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Periodic structures like a typical tiled kitchen floor
or the arrangement of carbon atoms in a diamond
crystal certainly possess a high degree of order. But
what is order without periodicity? In this snapshot,
we are going to explore highly ordered structures that
are substantially nonperiodic, or aperiodic. As we
construct such structures, we will discover surprising
connections to various branches of mathematics, ma-
terials science, and physics. Let us catch a glimpse
into the inherent beauty of aperiodic order!

1 Introduction

The concept of order is fundamental to human culture. It not only underlies
much of art and architecture — the scientific approach to the understanding of
our world is based on detecting and describing order in nature.

Although humans instinctively understand what order is, giving a precise
definition of order is surprisingly difficult. A perfect crystal, such as a flawless
diamond, provides an example of order in nature. In crystals, atoms are
ordered in a periodically repeating pattern. But nature can accommodate
more complex forms of order: quasicrystals are materials with a highly ordered
atomic structure, but with no periodicity at all in the arrangement of atoms.
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(a) Electron microscopy image of a  (b) A patch of the rhombic version of

natural quasicrystal with compo- the Penrose tiling, which was dis-
sition Al71NissFes, found in the covered by Roger Penrose in 1974
Khatyrka meteorite. [14]; see also [2].

Figure 1: Two examples of aperiodic order.

Quasicrystals were discovered by Dan Shechtman in 1982 [17] O An electron
microscopy image of a natural quasicrystal is shown in Figure la.

The theory of aperiodic order considers mathematical structures that possess
order without periodicity. While quasicrystals provide additional physical
context to the research, the concept dates back to the beginning of the twentieth
century, with the work of Harald Bohr on almost-periodic functions [7, 8]. It
has since developed into a fascinating field of modern mathematics, with links
to many areas such as dynamical systems, harmonic analysis, spectral theory,
and number theory, to name but a few.

The visual attraction of order becomes apparent in tilings. In mathematics,
a tiling is a covering of the entire plane or space by tiles with no overlaps or
gaps — like in a puzzle. Periodic tilings (such as the ones many people have
in their kitchens) may be interesting, but aperiodic tilings bring about many
more complex and fascinating phenomena. For example, the aperiodic tiling in
Figure 1b has many symmetries, but it has no translational symmetry: if you
have two identical copies of this infinite tiling and move them with respect to

For his ground-breaking discovery, Dan Shechtman received the Wolf Prize in Physics in
1999, and the Nobel Prize in Chemistry in 2011.

For more information on tilings in mathematics see, for example, Wikipedia:
https://en.wikipedia.org/wiki/Tessellation#In_mathematics.
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each other, there is only one position where the two copies completely agree.

At a more abstract level, an attractive aspect of our field is the fact that one
can make seemingly simple statements which are easy to understand but turn
out to be difficult to prove.

For example: is there a planar shape that can tile the entire plane without
gaps or overlaps but does not admit any periodic tiling (note that the tiling
in Figure 1b is built from two different planar shapes)? The answer to this
question is still open, although there has been some recent progress towards an
answer by the Australian mathematician Joan Taylor (see [19], [2, Example 6.6]
and references therein).

In this snapshot, we introduce the general idea behind aperiodic order by
means of simple but instructive examples, and provide a hint of why so-called
spectral properties are of interest in this context. In doing so, we will gloss over
any technical details. For a gentle introduction to aperiodic order, we refer to
[3, 4, 1]; a proper mathematical account is given in [2], which also serves as our
master reference for details that we cannot include here.

