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Aquatic locomotion is a self-propelled motion through
a liquid medium. It can be of biological nature (fish,
microorganisms,. . .) or performed by robotic swim-
mers. This snapshot aims to introduce the reader to
some of the challenges raised by the mathematical
modelling of aquatic locomotion, even in seemingly
very simple cases.

1 Introduct ion

Understanding the propelling mechanism of living organisms is a question
which fascinated scientists for centuries. The first text devoted in particular
to this question is, perhaps, Aristotle’s De Motu Animalium (Movement of
Animals) [12], written in the 4th century BC. The subject has been discussed by
G. A. Borelli (considered to be the father of biomechanics), in a book borrowing
the title of Aristotle’s treatise [4], which has been first edited in 1680. Borelli
utilized mathematics to prove his theories and firstly considered the possibility of
building machines using locomotion strategies inspired by animals; for example,
a submarine. Now, several centuries after Borelli’s work, the literature on
the mathematical modelling of aquatic locomotion has become overwhelming.
Excellent introductions to this subject can be found in the monograph of
Childress [5] or the collection of papers of Lighthill [9]. The interest in designing
robots imitating the swimming mechanism of animals (biomimetism) increased
after the famous paper of Triantafyllou and Triantafyllou [17] about robotic
tuna fish, and it is nowadays a major research subject.
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In this snapshot we focus on the situation when forces due to the viscosity 1

are much larger than forces due to acceleration. Consequently, the models
described below are not appropriate for understanding macroscopic animal
swimming in water. They do, however, give quite an accurate description
of the locomotion of microscopic organisms in various biological fluids. As
mentioned in a famous paper of Purcell [13], these organisms evolve in a world
which is “quite different form the one that we have developed our intuitions in”.
Locomotion in this world is a difficult task. For a macroscopic swimmer (a
human, for instance), equivalent swimming conditions are described in [13]:

Well you put him in a swimming pool that is full of molasses, and
the[n] you forbid him to move any pare [sic.] of his body faster than
1 cm/min. Now imagine yourself in that condition; you’re under the
swimming pool in molasses, and now you can only move like the
hands of a clock.

Before continuing the discussion, it is important (at least from a mathemati-
cian’s viewpoint) to define what swimming means in the context of this snapshot.
We adopt here a definition from [13], which states that an object swims if it
changes its position using “cyclic deformations of the body on which there are
no external torques or forces except those exerted by the surrounding fluid”.

2 The scal lop theorem and related quest ions

To translate the above definition of swimming into a mathematical language,
we first consider a very simple swimmer which can be seen as a toy model of
a scallop. A real scallop swims by opening its shell slowly and closing it fast.
Our swimmer exists in a two-dimensional world 2 and is composed of two arms
attached at one end (standing for the two halves of the real shell). These arms
can be opened and closed (together) up to the angle θ formed by each arm with
a given line Ox (see the left side of Figure 1). The fluid is supposed to fill the
remainder of the plane. The symmetry of the swimmer’s shape with respect to
the axis Ox at each instant t, suggests that the only possible displacements of
our idealized scallop are in the direction of this axis. In spite of the simplicity
of the swimmer described above, the mathematics necessary to understand
this system is quite complicated. There is not, as far as I know, a rigorous
mathematical proof that the idealized scallop above can indeed swim in water.

1 Viscosity can be thought of as describing a fluid’s resistance to objects moving through it.
2 By this we mean the swimmer can move only left, right, up or down (not towards or away
from the reader), and these are also the only directions that forces can act on it by the fluid
(remember, though, we neglect forces due the swimmer’s acceleration, such as gravity.)
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Figure 1: A simplified representation of a scallop (left side) and Purcell’s three-
link swimmer (right side).

