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Department of Mathematics, Technische Universität Darmstadt,
Schlossgartenstrasse 7, 64289 Darmstadt, Germany

and

Institute of Mathematics ”Simion Stoilow” of the Romanian Academy,
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Abstract

In this survey we present some recent applications of proof mining to the fixed point theory
of (asymptotically) nonexpansive mappings and to the metastability (in the sense of Terence
Tao) of ergodic averages in uniformly convex Banach spaces.
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1 Proof Mining

By proof mining we mean the logical analysis, using proof-theoretic tools, of mathematical proofs
with the aim of extracting relevant information hidden in the proofs. This new information can
be both of quantitative nature, such as algorithms and effective bounds, as well as of qualitative
nature, such as uniformities in the bounds or weakening the premises. Thus, even if one is not
particularly interested in the numerical details of the bounds themselves, in many cases such
explicit bounds immediately show the independence of the quantity in question from certain input
data. An up-to-date and comprehensive reference for proof mining is Kohlenbach’s recent book
[93].

The main proof-theoretic techniques in proof mining are the so-called proof interpretations. A
proof interpretation I maps proofs p in theories T of theorems A into new proofs pI in theories
T I of the interpretation AI of A. In this way, the original mathematical proof is transformed into
a new enriched proof of a stronger result, from which the desired additional information can be
read off. While the soundness of these methods rests on results in mathematical logic, the new
proof can again be written in ordinary mathematics.

This line of research has its roots in Kreisel’s program on unwinding of proofs. Already in the
50’s, Kreisel had asked

”What more do we know if we have proved a theorem by restricted means than if we merely know
that it is true?”

Kreisel proposed to apply proof-theoretic techniques - originally developed for foundational pur-
poses - to analyze concrete proofs in mathematics and unwind the extra information hidden in
them; see for example [105, 116] and, more recently, [118]. Unwinding of proofs has had applica-
tions in number theory [104, 117], algebra [31, 29, 27, 28, 114] and combinatorics [6, 50, 69, 154].

However, the most systematic development of proof mining took place in connection with
applications to approximation theory [79, 80, 81, 123, 100], metric fixed point theory [85, 86, 87,
95, 94, 89, 45, 12, 13, 14, 96, 109, 110, 15, 97, 111, 17, 16], as well as ergodic theory and topological
dynamics [2, 46, 97, 47].
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Moreover, in the context of these applications, general logical metatheorems were developed
by Kohlenbach [88, 90] and Gerhardy-Kohlenbach [48], having the following form: If certain ∀ ∃-
sentences are proved in some formal systems associated to abstract structures X (e.g. metric,
(uniformly convex) normed, Hilbert, CAT (0) or W -hyperbolic spaces), then from a given proof
one can extract an effective bound which holds in arbitrary such spaces and is uniform for all pa-
rameters meeting very weak local boundedness conditions. Adaptations of these metatheorems to
other structures (R-trees, Gromov hyperbolic spaces, uniformly convex W -hyperbolic spaces) are
given in [108]. The importance of the metatheorems is that they can be used to infer new uniform
existence results without having to carry out any actual proof analysis. The metatheorems apply
to formal systems and thus to formalized proofs, they guarantee the extractability of additional
information based on a transformation of these formalized proofs. In practice, it is in general not
necessary to completely formalize a mathematical proof in order to analyze it. Applications of
proof mining often consist of preprocessing the original mathematical proof by putting the state-
ment and the main concepts involved into a suitable logical form and then identifying the key
steps in the proof that need to be given a computational interpretation. As a result, we get direct
proofs for the explicit quantitative versions of the original results, i.e. proofs that no longer rely
on any logical tools.

Naturally, there are limits to what can be achieved with proof mining. Let us consider the
Cauchy property of bounded monotone sequences (an) in R, which is a statement of a more
complicated ∀ ∃∀ logical form:

∀ε > 0∃N ∈ N∀p ∈ N
(
|aN+p − aN | < ε

)
. (1)

By a well-known construction of Specker [141], there are easily computable sequences already in
[0, 1] ∩ Q without any computable bound on the ∃N , that is which have no computable Cauchy
modulus. Nevertheless, as we shall see in Section 5, the logical metatheorems guarantee effective
uniform bounds on the so-called Herbrand normal form of the Cauchy property, that (ineffectively)
is equivalent with (1).

The proofs of the logical metatheorems are based on extensions to the new theories of two
proof interpretations developed by Gödel: functional (or Dialectica) interpretation [58] and double-
negation interpretation [57].

In applications of proof mining, Kohlenbach’s monotone functional interpretation (see [83] or
[93, Chapter 9] for details) is crucially used, since it systematically transforms any statement
in a given proof into a new version for which explicit bounds are provided. As it is argued in
[99], monotone functional interpretation provides in many cases the right notion of numerical
implication in analysis.

Recently, Terence Tao [148] arrived at a proposal of so-called hard analysis (as opposed to soft
analysis), inspired by the finitary arguments used recently by him and Green [60] in their proof
that there are arithmetic progressions of arbitrary length in the prime numbers, as well as by him
alone in a series of papers [147, 149, 150, 151, 152]. In the essay [148], Tao illustrates his ideas
using two examples: a finite convergence principle and a finitary infinite pigeonhole principle. It
turns out that both the former and a variant of the latter directly result from monotone functional
interpretation [91, 43]. Hence, Tao’s hard analysis could be roughly understood as carrying out
analysis on the level of uniform bounds in the sense of monotone functional interpretation which
in many cases allows one to finitize analytic assumptions and to arrive at qualitatively stronger
results.

2 Some topics in fixed point theory of nonexpansive map-
pings

In the following we review some topics related with the applications we shall present in Chapter 5.
We refer to [78, Chapter 3] or to [53, 55] for a comprehensive treatment of the fixed point theory
of nonexpansive mappings.
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The notion of nonexpansive mapping can be introduced in the very general setting of metric
spaces. Thus, if (X, d) is a metric space, and C ⊆ X a nonempty subset, then a mapping
T : C → C is said to be nonexpansive if for all x, y ∈ C,

d(Tx, Ty) ≤ d(x, y).

We shall denote with Fix(T ) the set of fixed points of T . The subset C is said to have the fixed
point property for nonexpansive mappings, FPP for short, if Fix(T ) 6= ∅ for any nonexpansive
mapping T : C → C.

While an abstract metric space is all that is needed to define the concept of nonexpansive
mapping, the most interesting results were obtained in the setting of Banach spaces.

Fixed point theory of contractions is, even from a computational point of view, essentially triv-
ial, due to Banach’s Contraction Mapping Principle. Anyway, the picture known for contractions
breaks down for nonexpansive mappings, as we indicate below:

(i) Nonexpansive mappings need not to have fixed points: just take T : R→ R, T (x) = x+ 1.

(ii) Even when C is compact (and therefore fixed points exist by the fixed point theorems of
Brouwer and Schauder), they are not unique: take T : R→ R, T (x) = x.

(iii) Even when the fixed point is unique, it will in general not be approximated by the Picard
iteration xn+1 = Txn: if we let T : [0, 1] → [0, 1], T (x) = 1 − x and x0 = 0, then T has a
unique fixed point 1

2 , while xn alternates between 0 and 1.

Fixed point theory for nonexpansive mappings has been a very active research area in nonlinear
analysis beginning with the 60’s, when the most widely known result in the theory, the so-called
Browder-Göhde-Kirk Theorem, was published.

Theorem 2.1. If C is a bounded closed and convex subset of a uniformly convex Banach space
X and T : C → C is nonexpansive, then T has a fixed point.

The above theorem was proved independently by Browder [18] and Göhde [59] in the form
stated above, and by Kirk [71] in a more general form. Browder and Kirk used the same line of
argument, which in fact yields a more general result - while the proof of Göhde relies on properties
essentially unique to uniformly convex Banach spaces.

2.1 The approximate fixed point property

Let (X, d) be a metric space, C ⊆ X and T : C → C. The minimal displacement of T is defined
as

rC(T ) := inf{d(x, Tx) | x ∈ C}. (2)

A sequence (xn) in C is called an approximate fixed point sequence of T if lim
n→∞

d(xn, Txn) = 0.

We say that T is approximately fixed [10], or that T has approximate fixed points, if T has an
approximate fixed point sequence.

Given ε > 0, a point x ∈ C is said to be an ε-fixed point of T if d(x, Tx) < ε. We shall denote
with Fixε(T ) the set of ε-fixed points of T .

It is easy to see that T is approximately fixed if and only if rC(T ) = 0 if and only if Fixε(T ) 6= ∅
for any ε > 0.

A related notion is the following. For x ∈ C and b, ε > 0, let us denote

Fixε(T, x, b) := {y ∈ C | d(y, x) ≤ b and d(y, Ty) < ε}.

If Fixε(T, x, b) 6= ∅ for all ε > 0, we say that T has approximate fixed points in a b-neighborhood
of x.

Lemma 2.2. The following are equivalent.
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(i) T has a bounded approximate fixed point sequence;

(ii) for all x ∈ C there exists b > 0 such that T has approximate fixed points in a b-neighborhood
of x;

(iii) there exist x ∈ C and b > 0 such that T has approximate fixed points in a b-neighborhood of
x.

A subset C of a metric space (X, d) is said to have the approximate fixed point property for non-
expansive mappings, AFPP for short, if each nonexpansive mapping T : C → C is approximately
fixed. It is well-known that bounded closed convex subsets of Banach spaces have the AFPP for
nonexpansive mappings (see, for example, [78, Chapter 3, Lemma 2.4].

Goebel and Kuczumow [54] were the first to remark that there exist unbounded sets in Hilbert
spaces that have this property. Namely, they proved that any closed convex set C contained in a
block has the AFPP; a set K ⊆ `2 is a block if K is of the form K = {x ∈ `2 | | < x, en > | ≤
Mn, n = 1, 2, . . . , }, where {en} is some orthogonal basis and (Mn) is a sequence of positive reals.
More recently, Kuczumow gave in [106] an example of an unbounded closed convex subset of `2
that has the AFPP, but it is not contained in a block for any orthogonal basis of `2.

Goebel and Kuczumow’ result was extended by Ray [126] to include all linearly bounded subsets
of `p, 1 < p <∞. A subset C of a normed space X is said to be linearly bounded if it has bounded
intersection with all lines in X. Subsequently, Ray obtained the following characterization of the
FPP in Hilbert spaces, answering an open problem of Kirk.

Theorem 2.3. [127] A closed convex subset of a real Hilbert space has the FPP for nonexpansive
mappings if and only if it is bounded.

In [130], Reich proved the following remarkable theorem.

Theorem 2.4. [130] A closed convex subset of a reflexive Banach space has the AFPP for non-
expansive mappings if and only if it is linearly bounded.

If the Banach space X is finite-dimensional, then any linearly bounded subset C of X is, in
fact, bounded. Thus, in this case, either C is bounded and has the FPP, or C is unbounded and
does not even have the AFPP for nonexpansive mappings.

As it was already noted in [130], the above theorem can not be extended to all Banach spaces:
just take X = `1, C = {x ∈ `1 | |xn| ≤ 1 for all n} and define T : C → C by T (x1, x2, . . .) =
(1, x2.x3, . . .). Then C is linearly bounded and T is an isometry, but rC(T ) = 1, hence T is not
approximately fixed.

In [138], Shafrir gave a more general geometric characterization of the AFPP which is true in
an arbitrary Banach space or even for the more general class of complete hyperbolic spaces in the
sense of [134]. In order to do this, he introduced the concept of a directionally bounded set.

A directional curve in a metric space (X, d) is a curve γ : [0,∞) → X for which there exists
b > 0 such that for each t ≥ s ≥ 0,

t− s− b ≤ d(γ(s), γ(t)) ≤ t− s.

A convex subset of a Banach space is called directionally bounded if it contains no directional
curve. Since a line is a directional curve with b = 0, directionally bounded sets are always linearly
bounded. Shafrir proved two important results.

Theorem 2.5. [138]

(i) A convex subset of a Banach space has the AFPP if and only if it is directionally bounded.

(ii) A Banach space X is reflexive if and only if every closed convex linearly bounded subset of
X is directionally bounded.
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Therefore, the characterization for the AFPP from Reich Theorem 2.4 is true for a Banach
space X if and only if X is reflexive.

Answering an open question of Shafrir [138], in [120] Matoušková and Reich showed that any
infinite-dimensional Banach space contains an unbounded convex subset which has the AFPP for
nonexpansive mappings; Shafrir [138] had proved this only for infinite-dimensional Banach spaces
which do not contain an isomorphic copy of `1.

2.2 Krasnoselski-Mann iterations

A fundamental theorem in the fixed point theory of nonexpansive mappings is the following result
due to Krasnoselski, which shows that, under an additional compactness condition, a fixed point
of T can be approximated by a special iteration technique.

Theorem 2.6. [101] Let C be a closed convex subset of a uniformly convex Banach space X, T
be a nonexpansive mapping, and suppose that T (C) is contained into a compact subset of C. Then
for every x ∈ C, the sequence (xn) defined by

x0 := x, xn+1 :=
1
2

(xn + Txn) (3)

converges to a fixed point of T .

Schaefer [135] remarked that Krasnoselski Theorem holds for iterations of the form

x0 := x, xn+1 := (1− λ)xn + λTxn, (4)

where λ ∈ (0, 1). Moreover, Edelstein [35] proved that strict convexity of X suffices. The iteration
(4) is today known as the Krasnoselski iteration.

For any λ ∈ (0, 1), the averaged mapping Tλ is defined by

Tλ : C → C, Tλ(x) = (1− λ)x+ λTx.

It is easy to see that Tλ is also nonexpansive and that Fix(T ) = Fix(Tλ). Moreover, the Kras-
noselski iteration (xn) starting with x ∈ C is the Picard iteration

(
Tnλ (x)

)
of Tλ.

A vast extension of Krasnoselski Theorem was obtained by Ishikawa in his seminal paper [67].
He showed that Krasnoselski Theorem holds without the assumption of X being uniformly convex
and for much more general iterations, defined as follows:

x0 := x, xn+1 := (1− λn)xn + λnTxn, (5)

where (λn) is a sequence in [0, 1] and x ∈ C is the starting point. This iteration is a special case of
the generalized iteration method introduced by Mann [119]. Following [10], we call the iteration
(5) the Krasnoselski-Mann iteration. We remark that it is often said to be a segmenting Mann
iteration [125, 61, 63].

Theorem 2.7. [67] Let C be a closed convex subset of a Banach space X, T be a nonexpansive
mapping, and suppose that T (C) is contained into a compact subset of C. Assume that (λn) is a
sequence in [0, 1], divergent in sum and bounded away from 1.

Then for every x ∈ C, the Krasnoselski-Mann iteration converges to a fixed point of T .

Independently, Edelstein and O’Brien [38] obtained a similar result for constant λn = λ ∈ (0, 1).
The question whether we obtain strong convergence of the Krasnoselski-Mann iterations if the

assumption that T (C) is contained into a compact subset of C is exchanged for nicer behavior of
X is very natural. The answer to this question is no, and it was given by Genel and Lindenstrauss
[44]. They constructed an example of a bounded closed convex subset C in the Hilbert space `2
and a nonexpansive mapping T : C → C with the property that even the original Krasnoselski
iteration (3) fails to converge to a fixed point of T for some x ∈ C.

A classical weak convergence result is the following theorem due to Reich [128].
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Theorem 2.8. Let C be a closed convex subset of a uniformly convex Banach space X with a
Fréchet differentiable norm and T : C → C a nonexpansive mapping with a fixed point. Assume
that (λn) is a sequence in [0, 1] satisfying the following condition

∞∑
k=0

λk(1− λk) =∞. (6)

Then for every x ∈ C, the Krasnoselski-Mann iteration converges weakly to a fixed point of T .

We end this short presentation of Krasnoselski-Mann iterations by emphasizing that a wide
variety of iterative procedures used in signal processing and image reconstruction and elsewhere
are special cases of the Krasnoselski-Mann iterative procedure, for particular choices of the non-
expansive mapping T . We refer to [24, 5] for nice surveys.

2.3 Asymptotic regularity

Asymptotic regularity is a fundamentally important concept in metric fixed-point theory. Asymp-
totic regularity was already implicit in [101, 135, 35], but it was formally introduced by Browder
and Petryshyn in [20]. A mapping T of a metric space (X, d) into itself is said to be asymptotically
regular if for all x ∈ C,

lim
n→∞

d(Tn(x), Tn+1(x)) = 0.

Let X be a Banach space, C ⊆ X and T : C → C. Then the asymptotic regularity of the
averaged mapping Tλ := (1− λ)I + λT is equivalent with the fact that lim

n→∞
‖xn − Txn‖ = 0 for

all x ∈ C, where (xn) is the Krasnoselski iteration (4).
Following [10], we say that the nonexpansive mapping T is λn-asymptotically regular (for

general λn ∈ [0, 1]) if for all x ∈ C,

lim
n→∞

‖xn − Txn‖ = 0,

where (xn) is the general Krasnoselski-Mann iteration (5).
The most general assumptions on the sequence (λn) for which asymptotic regularity has been

proved for arbitrary normed spaces are the following, made in Ishikawa’s paper [67]:

∞∑
n=0

λn =∞ and lim supλn < 1. (7)

Note that if λn ∈ [a, b] for all n ∈ N and 0 < a ≤ b < 1, then (λn) satisfies (7).
Ishikawa proved the following result, which was the intermediate step in obtaining Theorem

2.7.

Theorem 2.9. [67] Let C be a convex subset of a Banach space X and T : C → C be a non-
expansive mapping. Assume that (λn) satisfies (7). If (xn) is bounded for some x ∈ C, then
lim
n→∞

d(xn, Txn) = 0. Thus, if C is bounded, T is λn-asymptotically regular.

As observed in [10], we obtain asymptotic regularity under the weaker assumption that C
contains a point x with the property that the Krasnoselski-Mann iteration (xn) starting with x is
bounded. In fact, it is easy to see that if for some x ∈ C, the Krasnoselski-Mann iteration (xn)
starting with x is bounded, then this is true for all x ∈ C.

Theorem 2.10. Let C be a convex subset of a Banach space X and T : C → C a nonexpansive
mapping. Assume that (λn) satisfies (7) and that (xn) is bounded for some (each) x ∈ C.

Then T is λn-asymptotically regular.
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Using an embedding theorem due to Banach and Mazur [4], Edelstein and O’Brien [38] also
proved the asymptotic regularity for constant λn = λ ∈ (0, 1), and noted that it is uniform for
x ∈ C. In [52], Goebel and Kirk unified Ishikawa’s and Edelstein/O’Brien’s results, obtaining
uniformity with respect to x and to the family of all nonexpansive mappings T : C → C.

Theorem 2.11. [52] Let C be a bounded convex subset of a Banach space X and (λn) satisfying
(7). Then for every ε > 0 there exists a positive integer N such that for all x ∈ C and all
T : C → C nonexpansive,

∀n ≥ N
(
‖xn − Txn‖ < ε

)
. (8)

We remark that the above theorem was proved in [52] for spaces of hyperbolic type; we refer to
Chapter 3 for details on this very general class of spaces.

In 2000, Kirk [73] generalized Theorems 2.11 and 2.10 to directionally nonexpansive mappings,
but only for constant λn = λ ∈ (0, 1). A mapping T : C → C is said to be directionally
nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x ∈ C and all y ∈ seg[x, Tx].

Theorem 2.12. [73] Let C be a convex subset of a Banach space X, T : C → C be directionally
nonexpansive and λ ∈ (0, 1).

(i) If (xn) is bounded for each x ∈ C, then the averaged mapping Tλ is asymptotically regular.

(ii) If C is bounded, then for every ε > 0 there exists N ∈ N such that for all x ∈ C and all
T : C → C directionally nonexpansive,

∀n ≥ N
(
‖Tn+1

λ (x)− Tnλ (x)‖ < ε
)
. (9)

A very important result is the following theorem due to Borwein, Reich and Shafrir, extending
Ishikawa Theorem 2.10 to unbounded C.

Theorem 2.13. [10] Let C be a closed convex subset of a Banach space X and T : C → C a
nonexpansive mapping. Assume that (λn) satisfies (7). Then for all x ∈ C,

lim
n→∞

‖xn − Txn‖ = rC(T ), (10)

where rC(T ) is the minimal displacement of T, defined by (2).

Thus, convergence of (‖xn − Txn‖) towards rC(T ) is obtained for (λn) divergent in sum and
bounded away from 1, while in [133, 134] (λn) was required also to be bounded away from 0. In
this way, the case of Cesaro and other summability methods is covered [34, 61, 119].

As an immediate consequence of Borwein-Reich-Shafrir Theorem, we get that any approxi-
mately fixed nonexpansive mapping is λn-asymptotically regular for (λn) satisfying (7).

A straightforward application of Theorems 2.10 and 2.13 is the fact that rC(T ) = 0 whenever
(xn) is bounded for some (each) x ∈ C, in particular for bounded C. Let us remark that for
unbounded C, rC(T ) can be very well strict positive: for example, if T : R→ R, Tx = x+ 1, then
rR(T ) = 1 although T is nonexpansive.

In [3], it is conjectured that Ishikawa’s Theorem 2.9 holds true if (7) is replaced by the weaker
condition (6), which is symmetric in λn, 1− λn. For the case of uniformly convex Banach spaces,
this has been proved by Groetsch [61] (see also [128]).

Theorem 2.14. Let C be a convex subset of a uniformly convex Banach space and T : C → C be
a nonexpansive mapping such that T has at least one fixed point. Assume that (λn) satisfies the
following condition:

∞∑
k=0

λk(1− λk) =∞. (11)

Then T is λn-asymptotically regular.
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2.4 Ishikawa iterations

Let C be a convex subset of a normed space X and T : C → C be nonexpansive.
The Ishikawa iteration [66] starting with x ∈ C is defined by

x0 := x, xn+1 = (1− λn)xn + λnT
(
(1− sn)xn + snTxn

)
, (12)

where (λn), (sn) are sequences in [0, 1]. By letting sn = 0 for all n ∈ N, we get the Krasnoselski-
Mann iteration as a special case.

An extension of Ishikawa Theorems 2.9 and 2.7 to these iterations was proved by Deng [32].

Theorem 2.15. [32] Let C be a convex subset of a Banach space X and T : C → C be a

nonexpansive mapping. Assume that (λn) satisfies (7) and that
∞∑
n=0

sn converges.

(i) If (xn) is bounded for some x ∈ C, then lim
n→∞

d(xn, Txn) = 0.

(ii) Assume furthermore that C is closed and T (C) is contained into a compact subset of C.
Then (xn) converges to a fixed point of T .

Tan and Xu [145] obtained a weak convergence result for Ishikawa iterates that generalizes
Reich Theorem 2.8.

Theorem 2.16. Let C be a bounded closed convex subset of a uniformly convex Banach space
X which satisfies Opial’s condition or has a Fréchet differentiable norm and T : C → C be a
nonexpansive mapping. Assume that (λn), (sn) satisfy

∞∑
n=0

λn(1− λn) diverges, lim sup
n

sn < 1 and
∞∑
n=0

sn(1− λn) converges. (13)

(i) For every x ∈ C, the Ishikawa iteration (xn) converges weakly to a fixed point of T .

(ii) If, moreover, T (C) is contained into a compact subset of C, then the convergence is strong.

As in the case of Krasnoselski-Mann iterations, the first step towards getting weak or strong
convergence is proving asymptotic regularity (with respect to Ishikawa iterates), and this was
done by Tan and Xu [145] for uniformly convex Banach spaces and, recently, by Dhompongsa and
Panyanak [33] for CAT (0) spaces.

Theorem 2.17. Let X be a uniformly convex Banach space or a CAT (0) space, C ⊆ X a bounded
closed convex subset and T : C → C nonexpansive. Assume that (λn), (sn) satisfy (13).

Then lim
n→∞

‖xn − Txn‖ = 0 for every x ∈ C.