2 Point sets

Let us introduce the notion of periodic and aperiodic order by considering
simple examples of point sets on the real line R, that is, in one dimension of
space. Sometimes we would like to distinguish different types of points, say by
assigning colours. Each point is then characterised by its position x € R and by
its colour. Imagine placing a red point at each integer position to obtain the
point set Py of red points at all positions n € Z. This looks like

-0-0-0-0—0—0—0—0—0—0—0—0—0+0—0—+—0—0—0—0—0—0—0—0+0—0—0—0—0—0—0—

where the small vertical line denotes the position n = 0. This point set, which
you have to imagine to continue indefinitely in both directions, is periodic with
period 1, because shifting all positions by 1 reproduces the same point set. We
express this as

Py+1=PF,

where Py + 1 means adding 1 to the position of each point in the coloured point
set Py. Of course, if shifting by 1 maps the point set onto itself, so does shifting
by 2, or indeed by any integer n € Z. We denote the set of all possible periods
of Py by per(Fy). These periods clearly must be integers, and by what we just
said, we have per(FPy) = Z. Our reasoning holds true for any periodic point
set: once a point set possesses a non-zero period, it automatically possesses an
infinite set of periods. The smallest positive period is called the fundamental
period. The fundamental period of Py is 1.



In general, the set of all periods forms a lattice, consisting of all integer linear
combinations of a set of fundamental periods; see [2, Definition 2.4] for more on
this.

Now, let us take the points at positions n with n = 1 mod 4. This means,
all n which give a remainder of 1 when divided by 4. We change the colour of
these points to blue, and call the corresponding point set P;. It looks like this:

-0-0-0-0-0—0—0—0—0—0—0*—0—0—0—0—+—O—0—0—0—O—0—0—0—0—0+0—0—0—0—0—

Again you have to imagine the point set to continue in both directions, so we
have changed the colour of infinitely many points. What is the periodicity of the
new point set? We now need to shift P, by multiples of 4 to respect the positions
and the colourings of points, so per(P;) =4Z ={...,—-8,-4,0,4,8,...}.

As the next step, let us look at all points at positions n with n = 7 mod 16.
You can convince yourself that all these points are currently red, so let us change
them to blue to obtain the next point set, which we call P,. The result

-0-0-0-0-0—0—0—0—0—0—0*—0—0—0—0—+—O—0—0—0—O—0—O—0—0—0+0—0—0—0—0—

is still periodic, but now only under shifts by multiples of 16, so we have
per(Ps) = 16 Z.

We can continue this game, for example by defining P11 as the point set
obtained from Py by changing the colour of all points at positions

n=(2-4% — 1) mod 4.

All these points are still red in P, and become blue in P;y;. The point set
Py 1 is periodic under shifts by multiples of 4**1. In this way, we obtain point
sets Py for all integers k > 0, which are periodic with per(Py) = 4*Z. With
increasing k, the periods get sparser and sparser. Indeed, in order to actually
see this happening even for the next step (k = 3), you would need to consider a
longer part of the point set than we displayed above, because this step affects
points at positions n = 31 mod 64 only. If we keep on performing this process
indefinitely for all k and consider all the resulting blue points, we eventually
end up with a point set P that no longer has any periods at all: if it had a
period, this period would have to be an integer greater than 4* for all k, but of
course such an integer does not exist. For the underlying notion of convergence
of series of point sets, the reader is invited to consult [2, Section 4].

A point set that does not admit a period is called non-periodic. In fact, our
point set P is not just non-periodic, but actually aperiodic. To understand
the difference between non-periodicity and aperiodicity, consider the following
example: Take our original single-colour point set P, and change the colour



of a single point, say at 0, to blue. The resulting point set P’ is non-periodic,
because any non-zero shift moves the blue point at 0 to a red position and hence
changes the point set. However, if you keep shifting the blue point further and
further away, the point set will look more and more like the original point set
Py around the origin, and in the limit where the blue point has been “moved
off to infinity”, the periodicity of the original point set P, is restored.

Thus, the point set P’ would not be considered as aperiodic, because pe-
riodicity is violated only locally, not globally. Because, in our construction
of the point sets Pj, we change the colour of infinitely many points in each
step, periodicity is ultimately violated globally, and P possesses the stronger
aperiodicity property.

