . In particular, we conclude
that CAr = (CAr,x)x∈Xr is a family of pairwise orthogonal generalized standard
quasitubes consisting of modules which do not lie on infinite short cycles in
modA. We may assume, without loss of generality, that r = 0.

We claim that this forces G to be one of two forms (a) and (b) required

in (ii). We show first that g = ϕν2
B̂

for a positive automorphism ϕ of B̂.
Suppose it is not the case. Then, by the property (4), we conclude that
l ∈ {1, 2, 3}. We have three cases to consider.

Assume l = 1. Then we have Fλ(CB̂0 ) = CA0 = Fλ(CB̂1 ). Applying then
the property (8), we conclude that, for any x ∈ X0, the quasitube CA0,x is not
generalized standard, a contradiction.

Assume l = 2. Then we have Fλ(CB̂0 ) = CA0 = Fλ(CB̂2 ). We know from (1)

that CB̂0 = (CA0,x)x∈X0 and CA1 = (CA1,x)x∈X1 are infinite families of quasitubes.
Since ΓA has only finitely many projective modules, we may choose x0 ∈
X0 and x1 ∈ X1 such that CA0,x0

and CA1,x1
are stable tubes. Observe that

CA0,x0
= Fλ(CB̂0,x0

), CA1,x1
= Fλ(CB̂1,x1

), and CA0,x0
= Fλ(CB̂2,x2

) for x2 ∈ X2 such

that νB̂(CB̂0,x0
) = CB̂2,x2

, by the property (4). Applying the property (8), we

conclude that HomB̂(CB̂0,x0
, CB̂1,x1

) 6= 0 and HomB̂(CB̂1,x1
, CB̂2,x2

) 6= 0, and hence
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HomA(CA0,x0
, CA1,x1

) 6= 0 and HomA(CA1,x1
, CA0,x0

) 6= 0. Then it follows from
Lemma 2.11 that there is in modA an infinite short cycle M → N → M
with M in CA0,x0

and N ∈ CA1,x1
, a contradiction because CA0,x0

is a quasitube
of the family C = (Cx)x∈X.

Assume l = 3. Then we have Fλ(CB̂0 ) = CA0 = Fλ(CB̂3 ). Since
CA0 = (CA0,x)x∈X0 is an infinite family of quasitubes and the number of projec-
tive modules in ΓA is finite, we may choose x0 ∈ X0 such that CA0,x0

is a stable

tube of ΓA. Observe that then CA0,x0
= Fλ(CB̂0,x0

), CB̂0,x0
is a stable tube of ΓB̂,

and hence g(CB̂0,x0
) is a stable tube CB̂3,x3

, for some x3 ∈ X3, of ΓB̂. Applying
now the property (9), we conclude that there is an indecomposable projec-

tive module P in X B̂
1 such that HomB̂(CB̂0,x0

, P ) 6= 0 and HomB̂(P, CB̂3,x3
) 6= 0.

Then we have Fλ(CB̂0,x0
) = CA0,x0

= Fλ(CB̂3,x3
) and Fλ(P ) is an indecompos-

able projective A-module in Fλ(X B̂
1 ) such that HomA(CA0,x0

, Fλ(P )) 6= 0 and
HomA(Fλ(P ), CA0,x0

) 6= 0. Then it follows from Lemma 2.11 that there is in
modA an infinite short cycle M → Fλ(P ) → M with M in CA0,x0

, again a
contradiction since CA0,x0

is a quasitube of the family C = (Cx)x∈X.
Summing up, we proved that indeed g = ϕν2

B̂
for a positive automorphism

ϕ of B̂.
Assume now that ϕ is a rigid automorphism of B̂ and B is an almost con-

cealed canonical algebra (of Euclidean or wild type) whose unique separating
family T B of ray tubes contains at least one projective module, or equiva-
lently (see [30], [32]), B is not a concealed canonical algebra. Then the family

CB̂0 of quasitubes of ΓB̂, and hence the family CA0 = Fλ(CB̂0 ) of quasitubes in
ΓA, contains at least one projective module. We also note that, since ϕ is
a rigid automorphism of B̂, its restriction ϕB to B = B0 is a k-algebra au-
tomorphism of B and ϕB acts on the unique separating family T B of ray
tubes of ΓB. Suppose ϕB fixes a nonstable tube (a ray tube containing pro-

jective module) of T B. Then there is x0 ∈ X0 such that CB̂0,x0
is a quasitube

containing at least one projective module such that ϕ(CB̂0,x0
) = CB̂0,x0

. Since

g = ϕν2
B̂

, applying the property (4), we then obtain that g(CB̂0,x0
) = CB̂4,x0

.

