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In this snapshot we present the concept of topologi-
cal recursion — a new, surprisingly powerful formalism
at the border of mathematics and physics, which has
been actively developed within the last decade. After
introducing necessary ingredients — expectation val-
ues, random matrices, quantum theories, recursion
relations, and topology — we explain how they get
combined together in one unifying picture.

1 Motivation and history

The formalism of topological recursion was discovered in [1, 4] and has been
actively developed within the last decade. It already found a lot of applications
in both mathematics and physics [1, 2, 3, 4, 5]. Indeed, the idea of topological
recursion is quite interdisciplinary: While it originates from theoretical and
mathematical physics, it also finds many applications in pure mathematics.
Deep connections between mathematics and physics, which are uncovered by
the topological recursion, provide one reason why this subject is so fascinating.

Roughly speaking, the topological recursion enables the computation of
expectation values. Originally this recursion was developed in order to compute
expectation values for particular (random) ensembles of matrices. However,
very surprisingly, it turned out that in many seemingly unrelated fields, various
expectation values can be computed following the same scheme, prescribed by
the topological recursion. In other words, the topological recursion provides
a universal formalism, or a set of tools, which can be taken advantage of



independently of the origin or details of a given problem. This is the second
reason why this formalism is so fascinating.

We start our presentation by explaining what kind of expectation values the
topological recursion computes, and how it relates to probabilities in mathe-
matics and to quantum theories in physics. Furthermore, as its name indicates,
this formalism relates certain recursion relations with the field of mathematics
known as topology. In the following we also explain what we mean by these
notions. We conclude by stating how all these ingredients — expectation values,
random matrices, quantum theories, recursion relations, and topology — get
combined together in one unifying picture.

2 Expectation values and random matrices

In modern mathematics and physics, probability plays a fundamental role. In
physics, this concept is particularly important in quantum theories. By the very
nature of quantum physics, one can only indicate probabilities, or expectation
values, of some events, rather than predict their precise outcome.

The expectation value can be seen as the long-run average of a quantity when
considering many instances of an experiment to obtain this quantity. Let us
quickly review how one computes the expectation value in the simplest example
of rolling dice. If each face of a die (numbered by k = 1,2,...,6) has the same
probability p(k) = % to end up on top when rolling the die then we can write
the expectation value as
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The symbol { ) denotes the expectation value of some quantity, in our example
of the number %k on the top face when rolling dice. To compute the expectation
value, we sum over the whole set of possible outcomes k, multiplied with
their probabilities p(k). The function p which assigns to each outcome k its
probability p(k) is also referred to as the measure. This probability measure
is already normalized so that the probabilities of all outcomes get summed
to 1. For a more general measure, this sum may not be 1. In this case, a
normalization can be taken into account by dividing each expectation value by a
constant Z which is the sum of the probabilities of all outcomes, or, equivalently,
the expectation value of the constant quantity 1. In case of rolling dice, Z is
automatically equal to 1:
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Z=(1)=) 1-pk)=6--=1. (2)
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Computations of expectation values in more involved examples, say in quan-
tum theories, can be done analogously to the case of rolling dice — however,
various ingredients of these computations are much more complicated. First
of all, one typically deals with an infinite and continuous range of possible
outcomes (instead of a finite number, such as six in rolling dice). Therefore
the summation 22:1 over the k outcomes has to be replaced by integration
over some continuous variable M, which is denoted by [ dM. Furthermore, the
probability p(k) has to be replaced by an appropriate integration measure. In
quantum theories, the integration measure takes the form of the function eV (),
This is the exponential of a certain function V (M), called the action, divided by
the parameter A referred to as the Planck constant™. With this more general
notation, the overall normalization (2) takes the form

Z=(1)= /dMe%WM), (3)

and it is referred to as the partition function. The partition function does not
have to be identically equal to 1, it does not even have to be a constant. Instead,
typically it is a function of some additional parameters, for example encoded
in V/(M). Imagine that V(M) = >, ¢;M* is simply a polynomial in M - in this
case these additional parameters could be identified with the coefficients ¢; of
this polynomial.