Although the point set P is aperiodic, it is clearly ordered in some sense,
because it is built from an explicit construction which determines the colour for
each position uniquely. Even if you did not know where the origin was located,
you can still recognise this order. For instance, if you pick a red point which is
located between two blue points, you know immediately that every second point
along either direction will be red as well, because all points at even positions
stay red in our construction. This also shows that you can never find two blue
points next to each other. However, like for the simple periodic set Py, if you
do not know where the origin is located, you cannot decide where it would have
been from looking at an arbitrarily large finite part of the set. This is because
any local arrangement of colours occurs at infinitely many positions along the
line (but not in a periodic manner). This property is called recurrence and
arises here as a consequence of the systematic way in which we performed the
colour changes, affecting points in the same way anywhere along the line.

So, our point set P is an example of a structure that is both ordered and
aperiodic. It is closely related to a class of sequences known as Toeplitz sequences
[20]. The theory of aperiodic order is concerned with understanding such point
sets (and more general ones) and analysing their properties.

3 Substitution and inflation

You may wonder why we changed colours specifically in the way we did when we
constructed the point sets P, above. Clearly, there are lots of ways to produce
aperiodic point sets in a similar way. We chose this particular approach because
P can also be obtained by a substitution or inflation rule.

A mathematical explanation of the difference between the notions of non-periodicity versus
aperiodicity requires a more careful definition of limits of shifted point sets; see [2, Section 4].
In fact, in our example, we have a stronger form of recurrence, known as uniform recurrence
or repetitivity, which means that the distance between consecutive occurrences of any particular
local arrangement of colours is uniformly bounded.



To see how this works, let us denote the sequence of the two-coloured points
by letters r for red and b for blue, and consider the rule S that maps r — rb
and b — rr. Applying this rule repeatedly, starting from a single letter, gives

S S S S S
r — rb — rbrr — rbrrrbrb — rbrrrbororborrrbrr — ...

In each step, every letter is replaced by a pair of letters according to the rule S.
You can repeat this procedure as often as you like, producing longer and longer
words in the two letters r and b. In the limit, you obtain an infinite word v,
which is mapped onto itself: Sv = v. This word is thus invariant under the
application of the rule S, and in this sense possesses a symmetry under this
operation, sometimes referred to as an inflation symmetry.

Extending our procedure slightly, we now start from the two-letter seed r|r,
and apply the rule S to both sides of the vertical bar:

r|r N rb|rb -y rorr|rorr N rorrrbrb|rorrrorb

2 rbrrrbrorbrrrbrr | rborrrbrbrbrrrbrr A

When we now iterate S? rather than S, in the limit we obtain a sequence w,
infinite in both directions, that satisfies S2w = w. Moreover, the only difference
between w and Sw is at the first position left of the bar, which is red (in w) or
blue (in Sw).

The surprising result is that the infinite sequence w exactly reproduces the
sequence of colours in P, if you identify the first r after the vertical bar with
the red point at 0. The mathematical proof of this identity requires some work.
If you are interested, you can find the argument in [2, Chapter 4.5.1], where
this example is referred to as the period doubling substitution.

Substitution rules like S have been studied extensively, and produce many
well-known examples of interesting sequences. The most famous such sequence
is named after Leonardo of Pisa, also known as Fibonacci, who (implicitly)
introduced it in his book Liber Abaci already in 1202 [18], although it was
apparently familiar to Indian mathematicians even earlier. The sequence was
motivated by studying the evolution of a rabbit population, with the rule that,
in one step, an adult rabbit produces one offspring, and a juvenile rabbit matures
to an adult rabbit. This is, of course, a very simplified model in which rabbits
live and reproduce eternally. And the total population grows exponentially!



Let us denote the adult rabbits by £ (for large) and the young rabbits by
s (for small). The Fibonacci rule F' is £ — ¢s and s — £. Applying the rule
repeatedly, starting with a single adult, gives

0 05 s use s vstes s stestst B 0s0stsilsils s

which, when repeating the process indefinitely, produces an infinite word v,
which satisfies F'v = v, and is known as the Fibonacci sequence.