Take now an indecomposable projective B̂-module P in CB̂0,x0
. Then, by

(4), we conclude that νB̂(P ) ∈ CB̂2,x0
and ν2

B̂
(P ) ∈ CB̂4,x0

. Clearly, we have

HomB̂(P, νB̂(P )) 6= 0 and HomB̂(νB̂(P ), ν2
B̂

(P )) 6= 0. Moreover, g(P ) and

ν2
B̂

(P ) belong to the same quasitube CB̂4,x0
. Therefore, we conclude that

there are indecomposable projective A-modules Fλ(P ) and Fλ(ν
2
B̂

(P )) in
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CA0,x0
and an indecomposable projective A-module Fλ(νB̂(P )) in CA2,x0

such
that HomA(Fλ(P ), Fλ(νB̂(P ))) 6= 0 and HomA(Fλ(νB̂(P )), Fλ(ν

2
B̂

(P ))) 6= 0.
Applying now Lemma 2.11, we conclude that there is in modA an infinite
short cycle M → Fλ(νB̂(P )) → M with M in CA0,x0

, a contradiction since
CA0,x0

is in C = (Cx)x∈X.
This finishes the proof that (i) implies (ii).

Assume now that (ii) holds. In particular, we have g = ϕν2
B̂

for a positive

automorphism of B̂. Then it follows from (4) that there is a positive integer

l ≥ 4 such that g(CB̂q ) = CB̂q+l for any q ∈ Z. Let C = (Cx)x∈X with X = X0

and Cx = CA0,x for any x ∈ X. Since g = ϕν2
B̂

= (ϕνB̂)νB̂ with ϕνB̂ a

strictly positive automorphism of B̂, invoking the knowledge of the supports
of indecomposable modules in mod B̂ (see [1], [32]) we conclude that the

images Fλ(S) and Fλ(T ) of any nonisomorphic simple B̂-modules S and

T which occur as composition factors of modules in a fixed family CB̂q are
nonisomorphic simple A-modules. Therefore it follows from Theorem 6.1 and
the properties (1)-(4) that C is an infinite family of quasitubes with common
composition factors and closed under composition factors. We show now
that C consists of indecomposable A-modules which do not lie on infinite
short cycles in modA. Observe that for two indecomposable modules M and
N in C, we have M = Fλ(X) and N = Fλ(Y ), for some indecomposable

B̂-modules X and Y in CB̂0 , and Fλ induces an isomorphism of k-modules
HomA(M,N)

∼→ HomB̂(X, Y ), by the properties (5), (6), and l ≥ 4 > 2. In
particular, by (2) and (3), C = (Cx)x∈X is a family of pairwise orthogonal
generalized standard quasitubes of ΓA. Suppose there is an infinite short
cycle M → L → M in modA with M in Cx0 = CA0,x0

for some x0 ∈ X = X0.
Clearly, then L does not belong to Cx0 . Then M = Fλ(X) for some X in

CB̂0,x0
and L = Fλ(Z) for some indecomposable module Z in mod B̂ such that

HomB̂(X,Z) 6= 0. Applying (5) and (6), we conclude that Z ∈ X B̂
0 ∨ CB̂1 ∨

X B̂
1 ∨ CB̂2 . Since HomA(L,M) 6= 0, applying (5) and (6) again, we infer that

HomB̂(Z, gX) 6= 0. Observe that gX ∈ g(CB̂0 ) = CB̂l with l ≥ 4. Hence,

invoking (5) and (6), we obtain that Z belongs to CB̂2 and l = 4. But then

the property (7) forces Z ∈ νB̂(CB̂0,x0
) and gX ∈ ν2

B̂
(CB̂0,x0

). In particular we
obtain that

(ν2
B̂
ϕ)(CB̂0,x0

) = (ϕν2
B̂

)(CB̂0,x0
) = g(CB̂0,x0

) = ν2
B̂

(CB̂0,x0
),

and hence ϕ(CB̂0,x0
) = CB̂0,x0

. Therefore, ϕ is a rigid automorphism of B̂ which

35



fixes the nonstable quasitube CB̂0,x0
of ΓB̂. Then the restriction ϕB of ϕ to

B is a k-algebra automorphism of B which fixes the nonstable tube T Bx0

of the unique separating family T B of ray tubes of ΓB whose all modules
belong to the quasitube CB̂0,x0

of ΓB̂. This contradicts the assumption (ii).
Therefore, the family C = CA0 of quasitubes Cx = CA0,x, x ∈ X = X0, consists
of the indecomposable A-modules which do not lie on infinite short cycles in
modA. This completes the proof that (ii) implies (i). �

7. Proof of the Theorem 1.1

The aim of this section is to complete the proof of Theorem 1.1, by
showing the implication (i)⇒ (ii).

Assume that A is a basic, connected, selfinjective algebra and C = (Ci)i∈I
a family of quasitubes in ΓA with common composition factors, closed under
composition factors, and consisting of modules which do not lie on infinite
short cycles. Then it follows from Proposition 2.10 that all quasitubes Ci in
C are generalized standard components of ΓA.

We will show first that C is a family of quasitubes of a quasitube enlarge-
ment Λ of a concealed canonical algebra C.