Rolling a die is a probabilistic system as the outcome can not be predicted
with certainty. Another interesting class of probabilistic systems are random
matrices. It turns out that random matrices provide interesting toy models
of quantum systems and quantum field theory; a crucial property of quantum
systems is that their evolution is indeterministic, and all we can compute are
probabilities of various processes (for example where a particle is detected, how
particles scatter, and so on). From a mathematical point of view, because of the
probabilistic nature of quantum mechanics, a quantum theory can be regarded
as some specific probability theory.

In those random matrix models, elementary degrees of freedom are repre-
sented by matrices, that is arrays of numbers of size N x N, of the following
form:

Here we call k the “Planck constant” because it appears in equation (3) in an analogous
way as in the definition of the path integral in quantum mechanics. This name also indicates
that % is a small number, appropriate to conduct a perturbative expansion. In physics, the
Planck constant is one of the fundamental constants of Nature with an approximate value
of 1.054 - 10734 J.s. It appears in the Heisenberg Uncertainty Relation (which states that
simultaneous measurement of location and momentum of an object is impossible) and in
many fundamental equations, for example the Schrédinger Equation.
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Matrices have analogous properties as ordinary numbers: they can be added,
they can be multiplied, and so on. In particular, one can compute a polynomial
V(M) =", t; M" with a matrix argument M, or any other function, for example
the exponential function. One also defines the trace of a matrix, denoted Tr, as
the sum of all diagonal elements:

N
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It is particularly interesting for the field of quantum systems to consider
matrices of very large size N. In this case, the inverse of the parameter IV can
be chosen very large and hence can for example be identified with the Planck
constant, b = +-. Then the partition function (3) (generalizing (2)) takes the
form

Z = /dMeN“WM), (6)

where [dM denotes appropriate integration over matrices and V(M) is a
polynomial (or some more complicated function) called the potential. One can
also consider more involved expectation values — generalizing (1) in case of
rolling dice — for example involving traces of powers of a matrix

(Tr M%) = /dM (Tr MF) N VD), (7)

or products of such traces. Using the expression for a geometric series ﬁ =

Yreoa® =1+a+a®. .., it follows that expectation values (Tr M*) can be
identified as coefficients in a generating series

<Tr:17 3M> =zt <Tr177]\14x71> = ’ix_k_l<Ter>. (8)

This (z-dependent) expectation value is called the resolvent. More generally, one
can consider multi-resolvents, defined as expectation values of products of traces
of the above form. As such multi-resolvents essentially encode information about
all possible expectation values, it is very useful to compute them in a random
matrix model under consideration, or any other quantum or probabilistic theory
which has features similar to matrix models.



However, it turns out that the computation of such multi-resolvents is very
difficult. Instead of computing their exact form, one may try to compute their
Taylor series expansion in the Planck constant h, or equivalently — in the
context of matrix models — in powers of % This is one reason why considering
large sizes of matrices N is useful: for large IV, its inverse % is a small parameter,
which can be considered as an expansion parameter. Taking N to be large
is called the ’t Hooft limit, or simply large N limit of the family of matrix
models. Computation of expectation values in such a limit is analogous to the
computation of expectation values in the expansion in / in quantum mechanics,
which is often referred to as the WKB expansion (named after Gregor Wentzel,
Hendrik Anthony Kramers and Léon Brillouin).

Let us therefore consider a multi-resolvent that depends on several generating
parameters x1,...,x, and consider its expansion in powers of %:
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<(T‘"xliM)”'(foniM)>:§%N22”-Wﬁ<w1,-~,xn). (9)

It follows that to solve a random matrix model — or, more generally, some
quantum or probabilistic theory — we need to compute all the coefficients
W9(xy,...,2,) in the above expansion. It turns out that the topological
recursion provides a way to conduct such a computation, as we explain in what
follows in Section 4. However, let us first recall some basic facts concerning
recursion relations in general.