Each finite word in the iteration above is the concatenation of the two
previous words. Thus, the number of letters of any one of these words is the
sum of the number of letters of the two previous words. The numbers of letters
of the words form the sequence 1,2,3,5,8,13,21,34,... known as Fibonacci
numbers. The Fibonacci numbers satisfy the recursion relation fi+1 = fr + fr—1
for k > 1, with initial conditions fy = 0 and f; = 1 (in which case the list above
starts with fo = 1, and f3 = fo + fi = 1+ 1 = 2 and so on). The Fibonacci
number f; thus gives the total number of rabbits after k£ generations. Counting
the numbers of adult or young rabbits (that is £ or s) in each of the generations
again produces the same sequence, shifted by 1 in the index. Put differently, in
a word of length fx;1 there are exactly fj letters £ and fi_1 letters s. Using
this observation, it is not difficult to show that the ratio of letters ¢ and s (the
ratio of adult to young rabbits), as the number of generations grows, approaches
the limit

. Ix 1++5
lim =

= 161
o 5 6180339887

This number, often denoted by 7, is known as the golden ratio8 The number
T is irrational, which shows that the Fibonacci sequence v cannot be periodic:
indeed, assuming that v repeated periodically after IV letters, the ratio of letters
in v would have to be the same as their ratio in a finite word of length IV, and
hence a rational number with a denominator of at most N.

There is a natural way to interpret the Fibonacci sequence as a point set
on the real line R. The rule F' then becomes an inflation rule in the following
sense: let us associate to the two letters £ and s two interval lengths, a long
one (for ¢, to fit the adult rabbits in) and a short one (for s, to fit the young
rabbits in). A natural way to choose the length is given by the golden ratio
again, so let us choose the length of the interval ¢ to be 7 and the length of the
interval s to be 1 (for the mathematical reason for this choice see the discussion
of geometric inflation rules in [2, Chapter 4]).

The number 7 plays an important role in art and architecture, representing an “ideal way”
of dissecting an interval into two parts. For more information on the golden ratio see, for
example, Wikipedia: https://en.wikipedia.org/wiki/Golden_ratio.
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Then, the geometric interpretation of the rule F' is

| £ | —> | | — | ¢ s |
s — [ —> | ¢ |

which consists of a scaling of the intervals by a factor 7, followed by the dissection
of the long interval into a long and short one (according to the rule £ — /s,
which is geometrically consistent because 72 = 7+ 1) and interpreting the scaled
short interval as a long one (according to the rule s — ¢). The geometric version
of the infinite word v becomes a series of intervals

| ¢ s ¢ | ¢ s £ s | ¢ |

which is invariant under the geometric inflation map.

4 Cut-and-project sets

Now, we can produce the Fibonacci sequence in a seemingly very different
way: the long and short intervals are obtained by projecting specific points of a
two-dimensional periodic lattice onto the horizontal axis. The construction is
sketched in Figure 2, where the blue points form a two-dimensional periodic
lattice. We project all lattice points within the yellow and green strips onto
the horizontal axis. Via this projection, points within the yellow strip become
left endpoints of long intervals ¢, and points within the green strip become left
endpoints of short intervals s.

The one-dimensional tiling of the horizontal axis we just obtained turns
out to be exactly the same as the one from the inflation rule discussed in the
previous section.d

This interpretation of the Fibonacci case as a point set on the real line is
called a cut-and-project set or model set [13].

It points to the inherent order that is “hidden” in the aperiodic sequence:
although the tiling is not periodic, it is very closely related to a periodic
structure, albeit in two dimensions rather than in one. This is an important
property, and the cut-and-project construction can be generalised and applied
in a quite general setting, as described in [2, Chapter 7].

6] Note that we have suppressed the important detail how to treat the lattice points that lie
on the boundary of the strip — one way to deal with them is described in [2, Example 7.3].

Furthermore, note that there are other lattices leading to the same projected one-
dimensional tiling. Our choice is motivated by an interesting connection to number theory,
the Minkowski embedding of the ring Z[r] = {m + n7 | m,n € Z}; see [2, Chapter 3.4] for
details.