2.5 Halpern iterations

Let C be a convex subset of a normed space X and T : C → C nonexpansive. The Halpern
iteration was introduced in [64] as follows:

x0 := x, xn+1 := λn+1x+ (1− λn+1)Txn, (14)

where (λn)n≥1 is a sequence in [0, 1] and x ∈ C is the starting point.

Remark 2.18. [155, 156] If T is positively homogeneous (i.e. T (tx) = tT (x) for all t ≥ 0 and
all x ∈ C), then

xn =
1

n+ 1
Snx, where S0x = x, Sn+1x = x+ T (Snx). (15)

Furthermore, if T is linear, then xn =
1

n+ 1

n∑
i=0

T ix, so the Halpern iterations could be regarded as

nonlinear generalizations of the usual Cesaro averages. We refer to [155, 112] for a a systematic
study of the behavior of iterations given by (15).
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In [130], Reich formulated the following problem:

Problem 2.19. [130, Problem 6]
Let X be a Banach space. Is there a sequence (λn) such that whenever a weakly compact convex
subset C of X possesses the FPP for nonexpansive mappings, then (xn) converges to a fixed point
of T for all x ∈ C and all nonexpansive mappings T : C → C ?

Let us consider the following conditions on (λn).

(C1) limλn = 0, (C2)
∞∑
n=1

λn =∞, (C3)
∞∑
n=1

|λn+1 − λn| =∞,

(C4) lim
n→∞

λn − λn+1

λ2
n+1

= 0, (C5) lim
n→∞

λn − λn+1

λn+1
= 0.

In (C4) and (C5) we assume moreover that λn > 0 for all n ≥ 1.
The study of the convergence of the scheme (14) in the Hilbert space setting was initiated

by Halpern [64], who proved that (xn) converges to a fixed point of T for (λn) satisfying certain
conditions, two of which are (C1) and (C2). P.-L. Lions [113] improved Halpern’s result by showing
the convergence of (xn) if (λn) satisfies (C1), (C2) and (C4). However, both Halpern’s and Lions’

conditions exclude the natural choice λn =
1

n+ 1
.

This was overcome by Wittmann [156], who obtained one of the most important results on the
convergence of Halpern iterations in Hilbert spaces.

Theorem 2.20. [156] Let C be a closed convex subset of a Hilbert space X and T : C → C a
nonexpansive mapping such that the set Fix(T ) of fixed points of T is nonempty. Assume that
(λn) satisfies (C1), (C2) and (C3). Then for any x ∈ C, the Halpern iteration (xn) converges to
the projection Px of x on Fix(T ).

Thus, all the above partial answers to Reich’s problem require that the sequence (λn) satisfies
(C1) and (C2). Halpern [64] showed in fact that conditions (C1) and (C2) are necessary in the
sense that if, for every closed convex subset C of a Hilbert space X and every nonexpansive
mappings T : C → C such that Fix(T ) 6= ∅, the Halpern iteration (xn) converges to a fixed point
of T , then (λn) must satisfy (C1) and (C2). It however remains an open question whether (C1)
and (C2) are sufficient to guarantee the convergence of (xn). Recently, Chidume and Chidume
[25] and Suzuki [143] proved that if the nonexpansive mapping T in (14) is averaged, then (C1)
and (C2) suffice for obtaining the convergence of (xn).

Halpern derived his result as a consequence of a limit theorem for the resolvent, first shown by
Browder [19]. This approach has the advantage that this result can be immediately generalized,
once the limit theorem for the resolvent has been generalized. This was done by Reich [129].

Theorem 2.21. [129] Let C be a closed convex subset of a uniformly smooth Banach space X,
and let T : C → C be nonexpansive such that Fix(T ) 6= ∅. For each y ∈ C and t ∈ (0, 1), let yt
denote the unique fixed point of the contraction mapping

Tt(·) = (1− t)y + tT (·).

Then lim
t→1−

yt exists and is a fixed point of T .

A similar result was obtained recently by Kirk [74] for CAT (0) spaces. As a consequence
of Theorem 2.21, a partial positive answer to Problem 2.19 was obtained [129] for uniformly

smooth Banach spaces and λn =
1

(n+ 1)α
with 0 < α < 1. Furthermore, Reich [132] proved

the strong convergence of (xn) in the setting of uniformly smooth Banach spaces that have a
weakly sequentially continuous duality mapping for general (λn) satisfying (C1), (C2) and being
decreasing (and hence (C4) holds). Another partial answer in the case of uniformly smooth Banach
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spaces was obtained by Xu [157, 158] for (λn) satisfying (C1), (C2) and (C5) (which is weaker
than Lions’ (C4)). In [139], Shioji and Takahashi extended Wittmann’s result to Banach spaces
with uniformly Gâteaux differentiable norm and with the property that lim

t→1−
yt exists and is a

fixed point of T .
We end this section with the following remark. By inspecting the proof of Theorem 2.20, it

is easy to see that the first step is to obtain asymptotic regularity (i.e. lim
n→∞

‖xn − Txn‖ = 0)
and this can be done in a much more general setting. Thus, the following theorem is essentially
contained in [156, 157, 159] and will be the point of departure for our application in Section 5.5.

Theorem 2.22. Let C be a convex subset of a normed space X and T : C → C nonexpansive.
Assume that (λn)n≥1 is a sequence in [0, 1] satisfying (C1), (C2) and (C3).

Then lim
n→∞

‖xn − Txn‖ = 0 for every x ∈ C with the property that (xn) is bounded.

2.6 Asymptotically nonexpansive mappings

Asymptotically nonexpansive mappings were introduced by Goebel and Kirk [51] as a generaliza-
tion of the nonexpansive ones. A mapping T : C → C is said to be asymptotically nonexpansive
with sequence (kn) in [0,∞) if lim

n→∞
kn = 0 and

d(Tnx, Tny) ≤ (1 + kn)d(x, y), forall n ∈ N and all x, y ∈ C.

It is obvious that an asymptotically nonexpansive mapping with sequence (kn) is (1+k1)-Lipschitz.
Examples showing that the class of asymptotically nonexpansive mappings is wider than the class
of nonexpansive mappings are given in [51, 77].

Goebel and Kirk [51] extended the Browder-Göhde-Kirk Theorem to this class of mappings.

Theorem 2.23. [51] Bounded closed convex subsets of uniformly convex Banach spaces have the
FPP for asymptotically nonexpansive mappings.

Recently [75], Kirk proved the same result for CAT (0) spaces.

Theorem 2.24. [75] Bounded closed convex subsets of complete CAT (0) spaces have the FPP for
asymptotically nonexpansive mappings.

Kirk proved Theorem 2.24 using nonstandard methods, inspired by Khamsi’s proof that bounded
hyperconvex metric spaces have the AFPP for asymptotically nonexpansive mappings [70].

For asymptotically nonexpansive mappings, the Krasnoselski-Mann iteration starting from
x ∈ C is defined by

x0 := x, xn+1 := (1− λn)xn + λnT
nxn, (16)

where (λn) is a sequence in [0, 1]. The above iteration was introduced by Schu [136]; it is called
modified Mann iteration in [146].

Asymptotically nonexpansive mappings have been studied mostly in the context of uniformly
convex Banach spaces. In fact, for general Banach spaces it is not known whether bounded closed
convex subsets have the AFPP (see [77] for a discussion).

In the setting of uniformly convex Banach spaces, the following weak convergence result was
proved by Schu [137] with the assumption that Opial’s condition is satisfied and by Tan and Xu
[146] in the hypothesis that the space has a Fréchet differentiable norm.

Theorem 2.25. [137, 146] Let X be a uniformly convex Banach space which satisfies Opial’s
condition or has a Fréchet differentiable norm, C be a bounded closed convex subset of X and

T : C → C an asymptotically nonexpansive mapping with sequence (kn) satisfying
∞∑
i=0

ki < ∞.

Assume that (λn) is bounded away from 0 and 1.
Then for all x ∈ C, the Krasnoselski-Mann iteration (xn) starting with x converges weakly to

a fixed point of T .
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As in the case of nonexpansive mappings, if lim
n→∞

d(xn, Txn) = 0 for all x ∈ C, T is said to
be λn-asymptotically regular. The following asymptotic regularity result is essentially contained
in [136, 137].

Theorem 2.26. Let C be a convex subset of a uniformly convex Banach space X and T : C → C

an asymptotically nonexpansive mapping with sequence (kn) in [0,∞) satisfying
∞∑
i=0

ki < ∞. Let

(λn) be a sequence in [a, b] for 0 < a < b < 1.
If T has a fixed point, then T is λn-asymptotically regular.

3 W -hyperbolic spaces

We work in the setting of hyperbolic spaces as introduced by Kohlenbach [88]. In order to distin-
guish them from Gromov hyperbolic spaces [11] or from other notions of hyperbolic space that can
be found in the literature (see for example [72, 52, 134]), we shall call them W-hyperbolic spaces.

A W -hyperbolic space (X, d,W ) is a metric space (X, d) together with a convexity mapping
W : X ×X × [0, 1]→ X satisfying

(W1) d(z,W (x, y, λ)) ≤ (1− λ)d(z, x) + λd(z, y),
(W2) d(W (x, y, λ),W (x, y, λ̃)) = |λ− λ̃| · d(x, y),
(W3) W (x, y, λ) = W (y, x, 1− λ),
(W4) d(W (x, z, λ),W (y, w, λ)) ≤ (1− λ)d(x, y) + λd(z, w).

The convexity mapping W was first considered by Takahashi in [144], where a triple (X, d,W )
satisfying (W1) is called a convex metric space. If (X, d,W ) satisfies (W1) − (W3), then we get
the notion of space of hyperbolic type in the sense of Goebel and Kirk [52]. (W4) was already
considered by Itoh [68] under the name ”condition III” and it is used by Reich and Shafrir [134]
and Kirk [72] to define their notions of hyperbolic space. We refer to [93, p.384-387] for a detailed
discussion.

Obviously, any normed space is a W -hyperbolic space: just define W (x, y, λ) = (1− λ)x+ λy.
Furthermore, any convex subset of a normed space is a W -hyperbolic space. We shall see in
Subsection 3.2 other examples of W -hyperbolic spaces.

Let (X, d,W ) be a W -hyperbolic space. If x, y ∈ X and λ ∈ [0, 1], then we use the notation
(1 − λ)x ⊕ λy for W (x, y, λ). The following holds even for the more general setting of convex
metric spaces [144]: for all x, y ∈ X and λ ∈ [0, 1],

d(x, (1− λ)x⊕ λy) = λd(x, y) and d(y, (1− λ)x⊕ λy) = (1− λ)d(x, y). (17)

As an immediate consequence, 1x⊕ 0y = x, 0x⊕ 1y = y and (1− λ)x⊕ λx = λx⊕ (1− λ)x = x.
Following [144], we call a W -hyperbolic space strictly convex if for any x 6= y ∈ X and any

λ ∈ (0, 1) there exists a unique element z ∈ X (namely z = (1− λ)x⊕ λy) such that

d(x, z) = λd(x, y) and d(y, z) = (1− λ)d(x, y).

The following definitions can be given in an arbitrary metric space (X, d). A geodesic path,
geodesic for short, in X is a map γ : [a, b]→ X which is distance-preserving, that is

d(γ(s), γ(t)) = |s− t| for all s, t ∈ [a, b]. (18)

A geodesic ray in X is a distance-preserving map γ : [0,∞) → X and a geodesic line in X is a
distance-preserving map γ : R → X. A geodesic segment in X is the image of a geodesic in X,
while a straight line in X is the image of a geodesic line in X. If γ : [a, b] → R is a geodesic in
X, γ(a) = x and γ(b) = y, we say that the geodesic γ joins x and y or that the geodesic segment
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γ([a, b]) joins x and y; x and y are also called the endpoints of γ. A metric space (X, d) is said to
be a (uniquely) geodesic space if every two points are joined by a (unique) geodesic segment.

In the following, (X, d,W ) is a W -hyperbolic space. For all x, y ∈ X, let us denote b

[x, y] := {(1− λ)x⊕ λy | λ ∈ [0, 1]}.

Thus, [x, x] = {x} and for x 6= y, the map

γxy : [0, d(x, y)]→ R, γ(α) =
(

1− α

d(x, y)

)
x⊕ α

d(x, y)
y (19)

is a geodesic satisfying γxy
(
[0, d(x, y)]

)
= [x, y], so [x, y] is a geodesic segment that joins x and y.

Hence, any W -hyperbolic space is a geodesic space.
A nonempty subset C ⊆ X is convex if [x, y] ⊆ C for all x, y ∈ C. A nice feature of our setting

is that any convex subset is itself a W -hyperbolic space with the restriction of d and W to C.
It is easy to see that open and closed balls are convex and that the intersection of any family of
convex sets is again convex. Moreover, using (W4), we get that the closure of a convex subset of
a W -hyperbolic space is again convex.

If C is a convex subset of X, then a function f : C → R is said to be convex if

f ((1− λ)x⊕ λy) ≤ (1− λ)f(x) + λf(y) (20)

for all x, y ∈ C, λ ∈ [0, 1]. f is said to be strictly convex if strict inequality holds in (20) for x 6= y
and λ ∈ (0, 1).

3.1 UCW -hyperbolic spaces

One of the most important classes of Banach spaces are the uniformly convex ones, introduced
by Clarkson in the 30’s [30]. Following Goebel and Reich [55, p. 105], we can define uniform
convexity for W -hyperbolic spaces too.

A W -hyperbolic space (X, d,W ) is uniformly convex [109] if for any r > 0 and any ε ∈ (0, 2]
there exists δ ∈ (0, 1] such that for all a, x, y ∈ X,

d(x, a) ≤ r
d(y, a) ≤ r
d(x, y) ≥ εr

 ⇒ d

(
1
2
x⊕ 1

2
y, a

)
≤ (1− δ)r. (21)

A mapping η : (0,∞)× (0, 2]→ (0, 1] providing such a δ := η(r, ε) for given r > 0 and ε ∈ (0, 2] is
called a modulus of uniform convexity. We call η monotone if it decreases with r (for a fixed ε).

Proposition 3.1. [109]
Any uniformly convex W -hyperbolic space is strictly convex.

Lemma 3.2. [109, 97]
Let (X, d,W ) be a uniformly convex W -hyperbolic space and η be a modulus of uniform convexity.
Assume that r > 0, ε ∈ (0, 2], a, x, y ∈ X are such that

d(x, a) ≤ r, d(y, a) ≤ r and d(x, y) ≥ εr.

Then for any λ ∈ [0, 1],

(i) d((1− λ)x⊕ λy, a) ≤
(
1− 2λ(1− λ)η(r, ε)

)
r;

(ii) for any ψ ∈ (0, 2] such that ψ ≤ ε,

d((1− λ)x⊕ λy, a) ≤
(
1− 2λ(1− λ)η(r, ψ)

)
r ;
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(iii) for any s ≥ r,
d((1− λ)x⊕ λy, a) ≤

(
1− 2λ(1− λ)η

(
s,
εr

s

))
s ;

(iv) if η is monotone, then for any s ≥ r,

d((1− λ)x⊕ λy, a) ≤ (1− 2λ(1− λ)η (s, ε)) r .

We shall refer to uniformly convex W -hyperbolic spaces with a monotone modulus of uniform
convexity as UCW -hyperbolic spaces. We shall see in Subsubsection 3.2.3 that CAT (0) spaces are
UCW -hyperbolic spaces with modulus of uniform convexity η(r, ε) = ε2/8 quadratic in ε. Thus,
UCW -hyperbolic spaces are a natural generalization of both uniformly convex normed spaces and
CAT (0) spaces.

Moreover, as we shall see in the sequel, complete UCW -hyperbolic spaces have very nice
properties. For the rest of this section, (X, d,W ) is a complete UCW -hyperbolic space.

Proposition 3.3. [97]
The intersection of any decreasing sequence of nonempty bounded closed convex subsets of X is
nonempty.

The next result is inspired by [55, Proposition 2.2].

Proposition 3.4. [111]
Let C be a closed convex subset of X, f : C → [0,∞) be convex and lower semicontinuous. Assume
moreover that for all sequences (xn) in C,

lim
n→∞

d(xn, a) =∞ for some a ∈ X implies lim
n→∞

f(xn) =∞.

Then f attains its minimum on C. If, in addition, for all x 6= y,

f

(
1
2
x⊕ 1

2
y

)
< max{f(x), f(y)}

then f attains its minimum at exactly one point.

Let us recall that a subset C of a metric space (X, d) is called a Chebyshev set if to each point
x ∈ X there corresponds a unique point z ∈ C such that d(x, z) = d(x,C)(= inf{d(x, y) | y ∈ C}).
If C is a Chebyshev set, nearest point projection P : X → C can be defined by assigning z to x.

Proposition 3.5. [111]
Every closed convex subset C of X is a Chebyshev set.

3.2 Some related structures

3.2.1 Spaces of hyperbolic type

Spaces of hyperbolic type were introduced by Goebel and Kirk [52] (see also [72]). Let (X, d) be
a metric space and S be a family of geodesic segments in X. We say that the structure (X, d, S)
is a space of hyperbolic type if the following conditions are satisfied:

(i) for each two points x, y ∈ X there exists a unique geodesic segment from S that joins them,
denoted [x, y];

(ii) if p, x, y ∈M and if m ∈ [x, y] satisfies d(x,m) = λd(x, y) for some λ ∈ [0, 1], then

d(p,m) ≤ (1− λ)d(p, x) + λd(p, y).

The following result shows that spaces of hyperbolic type are exactly the metric spaces with a
convexity mapping W satisfying (W1), (W2), (W3).
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Proposition 3.6. Let (X, d) be a metric space. The following are equivalent.

(i) There exists a family S of metric segments such that (X, d, S) is a space of hyperbolic type.

(ii) There exists a a convexity mapping W such that (X, d,W ) satisfies (W1), (W2), (W3).

Proof. (i) ⇒ (ii) It is easy to see that for all x, y ∈ X and any λ ∈ [0, 1] there exists a unique
m ∈ [x, y] satisfying d(x,m) = λd(x, y) and d(y,m) = (1−λ)d(x, y). Define W : X×X×[0, 1]→ X
by W (x, y, λ) = this unique m. Then (X, d,W ) satisfies (W1), (W2), (W3).
(ii) ⇒ (i) For all x, y ∈ X,x 6= y, consider the geodesic γxy joining x and y, defined by (3). For
x = y, let γxx : {0} → X, γ(0) = x. Taking S := {γxy | x, y ∈ X}, we obtain that (X, d, S) is a
space of hyperbolic type.

As a consequence, any W -hyperbolic space is a space of hyperbolic type. In fact, W -hyperbolic
spaces are exactly the spaces of hyperbolic type satisfying (W4).

3.2.2 Hyperbolic spaces in the sense of Reich and Shafrir

The class of hyperbolic spaces presented in this section was defined by Reich and Shafrir [134] as
an appropriate context for the study of operator theory in general, and of iterative processes for
nonexpansive mappings in particular.

Let (X, d) be a metric space and M be a nonempty family of straight lines in X with the
following property: for each two distinct points x, y ∈ X there is a unique straight line from M
which passes through x, y.

We shall denote by (X, d,M) a metric space (X, d) together with a family M as above. Since
M 6= ∅, there is at least one geodesic line γ : R→ X with γ(R) ∈M , so card(X) ≥ card(R) = ℵ1,
as γ is injective. Furthermore, the metric space (X, d) must be unbounded.

The following lemma collects some useful properties. We refer to [95] for the proofs.

Lemma 3.7.

(i) For any x ∈ X there is at least one straight line from M that passes through x.

(ii) For any distinct points x and y in X, the unique straight line that passes through x and y
determines in a unique way a geodesic segment joining x and y, denoted by [x, y].

(iii) For all x, y ∈ X and all λ ∈ [0, 1] there is a unique point z ∈ [x, y] satisfying

d(x, z) = λd(x, y) and d(y, z) = (1− λ)d(x, y). (22)

The unique point z satisfying (22) will be denoted by (1− λ)x⊕ λy.

We say that the structure (X, d,M) is a hyperbolic space if the following inequality is satisfied

d

(
1
2
x⊕ 1

2
y,

1
2
x⊕ 1

2
z

)
≤ 1

2
d(y, z). (23)

Proposition 3.8. [95]
Let (X, d,M) be a hyperbolic space. Then

d((1− λ)x⊕ λz, (1− λ)y ⊕ λw) ≤ (1− λ)d(x, y) + λd(z, w) (24)

for all x, y, z, w ∈ X and any λ ∈ [0, 1].

If we define
W : X ×X × [0, 1]→ X, W (x, y, λ) = (1− λ)x⊕ λy,

it is easy to see that (X, d,W ) is a W -hyperbolic space. Thus, any hyperbolic space in the sense
of Reich and Shafrir is a W -hyperbolic space.
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3.2.3 CAT (0) spaces

In this section we give a very brief exposition of CAT (0) spaces. We refer to the monograph by
Bridson and Haefliger [11] for an extensive study of this important class of spaces.

Let (X, d) be a geodesic space. A geodesic triangle in X consists of three points p, q, r ∈ X, its
vertices, and a choice of three geodesic segments [p, q], [q, r], [r, s] joining them, its sides. Such a
geodesic triangle will be denoted ∆([p, q], [q, r], [r, s]). If a point lies in the union of [p, q], [q, r], [r, s],
then we write x ∈ ∆.

A triangle ∆ = ∆(p, q, r) in R2 is called a comparison triangle for the geodesic triangle
∆([p, q], [q, r], [r, s]) if dR2(p, q) = d(p, q), dR2(q, r) = d(q, r) and dR2(r, p) = d(p, r). Such a tri-
angle ∆ always exists and it is unique up to isometry [11, Lemma I.2.14]. We write ∆ = ∆(p, q, r)
or ∆(p, q, r) according to whether a specific choice of p, q, r is required. A point x ∈ [p, q] is called
a comparison point for x ∈ [p, q] if d(p, x) = dR2(p, x). Comparison points on [q, r] and [r, p] are
defined similarly.

Let ∆ be a geodesic triangle in X and ∆ be a comparison triangle for ∆ in R2. Then ∆ is said
to satisfy the CAT (0) inequality if for all x, y ∈ ∆ and for all comparison points x, y ∈ ∆,

d(x, y) ≤ dR2(x, y). (25)

A geodesic space X is said to be a CAT (0) space if all geodesic triangles satisfy the CAT (0)
inequality. Complete CAT (0) spaces are often called Hadamard spaces. It can be shown that
CAT (0) spaces are uniquely geodesic and that a normed space is a CAT (0)-space if and only if it
is a pre-Hilbert space.

In the sequel, we give an equivalent characterization of CAT (0) spaces, using the so-called: CN

inequality of Bruhat-Tits [23]: for all x, y, z ∈ X and all m ∈ X with d(x,m) = d(y,m) =
1
2
d(x, y),

d(z,m)2 ≤ 1
2
d(z, x)2 +

1
2
d(z, y)2 − 1

4
d(x, y)2. (26)

In the setting of W -hyperbolic spaces, we consider the following reformulation of the CN
inequality, which is nicer from the point of view of the logical metatheorems to be presented in
Section 4: for all x, y, z ∈ X,

CN− : d

(
z,

1
2
x⊕ 1

2
y

)2

≤ 1
2
d(z, x)2 +

1
2
d(z, y)2 − 1

4
d(x, y)2. (27)

We refer to [11, p. 163] and to [93, p. 386-388] for the proof of the following result.

Proposition 3.9. Let (X, d) be a metric space. The following are equivalent.

(i) X is a CAT(0)-space.

(ii) X is a geodesic space that satisfies the CN inequality (26);

(iii) There exists a a convexity mapping W such that (X, d,W ) is a W -hyperbolic space satisfying
the CN inequality (26).

(iv) There exists a a convexity mapping W such that (X, d,W ) is a W -hyperbolic space satisfying
the CN− inequality (27).