To make this discussion more precise we need some notation. For t > 0 we
denote by h(t) the position of the scallop at instant t, as indicated in the left
side of Figure 1. According to Newton’s second law of motion, the equation
describing the evolution of the swimmer’s position is

mḧ(t) = f(t), (2.1)

where m denotes the mass of the swimmer, ḧ is the second derivative of h 3

(the acceleration of the swimmer) and f(t) is the force exerted by the fluid
on the swimmer at instant t. In general, f(t) depends in a very complicated
manner on all the history of the function h and of its derivatives up to instant t.
More precisely, if we assume that the surrounding liquid is water, then f(t) is
determined by the solution of the incompressible Navier–Stokes equations in
the fluid domain. This is a complex system of equations, and is very difficult to
solve. This is why we focus on the case when the surrounding fluid is much more
viscous than water and that the maximal rotation velocity and acceleration of
the scallop’s arms are not too large. In other words, as mentioned above, we
assume that the forces due to the acceleration of the swimmer are negligible
with respect to viscous forces. Mathematically, this means that the left-hand
side of (2.1) vanishes (we can assume the acceleration ḧ equals zero). Also, one
of the coefficients, called the Reynolds number (see, for instance, [5] for a precise

3 The notation ḣ to represent the derivative of h is called Newton’s notation or dot notation,
and is used to denote a derivative with respect to time.
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definition of this quantity), which occurs in the nonlinear Navier–Stokes system
mentioned above, becomes very small. Therefore, all the terms containing this
coefficient are neglected. Consequently, the equations describing the motion of
fluid particles become linear and they do not contain any acceleration terms,
forming the simpler Stokes system. Now the right-hand side of (2.1) can be
written as

f(t) = ḣ(t)f1(θ(t)) + θ̇(t)f2(θ(t)), (2.2)

where ḣ, and θ̇ are the derivatives of h and θ, respectively. In other words, ḣ is
the scallop’s velocity and θ̇ is the angular velocity of its arms. The terms f1
and f2 are real continuous functions, with f1(θ) 6= 0 for every θ 6= 0.

Using the above assumptions and writing g(θ) = − f2(θ)
f1(θ) , Equation (2.1)

becomes
ḣ(t) = g(θ(t))θ̇(t). (2.3)

Solving (finding h(t)) this equation will enable us to describe the movement of
the scallop. The simple result below is a particular case of the so-called “scallop
theorem” due to Purcell.

Proposition 2.1. Assume that θ is a function of class C1 and periodic of
period τ > 0. Then any function h verifying (2.3) satisfies h(0) = h(τ).

Proof. Let G : R→ R be such that G′ = g. Integrating (2.3) on [0, τ ] yields

h(τ)− h(0) = G(θ(τ))−G(θ(0)) = 0, (2.4)

which ends the proof.

Let us see what the proposition effectively says. The function θ describes
the angle of the scallop’s arms. The condition that it be of class C1 means the
movement of the arms is smooth. This condition, together with the constraints
on f1 and f2 (and, hence, g), allows us to invoke the fundamental theorem of
calculus. This theorem ensures the existence of the function G in the proof and
of the leftmost equality in Equation (2.4) 4 . Saying that θ is periodic of period
τ means that τ is the time it takes the scallop to complete a cycle of opening
and closing its arms. In other words, at time t = 0 (the beginning) the arms
are closed and so the angle θ(0) equals zero, but so also at time t = τ , and
we get 0 = θ(0) = θ(τ) = θ(2τ) = · · ·. This gives us the rightmost equality in
Equation (2.4). Putting all these together we get that the scallop’s position
at the start h(0) is the same as h(τ) – its position at time τ . Proposition 2.1
actually states that under all our assumptions, the idealized scallop cannot
swim!

4 Can you spot the usage of the chain rule of differentiation?
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To obtain an idealized animal able to swim in a very viscous fluid, it suffices
to add one hinge to the idealized scallop described above. We obtain in this
way the 3-link swimmer described in the right side of Figure 1. This swimmer
has two arms – one at each end. Each arm can be opened independently – the
front one up to angle θ1 and the back one up to angle θ2. It can be shown that,
not only can this creature move its center of mass h(t) during a stroke (this
has been remarked in [13]), but that it can be steered to any final position by
appropriately choosing the time periodic functions θ1 and θ2 (see, for instance,
Dal Maso et al. [7] and references therein).