Figure 2: Cut-and-project description of the Fibonacci sequence from a two-
dimensional lattice (blue dots). The lattice is generated by the two
vectors (1,1) and (7,1 — 7), which are indicated by black arrows.
Lattice points within the yellow strip become left endpoints of long
intervals ¢, while points within the green strip become left endpoints
of short intervals s. The green strip intersects the vertical axis
between —1 and 7 — 2, the yellow strip then takes over until 7 — 1.
The resulting sequence of long and short intervals gives the Fibonacci
sequence. The cut-and-project set comprises the projected lattice
points indicated by the red circles.

The underlying higher-dimensional periodicity provides the resulting cut-
and-project sets with a “quasi-periodic” order (a particular case of the general
notion of “almost-periodic”). These cut-and-project sets are now quite well
understood.

The fact that the Fibonacci sequence allows both an inflation and a projection
description should not mislead you to assume that this happens in general.
Indeed, we are looking at a very special situation here, although many of the
“nice” examples are of this kind. A given inflation rule does not automatically
allow for an embedding into a periodic lattice in a higher-dimensional space.
It turns out that the sequence of red and blue points discussed in Section 2
does in fact also have a projection description, but only in a setting where the
periodic lattice lies in a more general space, which is not a finite-dimensional
Euclidean space. But in general even this is not guaranteed. Conversely, given a
cut-and-project description, the projected structure need not possess an inflation
description. In the Fibonacci setup shown in Figure 2, this is only true if the
strip is chosen appropriately; see [2, Example 7.3 and Remark 7.6] for details.



5 Spectral properties: Diffraction

The one-dimensional examples discussed above should provide an intuitive idea
about the type of structures that we have in mind when we talk about aperiodic
order. We were able to understand the order in these examples because we knew
how to construct them from explicit rules. But how can we characterise order
in aperiodic structures without referring explicitly to construction rules? This
is where spectral properties enter, inspired by applications in crystallography,
physics, and materials science.

Experimentally, the atomic order in crystals is probed by looking at the
pattern formed by radiation (such as X-rays) scattered by the material. D The
pattern of scattered radiation is called the diffraction pattern. It provides
information about the order and symmetry of the atomic arrangement. Diffuse
diffraction patterns indicate a deviation from order in the material, whereas
diffraction patterns consisting of discernible points indicate crystal-like order.
Mathematically, the diffraction pattern encodes information about the spatial
autocorrelation of the structure.

To understand what autocorrelation means, let us again consider our point
set P from Section 2. We interpret all blue points b as holes (all radiation
passes through them without scattering), and all red points r as scatterers (they
scatter the radiation shone onto them). To formalize this notion, we introduce
a function u, the scattering strength, with u(r) =1 and u(b) = 0.

The autocorrelation for a given distance m is then the average over the
product of scattering strengths of points at distance m € Z:

N

. 1
a(m) = J\}gnoo SN T 1 n;Nu(wn)u(wn+m)7

where w,, denotes the letter (r or b) at position n in the point set P. The
autocorrelation coefficient a(m) equals the proportion of times you find two
scatterers at distance m along the line (by construction, 0 < a(m) < 1).

The value of a(m) can be explicitly calculated for the point set P. Writing
m = (20 +1)2" with » > 0 and £ € Z, we can calculate that a(0) = 2/3 and

2 1
a(m) = 3 (1— 27“+1) for m # 0.

X-ray crystallography was invented by Max von Laue in 1912. For his discovery, he
received the Nobel Prize in Physics in 1914. Further important developments came from
William Henry Bragg and William Lawrence Bragg, father and son, which won them the
1915 Nobel Prize in Physics. X-ray crystallography is now one of the most important
tools in many scientific fields. For more information see, for example, Wikipedia: https:
//en.wikipedia.org/wiki/X-ray_crystallography.
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The details of this calculation are a little more involved, but can be found in [2,
Remark 9.16].