Thus, CAT (0) spaces are exactly the W -hyperbolic spaces satisfying the CN inequality. Fur-
thermore

Proposition 3.10. [109]
CAT (0) spaces are UCW -hyperbolic spaces with a monotone modulus of uniform convexity

η(ε, r) =
ε2

8
,

that does not depend on r.
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3.2.4 The Hilbert ball

Let H be a complex Hilbert space, and let B be the open unit ball in H. We consider the Poincaré
metric on B, defined by

ρ(x, y) := argtanh(1− σ(x, y))1/2, where σ(x, y) =
(1− ‖x‖2)(1− ‖y‖2)
|1− 〈x, y〉|2

. (28)

The metric space (B, ρ) is called the Hilbert ball.
The Hilbert ball is a uniquely geodesic space (see [107, Theorem 4.1] or [56]). Moreover, by

the inequality (4.2) in [134], the CN inequality is satisfied. Applying Proposition 3.9.(ii), it follows
that the Hilbert ball is a CAT (0) space.

We refer to Goebel and Reich’s book [55] for an extensive study of the Hilbert ball.

3.2.5 Gromov hyperbolic spaces

Gromov’s theory of hyperbolic spaces is set out in [62]. The study of Gromov hyperbolic spaces
has been largely motivated and dominated by questions about (Gromov) hyperbolic groups, one
of the main object of study in geometric group theory. In the sequel, we review some definitions
and elementary facts concerning Gromov hyperbolic spaces. For a more detailed account of this
material, the reader is referred to [62, 49, 11].

Let (X, d) be a metric space. Given three points x, y, w, the Gromov product of x and y with
respect to the base point w is defined to be:

(x · y)w =
1
2

(d(x,w) + d(y, w)− d(x, y)). (29)

It measures the failure of the triangle inequality to be an equality and it is always nonnegative.

Definition 3.11. Let δ ≥ 0. X is called δ − hyperbolic if for all x, y, z, w ∈ X,

(x · y)w ≥ min{(x · z)w, (y · z)w} − δ. (30)

We say that X is hyperbolic if it is (δ)-hyperbolic for some δ ≥ 0.

It turns out that the definition is independent of the choice of the base point w in the sense
that if there exists some w ∈ X such that the above inequality holds for all x, y, z ∈ X, then X is
2δ-hyperbolic.

By unraveling the definition of Gromov product, (30) can be rewritten as a 4-point condition:
for all x, y, z, w ∈ X,

d(x, y) + d(z, w) ≤ max{d(x, z) + d(y, w), d(x,w) + d(y, z)}+ 2δ. (31)

3.2.6 R-trees

The notion of R-tree was introduced by Tits [153], as a generalization of the notion of local Bruhat-
Tits building for rank-one groups, which itself generalizes the notion of simplicial tree. A more
general concept, that of a Λ-tree, where Λ is a totally ordered abelian group, made its appearance
as an essential tool in the study of groups acting on hyperbolic manifolds in the work of Morgan
and Shalen [121]. For detailed informations about R(Λ)-trees, we refer to [7, 26].

Definition 3.12. [153] An R-tree is a geodesic space containing no homeomorphic image of a
circle.

We remark that in the initial definition, Tits only considered R-trees that are complete as
metric spaces, but the assumption of completeness is usually irrelevant. The following proposition
gives some equivalent characterizations of R-trees, which can be found in the literature.
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Proposition 3.13. (see, for example, [1, 7, 49])
Let (X, d) be a metric space. The following are equivalent:

(i) X is an R-tree,

(ii) X is uniquely geodesic and for all x, y, z ∈ X,

[y, x] ∩ [x, z] = {x} ⇒ [y, x] ∪ [x, z] = [y, z].

(i.e., if two geodesic segments intersect in a single point, then their union is a geodesic
segment.)

(iii) X is a geodesic space that is (Gromov) 0-hyperbolic, i.e. satisfies the inequality (31) with
δ = 0.

The fact that R-trees are exactly the geodesic 0-hyperbolic spaces follows from a very important
result of Alperin and Bass [1, Theorem 3.17] (see also [49, Chapter 2, Exercise 8] and is the basic
ingredient for proving the following characterization of R-trees using our notion of W -hyperbolic
space.

Proposition 3.14. Let (X, d) be a metric space. The following are equivalent:

(i) X is an R-tree;

(ii) there exists a convexity mapping W such that (X, d,W ) is a W -hyperbolic space satisfying
for all x, y, z, w ∈ X,

d(x, y) + d(z, w) ≤ max{d(x, z) + d(y, w), d(x,w) + d(y, z)}.

3.3 Asymptotic centers and fixed point theory of nonexpansive map-
pings

The asymptotic center technique, introduced by Edelstein [36, 37], is one of the most useful tools
in metric fixed point theory of nonexpansive mappings in uniformly convex Banach spaces, due
to the fact that bounded sequences have unique asymptotic centers with respect to closed convex
subsets.

Let us recall basic facts about asymptotic centers. We refer to [36, 37, 55, 53] for details.
Let (X, d) be a metric space, (xn) be a bounded sequence in X and C ⊆ X be a nonempty

subset of X. We define the following functionals:

rm(·, (xn)) : X → [0,∞), rm(y, (xn)) = sup{d(y, xn) | n ≥ m}
for m ∈ N,

r(·, (xn)) : X → [0,∞), r(y, (xn)) = lim sup
n

d(y, xn) = inf
m
rm(y, (xn))

= lim
m→∞

rm(y, (xn)).

The following lemma collects some basic properties of the above functionals.

Lemma 3.15. Let y ∈ X.

(i) rm(·, (xn)) is nonexpansive for all m ∈ N;

(ii) r(·, (xn)) is continuous and r(y, (xn))→∞ whenever d(y, a)→∞ for some a ∈ X;

(iii) r(y, (xn)) = 0 if and only if lim
n→∞

xn = y;

(iv) if (X, d,W ) is a convex metric space and C is convex, then r(·, (xn)) is a convex function.
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The asymptotic radius of (xn) with respect to C is defined by

r(C, (xn)) = inf{r(y, (xn)) | y ∈ C}.

The asymptotic radius of (xn), denoted by r((xn)), is the asymptotic radius of (xn) with respect
to X, that is r((xn)) = r(X, (xn)).

A point c ∈ C is said to be an asymptotic center of (xn) with respect to C if

r(c, (xn)) = r(C, (xn)) = min{r(y, (xn)) | y ∈ C}.

We denote with A(C, (xn)) the set of asymptotic centers of (xn) with respect to C. When C = X,
we call c an asymptotic center of (xn) and we use the notation A((xn)) for A(X, (xn)).

The following lemma, inspired by [37, Theorem 1], turns out to be very useful in the following.

Lemma 3.16. [111]
Let (xn) be a bounded sequence in X with A(C, (xn)) = {c} and (αn), (βn) be real sequences such
that αn ≥ 0 for all n ∈ N, lim supn αn ≤ 1 and lim supn βn ≤ 0.
Assume that y ∈ C is such that there exist p,N ∈ N satisfying

∀n ≥ N
(
d(y, xn+p) ≤ αnd(c, xn) + βn

)
.

Then y = c.

In general, the set A(C, (xn)) of asymptotic centers of a bounded sequence (xn) with respect
to C ⊆ X may be empty or, on the contrary, contain infinitely many points.

The following result shows that in the case of complete UCW -hyperbolic spaces, the situation
is as nice as for uniformly convex Banach spaces (see, for example, [55, Theorem 4.1]).

Proposition 3.17. [111]
Let (X, d,W ) be a complete UCW -hyperbolic space. Every bounded sequence (xn) in X has a
unique asymptotic center with respect to any closed convex subset C of X.

As an application of Proposition 3.17 and Lemma 3.16, we can prove the following characteri-
zation of the fact that a nonexpansive mapping T : C → C has fixed points.

Theorem 3.18. [111]
Let C be a convex closed subset of a complete UCW -hyperbolic space (X, d,W ) and T : C → C be
nonexpansive. The following are equivalent.

(i) T has fixed points;

(ii) T has a bounded approximate fixed point sequence;

(iii) for all x ∈ C there exists b > 0 such that T has approximate fixed points in a b-neighborhood
of x;

(iv) there exist x ∈ C and b > 0 such that T has approximate fixed points in a b-neighborhood of
x;

(v) the sequence (Tnx) of Picard iterates is bounded for some x ∈ C;

(vi) the sequence (Tnx) of Picard iterates is bounded for all x ∈ C.

As an immediate consequence we obtain the generalization to complete UCW -hyperbolic spaces
of the Browder-Göhde-Kirk Theorem.

Corollary 3.19. Let C be a bounded convex closed subset of a complete UCW -hyperbolic space
(X, d,W ) and T : C → C be nonexpansive. Then T has fixed points.
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4 Logical metatheorems

In this section we give an informal presentation of the general logical metatheorems proved by
Kohlenbach [88] and Gerhardy-Kohlenbach [48]. We refer to Kohlenbach’s book [93] for a com-
prehensive treatment.

The system Aω of so-called weakly extensional classical analysis goes back to Spector [142]. It
is formulated in the language of functionals of finite types and consists of a finite type extension
PAω of first order Peano arithmetic PA and the axiom schema of dependent choice in all types,
which implies countable choice and hence comprehension over natural numbers. Full second order
arithmetic in the sense of reverse mathematics [140] is contained in Aω if we identify subsets of N
with their characteristic functions.

Let us recall the so-called Axiom of Countable Choice: For each set B and each binary relation
P ⊆ N×B between natural numbers and members of B,

∀n ∈ N∃y ∈ B P (n, y) ⇒ ∃f : N→ B ∀n ∈ NP (n, f(n)).

In contrast to the full Axiom of Choice which demands the existence of choice functions f : A→ B
for arbitrary sets A,B, the Axiom of Countable Choice justifies only a sequence of independent
choices from an arbitrary set B which successively satisfy the conditions

P (0, f(0)), P (1, f(1)), P (2, f(2)), . . .

A stronger axiom is the Axiom of Dependent Choice (DC): For each set A and each relation
P ⊆ A×A,

a ∈ A and ∀x ∈ A∃y ∈ AP (x, y) ⇒ ∃f : N→ A
[
f(0) = a and ∀n ∈ NP (f(n), f(n+ 1))

]
.

The Axiom of Dependent Choice also justifies only a sequence of choices, where, however, each of
them may depend on the previous one, since they must now satisfy the conditions

P (f(0), f(1)), P (f(1), f(2)), P (f(2), f(3)), . . .

It is easy to see that the Axiom of Choice implies the Axiom of Dependent Choice, which implies
further the Axiom of Countable Choice.

The axiom scheme of Comprehension over natural numbers says that

∃f : N→ N∀n ∈ N
(
f(n) = 0⇔ A(n)

)
,

where A(n) is an arbitrary formula in our language, not containing f free but otherwise with
arbitrary parameters. We refer to the very nice monograph [122] for details on set theory.

The set T of all finite types is defined inductively by the clauses:

(i) 0,∈ T;

(ii) if ρ, τ ∈ T then (ρ→ τ) ∈ T.

We usually omit the outermost parentheses for types. The intended interpretation of the base
type 0 is the set of natural numbers N = {0, 1, 2, . . .}. Objects of type ρ→ τ are functions which
map objects of type ρ to objects of type τ . For example, 0→ 0 is the type of functions f : N→ N
and (0→ 0)→ 0 is the type of operations F mapping such functions f to natural numbers.

Any type ρ 6= 0 can be uniquely written in the normal form ρ = ρ1 → (ρ2 → . . .→ (ρn → 0) . . .)
(for suitable n ≥ 1 and types ρ1, . . . , ρn), which is usually abbreviated by ρ = ρ1 → ρ2 → . . . →
ρn → 0 if it is clear to which types ρ1, . . . , ρn we refer and there is no danger of confusion.

We use the notation x for tuples of variables x = x1, . . . , xn and ρ for tuples of types ρ =
ρ1, . . . , ρn. When we write xρ we mean that each xi has type ρi. The notations xρ or x ∈ ρ mean
that each xi is of type ρ.
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The set P ⊂ T of pure types is defined inductively by: (i) 0 ∈ P and (ii) if ρ ∈ P, then
ρ → 0 ∈ P. Pure types are often denoted by natural numbers: 0 → 0 = 1, (0 → 0) → 0 = 2, in
general n→ 0 = n+ 1.

The degree (or type level) deg(ρ) of a type ρ is defined as

deg(0) := 0, deg(ρ→ τ) := max(deg(τ), deg(ρ) + 1).

Note that for pure types ρ, deg(ρ) is just the number which denotes ρ. Objects of type ρ with
deg(ρ) > 1 are usually called functionals.

We shall denote formulas with A,B,C, . . . and quantifier-free formulas with A0, B0, C0, . . .. A
formula A is said to be universal if it has the form A ≡ ∀xA0(x, a), where x, a are tuples of
variables. Similarly, A is an existential formula if A ≡ ∃xA0(x, a).

Furthermore, A is called a Π0
n-formula if it has n-alternating blocks of equal quantifiers starting

with a block of universal quantifiers, that is

∀x1 ∃x2 . . . ∀/∃xnA0(x1, . . . , xn, a).

If the formula starts with a block of existential quantifiers, that is

∃x1 ∀x2 . . . ∀/∃xnA0(x1, . . . , xna),

it is called a Σ0
n-formula.

We only include equality =0 between objects of type 0 as a primitive predicate. Equality
between objects of higher types is defined extensionally: if ρ = ρ1 → . . . → ρn → 0 and s, t are
terms of type ρ, then

s =ρ t := ∀yρ11 , . . . , yρnn
(
sy1 . . . yn =0 ty1 . . . yn

)
,

where y1, . . . , yn are variables not occurring in s, t.
Instead of the full axiom of extensionality in all types, the system Aω only has a quantifier-free

rule of extensionality:

A0 → s =ρ t

A0 → r[s/x] =τ r[t/x]
,

where A0 is a quantifier-free formula, s, t are terms of type ρ, r is a term of type τ , and r[s/x]
(resp. r[t/x]) is the result of replacing every occurrence of x in r by s (resp. t). We refer to [88]
for an extensive discussion of extensionality issues.

In the sequel, we briefly recall the representation of real numbers in Aω. We refer to [93,
Chapter 4] for details.

We will most times use N instead of 0 and NN instead of 1, say ”natural numbers” instead of
”objects of type 0”, and write n ∈ N instead of n0, respectively f : N→ N instead of f1.

Rational numbers are represented as codes j(n,m) of pairs of natural numbers: j(n,m) repre-

sents the rational number
n
2

m+ 1
if n is even, and the negative rational number −

n+1
2

m+ 1
otherwise.

Here we use the surjective Cantor pairing j, defined by j(n,m) =
1
2

(n+m)(n+m+ 1) +m.

As a consequence, each natural number codes a uniquely determined rational number. An
equality =Q on the representatives of the rational numbers (i.e. on N) together with operations
+Q,−Q, ·Q and predicates <Q,≤Q are defined primitive recursively in a natural way.

In order to express the statement that n represents the rational r, we write n =Q 〈r〉 or
simply n = 〈r〉. Since a rational number r possesses infinitely many representatives, 〈·〉 is not a
function. In fact, rational numbers are equivalence classes on N with respect to =Q, but one can
avoid formally introducing the set Q of all these equivalence classes. An alternative is to select a
canonical representative by defining

c : N→ N, c(n) :=0 min m ≤0 n[n =Q m]. (32)
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Then c(n) is the code of the irreducible fraction representing the rational number encoded by n.
It is clear that c(n) =Q n and n =Q m→ c(n) =Q c(m).

N can be naturally embedded into our representation of Q via n 7→ 〈n〉 := j(2n, 0), 0Q :=
〈0〉, 1Q := 〈1〉. Then (N,+Q, ·Q, 0Q, 1Q, <Q) is an ordered field, which represents (Q,+, ·, 0, 1, <)
in Aω.

Each function f : N→ N can be conceived of as an infinite sequence of codes of rationals and
therefore as a representative of a sequence of rationals. Real numbers are represented by functions
f : N→ N such that

∀n ∈ N
(
|f(n+ 1)−Q f(n)|Q <Q 2−n

)
(33)

For better readability, we usually write 2−n instead of its (canonical) code 〈2−n〉 := j (2, 2n − 1).
(33) implies that for all m,n, p ∈ N with m ≥ n,

|f(m+ p)−Q f(m)|Q ≤Q

m+p−1∑
i=m

|f(i+ 1)−Q f(i)|Q ≤Q

∞∑
i=n

|f(i+ 1)−Q f(i)|Q < 2−n,

hence each f satisfying (33) in fact represents a Cauchy sequence of rationals with Cauchy modulus
2−n. In order to guarantee that each function f : N→ N codes a real number, we use the following
construction:

f̂(n) :=

{
f(n) if ∀k < n

(
|f(k + 1)−Q f(k)|Q <Q 2−k−1

)
,

f(k) for the least k < n with |f(k + 1)−Q f(k)|Q ≥Q 2−k−1 otherwise.
(34)

Then f̂ always satisfies (33) and, moreover, if (33) is already valid for f , then ∀n(fn =0 f̂n).
Thus each function f : N→ N codes a uniquely determined real number, namely the real number
which is given by the Cauchy sequence coded by f̂ . The construction f 7→ f̂ allows us to reduce
quantification over R to ∀f : N → N resp. ∃f : N → N without adding further quantifiers. This
also holds for the operations on R defined below.

On the representatives of real numbers, i.e. on the functions f1, f2 : N → N, one defines the
relations =R, <R and ≤R:

f1 =R f2 :≡ ∀n
(
|f̂1(n+ 1)−Q f̂2(n+ 1)|Q <Q 2−n

)
,

f1 <R f2 :≡ ∃n
(
f̂2(n+ 1)−Q f̂1(n+ 1) ≥Q 2−n

)
,

f1 ≤R f2 :≡ ¬(f2 <R f1).

Hence, the relations =R,≤R are given by Π0
1 predicates, while <R is given by a Σ0

1 predicate.
The operations +R,−R, ·R, etc. on representatives of real numbers can be defined by primitive

recursive functionals. If n = 〈r〉 codes the rational number r, then λk.n represents r as a real
number. Thus, 0R := λk.0Q, 1R := λk.1Q and (2−n)R := λk.j(2.2n−1); we shall write simply 2−n

for (2−n)R. R denotes the set of all equivalence classes on NN with respect to =R. As in the case
of Q, we use R only informally and deal exclusively with the representatives and the operations
defined on them. One can verify that

(
NN,+R, ·R, 0R, 1R, <R

)
is an Archimedean ordered field

which represents (R,+, ·, 0, 1, <) in Aω.
In the sequel, we need a semantic operator which for any real number x ∈ [0,∞) selects out

of all the representatives f : N → N of x a unique representative (x)◦ satisfying some ”nice”
properties. For any x ∈ [0,∞), (x)◦ : N→ N is defined by

(x)0(n) := j(2k0, 2n+1 − 1), where k0 := max k
[

k

2n+1
≤ x

]
. (35)

Lemma 4.1. [93, Lemma 17.8] Let x ∈ [0,∞). Then

(i) (x)◦ is a representative of x, so (̂x)◦ =N→N (x)◦;

(ii) if x, y ∈ [0,∞) and x ≤ y, then (x)◦ ≤R (y)◦ and (x)◦ ≤N→N (y)◦, i.e. ∀n ∈ N
(
(x)◦(n) ≤N

(y)◦(n)
)
;
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(iii) (x)◦ is monotone, that is ∀n ∈ N
(
(x)◦(n) ≤N (x)◦(n+ 1)

)
.

Since the interval [0, 1] will play a very important role in the theory of W -hyperbolic spaces,
we use for it a special representation by number theoretic functions N→ N. For every λ : N→ N,
let us define

λ̃ := λn.j(2k0, 2n+2 − 1), where k0 = max k ≤ 2n+2

[
k

2n+2
≤Q λ̂(n+ 2)

]
(36)

(k0 := 0 if no such k exists; recall that j(2k0, 2n+2 − 1) encodes the rational number k0/2n+2).
It is easy to verify the following properties.

Lemma 4.2. [93, Lemma 4.25] Provably in Aω, for all λ, θ : N→ N:

(i) 0R ≤R λ ≤R 1R → λ̃ =R λ, λ >R 1R → λ̃ =R 1R and λ <R 0R → λ̃ =R 0R,

(ii) 0R ≤R λ̃ ≤R 1R,

(iii) λ =R θ → λ̂ =R θ̂,

(iv) λ̃ ≤1 M := λn.j(2n+3, 2n+2 − 1).

4.1 Logical metatheorems for metric and W -hyperbolic spaces

In order to be able to talk about arbitrary metric spaces, we axiomatically add general metric
spaces (X, d) to our system Aω, resulting in a theory Aω[X, d]−b which is based on two ground
types N, X rather than only N. Hence, the theory Aω[X, d]−b for abstract metric spaces is an
extension of Aω defined as follows:

(i) extend T to the set TX of all finite types over the ground types N and X, that is:

N, X ∈ TX and ρ, τ ∈ TX ⇒ ρ→ τ ∈ TX ;

(ii) extend all the axioms and rules of Aω to the new set of types TX ;

(iii) add a constant 0X of type X;

(iv) add a new constant dX of type X → X → NN together with the axioms

(M1) ∀xX
(
dX(x, x) =R 0R

)
,

(M2) ∀xX , yX
(
dX(x, y) =R dX(y, x)

)
,

(M3) ∀xX , yX , zX
(
dX(x, z) ≤R dX(x, y) +R dX(y, z)

)
.

We use the subscript −b here and for the theories defined in the sequel in order to be consistent
with the notations from [93].

Equality =X between objects of type X is defined by x =X y :≡ dX(x, y) =R 0R and equality
for complex types is defined as before as extensional equality using =N and =X for the base
cases. The new axioms (M1)-(M3) of Aω[X, d]−b express that dX represents a pseudo-metric
d on the domain the variables of type X are ranging over. Thus, dX represents a metric on
the set of equivalence classes generated by =X . We do not form these classes explicitly, but
talk instead about representatives xX , yX . As a consequence, we have to keep in mind that a
functional fX→X represents a function X → X only if it respects this equivalence relation, i.e.
∀xX , yX

(
x =X y → f(x) =X f(y)

)
. However, the mathematical properties of the functions

considered in applications of proof mining usually imply their full extensionality.
The theory Aω[X, d,W ]−b for W -hyperbolic spaces results from Aω[X, d]−b by adding a new

constant WX of type X → X → NN → X together with the axioms:

∀xX , yX , zX ∀λ : N→ N
(
dX(z,WX(x, y, λ)) ≤R (1R −R λ̃) ·R dX(z, x) +R λ̃ ·R dX(z, y)

)
,
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∀xX , yX ∀λ1 : N→ N, λ2 : N→ N
(
dX(WX(x, y, λ),WX(x, y, λ̃)) =R |λ̃1 −R λ̃2|R ·R dX(x, y)

)
,

∀xX , yX ∀λ : N→ N
(
WX(x, y, λ) =X WX(y, x, 1R −R λ)

)
,

∀xX,yX,zX ,wW∀λ
(
dX(WX(x, z, λ),WX(y, w, λ)) ≤R (1R −R λ̃) ·R dX(x, y) +R λ̃ ·R dX(z, w)

)
.

In the above axioms, λ̃ is defined by (36).

Definition 4.3. Let X be a nonempty set. The full-theoretic type structure Sω,X := 〈Sρ〉ρ∈TX
over N and X is defined as follows:

SN := N, SX := X and Sρ→τ := SSρτ ,

where SSρτ is the set of all set-theoretic functions Sρ → Sτ .

Let (X, d) be a metric space. Sω,X becomes a model of Aω[X, d]−b by letting the variables of
type ρ range over Sρ, giving the natural interpretations to the constants of Aω, interpreting 0X
by an arbitrary element in X and dX(x, y) (for x, y ∈ X) by (d(x, y))◦, where (·)◦ refers to (35).

