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A MCKAY CORRESPONDENCE FOR REFLECTION GROUPS

RAGNAR-OLAF BUCHWEITZ†, ELEONORE FABER, AND COLIN INGALLS

Dedicated to the memory of our friend and collaborator Ragnar-Olaf Buchweitz

ABSTRACT. We construct a noncommutative desingularization of the discriminant of a
finite reflection group G as a quotient of the skew group ring A = S ∗ G. If G is gener-
ated by order two reflections, then this quotient identifies with the endomorphism ring of
the reflection arrangement A(G) viewed as a module over the coordinate ring SG/(∆) of
the discriminant of G. This yields, in particular, a correspondence between the nontrivial
irreducible representations of G to certain maximal Cohen–Macaulay modules over the
coordinate ring SG/(∆). These maximal Cohen–Macaulay modules are precisely the non-
isomorphic direct summands of the coordinate ring of the reflection arrangement A(G)

viewed as a module over SG/(∆). We identify some of the corresponding matrix factor-
izations, namely the so-called logarithmic co-residues of the discriminant.

1. INTRODUCTION

The classical McKay correspondence relates representations of a finite subgroup G 6
SL(2, C) to exceptional curves on the minimal resolution of singularities of the Kleinian
singularity C2/G. By a theorem of Maurice Auslander [Aus86], this correspondence can
be extended to maximal Cohen–Macaulay (=CM)-modules over the invariant ring of the
G-action. In particular, Auslander’s version of the correspondence holds more generally
for small finite subgroups G 6 GL(n, C). It is natural to ask what happens if G is replaced
by a group that contains (pseudo-)reflections: The goal of this work is to establish a simi-
lar correspondence in the case where G is a pseudo-reflection group, that is, a group that
is generated by pseudo-reflections.

To this end, let G 6 GL(n, C) be a finite group acting on Cn. By the theorem of Chevalley–
Shephard–Todd the quotient Cn/G is smooth if and only if G is a pseudo-reflection group,
that is, it is generated by pseudo-reflections. Thus, if G is a pseudo-reflection group, at
first sight there are no singularities to resolve and it is impossible to “see” the irreducible
representations as CM-modules over the invariant ring R of the group action: R is a regu-
lar ring and it is well-known that in this case all CM-modules are isomorphic to some Rn!
However, the key idea of this work is to consider the irregular orbits of the group action,
on Cn this is the reflection arrangement A(G) (the set of mirrors of G) and in the quotient
Cn/G this is the projection of A(G), the so-called discriminant of G.
This is translated into algebra as follows: G 6 GL(n, C) also acts on S := SymC(C

n), then
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Cn = Spec(S), the quotient Cn/G = Spec(R), where R := SG is the invariant ring. If G
is a pseudo-reflection group, then R is itself isomorphic to a polynomial ring, and A(G)
is defined by the Jacobian J ∈ S, a (not necessarily reduced) product of linear forms in S.
The discriminant is given by a polynomial ∆ ∈ R and its coordinate ring is R/(∆).

Let us follow this train of thought further: Auslander’s theorem states that for a small sub-
group G 6 GL(n, C) acting on the polynomial ring S the twisted group ring A = S ∗ G is
isomorphic to the endomorphism ring EndR(S), where R = SG. In particular, gldim A =
dim R = n, A is a CM-module over R and the nonisomorphic R-direct summands of S
correspond to the indecomposable projectives of A and consequently to the irreducible
representations of G, as these correspond to the simple modules over the group ring CG.
For G a pseudo-reflection group, the twisted group ring A still has global dimension n
and is a CM-module over the invariant ring R. Following our idea, we would like to write
A as endomorphism ring over the discriminant, whose coordinate ring is R/(∆), but an
easy computation shows that the centre of A is in some sense too large: Z(A) = R. In or-
der to remedy this, we will consider the quotient A = A/AeA, where e = 1

|G| ∑g∈G g ∈ A
is the idempotent for the trivial representation. This quotient has nice properties:

Theorem A (=Thm. 3.12, Cor. 3.13, and Cor. 3.19). Let G 6 GL(n, C) be a finite group (more
generally: G 6 GL(n, K), where K is an algebraically closed field such that |G| is invertible in K)
and assume that G is generated by pseudo-reflections. Denote A = S ∗ G the twisted group ring
and set A = A/AeA. Then A is a CM-module over S/(J), the coordinate ring of the reflection
arrangement, as well as over R/(∆). Moreover, A is Koszul, and gldim A ≤ n. If G 
 µ2, then
gldim A = n.