The diffraction (or diffraction intensity) is obtained from the autocorrelation
by what is called a “Fourier transform”, which essentially means that we interpret
the autocorrelation as a weighted sum of periodic functions — somewhat similar
to the frequency analysis of sounds.® We measure order by analysing the
contributions of each frequency to the autocorrelation [11].

Roughly speaking, the occurrence of a contribution on the Fourier side (that
is, non-zero diffraction) reflects the coherent repetition of a motive or pattern
in our structure.

For the example at hand, the increasingly long periods of powers of 4 in the
point set P give rise to frequencies at rational numbers with powers of 2 in the
denominator. The diffraction intensity in this case is given by the following
function:

49, if keZ,
I(k) = M%, ifk:ZE—flwithneZ,reN,
0, otherwise.

The function I(k) has one crucial property: on the one hand, the set
Ty ={k|I(k) > 0}

is a dense subset of R, meaning that any = € R can be approximated arbitrarily
well by some element of Zy. But on the other hand, for any ¢ > 0, the set

T, = {k|I(k) > t},

consists of isolated points only, meaning that each element of Z; has a neigh-
bourhood that does not contain any other element of Z;.

In any experiment where diffraction intensity is measured, you would see
the set Z; for some value of ¢ (because no detector can detect arbitrarily small
intensities). Hence, you would see a discrete pattern of spots of different intensity.
A sketch of the diffraction intensity pattern of P, which is periodic with period
1, is shown in Figure 3. See [2, Chapter 9.4.4] for more details on this example.

A periodic function with a short period is said to have a high frequency, whereas a periodic
function with a long period is said to have a low frequency. For an introduction to the
Fourier transform see, for example, Wikipedia: https://en.wikipedia.org/wiki/Fourier_
transform. How to use it in our context is explained in [2, Chapters 8 and 9].
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As mentioned previously, the point set P admits an interpretation as a cut-
and-project set. The pure-point nature? of its diffraction-intensity spectrum is
in line with the general result that such sets, under rather general assumptions,
are pure-point diffractive [16].

Figure 3: Sketch of the diffraction pattern associated to the point set P. Here,
a contribution at k is represented by a disc, centred at k, of an area
that is proportional to the diffraction intensity I(k).

6 Advanced topics and recent developments

Diffraction is only one of several “spectral measures” that we could use to study
our point set. We shall briefly mention two other spectral measures that have
been studied extensively: the dynamical spectrum and the Schrédinger spectrum.
This section assumes more mathematical knowledge than the other sections.

The dynamical spectrum is related to the action of translations on our
point set, and to the space of all point sets obtained by such translations and
appropriate limits of translates. The idea of associating a spectral measure to
this dynamical system goes back to Koopman [12] and von Neumann [21]; see
also [15].

Rather than looking at the action of translations on the space of all point sets
itself, we consider the induced unitary action on a space of suitable functions
on this space, in this case the Hilbert space of square-integrable functions. The
dynamical spectrum then consists of the spectrum of this unitary operator,
which contains its eigenvalues and suitable generalisations. It can detect order
beyond the two-point correlations that diffraction “sees”.

The diffraction spectrum and the dynamical spectrum, which is usually
richer, are closely connected. This connection has been known for a long time:
indeed, the original proof that cut-and-project sets (as introduced in Section
4) are, under rather general assumptions, pure-point diffractive was based on
an argument linking the two spectra in the pure-point case [16]. Recent work
has further elucidated the connection between the dynamical and diffraction
spectra, which now is reasonably well understood [5].

The term “pure-point nature” refers to the fact that the entire diffraction image consists
of point-like concentrations of scattered intensity, and does not show diffuse components. A
detailed understanding requires concepts from measure theory.

12



Finally, solid-state physics motivated yet another spectral measure, the
Schrodinger spectrum. In a periodic material such as a crystal, electrons move
“freely”, whereas in a disordered material, electrons remain localised in suitable
bounded regions for all times. Aperiodically ordered structures are somewhere
in between these two. On the one hand, they have motives that keep repeating
throughout the system, but on the other hand they lack the periodicity which
would allow for electrons to move freely.