Fix i ∈ I, and consider the quotient algebra Ai = A/ annA(Ci). Then the
quasitube Ci is a generalized standard faithful, hence sincere, component of
ΓAi

. Moreover, it follows from Lemma 2.12 that Ci is a quasitube without
external short paths. Applying Theorem 4.4, we conclude that Ai is a qua-
sitube enlargement of a concealed canonical algebra Ci, there is a separating
family T Ci = (T Ci

x )x∈Xi
of stable tubes of ΓCi

and a stable tube T Ci
xi

, for
some xi ∈ Xi, such that Ci is obtained from T Ci

xi
by a sequence of admissible

operations of types (ad 1), (ad 2), (ad 1∗) and (ad 2∗), corresponding to those
admissible operations leading from Ci to Ai. We recall that the index set Xi

is infinite. Hence T Ci is an infinite family of pairwise orthogonal stable tubes
consisting of modules which do not lie on infinite short cycles in modCi, be-
cause T Ci is a separating family of stable tubes of ΓCi

. Observe also that
Ci is a quotient algebra of A, say Ci = A/Ji for an ideal Ji of A, since Ci
is a quotient algebra of Ai. We note that T Ci = (T Ci

x )x∈Xi
is a family of

stable tubes of ΓCi
with common composition factors (see [30], [48]). Since

the quasitube Ci, containing all modules of T Ci
xi

, belongs to C and C is closed
under composition factors, we conclude that all modules of the family T Ci

belong to C. Applying Lemma 2.14, we conclude that, for each x ∈ Xi, there
exists a quasitube C(i)

x in C containing all modules of the stable tube T Ci
x of
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ΓCi
. Moreover, by Lemma 2.12, we have C(i)

x 6= C(i)
y for all x 6= y in Xi, since

the tubes T (i)
x and T (i)

y are orthogonal. In fact, it follows from Lemma 2.13

that T Ci
x = C(i)

x for all but finitely many indices x in Xi, namely those x ∈ Xi

for which C(i)
x is a stable tube. We also note that C(i)

x , x ∈ Xi, is a family of
quasitubes with common composition factors. Further, for each x ∈ Xi with
T Ci
x = C(i)

x , we have Ji = annA(C(i)
x ), because T Ci

x is a faithful component of
ΓCi

.
We claim now that all concealed canonical algebras Ci, i ∈ I, coin-

cide. Take i 6= j in I. Since the sets Xi and Xj are infinite, we may

take x ∈ Xi and y ∈ Xj such that T Ci
x = C(i)

x and T Cj
y = C(j)

y . In par-

ticular, we have Ji = annA(T Ci
x ) and Jj = annA(T Cj

y ). We may assume

that T Ci
x and T Cj

y are different, because T Ci
x = T Cj

y forces Ji = Jj and then

Ci = A/Ji = A/Jj = Cj. Observe that T Ci
x and T Cj

y are stable tubes of
ΓA with common composition factors and consist of modules which do not
lie on infinite short cycles in modA, because T Ci

x and T Cj
y belong to the

family C = (Ci)i∈I . Applying Theorem 2.5 and Lemma 2.17, we conclude

that there exist indecomposable A-modules Mi ∈ T Ci
x and Mj ∈ T

Cj
y such

that [Mi] = [Mj] in K0(A) and Ji = annA(Mi), Jj = annA(Mj). Since
[Mi] = [Mj], there is a quotient algebra D = A/L, for an ideal L = AgA
of A given by an idempotent g of A, such that Mi and Mj are sincere in-

decomposable D-modules. Clearly, then Ji ⊆ L and Jj ⊆ L, so T Ci
x = C(i)

x

and T Cj
y = C(j)

y are sincere stable tubes of ΓD consisting of indecomposable
D-modules which do not lie on infinite short cycles in modD. Moreover, we
have annD(T Ci

x ) = L/Ji and annD(T (j)
y ) = L/Jj. Applying Corollary 3.3, we

conclude that D is a concealed canonical algebra, T Ci
x and T Cj

y are faithful
stable tubes of ΓD, and consequently Ji = L = Jj. Therefore, indeed we
have Ci = A/Ji = A/Jj = Cj for all i, j ∈ I.

Summing up, we have proved that there exists a concealed canonical
algebra C such that C is a quotient algebra of A and, for each i ∈ I, Ai =
A/ annA(Ci) is a quasitube enlargement of C, and Ci is obtained from a stable
tube T Cxi

, xi ∈ Xi, by the corresponding iterated application of admissible
operations of types (ad 1), (ad 2), (ad 1∗) and (ad 2∗), where Xi is the index
set of a separating family of stable tubes of ΓC . Since the family C = (Ci)i∈I
consists of quasitubes with common composition factors and is closed under
composition factors, we conclude that ΓC has a canonical decomposition