3 Ci l iates and control theory

In this section we will move on to a three-dimensional swimmer, albeit still
assuming that gravity pulling the swimmer down can be neglected. We begin
by remarking that swimmers are often propelled by deformations which are
symmetric with respect to the direction of locomotion (an example is the “scallop”
in the left side of Figure 1). Assuming, again, that the fluid is very viscous,
that it fills the whole space and adopting some standard approximations, the
equations describing the movement of the swimmer are written in a form which
can be seen as a generalization of (2.3) (compare the two), which is

ḣ(t) =
m∑
k=1

θ̇k(t)gk(θ1(t), . . . θm(t)). (3.1)

In the above equation, θk (1 6 k 6 m) are the functions controlling the shape of
the swimmers (as θ controlled the shape of the scallop’s arms), and the functions
gk (1 6 k 6 m) are not, in general, explicitly known. As in the previous section,
we try to find a case where these functions are determined by simple formulas.
An example of such a case is a simplified model for the swimming of ciliates.
Ciliates are swimming microorganisms which exploit the bending of a large
number of small and densely-packed protrusions, termed cilia, in order to propel
themselves in a viscous fluid. In this model for ciliary locomotion, instead of
the dynamics of the individual cilia, we consider time-periodic displacements of
the points on the surface of the microorganism; see Taylor [16], Blake [3] or the
recent review paper of Lauga and Powers [8] for a detailed description of this
model. We assume that, in its initial configuration, the swimmer occupies a
ball of radius 1 and that the points on the surface of the ball move in the same
way on each meridian. More precisely, for each t > 0, the point x on the surface
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Figure 2: The ball swims in the direction of ex by moving a generic bound-
ary point of spherical coordinates (1, ϕ, ξ) to a point of spherical
coordinates (1, ϕ, θ) with θ = χ(ξ, t).

of the ball of spherical coordinates (1, ξ, ϕ) 5 , is displaced to a point of whose
spherical coordinates are (1, θ, ϕ), where

θ = χ(ξ, t) = ξ + θ1(t)q1(ξ) + θ2(t)q2(ξ) (ξ ∈ [0, π], t > 0). (3.2)

This means that a point on the surface of the ball (radius 1), stays at the same
horizontal angle (ϕ) and changes only its vertical angle (θ); see Figure 2. The
angle θ is dependent on time and the angle ξ. This dependence is encoded by
the function χ involving the functions θ1, θ2, q1 and q2. In Formula (3.2), the
functions q1 and q2 are supposed to be given and smooth, with qi(0) = qi(π) = 0
for i ∈ {1, 2}. It can be shown (see, for instance, [11] or [15]) that under the
assumption that our spherical swimmer moves in a very viscous medium, and
that the swimmer is centered at the origin at time t = 0, the equation describing
the displacement h(t) of its center is

ḣ(t) =
2∑
i=1

θ̇i(t)gi(θ1(t), θ2(t)), h(0) = 0, (3.3)

5 Each point in the three-dimensional space can be represented as a triple (r, θ, ϕ), where r
is its distance from the origin, θ its angle above (or below) the ey–ez plane, and ϕ its angle
with respect to the ey axis. Such a representation is called spherical representation.
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where it has been demonstrated that

gi(θ1(t), θ2(t)) =
∫ π

0
χ′
i(ξ)F(χ(ξ, t))dξ (i ∈ {1, 2}, t > 0), (3.4)

F(x) = 1
8 (sin(2x)− 2x) (x ∈ R), (3.5)

and χ has been defined in (3.2).
The main result in this section, proved in [15], states as follows:

Theorem 3.1. Assume that the functions q1 and q2 in (3.2) are such that∫ π

0
[q′

1(ξ)q2(ξ)− q1(ξ)q′
2(ξ)] sin2 ξ dξ 6= 0. (3.6)

Then for every h0 ∈ R and ε > 0, there exist τ > 0 and smooth functions
θ1, θ2 : [0, τ ]→ R, with

θ1(0) = θ2(0) = θ1(τ) = θ2(τ) = 0,
|θk(t)|+ |θ̇k(t)| 6 ε (t ∈ [0, τ ]),

(3.7)

such that the solution h of (3.3) satisfies h(τ0) = h0.