3 Recursion relations

We pause now the discussion of expectation values in random matrix models,
and quickly recall what is meant by recursion relations in general. Such relations
provide a recipe to compute successively a series of quantities such that each
such quantity depends on those computed earlier. An example of quantities
that can be computed recursively are Fibonacci numbers Fj: each of those
numbers is the sum of the two preceding numbers, which can be written as

Fr = Fpo1 + F_o. (10)

To compute a Taylor series expansion in x (centered at 0) means to express a function f(x)
in the form EZ‘;O arz®. The geometric series that we used before is an example for a Taylor
series expansion. When limiting this expression to the first terms, we get a polynomial which
is an approximation of the function.

Taking N to be large corresponds to taking the Planck constant & to be small.

More precisely, the expression (9) is correct once a suitable notion of multi-point expectation
value is introduced; this would require more technical discussion, which we skip in this note.



Introducing initial Fibonacci numbers as Fy = 0 and F; = 1, from the
relation (10) one can compute the other Fibonacci numbers one by one:
Fob=140=1F3=1+1=2, Fy = 3, F5 = 5, and so on. Fibonacci
numbers arise in many problems, not only in mathematics, but also in biology,
where they describe for example the arrangement of leaves on a stem.

Another set of numbers, closely related to the main topic of these notes, are
Catalan numbers, defined recursively by

k—1
Cr = Z Ci Cr—i1 (11)
i=0
and Cy = 1. From this relation one can determine Cy = 1-1 =1, Cy =
1-141-1=2,C3 =5, Cy =14, and so on. Catalan numbers also arise in a
plethora of problems, for example C% is the number of ways in which a polygon
with k + 2 sides can be divided into triangles.

4 Topological recursion for expectation values

We can finally explain what the topological recursion is. Recall that information
about a random matrix model is essentially encoded in a set of expectation
values W4(z1,...,zy,) defined in (9). It was shown in a couple of research
papers such as [1, 4] that these expectation values can be computed recursively,
using a relation that schematically takes the form

g
Wgﬂ ~ W{Lz];zl + Z Z W|ZJ|+1W5:\ZJ\+17 (12)
i=0 JC{1,...,n}
where in the summations the terms (i, J) = (0,0) and (¢, J) = (g,{1,...,n})
are omitted, and with appropriate initial conditions. This is the topological
recursion that we have been after, and it enables to compute expectation
values W9 11(21,...,2,) from the knowledge of expectation values whose upper
index is not larger and whose lower index is at most one higher than the
respective indices g and n + 1 of the expectation value W7, which we aim to
compute. In Formula (12), the sum over J denotes the sum over all subsets of
labels 1,2,...,n.

To avoid various technical details, Formula (12) has been simplified in our
presentation. In particular, the dependence of various terms W9 on x1,z2,. ..
has been suppressed; to compute the precise dependence on x, in the right hand
side of Formula (12) some additional residue computation must be performed.
All such details are hidden behind the ~ sign (which we wrote instead of =), and
for our purposes it is not necessary to discuss them. The most important aspect
we are interested in is how the indices g and n appear in the relation (12).



Note that if we set n = 0 then J is necessarily the empty set, so that the
sum over J is irrelevant in Formula (12). If in addition we ignore the first
term Wg;zl in the right hand side in Formula (12) then this recursion reduces
simply to the recursion for the Catalan numbers (11) (with shifted indices). It
follows that the Catalan numbers provide an underlying structure of all models
governed by the topological recursion (and in each such model there is a set of
special expectation values that satisfy the Catalan recursion) — this is therefore
one more important role that Catalan numbers play! For this reason, one can
also regard the topological recursion as a highly non-trivial generalization of
the Catalan recursion (11).