If, moreover, (X, d,W ) is a W -hyperbolic space, then Sω,X becomes a model of Aω[X, d,W ]−b
if we interpret WX(x, y, λ) (for x, y ∈ X,λ : N → N) as W (x, y, rλ̃) where rλ̃ is the uniquely
determined real number in [0, 1] which is represented by λ̃.

Definition 4.4. We say that a sentence in the language L(Aω[X, d]−b) of Aω[X, d]−b holds in
a nonempty metric space (X, d) if it holds in the models of Aω[X, d]−b obtained from Sω,X as
specified above.

The notion that a sentence of L(Aω[X, d,W ]−b) holds in a nonempty W -hyperbolic space is
defined similarly.

From now on, in order to improve readability, we shall usually omit the subscripts N,R ,Q ,X
excepting the cases where such an omission could create confusions. We shall write, for example,
x ∈ X,T : X → X instead of xX , TX→X and sometimes x ∈ ρ instead of xρ.

The notion of majorizability was originally introduced by Howard [65], and subsequently mod-
ified by Bezem [8]. For any type ρ ∈ TX , we define the type ρ̂ ∈ T, which is the result of replacing
all occurrences of the type X in ρ by N. Based on Bezem’s notion of strong majorizability s-maj
[8], Gerhardy and Kohlenbach [48] defined a parametrized a-majorization relation &a

ρ between
objects of type ρ ∈ TX and their majorants of type ρ̂ ∈ T, where the parameter a of type X
serves as a reference point for comparing and majorizing elements of X:

(i) x∗ &a
N x :≡ x∗ ≥ x for x, x∗ ∈ N

(ii) x∗ &a
X x :≡ (x∗)R ≥R d(x, a) for x∗ ∈ N, x ∈ X,

(iii) x∗ &a
ρ→τ x :≡ ∀y∗, y(y∗ &a

ρ y → x∗y∗ &a
τ xy) ∧ ∀z∗, z(z∗ &a

ρ̂ z → x∗z∗ &a
τ̂ x
∗z).

Restricted to the types T the relation &a is identical with Bezems’s strong majorizability s-maj
and, hence, for ρ ∈ T we write s-majρ instead of &a

ρ, since in this case the parameter a is irrelevant.
If t∗ &a t for terms t∗, t, we say that t∗ a-majorizes t or that t∗ is an a-majorant of t. A

term t is said to be a-majorizable if it has an a-majorant and t is said to be majorizable if it is
a-majorizable for some a ∈ X. Since it can be shown that if a term t is a-majorizable for some
a ∈ X, then this is true for all a ∈ X [93, Lemma 17.78], it follows that t is majorizable if and
only if it is a-majorizable for each a ∈ X. Although the question whether or not a certain term
is a-majorizable is independent from the particular choice of a ∈ X, the complexity and possible
uniformities of the majorants may depend crucially on that choice. If t∗ a-majorizes t and does
not depend on a, then we say that t∗ uniformly a-majorizes t. We will in general look for uniform
majorants so as to produce uniform bounds.
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Lemma 4.5. Let T : X → X. The following are equivalent.

(i) T is majorizable;

(ii) for all x ∈ N there exists Ω : N→ N such that

∀n ∈ N, y ∈ X
(
d(x, y) < n→ d(x, Ty) ≤ Ω(n)

)
(37)

(iii) for all x ∈ N there exists Ω : N→ N such that

∀n ∈ N, y ∈ X
(
d(x, y) ≤ n→ d(x, Ty) ≤ Ω(n)

)
(38)

Proof. T is majorizable if and only if T is x-majorizable for each x ∈ X if and only if for each
x ∈ X there exists a function T ∗ : N→ N such that T ∗ is monotone and satisfies

∀n ∈ N ∀y ∈ X
(
d(x, y) ≤ n→ d(x, Ty) ≤ T ∗n

)
.

(i)⇒ (iii) is obvious: take Ω := T ∗. For the implication (iii)⇒ (i), given, for x ∈ X, Ω satisfying
(38), define T ∗n := max

k≤n
Ω(k).

(iii)⇒ (ii) is again obvious. For the converse implication, given Ω satisfying (37) define Ω̃(n) :=
Ω(n+ 1). Then Ω̃ satisfies (38)

In the sequel, given a majorizable function T : X → X, an Ω satisfying (38) will be called a
modulus of majorizability at x of T ; we say also that T is x-majorizable with modulus Ω. We gave
in the lemma above the equivalent condition (37) for logical reasons: since <R is a Σ0

1 predicate
and ≤R is a Π0

1 predicate, the formula in (37) is (equivalent to) a universal sentence.
The following lemma shows that natural classes of mappings in metric or W -hyperbolic spaces

are majorizable with a very ”nice” modulus; its proof is implicit in the proof of [93, Corollary
17.55].

Lemma 4.6. Let (X, d) be a metric space.

(i) If (X, d) is bounded with diameter dX , then any function T : N → N is majorizable with
modulus of majorizabiliy Ω(n) := ddXe for each x ∈ X.

(ii) If T : X → X is L-Lipschitz, then T is majorizable with modulus at x given by Ω(n) :=
n + L∗b, where b, L∗ ∈ N are such that d(x, Tx) ≤ b and L ≤ L∗. In particular, any
nonexpansive mapping is majorizable with modulus Ω(n) := n+ b.

(iii) If (X, d,W ) is a W -hyperbolic space, then and uniformly continuous mapping T : X → X is
majorizable with modulus Ω(n) := n · 2αT (0) + 1 + b at x, where d(x, Tx) ≤ b ∈ N and αT is
a modulus of uniform continuity of T , i.e. αT : N→ N satisfies

∀x, y ∈ X ∀k ∈ N
(
d(x, y) ≤ 2−αT (k) → d(Tx, Ty) ≤ 2−k

)
.

Before stating the main logical metatheorem, let us give a couple of definitions. Let ρ ∈ TX

be a type. We say that

(i) ρ has degree (0, X) if ρ = X or ρ = N→ . . .→ N→ X;

(ii) ρ is of degree (1, X) if ρ = X or has the form ρ = ρ1 → . . . → ρn → X, where n ≥ 1 and
each ρi has degree ≤ 1 or (0, X).

(iii) ρ has degree 1∗ if deg(ρ̂) ≤ 1.
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A formula A is called a ∀-formula (resp. ∃-formula) if it has the form

A ≡ ∀xσA0(x, a) (resp. A ≡ ∃xσA0(x, a)),

where A0 is a quantifier free formula and the types in σ are of degree 1∗ or (1, X).
We assume in the following that the constant 0X does not occur in the formulas we consider.

This is no restriction, since 0X is just an arbitrary constant which could have been replaced by
any new variable of type X that, by taking universal closure, would just add another input that
had to be a-majorized. Whenever we write A(x), we mean that A is a formula in our language
which has only the variables x free.

Very general metatheorems were proved first by Kohlenbach [88] for bounded metric (W -
hyperbolic) spaces, and then generalized to the unbounded case by Gerhardy and Kohlenbach
[48]. In the following we give a simplified version of these metatheorems, specially designed for
concrete applications in mathematics.

Theorem 4.7. (see [93, Corollary 17.54])
Let P be N or NN, K be an Aω-definable compact metric space, ρ be of degree 1∗, B∀(u, y, z, n) be
a ∀-formula and C∃(u, y, z,N) be a ∃-formula.

Assume that Aω[X, d]−b proves that

∀u ∈ P∀y ∈ K∀zρ
(
∀n ∈ NB∀ → ∃N ∈ NC∃

)
. (39)

Then one can extract a computable functional Φ : P ×N(N×...×N) → N such that the following holds
in all nonempty metric spaces (X, d):

for all z ∈ Sρ, z∗ ∈ N(N×...×N), if there exists a ∈ X such that z∗ &a
ρ z, then

∀u ∈ P∀y ∈ K
(
∀n ≤ Φ(u, z∗)B∀ → ∃N ≤ Φ(u, z∗)C∃

)
.

Remark 4.8. (i) The above theorem holds for Aω[X, d,W ]−b and nonempty W -hyperbolic spa-
ces (X, d,W ) too.

(ii) Instead of single variables u, y, n and single premises ∀nB∀(u, y, z, n) we may have tuples
u ∈ P, y ∈ K,n ∈ N of variables and finite conjunctions of premises. Moreover, we can have
also zρ = zρ11 , . . . zρkk as long as all the types ρ1, . . . , ρk are of degree 1∗ and in the conclusion
is assumed that z∗i &a

ρi zi for a common a ∈ X for all i = 1, . . . , k. Furthermore, the bound
Φ depends now on all the a-majorants z∗1 , . . . , z

∗
k.

Remark 4.9. The theory Aω[X, ‖ · ‖] of normed spaces and Aω[X, ‖ · ‖, η] corresponding to uni-
formly convex normed spaces were defined by Kohlenbach [88] and similar logical metatheorems
were obtained for these theories too. We refer to [88] or to [93, Section 17.3] for details.

The proof of the above logical metatheorem is based on an extension to Aω[X, d]−b, resp.
Aω[X, d,W ]−b, of Spector’s [142] interpretation of classical analysis Aω by bar-recursive function-
als followed by an interpretation of these functionals in an extension of Bezem’s [8] type structure
of hereditarily strongly majorizable functionals to all types TX , based on the a-majorization re-
lation &a, parametrized by a ∈ X. Spector’s work generalizes Gödel’s well-known functional
interpretation [58] for intuitionistic and - via Gödel’s double-negation interpretation [57] as inter-
mediate step - classical arithmetic to classical analysis. We refer to [92] for a recent survey on
applied aspects of functional interpretation and to [115] for a book treatment of Spector’s bar
recursion.

Moreover, the proof of the metatheorem actually provides an extraction algorithm for the
functional Φ, which can always be defined in the calculus of bar-recursive functionals. However,
as we shall see in Section 5, for concrete applications usually small fragments of Aω[X, d,W ]−b or
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Aω[X, d]−b (corresponding to fragments of Aω) are needed to formalize the proof. In particular,
it follows from results of Kohlenbach [82, 83] that a single use of sequential compactness (over
a sufficiently weak base system) only gives rise to at most primitive recursive complexity in the
sense of Kleene, often only simple exponential complexity. This corresponds to the complexity of
the bounds obtained in our applications from Section 5.

In these applications, one actually is interested in the extraction of bounds which, in order to
be useful, should be uniform, i.e. independent from various parameters. This can be achieved
by using Kohlenbach’s monotone functional interpretation, introduced in [83] (see [93, Chapter
9] for details), that systematically transforms any statement in a given proof into a new ver-
sion for which explicit bounds are provided. In recent years, other ”bounds-oriented” variants of
functional interpretation were defined, as bounded functional interpretation introduced by Ferreira
and Oliva [41, 42] or the very recent Shoenfield-like bounded functional interpretation of Ferreira
[40], that gives a direct interpretation of classical theories and so could be suitable for proof mining.

We give now a very useful corollary of Theorem 4.7.

Corollary 4.10. (see [93, Corollary 17.54])
Let P be N or NN, K be a Aω-definable compact metric space, B∀(u, y, x, x∗, T, n) be a ∀-formula
and C∃(u, y, x, x∗, T,N) a ∃-formula. Assume that Aω[X, d,W ]−b proves that

∀u ∈ P ∀Ω : N→ N ∀ y ∈ K ∀x, x∗ ∈ X ∀T : X → X(
T is x-majorizable with modulus Ω ∧ ∀n ∈ NB∀ → ∃N ∈ NC∃

)
.

Then one can extract a computable functional Φ such that for all b ∈ N,

∀u ∈ P ∀Ω : N→ N ∀ y ∈ K ∀x, x∗ ∈ X ∀T : X → X(
T is x-majorizable with modulus Ω ∧ d(x, x∗) ≤ b ∧ ∀n ≤ Φ(u, b,Ω)B∀

→ ∃N ≤ Φ(u, b,Ω)C∃

)
.

holds in all nonempty W -hyperbolic spaces (X, d,W ).

Proof. The premise ”T x-majorizable with modulus Ω” is a ∀-formula, by (37). Furthermore, 0
x-majorizes x, b is a x-majorant for x∗, since d(x, x∗) ≤ b, and T ∗ := λn.max

k≤n
Ω(k) x-majorizes

T , by the proof of Lemma 4.5. Apply now Theorem 4.7

Remark 4.11. As in the case of Theorem 4.7, instead of single n ∈ N and a single premise ∀nB∀
we could have tuples n = n1, . . . , nk and a conjunction of premises ∀n1B

1
∀ ∧ . . . ∧ ∀nkBk∀. In this

case, in the conclusion we shall have in the premise ∀n1 ≤ ΦB1
∀ ∧ . . . ∧ ∀nk ≤ ΦBk∀.

Corollary 4.10 will be used for our first application in metric fixed point theory, a quantitative
version of Borwein-Reich-Shafrir Theorem (see Subsection 5.1). In fact, a simplified version of it
suffices for this application, namely for T nonexpansive. In this case, as we have seen in Lemma
4.6, a modulus of majorizability at x is given by Ω(n) = n+ b, where b ≥ d(x, Tx), so the bound
Φ will depend only on the parameters u ∈ P and b ∈ N such that d(x, Tx), d(x, x∗) ≤ b.

A remarkable feature of the (proof of the) above logical metatheorem is the fact the same
results hold true for extensions of the theories Aω[X, d]−b,Aω[X, d,W ]−b obtained as follows:

(i) the theory may be extended by new axioms that have the form of ∀-sentences;

(ii) the language may be extended by new majorizable constants, in particular constants of
type N or NN which are uniformly majorizable. In this case, the extracted bounds then
additionally depend on a-majorants for the new constants.
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Then the conclusion holds in all metric spaces (X, d), resp. W -hyperbolic spaces (X, d,W ), satis-
fying these axioms (under a suitable interpretation of the new constants if any).

We shall exemplify this with three classes of spaces discussed in Subsection 3.2: Gromov
hyperbolic spaces, CAT (0) spaces and R-trees.

The theory of δ-hyperbolic spaces, Aω[X, d, δ-hyperbolic]−b is an extension of Aω[X, d]−b de-
fined as follows:

(i) add a constant δR of type N→ N (representing the nonnegative real δ);

(ii) add the axioms:

δR ≥R 0R,

∀x, y, z, w ∈ X
(
dX(x, y) +R dX(z, w) ≤R maxR{dX(x, z) +R dX(y, w), dX(x,w) +R dX(y, z)}

+R2 ·R δR
)
.

The notion that a sentence of L(Aω[X, d, δ-hyperbolic]−b) holds in a nonempty δ-hyperbolic
space (X, d) is defined as in Definition 4.4, by interpreting the new constant δR as (δ)0.

Since ≤R is Π0
1, the two axioms are ∀-sentences. Thus, in order to adapt Theorem 4.7 to

the theory of Gromov δ-hyperbolic spaces, we need to show that the new constant δR is strongly
majorizable. It is easy to see that if (X, d) is a δ-hyperbolic space, and k ∈ N is such that k ≥ δ,
then

δ∗R := λn.j(k · 2n+2, 2n+1 − 1) s-maj1(δ)◦.

Theorem 4.12. Theorem 4.7 holds also for Aω[X, d, δ-hyperbolic]−b and nonempty Gromov δ-
hyperbolic spaces (X, d), with the bound Φ depending additionally on k ∈ N such that k ≥ δ.

Let us consider the case of CAT (0) spaces. As we have seen in Subsubsection 3.2.3, we
can define the theory Aω[X, d,W,CAT (0)]−b for CAT (0) spaces by adding to Aω[X, d,W ]−b the
formalized form of the CN− inequality, which is a ∀-sentence.

∀x, y, z ∈ X

(
dX

(
z,WX

(
x, y,

1
2

))2

≤R
1
2
dX(z, x)2 +R

1
2
dX(z, y)2 −R

1
4
dX(x, y)2

)
.

Theorem 4.13. Theorem 4.7 holds for Aω[X, d,W,CAT (0)]−b and nonempty CAT (0) spaces.

Following Proposition 3.14, the theory Aω[X, d,W,R-tree]−b of R-trees results from the theory
Aω[X, d,W ]−b by adding a ∀-axiom:

∀x, y, z, w ∈ X
(
dX(x, y) +R dX(z, w) ≤R max

R
{dX(x, z) +R dX(y, w), dX(x,w) +R dX(y, z)}

)
.

As a consequence

Theorem 4.14. Theorem 4.7 holds also for Aω[X, d,W,R-tree]−b and nonempty R-trees.

4.2 Logical metatheorems for UCW -hyperbolic spaces

In the sequel, we shall see that the logical metatheorem from the previous subsection can be easily
adapted to UCW -hyperbolic spaces (see [108]).

The theory Aω[X, d, UCW, η]−b, corresponding to the class of UCW -hyperbolic spaces is ob-
tained from Aω[X, d,W ]−b by adding a new constant ηX : N→ N→ N together with axioms

∀r, k ∈ N∀x, y, a ∈ X
(
dX(x, a) <R r ∧ dX(y, a) <R r

∧ dX(WX(x, y, 1/2), a) >R

(
1−R 2−ηX(r,k)

)
·R r → dX(x, y) ≤R 2−k ·R r

)
,

∀r1, r2, k ∈ N
(
r1 ≤Q r2 → η(r1, k) ≥0 η(r2, k)

)
,

∀r, k ∈ N
(
ηX(r, k) =0 ηX(c(r), k)

)
.
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The first two axioms express the fact that ηX : N → N → N represents a monotone modulus
of uniform continuity. The meaning of the third axiom is that ηX is a function having the first
argument a rational number on the level of codes; c is the canonical representation for rational
numbers defined by (32). It is easy to see, using the representation of real numbers in Aω, that
all the three axioms are universal. Moreover, the constant ηX of degree 1 is majorizable.

The notion that a sentence of L(Aω[X, d, UCW, η]−b) holds in a nonempty UCW -hyperbolic
space (X, d,W ) with monotone modulus of uniform convexity η is defined as above, by interpreting
the new constant ηX as ηX(r, k) := η(c(r), k).

Since Aω[X, d, UCW, η]−b results from Aω[X, d,W ]−b by adding a majorizable constant and
three ∀-axioms, we get that the logical metatheorem and its corollaries hold in this setting too.

Theorem 4.15. Theorem 4.7 holds for Aω[X, d, UCW, η]−b and nonempty UCW -hyperbolic spa-
ces (X, d,W ) with monotone modulus of uniform convexity η, with the bound Φ depending addi-
tionally on η.

Corollary 4.16. Corollary 4.10 holds also for for Aω[X, d, UCW, η]−b and nonempty UCW -
hyperbolic spaces (X, d,W ) with monotone modulus of uniform convexity η, with the bound Φ
depending additionally on η.

Corollary 4.17. Let P be N or NN, K be a Aω-definable compact metric space, B∀(u, y, x, T, n)
be a ∀-formula and C∃(u, y, x, T,N) a ∃-formula. Assume that Aω[X, d, UCW, η]−b proves that

∀u ∈ P ∀Ω : N→ N∀ y ∈ K ∀x ∈ X ∀T : X → X(
T is x-majorizable with modulus Ω ∧ Fix(T ) 6= ∅ ∧ ∀n ∈ NB∀ → ∃N ∈ NC∃

)
.

Then one can extract a computable functional Φ such that for all b ∈ N,

∀u ∈ P ∀Ω : N→ N ∀ y ∈ K ∀x ∈ X ∀T : X → X(
T is x-majorizable with modulus Ω ∧ ∀δ > 0

(
Fixδ(T, x, b) 6= ∅

)
∧ ∀n ≤ Φ(u, b, η,Ω)B∀

→ ∃N ≤ Φ(u, b, η,Ω)C∃

)
.

holds in any nonempty UCW -hyperbolic space (X, d,W ) with monotone modulus of uniform con-
vexity η. We recall that

Fixδ(T, x, b) := {y ∈ X | d(y, x) ≤ b and d(y, Ty) < δ}.

Proof. The statement proved in Aω[X, d, UCW, η]−b can be written as

∀u ∈ P ∀Ω : N→ N∀ y ∈ K ∀x, p ∈ X ∀T : X → X(
T is x-majorizable with modulus Ω ∧ ∀k ∈ N

(
d(p, Tp) ≤ 2−k

)
∧ ∀n ∈ NB∀ → ∃N ∈ NC∃

)
.

We have used the fact that Fix(T ) 6= ∅ is equivalent with ∃p ∈ X(Tp =X p) that is further
equivalent with ∃p ∈ X ∀ k ∈ N

(
d(p, Tp) ≤ 2−k

)
, by using the definition of =X and =R in our

system. As all the premises are ∀-formulas, we can apply Corollary 4.16 to extract a functional Φ
such that for all b ∈ N,

∀u ∈ P ∀Ω : N→ N ∀ y ∈ K ∀x, p ∈ X ∀T : X → X(
T x-maj. w. modulus Ω ∧ d(x, p) ≤ b ∧ ∀k ≤ Φ(u, b, η,Ω)

(
d(p, Tp) ≤ 2−k

)
∧∀n ≤ Φ(u, b, η,Ω)B∀ → ∃N ≤ Φ(u, b, η,Ω)C∃

)
,
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that is

∀u ∈ P ∀Ω : N→ N∀ y ∈ K ∀x ∈ X ∀T : X → X(
T x-maj. w. modulus Ω ∧ ∃p ∈ X

(
d(x, p) ≤ b ∧ ∀k ≤ Φ(u, b, η,Ω)

(
d(p, Tp) ≤ 2−k

))
∧∀n ≤ Φ(u, b, η,Ω)B∀ → ∃N ≤ Φ(u, b, η,Ω)C∃

)
,

Use the fact that the existence of p ∈ X such that d(x, p) ≤ b and ∀k ≤ Φ
(
d(p, Tp) ≤ 2−k

)
is

equivalent with the existence of p ∈ X such that d(x, p) ≤ b and d(p, Tp) ≤ 2−Φ which is obviously
implied by ∀δ > 0 (Fixδ(T, x, b) 6= ∅).

We shall apply the above corollary twice. The first application will be in Subsection 5.2 for
nonexpansive mappings T . As we have already discussed, if T is nonexpansive, then its modulus
of majorizability at x is simply Ω(n) = n+ b̃ with b̃ ≥ d(x, Tx).

For all δ > 0 there exists y ∈ X such that Fixδ(T, x, b) 6= ∅, hence

d(x, Tx) ≤ d(x, y) + d(y, Ty) + d(Ty, Tx) ≤ 2d(x, y) + d(y, Ty) ≤ 2b+ δ for all δ > 0.

It follows that d(x, Tx) ≤ 2b, so we can take b̃ := 2b. As a consequence, the bound Φ will depend
only on u, b and η.

The second application will be in Subsection 5.7, this time for asymptotically nonexpansive
mappings. As we have discussed in Subsection 2.6, an asymptotically nonexpansive mapping
T : X → X with sequence (kn) is a (1 +K)-Lipschitz mapping, where K ∈ N is such that k1 ≤ K.
By Lemma 4.6, we get that T is majorizable with modulus at x given by Ω(n) := n+(1+K)b̃, where
again b̃ ≥ d(x, Tx). Reasoning as above, it is easy to see that if b is such that Fixδ(T, x, b) 6= ∅ for
all δ > 0 , then we can take b̃ := (2 + K)b. Thus, the bound Φ depends on u, b, η and on K ∈ N
with K ≥ k1.

5 Proof mining in metric fixed point theory

In the sequel, (X, d,W ) is a W -hyperbolic space, C ⊆ X a convex subset of X, and T : C → C a
nonexpansive mapping.