Condition (3.6) in the above theorem means, roughly speaking, that the two
functions q1 and q2 are independent. It is very easy to find such functions, a
typical example being q1(ξ) = sin ξ, q2(ξ) = sin(2ξ). The properties in (3.7)
mean, basically, that we can find functions θ1, θ2 (describing the change of
angle of the points on the surface of the swimmer) that are periodic and not
varying too much.

Giving the detailed proof of Theorem 3.1 would require some preparation,
so we only sketch here the main steps of this proof. Readers not inclined to
read the proof now are invited to jump to the conclusions in Section 4. The
first one is to remark that, according to (3.7), we also have to control the final
value of the functions θ1 and θ2. Therefore, it is useful to describe our system
in terms of control theory. Control theory is the study of the possibility of
ensuring a dynamical system will end up in a given state, if we can control it
with some control functions. In these terms, our system can be written as the
three dimensional vector

X(t) =

h(t)
θ1(t)
θ2(t)

 ,
and, in our case, the control functions are θ̇1(t) and θ̇2(t). With this notation,
Equation (3.3) becomes

Ẋ(t) = θ̇1(t)η1(X(t)) + θ̇2(t)η2(X(t)), (3.8)
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where the functions η1, η2 : R× [0, π]2 → R3 are defined by

η1(X) =

g1(θ1, θ2)
1
0

 , η2(X) =

g2(θ1, θ2)
0
1

 , (3.9)

with g1 and g2 given by (3.4). Now that we have written our system in the form
(3.8), we can apply a well-known theorem from control theory due to Chow (see,
for instance, [6, Section 3.3]) which, together with condition (3.6), gives the
result of Theorem 3.1. In less technical terms, this final result means that under
suitable conditions, there are periodic movements of the swimmer’s surface that
will enable it to swim to any given point h0. We refer to [15] for the detailed
proof.

4 Conclusions, comments and open quest ions

The mathematical models considered above describe locomotion in a fluid
when acceleration forces are negligible with respect to viscosity forces. A
mathematically interesting feature of these models is that they can be described
using only ordinary differential equations 6 , as in (3.8). These models are
relatively simple in the cases considered in this snapshot, when the swimmer-
fluid system fills the whole space, but they become quite complex in the
presence of walls; see, for instance, Alouges and Giraldi [1]. The question,
tackled in Theorem 3.1, of the existence of controls steering the swimmer to
a prescribed final position is important from a theoretical viewpoint but, in
view of applications, optimization problems 7 play a central role. We refer
to Michelin and Lauga [11] or Lohéac et al. [10] for studies in which various
optimization question of this type have been considered.

The main challenge to be raised in the years to come consists of understand-
ing the propelling mechanism of macroscopic swimmers (like real or robotic
fish). This requires to consider both inertial and viscosity forces, leading to
models based on the Navier–Stokes evolution partial differential equations 8 .
We refer to San Martin et al. [14] for a description of such models and their
mathematical analysis, and to Bergmann and Iollo [2] and references therein

6 Ordinary differential equations are such that describe a relation between a function and
its derivative.
7 Optimization problems are concerned with finding the “best” solution to a problem. For a
discussion of such problems, see Snapshot 2/2015 Minimizing energy by C. Breiner.
8 Partial differential equations are differential equation relating multivariable functions and
their partial derivatives. For a discussion of such equations see, for example, Snapshot 7/2015
Darcy’s law and groundwater flow modelling by B. Schweizer.
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for numerical simulations of this complex system. However, the mathematical
research driven by these problems is at an embryonic stage. Obtaining control-
lability results in the case of fish-like swimming or developing fast numerical
methods, efficient for optimization purposes, are fascinating challenges, at the
interface of mathematical fluid dynamics and control theory.

9



Image credi ts

All figures by the author.

References

[1] F. Alouges and L. Giraldi, Enhanced controllability of low Reynolds number
swimmers in the presence of a wall, Acta Applicandae Mathematicae 128
(2013), 153–179.

[2] M. Bergmann and A. Iollo, Modeling and simulation of fish-like swimming,
Journal of Computational Physics 230 (2011), no. 2, 329–348.

[3] J. R. Blake, A spherical envelope approch to ciliary propulsion, Journal of
Fluid Mechenacis 46 (1971), 199–208.