5 Why topological?

Finally we should explain what the recursion that we are discussing has to do
with topology. Topology is a branch of mathematics that deals with features of
objects such as surfaces and classifies them up to continuous deformations, that
is scaling, squeezing, twisting but not cutting or gluing. For example, curved
surfaces such as in Figure 1 are classified by how many “holes” or “handles’
they have. The number of holes in a surface is called its genus. A sphere has
genus zero, and topologically it is the same as, say, a cube or a tetrahedron.
A donut has genus one, and topologically it is the same as a cup with a single
handle. One aim of topologists’ work is to classify geometric objects in various
dimensions in a similar spirit, up to continuous deformations.

N

It turns out that the coefficients W2 that appear in Formula (9) can be
interpreted as characteristics of surfaces, with g denoting the genus of such
a surface, and n the number of its punctures (marked points on the surface).
With such an identification, the topological recursion (12) can be schematically
represented as in Figure 2. The figure shows how a surface of a given genus
and with a given number of punctures (represented by intervals) can be split
up in different ways, by distributing the genus and punctures on two surfaces.
Moreover, the first term in the right hand side in the formula for the topological
recursion (12) represents an additional correction which is the first term on the
right hand side of the equation in the figure.

)

Figure 1: Surfaces of genus 0, 1, and 2.
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Figure 2: A schematic representation of the topological recursion. The sum sign
in the last term represents the summation over all possible ways of
splitting the genus and the number of punctures among two surfaces.

In fact this figure is not only a graphical analogy of the mathematical
Formula (12) — it has deep meaning, especially in string theory. In string
theory, one considers one-dimensional strings, which span two-dimensional
surfaces (called “string worldsheets”) while moving in spacetime. Such strings
can also interact, get connected or get separated. String theory is a quantum
theory and to solve it one needs to compute probabilities of various such
interactions. It turns out that in one particular class of string theory models,
the graphical relation from Figure 2 represents interactions of strings moving in
spacetime. In particular W2 denotes a probability of a certain process involving
a string worldsheet of genus g. In those string theory models, the relation (12)
enables recursive computation of probabilities of certain processes involving
interactions of strings.

It is also important to note that the quantity W¢ is defined in Formula (9)
as a coefficient of N27297", that is, for a fixed n it corresponds to a particular
value of g, which appears as the power of N. This means that the genus g of
surfaces represented in Figure 2 is determined by the power of N. In other
words, the expansion of expectation values in powers of N has a topological
interpretation. For this reason, the large IV expansion is also often referred to
as the topological expansion.

6 Summary

To sum up, we have presented the topological recursion as a set of recursion
relations (12) that enable the computation of expectation values W2 (1, ..., z,)
defined in Formula (9). Our presentation was based on a random matrix model
interpretation, with NV denoting the size of matrices. However, surprisingly,
the same set of recursion relations (12) arises in many other problems in
mathematics and physics, seemingly unrelated to random matrices. We already
pointed out that the topological recursion has a beautiful interpretation in some



particular class of string theory models, with the graphical representation in
Figure 2 encoding string worldsheets. To mention just one purely mathematical
application, it enables computation of various knot invariants, which characterize
knots (such as those that can be tied with a piece of rope), and which are objects
of great interest for knot theorists as can be seen for example in [2]. This and
other applications of the topological recursion (for example, in quantization
formalism or mirror symmetry) are discussed also in [5].

In the last few years, dozens of research papers have been written, and a
number of conferences in various places — including Oberwolfach — have been
organized, which attracted many mathematicians and physicists who are trying
to understand the universal character and unexpected power of the topological
recursion. The research in this topic is ongoing and we are convinced that
many fascinating properties of the topological recursion are still to be uncovered.
Everyone who is interested in interdisciplinary modern developments at the
frontiers of mathematics and physics is encouraged to join our efforts!
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