As in the case of normed spaces, we can define the Krasnoselski-Mann iteration starting from
x ∈ C by

x0 := x, xn+1 := (1− λn)xn ⊕ λnTxn, (40)

where (λn) is a sequence in [0, 1]. For constant λn = λ ∈ (0, 1), we get the Krasnoselski iteration,
which can be also defined as the Picard iteration

(
Tnλ (x)

)
of

Tλ : C → C, Tλ(x) = (1− λ)x⊕ λTx.

The averaged mapping Tλ is also nonexpansive and Fix(T ) = Fix(Tλ).
The following proposition collects some useful properties of Krasnoselski-Mann iterates in W -

hyperbolic spaces. We refer to [95, 111] for the proofs.

Proposition 5.1. Let (xn), (x∗n) be the Krasnoselski-Mann iterations starting with x, x∗ ∈ C.
Then

(i) (d(xn, x∗n)) is nonincreasing;

(ii) (d(xn, Txn)) is nonincreasing;

(iii) (d(xn, p)) is nonincreasing for any fixed point p of T .

The following very useful result was proved by Goebel and Kirk [52] for spaces of hyperbolic
type, thus holds for W -hyperbolic spaces too.
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Theorem 5.2. Let (X, d,W ) be a W -hyperbolic space and (λn) be a sequence in [0, 1] which is
divergent in sum and bounded away from 1. Assume that (un), (vn) are sequences in X satisfying
for all n ∈ N,

un+1 = (1− λn)un ⊕ λnvn and d(vn, vn+1) ≤ d(un, un+1). (41)

Then (d(un, vn)) is nonincreasing and lim
n→∞

d(un, vn) = 0 whenever (un) is bounded.

As an immediate consequence of the above theorem, we get the generalization of Theorem 2.10
to W -hyperbolic spaces.

Theorem 5.3. Let C be a convex subset of a W -hyperbolic space (X, d,W ) and T : C → C a
nonexpansive mapping. Assume that (λn) is divergent in sum and bounded away from 1.

If there exists x∗ ∈ C such that (x∗n) is bounded, then T is λn-asymptotically regular, that is
lim
n→∞

d(xn, Txn) = 0 for all x ∈ C.

Proof. Since (d(xn, x∗n)) is nonincreasing, we get that (xn) is bounded for all x ∈ C. Apply now
Theorem 5.2 with un := xn and vn := Txn.

As a consequence, we get that for bounded convex C, any nonexpansive self-mapping of C is
approximately fixed.

Corollary 5.4. Bounded convex subsets of W -hyperbolic spaces have the AFPP for nonexpansive
mappings.

As we have already remarked in Section 2.3, Theorem 2.11, unifying Ishikawa’s and Edel-
stein/O’Brien’s results is valid in spaces of hyperbolic type, hence in W -hyperbolic spaces too.

Theorem 5.5. [52] Let C be a bounded convex subset of a W -hyperbolic space (X, d,W ) and λn
divergent in sum and bounded away from 1. Then for every ε > 0 there exists a positive integer
N such that for all x ∈ C and all T : C → C nonexpansive,

∀n ≥ N
(
d(xn, Txn) < ε

)
. (42)

5.1 A quantitative version of Borwein-Reich-Shafrir Theorem

Our first application of proof mining is an effective quantitative version of the following theorem
due to Borwein, Reich and Shafrir [10].

Theorem 5.6. [10] Let C be a convex subset of a W -hyperbolic space (X, d,W ) and T : C → C
a nonexpansive mapping. Assume that (λn) is divergent in sum and bounded away from 1.

Then for all x ∈ C,
lim d(xn, Txn) = rC(T ). (43)

We recall that rC(T ) = inf{d(x, Tx) | x ∈ C} is the minimal displacement of T . As we
have already remarked in Section 2.3, the above theorem was initially proved for normed spaces.
Anyway, it is easy to see that its proof holds also in the more general context of W -hyperbolic
spaces.

In the following, we give an explicit quantitative version of the above theorem, generalizing
to W -hyperbolic spaces and directionally nonexpansive mappings the logical analysis made by
Kohlenbach [85, 87] for normed spaces and nonexpansive functions. Our Theorem 5.17 extends
Kohlenbach’s results (even with the same numerical bounds) to W -hyperbolic spaces and direc-
tionally nonexpansive mappings and contains all previously known results of this kind as special
cases. In this way, we obtain significantly stronger and much more general forms of Kirk’s The-
orem 2.12 with explicit bounds. As a special feature of our approach, which is based on logical
analysis instead of functional analysis, no functional analytic embeddings are needed to obtain
our uniformity results.
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The main application of the quantitative version of the Borwein-Reich-Shafrir Theorem is
a uniform effective rate of λn-asymptotic regularity in the case of bounded C for general (λn)
divergent in sum and bounded away from 1 (see Theorem 5.17). Thus, the rate of asymptotic
regularity is uniform in the nonexpansive mapping T : C → C and in the starting point x ∈ C of
the Krasnoselski-Mann iteration (xn) and in the bounded convex subset C (by this we mean that
it depends on C only via its diameter dC).

As we have already discussed in Section 2.3, uniformity in x ∈ C for Banach spaces and
constant λn = λ was first established by Edelstein and O’Brien in [38]. Subsequently, in [52],
Goebel and Kirk obtained uniformity in x and T for general (λn), but no uniformity in C; their
result holds even for spaces of hyperbolic type. In 2000 [73], Kirk established uniformity in x, T
for Banach spaces and directionally nonexpansive mappings only in the case of constant λn = λ.
In 2001 [85], by using methods of proof mining, Kohlenbach obtained for the first time uniformity
in x, T, C for nonexpansive mappings and general (λn) in the case of Banach spaces with explicit
rates of asymptotic regularity.

None of the papers [67, 38, 52, 10, 73] contain any bounds and in fact [38, 52, 73] use non-
trivial functional theoretic embeddings to get the uniformities. Kirk and Martinez-Yanez [76,
p.191] explicitly mention the non-effectivity of all these results and state that ”it seems unlikely
that such estimates would be easy to obtain in a general setting” and, therefore, only study the
tractable case of uniformly convex Banach spaces.

Not even the ineffective existence of bounds uniform in C was known for general (λn) and still
in 1990, Goebel and Kirk conjecture [53, p. 101] as “unlikely” to be true. Only for Banach spaces
and constant λn = λ, uniformity with respect to C has been established by Baillon and Bruck in
[3], where for this special case an optimal quadratic bound was obtained.

5.1.1 Logical discussion

The proof of Theorem 5.6 is prima facie ineffective and does not provide any rate of convergence
of (d(xn, Txn)). Moreover, its statement does not have the required logical form for the logical
metatheorems from Section 4 to apply, due to the two implicative assumptions on (λn) and, more
seriously, to the existence of rC(T ), which can not be formed in the theory Aω[X, d,W ]−b of
W -hyperbolic spaces.

However, we show in the sequel that it can be reformulated in such a way that the logical
metatheorems apply (more precisely Corollary 4.10). Firstly, let us remark that any convex subset
C of a W -hyperbolic space is also a W -hyperbolic space, so it suffices to consider only the case
C = X, and hence only nonexpansive functions T : X → X. For simplicity, we shall denote rX(T )
with r(T ).

Let us consider the conclusion of Theorem 5.6.

Proposition 5.7. The following are equivalent for all x ∈ X.

(i) lim
n→∞

d(xn, Txn) = r(T );

(ii) ∀ ε > 0 ∃N ∈ N ∀m ≥ N
(
d(xm, Txm) < r(T ) + ε

)
;

(iii) ∀ ε > 0 ∃N ∈ N ∀m ≥ N ∀x∗ ∈ X
(
d(xm, Txm) < d(x∗, Tx∗) + ε

)
;

(iv) ∀ ε > 0 ∃N ∈ N ∀x∗ ∈ X
(
d(xN , TxN ) < d(x∗, Tx∗) + ε

)
;

(v) ∀ ε > 0 ∀x∗ ∈ X ∃N ∈ N
(
d(xN , TxN ) < d(x∗, Tx∗) + ε

)
.

Proof. (i)⇔ (ii)⇔ (iii) are obvious, by the definition of r(T ).
(iii) ⇔ (iv) follows immediately from the fact that (d(xn, Txn)) is nonincreasing, hence the
quantifier ∀m ≥ N in (iii) is superfluous.
(iv) ⇒ (v) is obvious, so it remains to prove (v) ⇒ (iv) Since r(T ) = inf{d(x∗, Tx∗) : x∗ ∈ X},
there exists y∗ ∈ X such that d(y∗, T y∗) < r(T ) + ε/2. Applying (v) with ε/2 and y∗, we get
N ∈ N such that d(xN , TxN ) < d(y∗, Ty∗)+ε/2 < r(T )+ε ≤ d(x∗, Tx∗)+ε for all x∗ ∈ X. Thus,
(iv) is satisfied with this N .
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Thus, the conclusion ∀x ∈ X
(

lim
n→∞

d(xn, Txn) = r(T )
)

of Borwein-Reich-Shafrir Theorem
can be reformulated as

∀x ∈ X ∀ ε > 0∀x∗ ∈ X ∃N ∈ N
(
d(xN , TxN ) < d(x∗, Tx∗) + ε

)
,

that has the ∀ ∃-form required by the logical metatheorems.

Let us now examine the hypotheses on (λn): lim supλn < 1 and
∞∑
n=0

λn =∞.

The first one, lim supλn < 1, states the existence of a K ∈ N∗ such that λn ≤ 1 − 1
K

for all
n from some index N0 on. Since N0 only contributes an additive constant to our bound, we may
assume for simplicity that N0 = 0, which is anyway the case if (λn) is a sequence in [0, 1). Hence,
we may replace the hypothesis lim supλn < 1 with

∃K ∈ N ∀n ∈ N
(
λn ≤ 1− 1

K

)
. (44)

The second one,
∞∑
n=0

λn =∞, is (ineffectively, using countable axiom of choice) equivalent with

∃ θ : N→ N ∀n ∈ N

θ(n)∑
s=0

λs ≥ n

 , (45)

that is with the existence of a rate of divergence θ : N→ N.
It is easy to see that Aω[X, d,W ]−b proves the following formalized version of Theorem 5.6:

∀ (λn) ∈ [0, 1]N ∀x ∈ X ∀ T : X → X(
T nonexpansive ∧ ∃K ∈ N ∀n ∈ N

(
λn ≤ 1− 1

K

)
∧ ∃ θ : N→ N∀n ∈ N

θ(n)∑
s=0

λs ≥ n


→ ∀ ε > 0 ∀x∗ ∈ X ∃N ∈ N

(
d(xN , TxN ) < d(x∗, Tx∗) + ε

))
,

hence,

∀K ∈ N ∀ ε > 0 ∀ θ : N→ N∀ (λn) ∈ [0, 1]N ∀x, x∗ ∈ X ∀T : X → X(
T nonexpansive ∧ ∀n ∈ N

(
λn ≤ 1− 1

K

)
∧ ∀n ∈ N

θ(n)∑
s=0

λs ≥ n


→ ∃N ∈ N

(
d(xN , TxN ) < d(x∗, Tx∗) + ε

))
,

The Hilbert cube [0, 1]N is a compact metric space which is Aω-definable and we can let ε = 2−p

with p ∈ N, hence the above formalization of the statement of Borwein-Reich-Shafrir Theorem has
the required logical form.

Corollary 4.10 yields the existence of a computable functional Φ such that for all b ∈ N,

∀K ∈ N ∀ ε > 0 ∀ θ : N→ N ∀(λn) ∈ [0, 1]N ∀x, x∗ ∈ X ∀T : X → X(
T n.e. ∧ d(x, Tx) ≤ b ∧ d(x, x∗) ≤ b ∧ ∀n ∈ N

(
λn ≤ 1− 1

K

)
∧ ∀n ∈ N

θ(n)∑
s=0

λs ≥ n


→ ∃N ≤ Φ(ε, b,K, θ)

(
d(xN , TxN ) < d(x∗, Tx∗) + ε

))
.
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holds in any W -hyperbolic space (X, d,W ); ”n.e.” abbreviates ”nonexpansive”. Using again the
fact that (d(xn, Txn)) is nonincreasing, we get in fact that

∀n ≥ Φ(ε, b,K, θ)
(
d(xn, Txn) < d(x∗, Tx∗) + ε

)
.

In fact, a slight reformulation of (45) is better suited for the proof of our theorem.

Lemma 5.8. The following are equivalent:

(i) there exists θ : N→ N such that
θ(n)∑
s=0

λs ≥ n for all n ∈ N;

(ii) there exists γ : N× N→ N such that
i+γ(i,n)−1∑

s=i

λs ≥ n for all n, i ∈ N;

(iii) there exists α : N× N→ N such that for all n, i ∈ N,

α(i, n) ≤ α(i+ 1, n) and
i+α(i,n)−1∑

s=i

λs ≥ n. (46)

Proof. (i) ⇒ (ii) Define γ(i, n) = θ(n + i) − i + 1 ≥ 0, since n + i ≤
θ(n+i)∑
s=0

λs ≤ θ(n + i) + 1.

Furthermore,

i+γ(i,n)−1∑
s=i

λs =
θ(n+i)∑
s=i

λs =
θ(n+i)∑
s=0

λs −
i−1∑
s=0

λs ≥ n+ i− i = n, as
i−1∑
s=0

λs ≤ i.

(ii) ⇒ (iii) Define α(i, n) = max
j≤i
{γ(j, n)}. Then α is increasing in i, α(i, n) ≥ γ(i, n), so

i+α(i,n)−1∑
s=i

λs ≥
i+γ(i,n)−1∑

s=i

λs ≥ n.

(iii)⇒ (i) Applying (iii) with i = 0, we get that n ≤
α(0,n)−1∑
s=0

λs ≤ α(0, n), so α(0, n)−1 ≥ n−1 ≥ 0

for all n ≥ 1. We can define then θ(n) = α(0, n)− 1 for n ≥ 1 and θ(0) arbitrary.

Hence, Corollary 4.10 guarantees the extractability of a computable functional Φ such that for
all b ∈ N,

∀K ∈ N ∀ ε > 0 ∀α : N× N→ N ∀(λn) ∈ [0, 1]N ∀x, x∗ ∈ X ∀T : X → X(
T n.e. ∧ d(x, Tx) ≤ b ∧ d(x, x∗) ≤ b ∧ ∀n ∈ N

(
λn ≤ 1− 1

K

)
∧ α satisfies (46)

→ ∀n ≥ Φ(ε, b,K, α)
(
d(xn, Txn) < d(x∗, Tx∗) + ε

))
.

An explicit such bound Φ has been extracted by Kohlenbach and the author in [95] and will
be given in the following.
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5.1.2 Main results

We present now the quantitative version of the Borwein-Reich-Shafrir Theorem.

Theorem 5.9. Let K ∈ N,K ≥ 1, α : N× N→ N and b > 0.
Then for all W -hyperbolic spaces (X, d,W ), for all convex subsets C ⊆ X,
for all sequences (λn) in [0, 1− 1/K] satisfying

∀ i, n ∈ N

(α(i, n) ≤ α(i+ 1, n)) and n ≤
i+α(i,n)−1∑

s=i

λs

 , (47)

for all x, x∗ ∈ C and for all nonexpansive mappings T : C → C such that

d(x, Tx) ≤ b and d(x, x∗) ≤ b, (48)

the following holds

∀ε > 0∀n ≥ Φ(ε, b,K, α)
(
d(xn, Txn) < d(x∗, Tx∗) + ε

)
, (49)

where Φ(ε, b,K, α) = α̂(d2b · exp(K(M + 1))e−· 1,M), with

n −· 1 = max{0, n− 1}, M =
⌈

1 + 2b
ε

⌉
, α̂, α̃ : N× N→ N

α̂(0, n) = α̃(0, n), α̂(i+ 1, n) = α̃(α̂(i, n), n), α̃(i, n) = i+ α(i, n).

Remark 5.10. As we have seen in Lemma 5.8, we could have started with a rate of divergence

θ : N→ N for
∞∑
n=0

λn and then define α(i, n) = max
j≤i

{
θ(n+ j)− j + 1

}
. Starting with θ would in

general give less good bounds than when working with α directly, as it can be seen in [95, Remark
3.19].

The above theorem was proved for normed spaces and nonexpansive mappings by Kohlen-
bach [85]. For W -hyperbolic spaces, it was obtained by Kohlenbach and the author in [95] as a
consequence of an extension to the more general class of directionally nonexpansive mappings

As we have seen in Section 2.3, the notion of directionally nonexpansive mapping was intro-
duced by Kirk [73] in the context of normed spaces, but W -hyperbolic spaces in our sense suffice:

T : C → C is directionally nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x ∈ C and all y ∈ [x, Tx].

Obviously, any nonexpansive mapping is directionally nonexpansive, but the converse fails as
directionally nonexpansive mappings not even need to be continuous on the whole space, as it can
be seen from the following example.

Example 5.11. (simplified by Paulo Oliva): Consider the normed space (R2, ‖ · ‖max) and the
mapping

T : [0, 1]2 → [0, 1]2, T (x, y) =
{

(1, y), if y > 0
(0, y), if y = 0.

Clearly, T is directionally nonexpansive, but discontinuous at (0, 0), hence T is not nonexpansive.

Since xn+1 ∈ [xn, Txn], we have that d(Txn, Txn+1) ≤ d(xn, xn+1) for directionally nonex-
pansive mappings too, so we can apply Goebel-Kirk Theorem 5.2 to get that (d(xn, Txn)) is
nonincreasing and to obtain the following generalization of Ishikawa Theorem 2.9.

Theorem 5.12. Let C be a convex subset of a W -hyperbolic space (X, d,W ) and T : C → C
a directionally nonexpansive mapping. Assume that (λn) is divergent in sum and bounded away
from 1.

If there exists x ∈ C such that (xn) is bounded, then lim
n→∞

d(xn, Txn) = 0 for all x ∈ C.
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As a consequence

Corollary 5.13. Bounded convex subsets of W -hyperbolic spaces have the AFPP for directionally
nonexpansive mappings.

We remark that in the case of directionally nonexpansive mappings, the sequence (d(xn, x∗n))
is not necessarily nonincreasing, so we do not have an analogue of Theorem 5.3.

The following is the main result of [95].

Theorem 5.14. Theorem 5.9 holds for directionally nonexpansive mappings too, if the hypothesis
d(x, x∗) ≤ b is strengthened to d(xn, x∗n) ≤ b for all n ∈ N.

As we have already remarked, (d(xn, x∗n)) is not necessarily nonincreasing for directionally nonex-
pansive mappings and that’s why we need the stronger assumption that d(xn, x∗n) ≤ b for all n ∈ N,
which is equivalent to d(x, x∗) ≤ b in the nonexpansive case, since (d(xn, x∗n)) is nonincreasing.
Thus, Theorem 5.9 is an immediate consequence of Theorem 5.14.

Let us note also that as a corollary to Theorem 5.14 we get the following (non-quantitative)
generalization of Borwein-Reich-Shafrir Theorem to directionally nonexpansive mappings.

Corollary 5.15. Let C be a convex subset of a W -hyperbolic space (X, d,W ), T : C → C be a
directionally nonexpansive mapping, and (λn) be divergent in sum and bounded away from 1.
Assume x ∈ C is such that for all ε > 0 there exists x∗ ∈ C satisfying

d(xn, x∗n) is bounded and d(x∗, Tx∗) ≤ rC(T ) + ε. (50)

Then lim
n→∞

d(xn, Txn) = rC(T ).

Combining Corollaries 5.13 and 5.15 we get asymptotic regularity for bounded C.

Theorem 5.16. Let C be a bounded convex subset of a W -hyperbolic space (X, d,W ) and T :
C → C a directionally nonexpansive mapping. Assume that (λn) is divergent in sum and bounded
away from 1.

Then T is λn-asymptotically regular.

From Theorem 5.14, various strong effective uniformity results for the case of bounded C can
be derived, as well as for the more general case of bounded (xn) for some x ∈ C.

In the case of bounded C with finite diameter dC , the assumptions d(x, Tx) ≤ dC and
d(xn, x∗n) ≤ dC hold trivially for all x, x∗ ∈ C and all n ∈ N. The following result is a con-
sequence of Theorema 5.14 and 5.16.

Theorem 5.17. Let (X, d,W ) be a W -hyperbolic space, C ⊆ X be a bounded convex subset with
diameter dC , and T : C → C be directionally nonexpansive. Assume that K,α, (λn) are as in the
hypothesis of Theorem 5.9.

Then lim
n→∞

d(xn, Txn) = 0 for all x ∈ C and, moreover,

∀ε > 0∀n ≥ Φ(ε, dC ,K, α)
(
d(xn, Txn) < ε

)
, (51)

where Φ(ε, dC ,K, α) is defined as in Theorem 5.9 by replacing b with dC .

For bounded C, we derive an explicit rate of asymptotic regularity Φ(ε, dC ,K, α) depending
only on the error ε, on the diameter dC of C, and on (λn) via K and α, but which does not depend
on the nonexpansive mapping T , the starting point x ∈ C of the Krasnoselski-Mann iteration or
other data related with C and X.

We can simplify the rate of asymptotic regularity further, if we assume that (λn) is a sequence
in [1/K, 1− 1/K]. In this case, it is easy to see that

α : N× N→ N, α(i, n) = Kn

satisfies (47).
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Corollary 5.18. Let (X, d,W ) be a W -hyperbolic space, C ⊆ X be a bounded convex subset with
diameter dC , and T : C → C be directionally nonexpansive. Let K ∈ N,K ≥ 2 and assume that
λn ∈ [1/K, 1− 1/K] for all n ∈ N. Then

∀ε > 0∀n ≥ Φ(ε, dC ,K)
(
d(xn, Txn) < ε

)
, (52)

where Φ(ε, dC ,K) = K ·M · d2dC · exp(K(M + 1))e, with M =
⌈

1 + 2dC
ε

⌉
.

Thus, we obtain an exponential (in 1/ε) rate of asymptotic regularity. The above corollary is
significantly stronger and more general than Kirk Theorem 2.12.(ii).

As another consequence of our quantitative version of Borwein-Reich-Shafrir Theorem, we
extend, for the case of nonexpansive mappings, Theorem 5.17 to the situation where C no longer
is required to be bounded but only the existence of a point x∗ ∈ C whose iteration sequence (x∗n)
is bounded. In this way, we obtain a quantitative version of Theorem 5.3. This is of interest, since
the functional analytic embedding techniques from [52, 73] seem to require that C is bounded,
while our proof is a straightforward generalization of Kohlenbach’s proof of the corresponding
result for normed spaces [87].

Theorem 5.19. Assume that (X, d,W ), C, (λn),K, α are as in the hypothesis of Theorem 5.9 and
let T : C → C be nonexpansive. Suppose x, x∗ ∈ C and b > 0 satisfy

d(x, x∗) ≤ b and ∀n,m ∈ N(d(x∗n, x
∗
m) ≤ b). (53)

Then the following holds

∀ε > 0∀n ≥ Φ(ε, b,K, α)
(
d(xn, Txn) < ε

)
, (54)

where Φ(ε, b,K, α) = α̂ (d12b · exp(K(M + 1))e−· 1,M) , with M =
⌈

1 + 6b
ε

⌉
and α̂ as in Theorem

5.9.

For the case of directionally nonexpansive mappings, however, the additional assumption in
Theorem 5.14 causes various problems and significant changes in the proofs. In the following, we
will only consider the case where (xn) itself is bounded (i.e. x = x∗).

For any k ∈ N, we define the sequence ((xk)m)m∈N by:

(xk)0 := xk, (xk)m+1 := (1− λm)(xk)m ⊕ λmT ((xk)m).

Hence, for any k ∈ N, ((xk)m)m∈N is the Krasnoselski-Mann iteration starting with xk. Let us
remark that ((xk)m)m∈N is not in general a subsequence of (xn).

The following result is the quantitative version of Theorem 5.12.