Indeed, it turns out that in the presence of aperiodic order, electrons behave
in a very peculiar way, they are neither localised nor can they move freely.
Associated to this behaviour are certain properties of the solutions to the
difference equation

un+1)+un—1)+V(n)un) = Euln)

where V' is a given sequence of real numbers and F is a real number. Free motion
of electrons corresponds to the presence of so-called “extended states”, that
is, solutions u that neither decay nor increase at infinity. On the other hand,
localisation in space of electrons corresponds to the presence of square-summable
solutions ©.19 The first scenario occurs for periodic V', whereas the second
scenario occurs for random V', obtained for example by repeatedly tossing a coin
to determine the values of the sequence V. If instead we consider a V that is
aperiodically ordered (for example, V' may be given by the Fibonacci sequence),
then the solutions u are neither extended, nor square-summable, which in turn
is the signature of the peculiar, anomalous electron motion alluded to above.
We refer to [9] and references therein for a recent comprehensive review of the
results in this area, and to [10] for a detailed analysis of the Fibonacci case.

Although quite a bit is now known about the spectral properties of Schrédinger
operators for large classes of one-dimensional examples, there is currently no
satisfactory understanding of the relation between the spectral properties of
these systems and the other two spectral properties discussed earlier, if indeed
such a relation exists. In some respect, these spectral measures behave in
opposite ways; in diffraction and dynamical spectra, point spectra indicate order
in a system, while in the Schrodinger case, a periodically ordered system shows
a continuous spectrum. It is our hope that further investigation of aperiodically
ordered systems may shed some light on this open question.

Square-summable means ZZO: lu(n)|? < oo.

—o0
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7 Summary

In this snapshot, we essentially limited the discussion to one-dimensional point
sets — that is, tilings by intervals. However, aperiodic order is not limited
to one dimension. Quite on the contrary: some of the beauty of the subject
becomes apparent in higher-dimensional aperiodic tilings. The most famous
example is Penrose’s tiling [14], of which there exist a number of variants; see
[2, Chapter 6.2]. One of the versions featuring two rhombic tiles is shown in
Figure 1b. Similar to the one-dimensional Fibonacci system, Penrose’s tiling
can be described either as a two-dimensional inflation tiling or as a cut-and-
project set, in this case using a lattice in at least four-dimensional space. Its
diffraction is of pure-point nature and shows perfect tenfold symmetry, which is
incompatible with periodicity by what is called the “crystallographic restriction”,
which specifies the rotational symmetries that are compatible with periodicity;
see [2, Chapter 3.2].
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Figure 4: A patch of Joan Taylor’s llama tiling. One llama cluster has been
highlighted in red.
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A more recent, stunning example is Joan Taylor’s llama tiling shown in
Figure 4. It is related to the open question mentioned at the beginning, of
whether there is a planar shape that tiles the plane but does not allow any
periodic tiling. In the llama tiling, the tiles are hexagons of two different types
or “chirality” (one of which is kept white in the figure), and the name refers to
the fact that the smallest connected cluster of tiles of one colour resembles the
outline of a llama. For more details about this tiling, we refer to [2, Example 6.6].

Aperiodic order is a fascinating area of mathematics with applications in
the world of crystals, which has also inspired works in arts and architecture.
It highlights deep questions about the concept of order which lies at the heart
of our scientific approach to understand nature. Spectral properties provide
one approach to understand and quantify order in a system, but we are still far
from a complete classification of ordered structures.

15



Further reading

We recommend the following snapshots for some further interesting discussions
on tilings and Fibonacci numbers

e Snapshot 4/2015 Friezes and tilings by Thorsten Holm,
e Snapshot 2/2016 Random sampling of domino and lozenge tilings by Eric
Fusy.

Image credits

Figure la is cropped and resized from [6]. This file is licensed under the
Creative Commons Attribution 4.0 International license.

All other images were created by the authors.
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