ΓC = PC ∨ T C ∨QC
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where T C = (T Cx )x∈X is a separating family of stable tubes such that, for any
i ∈ I, T Cxi

is a stable tube of T C . In particular, we have Xi = X for any i ∈ I.
Moreover, we proved that, for a fixed x ∈ X, all modules of the stable tube
T Cx are contained in a quasitube Cx from the family C. Therefore, we conclude
that Λ = A/ annA(C) is a quasitube enlargement of the concealed canonical
algebra C, using modules from the separating family T C = (T Cx )x∈X of sta-
ble tubes of ΓC , and C is the separating family of quasitubes of ΓΛ, obtained
from the family T C by the corresponding iterated application of admissible
operations of types (ad 1), (ad 2), (ad 1∗) and (ad 2∗). Applying Theorem 4.3,
we conclude also that there is a unique almost concealed canonical quotient
algebra B = Λr of Λ (the right quasitilted part of Λ), which is a tubular ex-
tension of C and ΓB admits the separating family Cr = (Crx)x∈X obtained from
the family T C = (T Cx )x∈X of ΓC by the corresponding iterated application
of admissible operations of type (ad 1). Moreover, the family C = (Cx)x∈X of
quasitubes of ΓΛ (and ΓA) is obtained from the family Cr by a sequence of
admissible operations of types (ad 1∗) and (ad 2∗).

Let I be the annihilator annA(Cr) of the family Cr (of modules) in A. Since
Cr is a faithful family of ray tubes of ΓB, we conclude that B = A/I. We may
assume that there exists a complete set of pairwise orthogonal idempotents
e1, . . . , en of A such that 1A = e1 + . . . + en and e = e1 + . . . + em, for some
m ≤ n, is a residual identity of B = A/I. We will show that I is a deforming
ideal of A with lA(I) = Ie and rA(I) = eI.

In order to prove that I is a deforming ideal of A we need several technical
results.

Denote by J the trace ideal of the family Cr in A, that is, the sum of
the images of all homomorphisms from modules in Cr to the right A-module
A. Similarly, by J ′ we denote the trace ideal of the dual family D(Cr) of left
A-modules in A.

Proposition 7.1. J ∪ J ′ ⊆ I.

Proof. Observe first that the annihilator I = annA(Cr) of Cr is the annihi-
lator annA(M) of a module from the additive closure add(Cr) of Cr. Indeed,
since A is of finite length over k, we have

I = annA(Cr) =
⋂
X∈Cr

annA(X) =
r⋂
i=1

annA(Mi) = annA(
r⊕
i=1

Mi)
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for a finite family M1, . . . ,Mr of indecomposable modules from Cr, so we
may take M = M1 ⊕ . . .⊕Mr. We also note that I is the annihilator of the
left A-module D(M), from add D(Cr). In particular, we obtain that M is a
faithful right B-module and D(M) is a faithful left B-module.

Invoking again the fact that AA is of finite length over k, we obtain also
that

J =
∑

h∈HomA(Y,AA), Y ∈Cr

Imh =
s∑
i=1

Imhi

for some homomorphisms hi ∈ HomA(Yi, A) with Yi in Cr, for i ∈ {1, . . . , s},
and hence an epimorphism of right A-modules

[h1 . . . hs] : Y =
s⊕
i=1

Yi → J.

Then N = M ⊕ Y is a module from add Cr with annA(N) = annA(M) = I,
hence N is a faithful right B-module, and there exists an epimorphism of
right A-modules g : N → J . Clearly, then J is a right B-module, because
JI = g(N)I = g(NI) = g(0) = 0.

We will show now the inclusion J ⊆ I. Suppose we have J 6⊆ I. Since
I = annA(N) is the intersection of the kernels of all homomorphisms from
HomA(AA, N), we conclude that there is a homomorphism f : A → N in
modA such that f(J) 6= 0. Then there are indecomposable direct summands
U and V of N and P of AA such that f(g(U)∩P )∩V 6= 0, and consequently
we obtain a short path in modA

U
u // P

v // V ,

with U and V in Cr, P an indecomposable projective right A-module, and
vu 6= 0. Moreover, Imu contains socP , and so socP is a simple right
B-module, because Imu is a right B-module. On the other hand, the family
of quasitubes C is obtained from the family of ray tubes Cr by a sequence of
admissible operations of types (ad 1∗) and (ad 2∗), we then infer that P /∈ Cr.
Hence u and v belong to rad∞(modA), and so 0 6= vu ∈ rad∞(U, V ), a con-
tradiction since Cr is a generalized standard family of modules in modB, and
hence in modA. Therefore, we have indeed J ⊆ I.

Further, since AA is of finite length over k, we obtain that

J ′ =
∑

h′∈HomAop (D(Y ′),AA), Y ′∈Cr

Imh′ =
t∑

j=1

Imh′j
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for some homomorphisms h′j ∈ HomAop(D(Y ′j ), AA) with Y ′j ∈ Cr, for j ∈
{1, . . . , t}, and hence an epimorphism of left A-modules

[h′1 . . . h
′
t] : D(Y ′) =

t⊕
j=1

D(Y ′j )→ AA.