Theorem 5.20. Let (X, d,W ), C, (λn),K, α be as in the hypothesis of Theorem 5.9 and T : C → C
be directionally nonexpansive.
Assume that x ∈ C, b > 0 are such that

∀n, k,m ∈ N (d(xn, (xk)m) ≤ b
)
. (55)

Then

∀ε > 0∀n ≥ Φ(ε, b,K, α)
(
d(xn, Txn) < ε

)
, (56)

where Φ(ε, b,K, α) = α(0, 1) + β̂(d2b · α(0, 1) · exp(K(M + 1))e − 1,M), with

M =
⌈

1 + 2b
ε

⌉
, β, β̂, β̃ : N× N→ N, β(i, n) = α(i+ α(0, 1), n)

β̃(i, n) = i+ β(i, n), β̂(0, n) = β̃(0, n), β̂(i+ 1, n) = β̃(β̂(i, n), n).
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Thus, in the case of directionally nonexpansive mappings, we need the stronger requirement (55).
Note that for constant λn = λ, (xk)m = xk+m for all m, k ∈ N, so ((xk)m)m∈N is a subsequence
of (xn). In this case, the assumption d(xn, xm) ≤ b for all m,n ∈ N suffices.

Corollary 5.21. Let (X, d,W ), C, T,K be as before. Assume that λn = λ for all n ∈ N, where
λ ∈ [1/K, 1− 1/K]. Let x ∈ C, b > 0 be such that d(xn, xm) ≤ b for all m,n ∈ N.

Then the following holds

∀ε > 0∀n ≥ Φ(ε, b,K)
(
d(xn, Txn) < ε

)
, (57)

where Φ(ε, b,K) = K +K ·M · d2b ·K · exp(K(M + 1))e, with M =
⌈

1 + 2b
ε

⌉
.

Hence, we obtain a strong uniform version of Kirk Theorem 2.12.(i), which does not state any
uniformity of the convergence at all.

5.2 A quadratic rate of asymptotic regularity for CAT (0) spaces

If T : C → C is a nonexpansive self-mapping of a bounded convex subset C of aW -hyperbolic space
and (λn) is a sequence in [1/K, 1− 1/K] for some K ∈ N,K ≥ 2 (in particular, λn = λ ∈ (0, 1)),
then, as we have seen in the previous subsection, Corollary 5.18 gives an exponential (in 1/ε) rate
of asymptotic regularity for the Krasnoselski-Mann iteration.

For normed spaces and the special case of constant λn = λ ∈ (0, 1), this exponential bound is
not optimal. In this case, a uniform and optimal quadratic bound was obtained by Baillon and
Bruck [3] using an extremely complicated computer aided proof, and only for λn = 1/2 a classical
proof of a result of this type was given [22]. However, the questions whether the methods of proof
used by them hold for non-constant sequences (λn) or for W -hyperbolic spaces are left as open
problems in [3], and as far as we know they received no positive answer until now. Hence, the
bound from Corollary 5.18 is the only effective bound known at all for non-constant sequences
(λn) (even for normed spaces).

Our result guarantees only an exponential rate of asymptotic regularity in the case of CAT (0)
spaces, and as we have already remarked, it seems that Baillon and Bruck’s approach does not
extend to this more general setting.

In this subsection we show that we can still get a quadratic rate of asymptotic regularity
for CAT (0) spaces, but following a completely different approach, inspired by the results on
asymptotic regularity obtained before Ishikawa and Edelstein-O’Brien theorems, in the setting of
uniformly convex Banach spaces. The method we use is to find explicit uniform bounds on the rate
of asymptotic regularity in the general setting of UCW -hyperbolic spaces and then to specialize
them to CAT (0) spaces. As we have seen in Section 3, CAT (0) spaces are UCW -hyperbolic spaces
with a nice modulus of uniform convexity.

More specifically, our point of departure is the following theorem due to Groetsch.

Theorem 5.22. [61] Let C be a convex subset of a UCW -hyperbolic space and T : C → C be a
nonexpansive mapping such that T has at least one fixed point.
Assume that (λn) is a sequence in [0, 1] satisfying

∞∑
n=0

λn(1− λn) =∞. (58)

Then lim
n→∞

d(xn, Txn) = 0 for all x ∈ C.

The above theorem was proved by Groetsch for uniformly convex Banach spaces (see Theorem
2.14), but it is easy to see that its proof extends to UCW -hyperbolic spaces. By proof mining,
Kohlenbach [87] obtained a quantitative version of Groetsch Theorem 2.14 for uniformly convex
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Banach spaces, generalizing previous results obtained by Kirk and Martinez-Yanez [76] for constant
λn = λ ∈ (0, 1).

In [109] we extended Kohlenbach’s results to the more general setting of UCW -hyperbolic
spaces. The most important consequence of our results is that for CAT (0) spaces we obtain a
quadratic rate of asymptotic regularity (see Corollary 5.28).

The following table presents a general picture of the cases where effective bounds for asymp-
totic regularity were obtained.

λn = λ non-constant λn

Hilbert spaces quadratic in 1/ε: Browder and Petryshyn [21] θ
(
1/ε2

)
: Kohlenbach [87]

`p, 2 ≤ p <∞ quadratic in 1/ε: Kirk and Martinez-Yanez[76], θ (1/εp): Kohlenbach [87]
Kohlenbach [87]

uniformly convex Kirk and Martinez-Yanez[76], Kohlenbach [87] Kohlenbach [87]
Banach spaces

Banach quadratic in 1/ε: Baillon and Bruck [3] Kohlenbach [85]

CAT (0) spaces quadratic in 1/ε: Corollary 5.28 θ
(
1/ε2

)
: Corollary 5.27

UCW-hyperbolic Corollary 5.26 Corollary 5.25
spaces

W-hyperbolic exponential in 1/ε: Corollary 5.18 Theorem 5.17
spaces

5.2.1 Logical discussion

As in the case of the logical analysis of Borwein-Reich-Shafrir Theorem, it suffices to consider
nonexpansive mappings T : X → X. Moreover, it is easy to see that the proof of Groetsch
Theorem can be formalized in the theory Aω[X, d, UCW, η]−b of UCW -hyperbolic spaces with a
monotone modulus of uniform convexity η.

The assumption on (λn) in Theorem 5.22 is equivalent with the existence of a rate of divergence
θ : N→ N such that for all n ∈ N,

θ(n)∑
i=0

λi(1− λi) ≥ n.

Using the fact that (d(xn, Txn) is nonincreasing, it follows that Aω[X, d, UCW, η]−b proves the
following formalized version of Theorem 5.22:

∀ ε > 0 ∀ θ : N→ N ∀ (λn) ∈ [0, 1]N ∀x ∈ X ∀ T : X → X(
T nonexpansive ∧ Fix(T ) 6= ∅ ∧ ∀n ∈ N

θ(n)∑
i=0

λi(1− λi) ≥ n


→ ∃N ∈ N

(
d(xN , TxN ) < ε

))
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Since we can let ε = 2−p with p ∈ N, the above formalization of the statement of Theorem 5.22 has
the required logical form for applying Corollary 4.17. It follows that we can extract a computable
functional Φ such that for all ε > 0, b ∈ N, θ : N→ N,

∀ (λn) ∈ [0, 1]N ∀x ∈ X ∀ T : X → X(
T nonexpansive ∧ ∀δ > 0(Fixδ(T, x, b) 6= ∅) ∧ ∀n ∈ N

θ(n)∑
i=0

λi(1− λi) ≥ n


→ ∃N ≤ Φ(ε, η, b, θ)

(
d(xN , TxN ) < ε

))
holds in any UCW -hyperbolic space with monotone modulus η. We recall that

Fixδ(T, x, b) = {y ∈ X | d(x, y) ≤ b ∧ d(y, Ty) < δ}.

Using again that (d(xn, Txn)) is nonincreasing, it follows that Φ(ε, η, b, θ) is in fact a rate conver-
gence of (d(xn, Txn)) towards 0.

5.2.2 Main results

The following quantitative version of Groetsch Theorem is the main result of [109].

Theorem 5.23. Let C be a convex subset of a UCW -hyperbolic space (X, d,W ) and T : C → C
be a nonexpansive mapping.

Assume that (λn) is a sequence in [0, 1] and θ : N→ N satisfies for all n ∈ N,

θ(n)∑
k=0

λk(1− λk) ≥ n. (59)

Let x ∈ C, b > 0 be such that T has approximate fixed points in a b-neighborhood of x.
Then lim

n→∞
d(xn, Txn) = 0 and, moreover,

∀ε > 0 ∀n ≥ Φ(ε, η, b, θ)
(
d(xn, Txn) < ε

)
, (60)

where η is a monotone modulus of uniform convexity and

Φ(ε, η, b, θ) =


θ




b+ 1

ε · η
(
b+ 1,

ε

b+ 1

)

 for ε < 2b

0 otherwise.

If we assume moreover that η can be written as η(r, ε) = ε · η̃(r, ε) such that η̃ increases with ε
(for a fixed r), then the bound Φ(ε, η, b, θ) can be replaced for ε < 2b by

Φ̃(ε, η, b, θ) = θ




b+ 1

2ε · η̃
(
b+ 1,

ε

b+ 1

)

 .

As an immediate consequence of our main theorem, we obtain a slight strengthening of Groetsch
Theorem.
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Corollary 5.24. Let C be a convex subset of a UCW -hyperbolic space (X, d,W ) and T : C → C

be nonexpansive. Assume that (λn) is a sequence in [0, 1] satisfying
∞∑
n=0

λn(1− λn) =∞.

Let x ∈ C, b > 0 be such that T has approximate fixed points in a b-neighborhood of x.
Then lim

n→∞
d(xn, Txn) = 0.

Thus, we assume that T has approximate fixed points in a b-neighborhood of some x ∈ C
instead of having fixed points. However, by Proposition 3.18, for closed convex subsets C of
complete UCW -hyperbolic spaces, T has fixed points is equivalent with T having approximate
fixed points in a b-neighborhood of x.

If C is bounded with diameter dC , then C has the AFPP for nonexpansive mappings by
Proposition 5.4, so we can apply Theorem 5.23 for all x ∈ C with dC instead of b.

Corollary 5.25. Let (X, d,W ), η, C, T, (λn), θ be as in the hypothesis of Theorem 5.23. Assume
moreover that C is bounded with diameter dC .

Then T is λn-asymptotically regular and the following holds for all x ∈ C:

∀ε > 0∀n ≥ Φ(ε, η, dC , θ)
(
d(xn, Txn) < ε

)
,

where Φ(ε, η, dC , θ) is defined as in Theorem 5.23 by replacing b with dC .

For bounded C, we get λn-asymptotic regularity for general (λn) satisfying (58) and we also
obtain an effective rate Φ(ε, η, dC , θ) of asymptotic regularity that depends only on the error ε, on
the modulus of uniform convexity η, on the diameter dC of C, and on (λn) via θ, but not on the
nonexpansive mapping T , the starting point x ∈ C of the iteration or other data related with C
and X.

The rate of asymptotic regularity can be further simplified for constant λn = λ ∈ (0, 1). In

this case, it is easy to see that θ : N→ N θ(n) = n ·
⌈

1
λ(1− λ)

⌉
satisfies (59).

Corollary 5.26. Let (X, d,W ), η, C, dC , T be as in the hypothesis of Corollary 5.25. Assume
moreover that λn = λ ∈ (0, 1) for all n ∈ N.

Then T is λ-asymptotically regular and for all x ∈ C,

∀ε > 0∀n ≥ Φ(ε, η, dC , λ)
(
d(xn, Txn) < ε

)
, (61)

where

Φ(ε, η, dC , λ) =


⌈

1
λ(1− λ)

⌉
·


dC + 1

ε · η
(
dC + 1,

ε

dC + 1

)
 for ε < 2dC

0 otherwise.

Moreover, if η(r, ε) can be written as η(r, ε) = ε · η̃(r, ε) such that η̃ increases with ε (for fixed r),
then the bound Φ(ε, η, dC , λ) can be replaced for ε < 2dC with

Φ̃(ε, η, dC , λ) =
⌈

1
λ(1− λ)

⌉
·


dC + 1

2ε · η̃
(
dC + 1,

ε

dC + 1

)
 .

As we have seen in Subsubsection 3.2.3, CAT (0) spaces are UCW -hyperbolic spaces with a

modulus of uniform convexity η(r, ε) =
ε2

8
= ε · η̃(r, ε), where η̃(r, ε) =

ε

8
increases with ε. It

follows that the above results can be applied to CAT (0) spaces.
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Corollary 5.27. Let X be a CAT (0) space, and C, dC , T, (λn), θ be as in the hypothesis of Corol-
lary 5.25.

Then T is λn-asymptotically regular and for all x ∈ C,

∀ε > 0 ∀n ≥ Ψ(ε, dC , θ)
(
d(xn, Txn) < ε

)
, (62)

where

Ψ(ε, dC , θ) =

 θ

(⌈
4(dC + 1)2

ε2

⌉)
for ε < 2dC

0 otherwise.

For general (λn), the rate of asymptotic regularity is of order θ
(

1
ε2

)
, where θ is a rate of

divergence for
∞∑
n=1

λn(1− λn).

Corollary 5.28. Let X be a CAT (0) space, C ⊆ X be a bounded convex subset with diameter
dC , and T : C → C be nonexpansive. Assume that λn = λ ∈ (0, 1).

Then T is λ-asymptotically regular, and for all x ∈ C,

∀ε > 0 ∀n ≥ Ψ(ε, dC , λ)
(
d(xn, Txn) < ε

)
, (63)

where

Ψ(ε, dC , λ) =


⌈

1
λ(1− λ)

⌉
·
⌈

4(dC + 1)2

ε2

⌉
for ε < 2dC

0 otherwise.

Hence, for bounded convex subsets of CAT (0) spaces and constant λn = λ, we get a quadratic
(in 1/ε) rate of asymptotic regularity.

5.3 Uniform approximate fixed point property

Inspired by Theorem 5.9, our quantitative version of Borwein-Reich-Shafrir Theorem, we intro-
duced in [96] the notions of uniform approximate fixed point property and uniform asymptotic
regularity property. The idea is to forget about the quantitative features of Theorem 5.9 and to
look only at the uniformities.

Let (X, d) be a metric space, C ⊆ X and F be a class of mappings T : C → C. We say that C
has the uniform approximate fixed point property (UAFPP) for F if for all ε > 0 and b > 0 there
exists D > 0 such that for each point x ∈ C and for each mapping T ∈ F ,

d(x, Tx) ≤ b implies T has ε-fixed points in a D-neighborhood of x. (64)

Formally, d(x, Tx) ≤ b ⇒ ∃x∗ ∈ C
(
d(x, x∗) ≤ D ∧ d(x∗, Tx∗) < ε

)
.

Using the same ideas, we can define the notion of C having the uniform fixed point property.
Thus, C has the uniform fixed point property (UFPP) for F if for all b > 0 there exists D > 0
such that for each point x ∈ C and for each mapping T ∈ F ,

d(x, Tx) ≤ b implies T has fixed points in a D-neighborhood of x. (65)

That is, d(x, Tx) ≤ b ⇒ ∃x∗ ∈ C
(
d(x, x∗) ≤ D ∧ Tx∗ = x∗

)
. As an immediate application of

Banach’s Contraction Mapping Principle, we get the following.

Proposition 5.29. Assume that (X, d) is a complete metric space and let F be the class of
contractions with a common contraction constant k ∈ (0, 1). Then each closed subset C of X has
the UFPP for F .
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Proof. By Banach’s Contraction Mapping Principle we know that each mapping T ∈ F has a
unique fixed point x0 and, moreover, for each x ∈ C,

d(Tnx, x0) ≤ kn

1− k
d(x, Tx) for all n ∈ N. (66)

For n = 0, this yields d(x, x0) ≤ d(x, Tx)
1− k

, so d(x, Tx) ≤ b implies d(x, x0) ≤ b

1− k
. Hence, (65)

holds with D =
b

1− k
b.

Let (X, d,W ) be a W -hyperbolic space, and C ⊆ X be a convex subset and assume that (λn)
is a sequence in [0, 1]. We say that C has the λn-uniform asymptotic regularity property for F if
for all ε > 0 and b > 0 there exists N ∈ N such that for each point x ∈ C and for each mapping
T ∈ F ,

d(x, Tx) ≤ b ⇒ ∀n ≥ N
(
d(xn, Txn) < ε

)
, (67)

where (xn) is the Krasnoselski-Mann iteration.
As an immediate consequence of Theorem 5.17, bounded convex subsets ofW -hyperbolic spaces

have the λn-uniform asymptotic regularity property for directionally nonexpansive mappings for
all (λn) divergent in sum and bounded away from 1.

Theorem 5.9 is used to prove the following equivalent characterizations.

Proposition 5.30. [96] Let C be a convex subset of a W -hyperbolic space (X, d,W ). The following
are equivalent.

(i) C has the UAFPP for nonexpansive mappings;

(ii) there exists (λn) in [0, 1] such that C has the λn-uniform asymptotic regularity property for
nonexpansive mappings;

(iii) for all (λn) in [0, 1] which are divergent in sum and bounded away from 1, C has the λn-
uniform asymptotic regularity property for nonexpansive mappings.

Proof. We give only the proof of (i) ⇒ (iii), for which the main ingredient is our quantitative
Borwein-Reich-Shafrir Theorem 5.9. We refer to [96, Proposition 16] for the complete proof.

Let ε > 0, b > 0, and D > 0 be such that (64) holds with F being the class of nonexpansive
mappings. If (λn) in [0, 1] is divergent in sum and bounded away from 1, then, as we have already
discussed in Subsubsection 5.1.1, there exist K ∈ N and α : N → N satisfying the corresponding
hypothesis of Theorem 5.9. Let x ∈ C and T : C → C nonexpansive be such that d(x, Tx) ≤ b. By
(64), there exists x∗ ∈ C satisfying d(x, x∗) ≤ D, and d(x∗, Tx∗) < ε. By taking b∗ = max{b,D},
it follows that

d(x, Tx) ≤ b∗ and d(x, x∗) ≤ b∗,
so the hypothesis (48) is also satisfied. It follows that we can apply Theorem 5.9 to get N =
Φ(ε, b∗,K, α) such that d(xn, Txn) < d(x∗, Tx∗) + ε < 2ε for all n ≥ N .

Let us remark the following fact. A first attempt to define the property that C has the uniform
approximate fixed point property for nonexpansive mappings is in the line of Goebel-Kirk Theorem
5.5, that is: for all ε > 0 there exists D > 0 such that for all x ∈ C and for all T ∈ F

∃x∗ ∈ C
(
d(x, x∗) ≤ D ∧ d(x∗, Tx∗) < ε

)
. (68)

In this case, it follows that, even if we consider only constant mappings T , the only subsets C
satisfying (68) are the bounded ones. If C is bounded, then C satisfies (68) by Goebel-Kirk
Theorem 5.5. Conversely, assume that C satisfies (68) for all constant mappings T . Then for
ε = 1 we get D1 ∈ N such that for all x ∈ C, and for all constant mappings T : C → C, there is
x∗ ∈ C with d(x, x∗) ≤ D1 and d(x∗, Tx∗) < 1. It follows that

d(x, Tx) ≤ d(x, x∗) + d(x∗, Tx∗) + d(Tx∗, Tx) ≤ 2D1 + 1 (69)
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Now, if we assume that C is unbounded, there are x, y ∈ C such that d(x, y) > 2D1 + 1. Define
T : C → C, T (z) = y for all z ∈ C. Then d(x, Tx) = d(x, y) > 2D1 + 1 which contradicts (69).

We conclude this subsection with an open problem:

Are there unbounded convex subsets C of some W -hyperbolic space which have the UAFPP for all
nonexpansive mappings T : C → C ?

5.4 Approximate fixed points in product spaces

If (X, ρ) and (Y, d) are metric spaces, then the metric d∞ on X × Y is defined in the usual way:

d∞((x, u), (y, v)) = max{ρ(x, y), d(u, v)}

for (x, u), (y, v) ∈ X × Y . We denote by (X × Y )∞ the metric space thus obtained.
The following theorem was proved first by Esṕınola and Kirk [39] for Banach spaces and then

by Kirk [75] for CAT (0) spaces.

Theorem 5.31. Assume that X is a Banach space or a CAT (0) space and C ⊆ X is a bounded
closed convex subset of X. If (M,d) is a metric space with the AFPP for nonexpansive mappings,
then

H := (C ×M)∞

has the AFPP for nonexpansive mappings.

The proof of this result uses essentially Goebel-Kirk Theorem 5.5.
In the following, we generalize Theorem 5.31 to unbounded convex subsets C of W -hyperbolic

spaces. We extend the results further, to families (Cu)u∈M of unbounded convex subsets of a
W -hyperbolic space. The key ingredient in obtaining these generalizations is Theorem 5.9, our
uniform quantitative version of Borwein-Reich-Shafrir Theorem. The results presented in this
subsection were obtained by Kohlenbach and the author in [96].

5.4.1 The case of one convex subset C

In the sequel, C ⊆ X is a convex subset of a W -hyperbolic space (X, ρ,W ), (M,d) is a metric
space which has the AFPP for nonexpansive mappings and H := (C×M)∞ and (λn) is a sequence
in [0, 1].

Let us denote with P1 : H → C, P2 : H → M the coordinate projections and define for each
nonexpansive mapping T : H → H and for each u ∈M ,

Tu : C → C, Tu(x) = (P1 ◦ T )(x, u).

It is easy to see that Tu is nonexpansive, so we can associate with Tu the Krasnoselski-Mann
iteration (xun) starting with an arbitrary x ∈ C.

In the sequel, δ : M → C is a nonexpansive mapping that selects for each u ∈ M an element
δ(u) ∈ C. Trivial examples of such nonexpansive selection mappings are the constant ones. For
simplicity, we shall denote the Krasnoselski-Mann iteration starting from δ(u) and associated with
Tu by (δn(u)):

δ0(u) := δ(u), δn+1(u) := (1− λn)δn(u)⊕ λnTu(δn(u)).

For each n ∈ N, let us define

ϕn : M →M, ϕn(u) = (P2 ◦ T )(δn(u), u).

Theorem 5.32. Assume that
sup
u∈M

rC(Tu) <∞,
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and ϕ : R∗+ → R∗+ is such that for each ε > 0 and v ∈M there exists x∗ ∈ C satisfying

ρ(δ(v), x∗) ≤ ϕ(ε) and ρ(x∗, Tv(x∗)) ≤ sup
u∈M

rC(Tu) + ε. (70)

Then rH(T ) ≤ sup
u∈M

rC(Tu).

As an immediate consequence, we get the following result.

Corollary 5.33. Assume that ϕ : R∗+ → R∗+ is such that

∀ε > 0∀u ∈M∃x∗ ∈ C
(
ρ(δ(u), x∗) ≤ ϕ(ε) and ρ(x∗, Tu(x∗)) ≤ ε

)
. (71)

Then rH(T ) = 0.

Proof. From the hypothesis, it follows immediately that rC(Tu) = 0 for all u ∈M .

The next theorem is obtained by applying Theorem 5.19 to the family (Tu)u∈M .

Theorem 5.34. Assume that (λn) is divergent in sum and bounded away from 1 and that there
exists b > 0 such that

∀u ∈M∃y ∈ C
(
ρ(δ(u), y) ≤ b and ∀m, p ∈ N

(
ρ(yum, y

u
p ) ≤ b

))
, (72)

where (yun) is the Krasnoselski-Mann iteration associated with Tu, starting with y:

yu0 := y, yun+1 = (1− λn)yun ⊕ λnTu(yun).

Then rH(T ) = 0.

Applying the above theorem with y := δ(u), we get the following generalization of Theorem
5.31.

Corollary 5.35. Assume that for all u ∈ M , the Krasnoselski-Mann iteration δn(u) is bounded.
Then rH(T ) = 0.

Theorem 5.31 is an immediate consequence of Corollary 5.35, since if C is bounded, δn(u) is
bounded for each u ∈M .