[4] G. A. Borelli, On the movement of animals, Studies in History and Philos-
ophy of Science, vol. 37, Springer-Verlag, 1989.

[5] S. Childress, Mechanics of swimming and flying, Cambridge Studies in
Mathematical Biology, vol. 2, Cambridge University Press, Cambridge,
1981.

[6] J. M. Coron, Control and nonlinearity, Mathematical Surveys and Mono-
graphs, vol. 136, American Mathematical Society, Providence, RI, 2007.

[7] G. Dal Maso, A. DeSimone, and M. Morandotti, An existence and unique-
ness result for the motion of self-propelled microswimmers, SIAM Journal
on Mathematical Analysis 43 (2011), no. 3, 1345–1368.

[8] E. Lauga and T. R. Powers, The hydrodynamics of swimming microorgan-
isms, Reports on Progress in Physics 72 (2009), Paper no. 096601.

[9] J. Lighthill, Mathematical Biofluiddynamics, SIAM, 1975.

[10] J. Lohéac, J. F. Scheid, and M. Tucsnak, Controllability and time optimal
control for low Reynolds numbers swimmers, Acta Applicandae Mathemat-
icae 123 (2013), 175–200.

[11] S. Michelin and E. Lauga, Efficiency optimization and symmetry-breaking
in a model of ciliary locomotion, Physics of Fluids 22 (2010), 111901.

[12] M. C. Nussbaum, Aristotle’s de motu animalium: Text with translation,
commentary, and interpretive essays, Princeton University Press, 1985.

10



[13] E. M. Purcell, Life at low Reynolds number, American Journal of Physics
45 (1977), 3–11.

[14] J. San Martín, J. F. Scheid, T. Takahashi, and M. Tucsnak, An initial
and boundary value problem modeling of fish-like swimming, Archive for
Rational Mechanics and Analysis 188 (2008), no. 3, 429–455.

[15] J. San Martin, T. Takahashi, and M. Tucsnak, An optimal control approach
to ciliary locomotion, 2014; availabel at: http://hal.archives-ouvertes.fr/hal-
01062663/PDF/sub_zamp_aug_2014.pdf.

[16] G. I. Taylor, Analysis of the swimming of microscopic organisms, Proceed-
ings of the Royal Society of London 209 (1951), 447–461.

[17] M. S. Triantafyllou and G. S. Triantafyllou, An efficient swimming machine,
Scientific american 272 (1995), no. 3, 64–71.

11



Mar ius Tucsnak is a professor of
Mathematics at Inst i tut El ie Car tan at the
Universi ty of Lorraine.
Mar ius.Tucsnak@univ- lorraine.fr

Mathematical subjects
Analysis

Connect ions to other f ie lds
Engineer ing and Technology, Li fe Science

License
Creat ive Commons BY-NC-SA 4.0

DOI
10.14760/SNAP-2018-008-EN

Snapshots of modern mathematics from Oberwolfach provide exciting insights into
current mathematical research. They are written by participants in the scientific
program of the Mathematisches Forschungsinstitut Oberwolfach (MFO). The
snapshot project is designed to promote the understanding and appreciation of
modern mathematics and mathematical research in the interested public worldwide.
All snapshots are published in cooperation with the IMAGINARY platform and
can be found on www.imaginary.org/snapshots and on www.mfo.de/snapshots.

Junior Edi tor
Daniel Kronberg
junior- edi tors@mfo.de

Senior Edi tor
Car la Cederbaum
senior- edi tor@mfo.de

Mathematisches Forschungsinst i tut
Oberwolfach gGmbH
Schwarzwaldstr. 9 –11
77709 Oberwolfach
Germany

Director
Gerhard Huisken

mailto:Marius.Tucsnak@univ-lorraine.fr
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://dx.doi.org/10.14760/SNAP-2018-008-EN
http://www.imaginary.org/snapshots
http://www.mfo.de/snapshots
mailto:junior-editors@mfo.de
mailto:senior-editor@mfo.de

	The mathematics of aquatic locomotion
	Introduction
	The scallop theorem and related questions
	Ciliates and control theory
	Conclusions, comments and open questions