Then N ′ = M⊕Y ′ is a module from Cr, D(N ′) is a module in add D(Cr), and
annA D(N ′) = annA D(M) = I. Hence D(N ′) is a faithful left B-module and
there exists an epimorphism g′ : D(N ′) → J ′ of left A-modules. Obviously,
then J ′ is a leftB-module, because IJ ′ = Ig′(D(N ′)) = g′(I D(N ′)) = g′(0) =
0.

We claim now that J ′ ⊆ I. Suppose J ′ 6⊆ I. Since I = annA D(N ′) is the
intersection of the kernels of all homomorphisms from HomAop(AA,D(N ′)),
there exists a homomorphism f ′ : AA → D(N ′) of left A-modules such that
f ′(J ′) 6= 0. Then we have the sequence of homomorphisms of left A-modules

D(N ′)
g′ // J ′

w′ //
AA

f ′ // D(N ′) ,

where w′ is the canonical embedding, with f ′w′g′ 6= 0. Applying the duality,
we obtain homomorphisms in modA

N ′
D(f ′) // D(AA)

D(w′g′)// N ′

with D(w′g′)(D(f ′)(U ′) ∩ P ′) ∩ V ′ 6= 0, and consequently a short path in
modA

U ′
u′ // P ′

v′ // V ′ ,

with U ′ and V ′ in Cr, P ′ an indecomposable projective right A-module, and
v′u′ 6= 0. Since Imu′ is a nonzero right B-module, socP ′ is a simple right
B-module, and so we infer as above that P ′ /∈ Cr. Hence u′ and v′ belong to
rad∞(modA), and then 0 6= v′u′ ∈ rad∞(U ′, V ′), a contradiction since Cr is
a generalized standard family of modules in modA. �

Lemma 7.2. We have lA(I) = J , rA(I) = J ′ and I = rA(J) = lA(J ′).

Proof. Because J is a right B-module then I ⊆ rA(J). Let N be a module
from add Cr such that I = rA(N). Let ρ : N → At be an embedding of N
into a finite dimensional free right A-module. Denote by ρi : N → A, for
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i ∈ {1, . . . , t}, the composite of ρ with the projection on the i-th component
of At. Then there is an embedding of N into the direct sum

⊕t
i=1 ρi(N),

which is contained in
⊕t

i=1 J . Hence we have

I = rA(N) ⊇ rA(
t⊕
i=1

ρi(N)) ⊇ rA(
t⊕
i=1

J) = rA(J).

Consequently, we obtain I = rA(J). Applying now a theorem by Nakayama
[60, Theorem 2.3.3], we get J = lArA(J) = lA(I).
We will show now that J ′ = rA(I). First notice that, because J ′ is a left
B-module, I ⊆ lA(J ′). Let N ′ be a module from add Cr such that I =
lA(D(N ′)). Let ρ′ : D(N ′) → As be an embedding of D(N ′) into a finite
dimensional free left A-module. Denote by ρ′i : D(N ′)→ A, for i ∈ {1, . . . , s},
the composite of ρ′ with the projection on the i-th component of As. Then
there is an embedding of D(N ′) into the direct sum

⊕s
i=1 ρ

′
i(D(N ′)), which

is contained in
⊕s

i=1 J
′. Hence we have

I = lA(D(N ′)) ⊇ lA(
s⊕
i=1

ρ′i(D(N ′))) ⊇ lA(
s⊕
i=1

J ′) = lA(J ′).

Thus we obtain I = lA(J ′). Applying now the theorem by Nakayama men-
tioned above, we get J ′ = rAlA(J ′) = rA(I). �

Lemma 7.3. We have eIe = eJe = eJ ′e. In particular (eIe)2 = 0.

Proof. Since e is a residual identity of B = A/I, we have B ∼= eAe/eIe.
Thus Cr is a faithful generalized standard family of ray tubes in ΓeAe/eIe.
Further, J is a right B-module, 1 − e ∈ I, and so J = Je + J(1 − e) = Je,
because J(1 − e) ⊆ JI = 0. Then eJ is an ideal of eAe with eJ ⊆ eIe, by
Proposition 7.1.

Consider the algebra B′ = eAe/eJ . Then Cr is a sincere generalized
standard family of ray tubes in ΓB′ . Because the family Cr in ΓA consists
of B-modules which do not lie on infinite short cycles in modA, the mod-
ules from the family Cr in ΓB′ do not lie on infinite short cycles in modB′.
Moreover, for any x 6= y in X, the ray tubes Crx and Cry have infinitely many
modules with common composition factors, since Crx contains all modules of
T Cx and CCy contains all modules of T Cy . Therefore, by Lemma 2.12, the fam-
ily Cr consists of modules which do not lie on external short paths in modB′.
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Hence, applying Theorem 3.1, we conclude that B′ is an almost concealed
canonical algebra and Cr a separating family of ray tubes of ΓB′ . But then
the sincere generalized standard family Cr of ray tubes of ΓB′ is faithful in
modB′. This implies that eIe/eJ = annB′(Cr) = 0, and hence eIe = eJ . In
a similar way we show that eIe = J ′e. Applying Lemma 7.2, we obtain the
equalities (eIe)2 = eJeeIe = eJeIe = (eJe)Ie = eJIe = 0. �

We shall use also the following general lemma on almost split sequences
over triangular algebras (see [52, Lemma 5.6]).