5.4.2 Families of unbounded convex sets

In the following we indicate that all the above results can be generalized to families (Cu)u∈M of
unbounded convex subsets of the W -hyperbolic space (X, ρ,W ).

Let (Cu)u∈M be a family of convex subsets of X with the property that there exists a nonex-
pansive selection mapping δ : M →

⋃
u∈M Cu, that is a nonexpansive mapping satisfying

∀u ∈M
(
δ(u) ∈ Cu

)
. (73)

We consider the following subspace of (X ×M)∞:

H := {(x, u) : u ∈M,x ∈ Cu}

and let P1 : H →
⋃
u∈M

Cu, P2 : H →M be the projections.

In the following, we consider nonexpansive mappings T : H → H satisfying

∀(x, u) ∈ H
(

(P1 ◦ T )(x, u) ∈ Cu
)
. (74)
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It is easy to see that we can define a nonexpansive mapping

Tu : Cu → Cu, Tu(x) = (P1 ◦ T )(x, u)

for each u ∈M . We denote the Krasnoselski-Mann iteration starting from x ∈ Cu and associated
with Tu by (xun).

For each n ∈ N, we define

ϕn : M →M, ϕn(u) = (P2 ◦ T )(δn(u), u).

The following results can be proved in a similar manner with Theorems 5.32, 5.34.

Theorem 5.36. Assume that
sup
u∈M

rCu(Tu) <∞

and that ϕ : R∗+ → R∗+ is such that for each ε > 0 and v ∈M there exists x∗ ∈ Cv satisfying

ρ(δ(v), x∗) ≤ ϕ(ε) and ρ(x∗, Tv(x∗)) ≤ sup
u∈M

rCu(Tu) + ε.

Then rH(T ) ≤ sup
u∈M

rCu(Tu).

Theorem 5.37. Let (λn) divergent in sum and bounded away from 1. Assume that there is b > 0
such that

∀u ∈M∃y ∈ Cu
(
ρ(δ(u), y) ≤ b and ∀m, p ∈ N(ρ(yum, y

u
p ) ≤ b)

)
.

Then rH(T ) = 0.

We get also the following corollary.

Corollary 5.38. Assume that (Cu)u∈M is a family of bounded convex subsets of X such that
sup
u∈M

diam(Cu) <∞.

Then H has the AFPP for nonexpansive mappings T :H→H satisfying (74).

Proof. The hypothesis of Theorem 5.37 is satisfied with y := δ(u).

5.4.3 Partial answer to an open problem of Kirk

In the following, we use our notion of uniform approximate fixed point property, introduced in
Subsection 5.3, to give some partial answers to the following problem of Kirk [75, Problem 27]:

Let C be a closed convex subset of a complete CAT (0) space X (having the geodesic line
extension property) and M be a metric space. If both C and M have the AFPP for nonexpansive
mappings, is it true that the product H := (C ×M)∞ again has the AFPP?

We show that this is true if C has the UAFPP (even in the case where X is just a W -hyperbolic
space) and a technical condition is satisfied which, in particular, holds if M is bounded.

Theorem 5.39. Let C be a convex subset of a W -hyperbolic space (X, ρ,W ) and (M,d) be a
metric space with the AFPP for nonexpansive mappings. Assume that C has the UAFPP for
nonexpansive mappings.
Let δ : M → C be a nonexpansive selection mapping and T : H → H be a nonexpansive mapping
such that sup

u∈M
ρ(Tu(δ(u)), δ(u)) <∞.

Then rH(T ) = 0.

Proof. Let ε > 0 and b > 0 be such that ρ(Tu(δ(u)), δ(u)) ≤ b for all u ∈ M . Since C has the
UAFPP for nonexpansive mappings, there exists D > 0 (depending on ε and b) such that (64)
holds for each nonexpansive self-mapping of C and each x ∈ C. For each u ∈ M , we can apply
(64) for x := δ(u) and Tu to get x∗ ∈ C such that ρ(δ(u), x∗) ≤ D and ρ(x∗, Tu(x∗)) ≤ ε. Hence,
the hypothesis of Corollary 5.33 is satisfied with ϕ(ε) = D, so rH(T ) = 0 follows.
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Corollary 5.40. Let C be a convex subset of a W -hyperbolic space (X, ρ,W ) and (M,d) be
a bounded metric space. Assume that C has the UAFPP and that (M,d) has the AFPP for
nonexpansive mappings.

Then H := (C ×M)∞ has the AFPP for nonexpansive mappings.

Proof. Let x ∈ C be arbitrary, and define δ : M → C by δ(u) = x. Let T : H → H be
a nonexpansive mapping. Fix some u0 ∈ M , and define b := ρ(x, Tu0(x)) + diam(M). Then
ρ(x, Tu(x)) ≤ ρ(x, Tu0(x)) + d(u0, u) ≤ b for each u ∈ M , so we can apply Theorem 5.39 to
conclude that rH(T ) = 0.

5.5 Rates of asymptotic regularity for Halpern iterations

Let C be a convex subset of a W-hyperbolic space (X, d,W ) and T : C → C be nonexpansive.
As in the case of normed spaces, we can define the Halpern iteration starting with x ∈ C by

x0 := x, xn+1 := λn+1x⊕ (1− λn+1)Txn, (75)

where (λn) is a sequence in [0, 1].
The following lemma collects some useful properties of Halpern iterations.

Lemma 5.41. Assume that (xn)n≥1 is the Halpern iteration starting with x ∈ C. Then

(i) For all n ≥ 1,

d(Txn, x) ≤ d(xn, x) + d(Tx, x) (76)
d(Txn, xn) ≤ d(xn+1, xn) + λn+1d(Txn, x) (77)
d(xn+1, x) ≤ (1− λn+1)d(xn, x) + (1− λn+1)d(Tx, x) (78)
d(xn+1, xn) ≤ (1− λn+1)d(xn, xn−1) + |λn+1 − λn| d(x, Txn−1) (79)
d(xn+1, xn) ≤ λn+1d(xn, x) + (1− λn+1)d(Txn, xn). (80)

(ii) If (xn) is bounded, then (Txn) is also bounded. Moreover, if M ≥ d(x, Tx) and M ≥ d(xn, x)
for all n ≥ 1, then

d(Txn, x) ≤ 2M and d(Txn, xn) ≤ d(xn+1, xn) + 2Mλn+1 (81)
d(xn+1, xn) ≤ (1− λn+1)d(xn, xn−1) + 2M |λn+1 − λn|. (82)

for all n ≥ 1.

Proof. (i)

d(Txn, x) ≤ d(Txn, Tx) + d(Tx, x) ≤ d(xn, x) + d(Tx, x)
d(Txn, xn) ≤ d(Txn, xn+1) + d(xn+1, xn)

= d(xn+1, xn) + d(Txn, λn+1x⊕ (1− λn+1)Txn)
= d(xn+1, xn) + λn+1d(x, Txn) by (17)

d(xn+1, x) = d(λn+1x⊕ (1− λn+1)Txn, x)
= (1− λn+1)d(Txn, x) by (17)
≤ (1− λn+1)d(Txn, Tx) + (1− λn+1)d(Tx, x)
≤ (1− λn+1)d(xn, x) + (1− λn+1)d(Tx, x),

d(xn+1, xn) = d(λn+1x⊕ (1− λn+1)Txn, λnx⊕ (1− λn)Txn−1)
≤ d(λn+1x⊕ (1−λn+1)Txn, λn+1x⊕ (1−λn+1)Txn−1)

+d(λn+1x⊕ (1− λn+1)Txn−1, λnx⊕ (1− λn)Txn−1)
≤ (1− λn+1)d(Txn, Txn−1) + |λn+1 − λn|d(x, Txn−1)

by (W4) and (W2)
≤ (1− λn+1)d(xn, xn−1) + |λn+1 − λn|d(x, Txn−1)
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d(xn+1, xn) = d(λn+1x⊕ (1− λn+1)Txn, xn)
≤ λnd(xn, x) + (1− λn+1)d(Txn, xn) by (W1).

(ii) is an immediate consequence of (i).

In the sequel we give effective rates of asymptotic regularity for Halpern iterations, that is
rates of convergence of the sequence (d(xn, Txn)) towards 0, where (xn) is the Halpern iteration
starting with x ∈ C.

By inspecting the proof of Wittmann Theorem 2.20 (and its generalizations), it is easy to
see that the first step is to obtain asymptotic regularity, and that this can be done in a much
more general setting. Thus, the following theorem, essentially contained in [156, 157, 159], can be
proved.

Theorem 5.42. Let C be a convex subset of a normed space X and T : C → C be nonexpansive.
Assume that (λn)n≥1 is a sequence in [0, 1] satisfies the following conditions

lim
n→∞

λn = 0,
∞∑
n=1

λn is divergent and
∞∑
n=1

|λn+1 − λn| is convergent. (83)

Then lim
n→∞

‖xn − Txn‖ = 0 for every x ∈ C with the property that (xn) is bounded.

Applying proof mining techniques, we obtained in [110] a quantitative version of the above
theorem, which provides for the first time effective rates of asymptotic regularity for the Halpern
iterations. Moreover, for λn = 1/n, we get an exponential (in 1/ε) rate of asymptotic regularity.

In the sequel, we present generalizations of these quantitative results to W -hyperbolic spaces.
Their proofs follow closely the proofs of the corresponding results from [110], thus we omit them.

5.5.1 Main results

Before stating our main theorem, let us recall some terminology. If (an)n≥1 is a convergent
sequence of real numbers, then a function γ : (0,∞)→ N∗ is called a Cauchy modulus of (an) if

∀ε > 0 ∀n ∈ N∗
(
|aγ(ε)+n − aγ(ε)| < ε

)
. (84)

Theorem 5.43. (see [110, Theorem 3])
Let C be a convex subset of a W-hyperbolic space (X, d,W ) and T : C → C be nonexpansive.
Assume that

lim
n→∞

λn = 0,
∞∑
n=1

λn =∞ and
∞∑
n=1

|λn+1 − λn| converges. (85)

Then lim
n→∞

d(xn, Txn) = 0 for every x ∈ C with the property that (xn) is bounded.

Furthermore, let α : (0,∞) → N∗ be a rate of convergence of (λn), β : (0,∞) → N∗ be a Cauchy

modulus of sn :=
n∑
i=1

|λi+1 − λi| and θ : N∗ → N∗ be a rate of divergence of
∞∑
n=1

λn.

Then

∀ε ∈ (0, 2)∀n ≥ Φ(α, β, θ,M, ε)
(
d(xn, Txn) < ε

)
,

where Φ(α, β, θ,M, ε) = max
{
θ

(
β
( ε

8M

)
+ 1 +

⌈
ln
(

8M
ε

)⌉)
, α

( ε

4M

)}
, with M ∈ N∗ such

that M ≥ d(x, Tx), d(xn, x) for all n ≥ 1.
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If C is bounded with diameter dC , we can take M := dC in the above theorem.

Corollary 5.44. Let (X, d,W ), (λn), C, T, α, β, θ be as in the hypothesis of Theorem 5.43. Assume
moreover that C is bounded with diameter dC .

Then T is λn-asymptotically regular and for all x ∈ C,

∀ε ∈ (0, 2)∀n ≥ Φ(α, β, θ, dC , ε)
(
d(xn, Txn) < ε

)
,

where Φ(α, β, θ, dC , ε) is defined as in Theorem 5.43 by replacing M with dC .

The rate of asymptotic regularity can be simplified for (λn) nonincreasing.

Corollary 5.45. Let (X, d,W ), C, T be as in the hypothesis of Theorem 5.43. Assume that

(λn)n≥1 is a nonincreasing sequence in [0, 1] such that lim
n→∞

λn = 0 and
∞∑
n=1

λn is divergent.

Then lim
n→∞

d(xn, Txn) = 0 for every x ∈ C with the property that (xn) is bounded.

Furthermore, if α : (0,∞) → N∗ is a rate of convergence of (λn) and θ : N∗ → N∗ is a rate of

divergence of
∞∑
n=1

λn, then

∀ε ∈ (0, 2)∀n ≥ Ψ(α, θ,M, ε)
(
d(xn, Txn) < ε

)
,

where Ψ(α, θ,M, ε) = max
{
θ

(
α
( ε

8M

)
+ 1 +

⌈
ln
(

8M
ε

)⌉)
, α

( ε

4M

)}
, with M ∈ N∗ such

that M ≥ d(x, Tx), d(xn, x) for all n ≥ 1.

Proof. Remark that (λn) nonincreasing implies that
∞∑
n=1

|λn+1−λn| converges with Cauchy mod-

ulus α. Apply Theorem 5.43 with β := α.

Finally, by taking λn = 1/n, we get an exponential (in 1/ε) rate of asymptotic regularity.

Corollary 5.46. Let C be a convex subset of a W-hyperbolic space (X, d,W ) and T : C → C be

nonexpansive. Assume that λn =
1
n

for all n ≥ 1.

Then lim
n→∞

d(xn, Txn) = 0 for all x ∈ C and, moreover,

∀ε ∈ (0, 2)∀n ≥ Φ(dC , ε)
(
d(xn, Txn) < ε

)
,

where Φ(dC , ε) = exp
(

ln 4 ·
(

16dC
ε

+ 3
))

.

5.6 Rates of asymptotic regularity for Ishikawa iterations

Let C be a convex subset of a W-hyperbolic space (X, d,W ) and T : C → C be nonexpansive.
As in the case of normed spaces, we can define the Ishikawa iteration starting with x ∈ C by

x0 := x, xn+1 = (1− λn)xn ⊕ λnT ((1− sn)xn ⊕ snTxn), (86)

where (λn), (sn) are sequences in [0, 1]. By letting sn = 0 for all n ∈ N, we get the Krasnoselski-
Mann iteration as a special case.

We shall use the following notations

yn := (1− sn)xn ⊕ snTxn
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and
Tn : C → C, Tn(x) = (1− λn)x⊕ λnT ((1− sn)x⊕ snTx).

Then
xn+1 = (1− λn)xn ⊕ λnTyn = Tnxn

and it is easy to see that Fix(T ) ⊆ Fix(Tn) for all n ∈ N.
The following lemma collects some basic properties of Ishikawa iterations; we refer to [111] for

the proofs.

Lemma 5.47. (i) d(xn+1, Txn+1) ≤ (1 + 2sn(1− λn))d(xn, Txn) for all n ∈ N;

(ii) Tn is nonexpansive for all n ∈ N;

(iii) For all p ∈ Fix(T ), the sequence (d(xn, p)) is nonincreasing and for all n ∈ N,

d(yn, p) ≤ d(xn, p) and d(xn, Tyn), d(xn, Txn) ≤ 2d(xn, p).

We consider the important problem of asymptotic regularity, this time associated with the
Ishikawa iterations:

lim
n→∞

d(xn, Txn) = 0.

Our point of departure is Theorem 2.17. We recall it here.

Theorem 5.48. Let X be a uniformly convex Banach space or a CAT (0) space, C ⊆ X a

bounded closed convex subset and T : C → C be nonexpansive. Assume that
∞∑
n=0

λn(1 − λn)

diverges, lim supn sn < 1 and
∞∑
n=0

sn(1− λn) converges.

Then lim
n→∞

d(xn, Txn) = 0 for all x ∈ C.

Using proof mining methods, we obtained [111] a quantitative version (Theorem 5.53) of a
two-fold generalization of the above result:

- firstly, we consider UCW -hyperbolic spaces;

- secondly, we assume that Fix(T ) 6= ∅ instead of assuming the boundedness of C.

The idea is to combine methods used in [109] (see Subsection 5.2) to obtain effective rates of
asymptotic regularity for Krasnoselski-Mann iterates with the ones used in [110] (see Subsection
5.5) to get rates of asymptotic regularity for Halpern iterates.

In this way, we provided for the first time (even for the normed case) effective rates of asymp-
totic regularity for the Ishikawa iterates, i.e. rates of convergence of (d(xn, Txn)) towards 0.

For bounded C (Corollary 5.55), the rate of asymptotic regularity is uniform in the nonexpan-
sive mapping T and the starting point x ∈ C of the iteration, and it depends on C only via its
diameter and on the space X only via a monotone modulus of uniform convexity.

5.6.1 Main resulta

Proposition 5.49. [111] Let C be a convex subset of a UCW -hyperbolic space (X, d,W ) and

T : C → C nonexpansive with Fix(T ) 6= ∅. Assume that
∞∑
n=0

λn(1− λn) is divergent.

Then lim infn d(xn, Tyn) = 0 for all x ∈ C.
Furthermore, if η is a monotone modulus of uniform convexity and θ : N→ N is a rate of divergence

for
∞∑
n=0

λn(1− λn), then
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for all x ∈ C, ε > 0, k ∈ N there exists N ∈ N satisfying

k ≤ N ≤ h(ε, k, η, b, θ) and d(xN , T yN ) < ε, (87)

where

h(ε, k, η, b, θ) =


θ

 b+ 1

ε · η
(
b,
ε

b

)
+ k

 for ε ≤ 2b,

k otherwise,

with b > 0 such that b ≥ d(x, p) for some p ∈ Fix(T ).

As an immediate consequence of the above proposition, we get a rate of asymptotic regularity
for the Krasnoselski-Mann iterates that is basically the same with the one obtained in Theorem
5.23 .

Corollary 5.50. Let (X, d,W ), η, C, T, b, (λn), θ be as in the hypotheses of Proposition 5.49 and
assume that (xn) is the Krasnoselski-Mann iteration starting with x, defined by (40).

Then lim
n→∞

d(xn, Txn) = 0 for all x ∈ C and

∀ε > 0 ∀n ≥ Φ(ε, η, b, θ)
(
d(xn, Txn) < ε

)
, (88)

where Φ(ε, η, b, θ) = h(ε, 0, η, b, θ), with h defined as above.

Proposition 5.51. [111] In the hypotheses of Proposition 5.49, assume that lim supn sn < 1.
Then lim infn d(xn, Txn) = 0 for all x ∈ C.

Furthermore, if L,N0 ∈ N are such that sn ≤ 1− 1
L

for all n ≥ N0, then
for all x ∈ C, ε > 0, k ∈ N there exists N ∈ N such that

k ≤ N ≤ Ψ(ε, k, η, b, θ, L,N0) and d(xN , TxN ) < ε, (89)

where Ψ(ε, k, η, b, θ, L,N0) = h
( ε
L
, k +N0, η, b, θ

)
, with h defined as in Proposition 5.49.

As a corollary, we obtain an approximate fixed point bound for the nonexpansive mapping T .

Corollary 5.52. In the hypotheses of Proposition 5.51,

∀ε > 0 ∃N ≤ Φ(ε, η, b, θ, L,N0)
(
d(xN , TxN ) < ε

)
, (90)

where Φ(ε, η, b, θ, L,N0) = Ψ(ε, 0, η, b, θ, L,N0), with Ψ defined as above.

The following theorem is the main result of [111].

Theorem 5.53. Let C be a convex subset of a UCW -hyperbolic space (X, d,W ) and T : C →

C nonexpansive with Fix(T ) 6= ∅. Assume that
∞∑
n=0

λn(1 − λn) diverges, lim supn sn < 1 and

∞∑
n=0

sn(1− λn) converges.

Then lim
n→∞

d(xn, Txn) = 0 for all x ∈ C.

Furthermore, if η is a monotone modulus of uniform convexity, θ is a rate of divergence for
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∞∑
n=0

λn(1 − λn), L,N0 are such that sn ≤ 1 − 1
L

for all n ≥ N0 and γ is a Cauchy modulus for

∞∑
n=0

sn(1− λn), then for all x ∈ C,

∀ε > 0∀n ≥ Φ(ε, η, b, θ, L,N0, γ)
(
d(xn, Txn) < ε

)
, (91)

where

Φ(ε, η, b, θ, L,N0, γ) =


θ

 2L(b+ 1)

ε · η
(
b,

ε

2Lb

)
+ γ

( ε
8b

)
+N0 + 1

 for ε ≤ 4Lb,

γ
( ε

8b

)
+N0 + 1 otherwise,

with b > 0 such that b ≥ d(x, p) for some p ∈ Fix(T ).

Remark 5.54. In the hypotheses of Theorem 5.53, assume, moreover, that η(r, ε) = ε · η̃(r, ε)
such that η̃ increases with ε (for a fixed r). Then the bound Φ(ε, η, b, θ, L,N0, γ) can be replaced
for ε ≤ 4Lb with

Φ̃(ε, η, b, θ, L,N0, γ) = θ

 L(b+ 1)

ε · η̃
(
b,

ε

2Lb

)
+ γ

( ε
8b

)
+N0 + 1

 .

For bounded C, we get an effective rate of asymptotic regularity which depends on the error
ε, on the modulus of uniform convexity η, on the diameter dC of C, on (λn), (sn) via θ, L,N0, γ,
but does not depend on the nonexpansive mapping T , the starting point x ∈ C of the iteration or
other data related with C and X.

Corollary 5.55. Let (X, d,W ) be a complete UCW -hyperbolic space, C ⊆ X a bounded convex
closed subset with diameter dC and T : C → C nonexpansive.
Assume that η, (λn), (sn), θ, L,N0, γ are as in the hypotheses of Theorem 5.53.

Then lim
n→∞

d(xn, Txn) = 0 for all x ∈ C and, moreover,

∀ε > 0 ∀n ≥ Φ(ε, η, dC , θ, L,N0, γ)
(
d(xn, Txn) < ε

)
,

where Φ(ε, η, dC , θ, L,N0, γ) is defined as in Theorem 5.53 by replacing b with dC .

Proof. We can apply Corollary 3.19, the generalization of Browder-Goehde-Kirk Theorem to com-
plete UCW -hyperbolic spaces, to get that Fix(T ) 6= ∅. Moreover, d(x, p) ≤ dC for any x ∈ C and
any p ∈ Fix(T ), hence we can take b := dC in Theorem 5.53.

The rate of asymptotic regularity can be further simplified for constant λn = λ ∈ (0, 1).

Corollary 5.56. Let (X, d,W ), η, C, dC , T be as in the hypotheses of Corollary 5.55. Assume that
λn = λ ∈ (0, 1) for all n ∈ N.

Furthermore, let L,N0 be such that sn ≤ 1− 1
L

for all n ≥ N0 and assume that the series
∞∑
n=0

sn

converges with Cauchy modulus δ.
Then for all x ∈ C,

∀ε > 0∀n ≥ Φ(ε, η, dC , λ, L,N0, δ)
(
d(xn, Txn) < ε

)
, (92)
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where

Φ(ε, η, dC , λ, L,N0, δ) =




1

λ(1− λ)
· 2L(dC + 1)

ε · η
(
dC ,

ε

2LdC

)
+M for ε ≤ 4LdC ,

M otherwise,

with M = δ

(
ε

8dC(1− λ)

)
+N0 + 1.

Moreover, if η(r, ε) can be written as η(r, ε) = ε · η̃(r, ε) such that η̃ increases with ε (for a
fixed r), then the bound Φ(ε, η, dC , λ, L,N0, δ) can be replaced for ε ≤ 4LdC with

Φ(ε, η, dC , λ, L,N0, δ) =


1

λ(1− λ)
· L(dC + 1)

ε · η̃
(
dC ,

ε

2LdC

)
+M.

As we have already seen, CAT (0) spaces are UCW -hyperbolic spaces with a modulus of

uniform convexity η(r, ε) =
ε2

8
, which has the form required in Remark 5.54. Thus, the above

result can be applied to CAT (0) spaces.

Corollary 5.57. Let X be a CAT (0) space, C ⊆ X a bounded convex closed subset with diameter
dC and T : C → C nonexpansive. Assume that λn = λ ∈ (0, 1) for all n ∈ N and L,N0, (sn), δ are
as in the hypotheses of Corollary 5.56

Then lim
n→∞

d(xn, Txn) = 0 for all x ∈ C and, moreover

∀ε > 0∀n ≥ Φ(ε, dC , λ, L,N0, δ)
(
d(xn, Txn) < ε

)
, (93)

where

Φ(ε, dC , λ, L,N0, δ) =


⌈
D

ε2

⌉
+M, for ε ≤ 4LdC ,

M otherwise,

with M = δ

(
ε

8dC(1− λ)

)
+N0 + 1, D =

16L2dC(dC + 1)
λ(1− λ)

.