Lemma 7.4. Let R and S be algebras and N an S-R-bimodule. Let Γ =(
S N
0 R

)
be the triangular matrix algebra defined by the bimodule SNR. Then

an almost split sequence 0→ X → Y → Z → 0 in modR is an almost split
sequence in mod Γ if and only if HomR(N,X) = 0.

Lemma 7.5. Let f be a primitive idempotent in I such that fJ 6= fAe.
Then K = fAeAf + fJ + fAeAfAe + eAf + eIe is an ideal of the algebra
F = (e + f)A(e + f), and N = fAe/fKe is a right B-module such that
HomB(Cr, N) 6= 0 and HomB(N, Cr) = 0.

Proof. It follows from Lemma 7.3 that eIe = eJe. Since eJe ⊆ J , we
obtain the inclusions fAeIe ⊆ f(eIe) ⊆ fJ . Therefore K is an ideal of
F . Observe also that fKe = fJ + fAeAfAe, fKf ⊆ rad(fAf), because
(fKf)2 = (fAeAf)(fAeAf) ⊆ IeIeI ⊆ IeJI = 0, eKe = eIe and eKf =
eAf . Moreover N 6= 0. Indeed, if fAe = fKe, then, since eAfAe ⊆ eIe ⊆
rad(eAe), we have from Lemma 7.3 that fAe = fJ + fAe(rad(eAe)), and so
fAe = fJ , a contradiction with our assumption. Further, B = eAe/eIe and
(fAe)(eIe) = fAeJ ⊆ fJ ⊆ fKe, and hence N is a right B-module. Finally,
N is also a left module over S = fAf/fKf and Γ = F/K is isomorphic to

the triangular matrix algebra Γ =

(
S N
0 B

)
. Invoking now the structure

of the family C = (Cx)x∈I of quasitubes of ΓA, we conclude that the family
Cr = (Crx)x∈X of ray rubes of ΓB is the image of the family C via the restriction
functor (−)(e+ f) : modA→ modF , and consequently Cr is a family of ray
tubes of ΓF . We note also that the ray tubes Crx, x ∈ I, do not contain
injective modules, and hence for any module X in Cr there exists an almost
split sequence 0 → X → Y → Z → 0 in modF consisting entirely of
B-modules. Therefore, applying Lemma 7.4, we obtain HomB(N,X) = 0 for
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any module X in Cr, and so HomB(N, Cr) = 0. Further, Cr is a separating
family of ray tubes of ΓB, and hence every indecomposable module in modB
is either generated or cogenerated by Cr. This implies that HomB(Cr, N) 6=
0. �

Denote by ν the Nakayama automorphism of A and by ν− its inverse.
Then for any primitive idempotent f of A we have soc(ν(f)A) ∼= top(fA) =
fA/ rad(fA). We have then the following two lemmas proved in [52, Lemmas
1.1 and 5.11].

Lemma 7.6. The right ideal ν(e)lA(I) is a minimal injective cogenerator in
modB, and the left ideal rA(I)ν−(e) is a minimal injective cogenerator in
modBop.

Lemma 7.7. We have ν(e)J = lν(e)Ae(eIe) and J ′ν−(e) = reAν−(e)(eIe).

Lemma 7.8. We have ν(e)Ie = ν(e)J and eIν−(e) = J ′ν−(e).

Proof. Let ei be a primitive direct summand of e and put f = ν(ei). We
shall show that fIe = fJ . It is enough to prove that fIeI = 0, because
then Lemma 7.7 implies fIe ⊆ lfAe(eIe) = fJ , and fJ ⊆ fIe follows from
Proposition 7.1. Suppose that fIeI 6= 0. Then f ∈ I, because soc(fIeIA) ⊆
top(eiA), and so fIeIei 6= 0 but (eIe)2 = 0, by Lemma 7.3. Moreover, if
fAe = fJ then, since f ∈ I, it follows that (fIe)I ⊆ (fAe)I = fJI =
0, which contradicts our assumption. Therefore, we get fAe 6= fJ . Now
consider K and N as in Lemma 7.5. Then we have HomB(Cr, N) 6= 0 and
HomB(N, Cr) = 0. Take a module M from Cr such that HomB(M,N) 6= 0.

(1) Let L = fKe/fJ . Observe that L is a right B-module, because B ∼=
eAe/eIe and eIe = eJ from Lemma 7.3. We claim that HomB(L,M) =
0. It is enough to show that L is generated byN , because HomB(N,M) =
0. In fact,

L ∼= (fAeAf)fAe/(fJ ∩ fAeAfAe)
as B-modules and the module on the right-hand side is generated by
N = fAe/(fJ + fAeAfAe), where we note that

(fAeAf)fJ ⊆ fJ ∩ fAeAfAe,
(fAeAf)(fAeAfAe) = (fAe)(eAfAe)(eAfAe) ⊆ (fAe)(eIe)2,

and (eIe)2 = 0 by Lemma 7.3. Since τBM = 0 or τBM belongs to Cr,
we have also HomB(N, τBM) = 0, and so HomB(L, τBM) = 0.
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(2) We show that HomeAe(fKe, τeAeM) = 0. Applying now the functor
HomeAe(−, τeAeM) to the exact sequence 0→ fJ → fKe→ L→ 0, we
obtain the exact sequence

0 // HomeAe(L, τeAeM) α // HomeAe(fKe, τeAeM) //

// HomeAe(fJ, τeAeM)

where HomeAe(fJ, τeAeM) = HomB(fJ, τBM). Since, by Lemmas 7.2
and 7.6, fJ is an indecomposable injective B-module, it is generated by
Cr but is not in Cr. Invoking now the fact that Cr is a separating family
of ray tubes of ΓB, we obtain HomeAe(fJ, τeAeM) = 0, and consequently
α is an isomorphism. Hence, by (i), we obtain HomeAe(fKe, τeAeM) = 0.

(3) Finally, applying HomeAe(M,−) to the canonical exact sequence 0 →
fKe→ fAe→ N → 0, we have the exact sequence

HomeAe(M, fKe)
β // HomeAe(M, fAe) //

// HomeAe(M,N) // Ext1
eAe(M, fKe),

where β is an isomorphism because lfAe(eIe) = fJ ⊆ fKe by Lemma
7.7. Further, Ext1

eAe(M, fKe) ∼= D HomeAe(fKe, τeAeM) = 0 by (2).
This implies that HomB(M,N) = HomeAe(M,N) = 0, contradicting the
choice of M . Therefore, we have proved that ν(e)J = lν(e)Ae(eIe). The
proof of the second equality is dual. �

Lemma 7.9. We have IeIe = 0.

Proof. Suppose that IeIe 6= 0. Then ν(e)IeIe 6= 0 because soc(AIeIe) ∼=
top(Aν(e)). But, by Lemma 7.8, we have ν(e)IeIe = ν(e)JIe = 0, a contra-
diction. Hence IeIe = 0. �

Lemma 7.10. Let f be a primitive idempotent in I with fAe 6= fJe. Then
HomB(Cr, fAe/fJe) 6= 0 and HomB(eAf/eJ ′,D(Cr)) = 0.

Proof. Consider K and N as in Lemma 7.5. Observe that fAeAfAe =
(fAe)(eAfAe) ⊆ IeIe. Since IeIe = 0, by Lemma 7.9, we then have N =
fAe/fKe = fAe/fJ . The claim follows from Lemma 7.5, and from the
left-right dual argument. �
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Lemma 7.11. Let f be a primitive idempotent in I such that ν−(f) ∈ I.
We have HomB(Cr, fAe) = 0.

Proof. We note that fAe is a right B-module, because B ∼= eAe/eIe and
(fAe)(eIe) ⊆ IeIe and IeIe = 0, by Lemma 7.9. As a restriction of the
isomorphism D(A) ∼= Aν− of A-A-bimodules, we obtain the isomorphism
D(fAe) ∼= eAν−(f) of left (eAe/eIe)-modules. Further, since top(Aν−(f)) ∼=
soc(Af) as left A-modules and f ∈ I, we obtain eJ ′ν−(f) = 0. Thus we have
the isomorphism of left (eAe/eIe)-modules eAν−(f)/eJ ′ν−(f) = eAν−(f) ∼=
D(fAe), where we note that ν−(f) ∈ I and eIe = eJe, by Lemma 7.3.
Consequently, it follows from Lemma 7.10 that HomB(D(fAe),D(Cr)) = 0,
which implies HomB(Cr, fAe) = 0. �

Lemma 7.12. Let f be a primitive idempotent from I. Then we have fAe =
fJe and eAf = eJ ′f .

Proof. It is enough to show the first equality. We assume fAe 6= 0, since
the assertion is obvious in the case when fAe = 0. Suppose that fAe 6= fJe.
Take K and N as in Lemma 7.5. Observe that, as in the proof of Lemma
7.10, we have N = fAe/fKe = fAe/fJ . Applying Lemma 7.5 we obtain
HomB(Cr, N) 6= 0. Note that ν−(f) ∈ I. Indeed, if ν−(f) /∈ I then fIe = fJ ,
by Lemma 7.8, and hence fJe = fAe, a contradiction. But ν−(f) ∈ I implies
fJ = 0, because fJ is a right ideal of A, JI = 0 and soc(fJ) ∼= top(ν−(f)A)
if fJ 6= 0. Therefore, N = fAe/fJ = fAe and, applying Lemma 7.11, we
get HomB(Cr, fAe) = 0, a contradiction to the fact established above. �

Now we are in position to prove the following crucial result.

Proposition 7.13. We have Ie = J , eI = J ′ and eIe = J ∩ J ′.