5.7 Asymptotically nonexpansive mappings in UCW -spaces

In this subsection, we present results on fixed point theory of asymptotically nonexpansive map-
pings in the very general setting of UCW -spaces. These results were obtained by Kohlenbach and
the author in [97] .

In the following, (X, d,W ) is a UCW -hyperbolic space and C ⊆ X a convex subset of X. Let
us recall that a mapping T : C → C is said to be asymptotically nonexpansive with sequence (kn)
in [0,∞) if lim

n→∞
kn = 0 and

d(Tnx, Tny) ≤ (1 + kn)d(x, y) for all n ∈ N, x, y ∈ C.

The first main result is a generalization to UCW -spaces of Goebel-Kirk Theorem 2.23 and
Kirk Theorem 2.24.

Theorem 5.58. [97] Closed convex and bounded subsets of complete UCW -hyperbolic spaces have
the FPP for asymptotically nonexpansive mappings.
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Our proof generalizes Goebel and Kirk’s proof of Theorem 2.23 and, as a consequence, we obtain
also an elementary proof of Theorem 2.24.

In fact, as it was already pointed out for uniformly convex normed spaces in [94], the proof
of the FPP can be transformed into an elementary proof of the AFPP, which does not need the
completeness of X or the closedness of C.

Proposition 5.59. Bounded convex subsets of UCW -hyperbolic spaces have the AFPP for asymp-
totically nonexpansive mappings.

The main part of this subsection is devoted to getting a quantitative version of an asymptotic
regularity theorem for the Krasnoselski-Mann iterations of asymptotically nonexpansive mappings.

As in the case of normed spaces, the Krasnoselski-Mann iteration starting from x ∈ C is defined
by:

x0 := x, xn+1 := (1− λn)xn ⊕ λnTnxn, (94)

where (λn) is a sequence in [0, 1].
We apply proof mining techniques to the following generalization to UCW -hyperbolic spaces

of Theorem 2.26.

Theorem 5.60. Let C be a convex subset of a UCW -hyperbolic space (X, d,W ) and T : C → C

be asymptotically nonexpansive with sequence (kn) ∈ [0,∞) satisfying
∞∑
i=0

ki < ∞. Assume that

(λn) be a sequence in [a, b] for 0 < a < b < 1.
If Fix(T ) 6= ∅, then T is λn-asymptotically regular.

There does not seem to exist a computable rate of asymptotic regularity in this case; in [94] it is
shown that the proof even holds for asymptotically weakly-quasi nonexpansive functions for which
one can prove that no uniform effective rate does exist. Anyway, the general logical metatheorems
from Section 4 guarantee (see also the logical discussion below) effective uniform bounds on the
so-called Herbrand normal form or no-counterexample interpretation of the convergence i.e. on

∀ε > 0∀g : N→ N ∃N ∈ N ∀m ∈ [N,N + g(N)]
(
d(xm, Txm) < ε

)
, (95)

which (ineffectively) is equivalent to the fact that lim
n→∞

d(xn, Txn) = 0. Here [n, n + m] :=

{n, n+ 1, n+ 2, . . . , n+m}.
This coincides with what recently has been advocated under the name metastability or finite

convergence in an essay posted by Terence Tao [148] (see also [147, 150]). Thus, in Tao’s ter-
minology, the logical metatheorems guarantee an effective uniform bound on the metastability of
(d(xn, Txn)).

In the sequel, we give a quantitative version of the above theorem, generalizing to UCW -
hyperbolic spaces the logical analysis and the results of Kohlenbach and Lambov [94]. As a
consequence, for CAT (0) spaces we get a quadratic bound on the approximate fixed point property
of (xn) (see Corollary 5.66). We recall that for nonexpansive mappings, a quadratic rate of
asymptotic regularity for the Krasnoselski-Mann iterations was obtained in Corollary 5.28.

These results can also be seen as an instance of ‘hard analysis’ as proposed by Tao in his essay
[148].

5.7.1 Logical discussion

It is easy to see that the proof of the above theorem can be formalized in Aω[X, d, UCW, η]−b, the
theory of UCW -hyperbolic spaces. Unfortunately, the conclusion of the above theorem, that for
all x ∈ C, lim

n→∞
d(xn, Txn) = 0, i.e.

∀ε > 0∃N ∈ N∀p ∈ N
(
d(xN+p, TxN+p) < ε

)
, (96)
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is a ∀∃∀-formula, so it has a too complicated logical form for the logical metatheorems to apply.
In the case of nonexpansive mappings, due to the fact that (d(xn, Txn)) is nonincreasing, (96)
could be rewritten as

∀ε > 0∃N ∈ N
(
d(xN , TxN ) < ε

)
, (97)

which has the required ∀∃-form. This is no longer possible for asymptotically nonexpansive map-
pings, since for this class of mappings the sequence (d(xn, Txn)) is not necessarily nonincreasing.

Lemma 5.61. The following are equivalent

(1) ∀ε > 0∃N ∈ N∀p ∈ N
(
d(xN+p, TxN+p) < ε

)
;

(2) ∀ε > 0∃N ∈ N ∀m ∈ N∀i ∈ [N,N +m]
(
d(xi, Txi) < ε

)
;

(2H) ∀ε > 0 ∀g : N→ N ∃N ∈ N ∀i ∈ [N,N + g(N)]
(
d(xi, Txi) < ε

)
.

Proof. (1) ⇔ (2) and (2) ⇒ (2H) are obvious. Assume that (2H) is true. If (2) would be false,
then for some ε > 0

∀n ∈ N ∃mn ∈ N ∃i ∈ [n, n+mn] (d(xi, Txi) ≥ ε).

Define g(n) := mn. Then (2H) applied to g leads to a contradiction.

The transformed version (2H) is the Herbrand normal form of (2) or the no-counterexample
interpretation [102, 103] of (2), well-known in mathematical logic. The good news is that (2H) has
the ∀∃-form, as the universal quantifier over i is bounded. Obviously, since the above argument is
ineffective, a bound on ∃N ∈ N in (2H) cannot be converted effectively into a bound on ∃N ∈ N
in (2).

As it suffices to consider only mappings T : X → X, it is easy to see that Aω[X, d, UCW, η]−b
proves the following formalized version of Theorem 5.60:

∀ g : N→ N∀ ε > 0 ∀K,L ∈ N∀ g : N→ N ∀ (λn) ∈ [0, 1]N ∀ (kn) ∈ [0,K]N ∀x ∈ X ∀T : X → X(
Fix(T ) 6= ∅ ∧ ∀n ∈ N ∀y, z ∈ X

(
d(Tny, Tnz) ≤ (1 + kn)d(y, z)

)
∧ ∀n ∈ N

(
n∑
i=0

ki ≤ K

)
∧L ≥ 2 ∧ ∀n ∈ N

(
1
L
≤ λn ≤ 1− 1

L

)
→ ∃N ∈ N ∀i ∈ [N,N + g(N)]

(
d(xi, Txi) < ε

))
.

Moreover, the asymptotic nonexpansivity of T and the fact that k1 ≤ K imply that T is (1 +K)-
Lipschitz. Thus, we can apply Corollary 4.17 which guarantees the extractability of a computable
bound Φ on ∃N ∈ N in the conclusion

∀b ∈ N∀ g : N→ N ∀ ε > 0 ∀K,L ∈ N ∀ (λn) ∈ [0, 1]N ∀ (kn) ∈ [0,K]N ∀x ∈ X ∀T : X → X(
∀δ > 0

(
Fixδ(T, x, b) 6= ∅

)
∧ ∀n ∈ N∀y, z ∈ X

(
d(Tny, Tnz) ≤ (1 + kn)d(y, z)

)
∧∀n ∈ N

(
n∑
i=0

ki ≤ K

)
∧ L ≥ 2 ∧ ∀n ∈ N

(
1
L
≤ λn ≤ 1− 1

L

)
→ ∃N ≤ Φ(ε,K,L, b, η, g)∀i ∈ [N,N + g(N)]

(
d(xi, Txi) < ε

))
.

Thus, the premise that T has fixed points is weakened to T having approximate fixed points in
a b-neighborhood of x and the bound Φ depends, in addition to ε,K,L, η, on b ∈ N and g : N→ N.
By taking g(n) ≡ 0, we get an approximate fixed point bound for T .

We refer to [97, Section 5] for details on the above logical discussion.
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5.7.2 Main results on asymptotic regularity

The following quantitative version of Theorem 5.60 is the second main result of the paper [97].

Theorem 5.62. Let C be a convex subset of a UCW -hyperbolic space (X, d,W ) and T : C → C
be asymptotically nonexpansive with sequence (kn).

Assume that η is a monotone modulus of uniform convexity η, K ∈ N is such that
∞∑
n=0

kn ≤ K

and L ∈ N, L ≥ 2 satisfies
1
L
≤ λn ≤ 1− 1

L
for all n ∈ N.

Let x ∈ C and b > 0 be such that T has approximate fixed points in a b-neighborhood of x.
Then lim

n→∞
d(xn, Txn) = 0 and, moreover, for all ε ∈ (0, 1] and all g : N→ N,

∃N ≤ Φ(K,L, b, η, ε, g)∀m ∈ [N,N + g(N)]
(
d(xm, Txm) < ε

)
, (98)

where Φ(K,L, b, η, ε, g) = hM (0), with

h(n) = g(n+ 1) + n+ 2, M =

⌈
3
(
5KD +D + 11

2

)
δ

⌉
, D = eK (b+ 2) ,

δ =
ε

L2f(K)
· η
(

(1 +K)D + 1,
ε

f(K)((1 +K)D + 1)

)
, f(K) = 2(1 + (1 +K)2(2 +K)).

Moreover, N = hi(0) + 1 for some i < M .

Remark 5.63. Assume, moreover, that η(r, ε) can be written as η(r, ε) = ε · η̃(r, ε) such that η̃
increases with ε (for a fixed r). Then we can replace η with η̃ in the bound Φ(K,L, b, η, ε, g).

We give now some consequences. By taking g(n) ≡ 0, we obtain an approximate fixed point
bound for the asymptotically nonexpansive mapping T .

Corollary 5.64. Assume (X, d,W ), η, C, T, (kn),K, (λn), L are as in the hypotheses of Theorem
5.62. Let x ∈ C and b > 0 be such that T has approximate fixed points in a b-neighborhood of x.

Then lim
n→∞

d(xn, Txn) = 0 and, moreover,

∀ε ∈ (0, 1] ∃N ≤ Φ(K,L, b, η, ε)
(
d(xN , TxN ) < ε

)
, (99)

where Φ(K,L, b, η, ε) = 2M and M,D, θ, f(K) are as in Theorem 5.62.

Furthermore, if C is bounded with diameter dC , C has the AFPP for asymptotically nonex-
pansive mappings by Proposition 5.59, so T has approximate fixed points in a dC-neighborhood
of x for all x ∈ C. Hence, we get asymptotic regularity and an explicit approximate fixed point
bound.

Corollary 5.65. Let (X, d,W ), η, C, T, (kn),K, (λn), L be as in the hypotheses of Theorem 5.62.
Assume moreover that C is bounded with diameter dC .

Then T is λn-asymptotically regular and the following holds for all x ∈ C:

∀ε ∈ (0, 1]∃N ≤ Φ(K,L, dC , η, ε)
(
d(xN , TxN ) < ε

)
, (100)

where Φ(K,L, dC , η, ε) is defined as in Theorem 5.64 by replacing b with dC .

Finally, in the case of convex bounded subsets of CAT (0) spaces, we get a quadratic (in 1/ε)
approximate fixed point bound.
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Corollary 5.66. Let X be a CAT (0) space, C be a convex bounded subset of X with diameter dC
and T : C → C be asymptotically nonexpansive with sequence (kn).

Assume that K ∈ N, L ∈ N, L ≥ 2 are such that
∞∑
n=0

kn ≤ K and
1
L
≤ λn ≤ 1− 1

L
for all n ∈ N.

Then T is λn-asymptotically regular and the following holds for all x ∈ C:

∀ε ∈ (0, 1]∃N ≤ Φ(K,L, dC , ε)
(
d(xN , TxN ) < ε

)
, (101)

where Φ(K,L, dC , ε) = 2M , with

M =
⌈

1
ε2
· 24L2

(
5KD +D +

11
2

)
(f(K))3((1 +K)D + 1)2

⌉
,

D = eK (dC + 2) , f(K) = 2(1 + (1 +K)2(2 +K)).

6 Proof mining in ergodic theory

In this section, we apply proof mining techniques to obtain an explicit uniform bound on the
metastability of ergodic averages in uniformly convex Banach spaces. This result was obtained
by Kohlenbach and the author in [98]. Our result can also be viewed as a finitary version in the
sense of Terence Tao of the mean ergodic theorem for such spaces and so generalizes similar results
obtained for Hilbert spaces by Avigad, Gerhardy and Towsner [2] and Tao [150].

In the following N = {1, 2, 3, . . .}. Let X be a Banach space and T : X → X be a self-mapping
of X. The Cesaro mean starting with x ∈ X is the sequence (xn)n≥1 defined by

xn :=
1
n

n−1∑
i=0

T ix.

Uniformly convex Banach spaces were introduced in 1936 by Clarkson in his seminal paper
[30]. A Banach space X is called uniformly convex if for all ε ∈ (0, 2] there exists δ ∈ (0, 1] such
that for all x, y ∈ X,

‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε imply
∥∥∥∥1

2
(x+ y)

∥∥∥∥ ≤ 1− δ. (102)

A mapping η : (0, 2] → (0, 1] providing such a δ := η(ε) for given ε ∈ (0, 2] is called a modulus
of uniform convexity. An example of a modulus of uniform convexity is Clarkson’s modulus of
convexity [30], defined for any Banach space X as the function δX : [0, 2]→ [0, 1] given by

δX(ε) = inf
{

1−
∥∥∥∥x+ y

2

∥∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε
}
. (103)

It is easy to see that δX(0) = 0 and that δX is nondecreasing. A well-known result is the fact
that a Banach space X is uniformly convex if and only if δX(ε) > 0 for ε ∈ (0, 2]. Note that for
uniformly convex Banach spaces X, δX is the largest modulus of uniform convexity.

In 1939, Garrett Birkhoff proved the following generalization of von Neumann’s mean ergodic
theorem.

Theorem 6.1. [9] Let X be a uniformly convex Banach space and T : X → X be a linear
nonexpansive mapping. Then for any x ∈ X, the Cesaro mean (xn) is convergent.

In [2], Avigad, Gerhardy and Towsner addressed the issue of finding an effective rate of con-
vergence for (xn) in Hilbert spaces. They showed that even for the separable Hilbert space L2

there are simple computable such operators T and computable points x ∈ L2 such that there is
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no computable rate of convergence of (xn). In such a situation, the best one can hope for is an
effective bound on the Herbrand normal form of the Cauchy property of (xn):

∀ε > 0 ∀g : N→ N ∃N ∈ N ∀i, j ∈ [N,N + g(N)]
(
‖xi − xj‖ < ε

)
. (104)

In [88] (see also [93, Section 17.3]), Kohlenbach obtained general logical metatheorems for (uni-
formly convex) normed spaces, similar with the ones for metric or W -hyperbolic spaces presented
in Section 4. These metatheorems guarantee, given a proof of (104), the extractability of an ef-
fective bound Φ(ε, g, b) on ∃N in (104) that is highly uniform in the sense that it only depends
on g, ε and an upper bound b ≥ ‖x‖ but otherwise is independent from x,X and T . In fact, by a
simple renorming argument one can always achieve to have the bound to depend on b, ε only via
b/ε.

Guided by this approach, Avigad, Gerhardy and Towsner [2] extracted such a bound from a
standard textbook proof of von Neumann’s mean ergodic theorem. A less direct proof for the
existence of a bound with the above mentioned uniformity features is - for a particular finitary
dynamical system - also given by Tao [150] as part of his proof of a generalization of the von
Neumann mean ergodic theorem to commuting families of invertible measure preserving transfor-
mations T1, . . . , Tl.

In [98], we apply the same methodology to Birkhoff’s proof of Theorem 6.1 and extract an even
easier to state bound for the more general case of uniformly convex Banach spaces. In this setting,
the bound additionally depends on a given modulus of uniform convexity η for X. Despite of our
result being significantly more general then the Hilbert space case treated in [2], the extraction of
our bound is considerably easier compared to [2] and even numerically better.

6.1 Logical discussion

The proof of the above theorem can be formalized in the theory Aω[X, ‖ · ‖, η] of uniformly convex
normed spaces, defined in [88]. We refer to [93, Section 17.3] for details on this theory and the
corresponding logical metatheorems.

The conclusion of the above theorem is that (xn) converges for all x ∈ C, that is

∃l ∈ X∀ε > 0∃N ∈ N∀p ∈ N
(
‖xN+p − l‖ < ε

)
, (105)

which is a ∃∀∃∀-formula, so it has a too complicated logical form. One can cut down the complexity
a little bit by considering the equivalent (for Banach spaces) conclusion that for all x ∈ C, (xn) is
Cauchy, i.e.:

∀ε > 0∃N ∈ N∀p ∈ N
(
‖xN+p − xN‖ < ε

)
. (106)

The Cauchy property of (xn) is a ∀∃∀-formula, still too complicated. We are in a situation similar
with the one in Subsection 5.7. The idea is again to consider the Herbrand normal form of the
Cauchy property of (xn). As in the proof of Lemma 5.61, one can easily see that for all x ∈ X,
the fact that (xn) is Cauchy is equivalent to

∀ε > 0 ∃N ∈ N ∀m ∈ N ∀i, j ∈ [N,N +m]
(
‖xi − xj‖ < ε

)
, (107)

which in turn is equivalent with its Herbrand normal form, given by (104):

∀ε > 0∀g : N→ N ∃N ∈ N∀i, j ∈ [N,N + g(N)]
(
‖xi − xj‖ < ε

)
.

As we have discussed above, the logical metatheorems guarantee the extractability of an effective
bound Φ(ε, g, b, η) on ∃N , where b ≥ ‖x‖ and η is a modulus of uniform convexity of X.

The only ineffective principle used in Birkhoff’s original proof is the fact that any sequence
(an) of nonnegative real numbers has an infimum. We denote it with (GLB).

In our analysis we first replace this analytical existential statement by a purely arithmetical
one, namely

(GLBar) : ∀ε > 0 ∃N ∈ N ∀m ∈ N (aN ≤ am + ε).
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For the general underlying facts from logic that guarantee this to be possible, we refer to [84] or to
[93, Chapter 13]. The principle (GLBar) is still ineffective as, in general, there is no computable
bound on ∃N , even for computable (an). As above, we consider the equivalent reformulation

∀ε > 0 ∃N ∈ N∀m ∈ N ∀i ≤ m(aN ≤ ai + ε).

and then we take its Herbrand normal form

∀ε > 0 ∀g : N→ N∃N ∈ N ∀i ≤ g(N)(aN ≤ ai + ε).

We carry out informally monotone functional interpretation, by which (GLBar) gets replaced in
the proof by the quantitative form provided in Lemma 6.2.

Lemma 6.2. [98]
Let (an)n≥0 be a sequence of nonnegative real numbers. Then

(i) ∀ε > 0∀g : N→ N ∃N ≤ Θ(b, ε, g)
(
aN ≤ ag(N) + ε

)
,

where Θ(b, ε, g) = max
i≤K

gi(1), b ≥ a0, K =
⌈
b

ε

⌉
.

Moreover, N = gi(1) for some i < K.

(ii) ∀ε > 0∀g : N→ N ∃N ≤ hK(1)∀m ≤ g(N)
(
aN ≤ am + ε

)
,

where h(n) = max
i≤n

g(i) and b,K are as above.

In the above lemma, hK is the K-th iterative of h : N→ N.

6.2 Main results

The main result of the paper [98] is the following quantitative version of Birkhoff’s generalization
to uniformly convex Banach spaces of von Neumann’s mean ergodic Theorem.

Theorem 6.3. Assume that X is a uniformly convex Banach space, η is a modulus of uniform
convexity and T : X → X is a linear nonexpansive mapping. Let b > 0. Then for all x ∈ X with
‖x‖ ≤ b,

∀ε > 0 ∀g : N→ N∃N ≤ Φ(ε, g, b, η)∀i, j ∈ [N,N + g(N)]
(
‖xi − xj‖ < ε

)
. (108)

where Φ(ε, g, b, η) = M · h̃K(1), with

M =
⌈

16b
ε

⌉
, γ =

ε

16
η
( ε

8b

)
, K =

⌈
b

γ

⌉
,

h, h̃ : N→ N, h(n) = 2(Mn+ g(Mn)), h̃(n) = max
i≤n

h(i).

If η(ε) can be written as ε · η̃(ε) with 0 < ε1 ≤ ε2 → η̃(ε1) ≤ η̃(ε2), then we can replace η by η̃ and
the constant ‘16’ by ‘8’ in the definition of γ in the bound above.

Note that our bound Φ is independent from T and depends on the space X and the starting
point x ∈ X only via the modulus of convexity η and the norm upper bound b ≥ ‖x‖. Moreover,
it is easy to see that the bound depends on b and ε only via b/ε.

It is well-known that as a modulus of uniform convexity of a Hilbert space X one can take
η(ε) = ε2/8 with η̃(ε) = ε/8 satisfying the requirements in the last claim of our main theorem.
As an immediate consequence, we get the following quantitative version of von Neumann’s mean
ergodic theorem.
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Corollary 6.4. Assume that X is a Hilbert space and T : X → X is a T : X → X is a linear
nonexpansive mapping. Let b > 0. Then for all x ∈ X with ‖x‖ ≤ b,

∀ε > 0 ∀g : N→ N∃N ≤ Φ(ε, g, b)∀i, j ∈ [N,N + g(N)]
(
‖xi − xj‖ < ε

)
. (109)

where (xn), Φ are defined as above, but with K =
⌈

512b2

ε2

⌉
.

We get a similar result for Lp-spaces (2 < p <∞), using the fact that η(ε) =
εp

p 2p
is a modulus

of uniform convexity for Lp (see e.g. [87]). Note that
εp

p 2p
= ε · η̃p(ε) with η̃p(ε) =

εp−1

p 2p
satisfying

the monotonicity condition in Theorem 6.3.
The bound extracted by Avigad et al. [2] for Hilbert spaces is the following one:

Φ(ε, g, b) = hK(1),

where h(n) = n+ 213ρ4g̃((n+ 1)g̃(2nρ)ρ2), ρ =
⌈
b
ε

⌉
, K = 512ρ2 and g̃(n) = max

i≤n
(i+ g(i)). Note

that, disregarding the different placement of ‘d·e’, the number of iterations K in both this bound
and in our bound in Corollary 6.4 coincide, whereas the function h being iterated in our bound is
much simper than that occurring in the above bound from [2].

Avigad et al. [2] have an improved bound (roughly corresponding to our bound for T being
linear nonexpansive) only in the special case when the linear mapping T is an isometry. For this
case, they show that one can take h as

h(n) = n+ 213ρ4g̃
(
(n+ 1)g̃(1)ρ2

)
,

which still is somewhat more complicated than the function h in our bound for the general case of
T being nonexpansive. From this, Avigad et al. [2] obtain in the isometric case that Φ(ε, g, b) =
2O(ρ2 log ρ) for linear functions g, i.e. g = O(n).

Our bound in Corollary 6.4 generalizes this complexity upper bound on Φ to T being nonex-
pansive rather than being an isometry.
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[96] U. Kohlenbach, L. Leuştean, The approximate fixed point property in product spaces, Non-
linear Anal. 66 (2007), 806-818.
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