Proof. Observe that Ie = eIe ⊕ (1 − e)Ie. From Lemma 7.3 we have
eIe = eJe = eJ . Further, by Lemma 7.12, we obtain that (1 − e)Ie =
(1 − e)Ae = (1 − e)Je = (1 − e)J , because 1 − e ∈ I by the definition of e.
Hence IeI = 0. Invoking Lemma 7.2, we then get Ie ⊆ lA(I) = J , and so
Ie = J . The equality eI = eJ ′ follows in a similar way. Finally, observe that
J ∩ J ′ = e(J ∩ J ′)e = eJ ∩ J ′e = eIe. �

Theorem 7.14. I is a deforming ideal of A with lA(I) = Ie and rA(I) = eI.
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Proof. From Lemma 7.2 and Proposition 7.13 we know that lA(I) = J = Ie
and rA(I) = J ′ = eI. In particular we have IeI = 0. Therefore from
Proposition 5.2 we get eIe = leAe(I) = reAe(I). Finally, B = A/I is an
almost concealed canonical algebra, and hence a quasitilted algebra. Then
the ordinary quiver QB of B is acyclic, by [17, Proposition III.1.1]. This
shows that I is a deforming ideal of A. �

We complete now the proof of the implication (i)⇒ (ii) of Theorem 1.1.
We know that I = annA(Cr) is a deforming ideal of A, with lA(I) = Ie, and
B = A/I is an almost concealed canonical algebra. Then it follows from
Theorem 5.4 that the deformed selfinjective algebra A[I] is isomorphic to

the orbit algebra B̂/(ψνB̂) for some positive automorphism ψ of B̂. More-
over, by Theorem 5.3(ii), the algebras A and A[I] are socle equivalent, and
consequently the module categories mod(A/ socA) and mod(A[I]/ socA[I])
coincide. We note also that the Auslander-Reiten quivers ΓA and ΓA[I] are
isomorphic. Then our assumption (i) on A forces that ΓA[I] admits a family
C ′ = (C ′i)i∈I of quasitubes with common composition factors, closed under
composition factors, and consisting of indecomposable A[I]-modules which
do not lie on infinite short cycles in modA[I]. Namely, for each i ∈ I, the
quasitube C ′i is obtained from the quasitube Ci by replacing any indecompos-
able projective A-module P by the corresponding indecomposable projective
A[I]-module P ′, and keeping the remaining indecomposable A-modules in
Ci. Then it follows from Propositions 6.4 and 6.5 that G = (ψνB̂) satisfies
the conditions (ii) of Theorem 1.1. In particular, we conclude that ei 6= eν(i)

for any primitive summand ei of the residual identity e. Applying Theorem
5.3(iii), we conclude that A and A[I] are isomorphic k-algebras. Therefore,

A is isomorphic to the orbit algebra B̂/G with G satisfying the conditions
(ii) of Theorem 1.1. This finishes the proof of the implication (i) ⇒ (ii) of
Theorem 1.1.
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[12] P. Dowbor, A. Skowroński, Galois coverings of representation-infinite
algebras, Comment. Math. Helv. 62 (1987) 311–337.

47



[13] P. Gabriel, The universal cover of a representation-finite algebra,
in: Representations of Algebras, Lecture Notes in Math. 903,
Springer-Verlag, Berlin-Heidelberg, 1981, pp. 68–105.

[14] W. Geigle, H. Lenzing, A class of weighted projective curves arising
in representation theory of finite dimensional algebras, in: Singularities,
Representation of Algebras and Vector Bundles, Lecture Notes in Math-
ematics 1273, Springer-Verlag, Berlin-Heidelberg, 1987, pp. 265–297.

[15] D. Happel, Triangulated Categories in the Representation Theory of Fi-
nite Dimensional Algebras, London Mathematical Society Lecture Note
Series 119, Cambridge Univerisity Press, Cambridge, 1988.

[16] D. Happel, I. Reiten, Hereditary abelian categories with tilting object
over arbitrary basic fields, J. Algebra 256 (2002) 414–432.

[17] D. Happel, I. Reiten, S.O. Smalø, Tilting in abelian categories and qu-
asitilted algebras, Memoires Amer. Math. Soc. 120 (1996) no. 575.

[18] D. Happel, C.M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274
(1982) 399–443.

[19] D. Happel, C.M. Ringel, The derived category of a tubular algebra,
in: Representation Theory I. Finite Dimensional Algebras, Lecture
Notes in Mathematics 1177, Springer-Verlag, Berlin-Heidelberg, 1986,
pp. 156–180.
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[32] H. Lenzing, A. Skowroński, Selfinjective algebras of wild canonical type,
Colloq. Math. 96 (2003) 245–275.

[33] S. Liu, The degrees of irreducible maps and the shapes of the
Auslander-Reiten quivers, J. London Math. Soc. 45 (1992) 32–54.
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[50] A. Skowroński, A construction of complex syzygy periodic modules over
symmetric algebras, Colloq. Math. 103 (2005) 61–69.
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