In particular, interpreting A, AeA and A geometrically, we exhibit a matrix factorization
(ϕ, ψ) of J ∈ S whose cokernel is A as left S-module. Curiously, this matrix factorization
comes from the group matrix of G (see Section 3) and it is (skew-)symmetric in that the
S–dual (or transpose matrix) ψ∗ is equivalent to ϕ.

The next step is to show that the quotient A is isomorphic to an endomorphism ring
over R/(∆) if G is generated by reflections of order two. First we generalize Auslander’s
theorem “noncommutatively”: For any G 6 GL(n, C) consider the small group Γ :=
G ∩ SL(n, C) and its invariant ring T := SΓ. Then Γ 6 G is a normal subgroup and

1 −→ Γ −→ G −→ G/Γ −→ 1

is a short exact sequence of groups. Assume that H := G/Γ is complementary to Γ, as will
be the case for H cyclic of prime order. From this we obtain the following generalization
of Auslander’s theorem:

Theorem B (see Prop. 4.12 for a more general formulation). In this situation we have C-
algebra isomorphisms

A = S ∗ G ∼= S ∗ Γ ∗ H ∼= EndT∗H(S ∗ H) ,

and S ∗ H ∼= AeΓ as right T ∗ H ∼= eΓ AeΓ-module, where eΓ ∈ A is the idempotent 1
|Γ| ∑γ∈Γ γ.

In particular, if G = Γ is in SL(n, C), then this recovers Auslander’s theorem.

In order to show that A is an endomorphism ring, we first view A as a CM-module over
the (noncommutative) ring T ∗ H and will use the functor

i∗ : Mod(T ∗ H) −→ Mod(R/(∆)) ,
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coming from a standard recollement. For this part we will need that G is a true reflection
group, that is, generated by reflections of order 2. Then clearly H ∼= µ2. In order to use the
recollement, we consider more generally a regular ring R, a nonzero f ∈ R, and define
the path algebra

B := R e+ e−

v

u

f ,

with relations ,

e2
± = e±, e+ + e− = 1, u = e+ue−, v = e−ve+, uv = f e+, and vu = f e− .

Then matrix factorizations over B/Be−B ∼= R/( f ) (Lemma 4.1) can be seen as CM-
modules over B, which leads to the following reformulation of Eisenbud’s theorem on
matrix factorizations [Eis80]:

Theorem C (=Thm. 4.3). Let f ∈ R and B as above and let i∗ : Mod(B) −→ Mod(B/Be−B)
be the functor i∗ = −⊗B B/Be−B from the standard recollement. Then i∗ induces an equivalence
of categories

CM(B)/〈e−B〉 ' CM(R/( f )) ,
where 〈e−B〉 is the ideal in the category CM(B) generated by the object e−B. (Here CM(Λ)
stands for the category of CM-modules over a ring Λ).

In particular, this theorem implies Knörrer’s result [Knö87] that CM(T ∗ µ2) ' MF( f ),
where MF( f ) stands for the category of matrix factorizations of f . The last ingredient
comes from Stanley’s work on semi-invariants: set R = SG and f = ∆ and B = T ∗ H
in the above theorem, then using that T ∼= R[J]/(J2 − ∆) as R-modules (see Lemma 4.14)
one can calculate i∗(S ∗ H) ∼= S/(J) as R/(∆)-module (see Prop. 4.16). This leads directly
to the main theorem:

Theorem D (=Thm. 4.17 and Corollaries). Let G be a true reflection group. Then with notation
as just introduced, the quotient algebra A = A/AeA is isomorphic to the endomorphism ring
EndR/(∆)(S/(J)).
In particular, we have established a correspondence between the indecomposable projective A-
modules and the nontrivial irreducible G-representations on the one hand and the non-isomorphic
R/(∆)-direct summands of S/(J) on the other hand.
Moreover, A constitutes a noncommutative resolution of singularities (=NCR) of R/(∆) of global
dimension n = dim R + 1 for G 6= µ2.

For a true reflection group G 6 GL(2, C) this implies that S/(J) is a representation gen-
erator of CM(R/(∆)), and R/(∆) is an ADE-curve singularity (see Thm. 4.22).

The remainder of the paper is dedicated to a more detailed study of A and S/(J) as
R/(∆)-modules, for any pseudo-reflection group G 6 GL(n, C): we determine the ranks
of the isotypical components of S/(J) over R/(∆) using Hilbert–Poincaré series and can
give precise formulas in terms of Young diagrams in the case G = Sn (Prop. 5.4). Further,
we determine the decomposition of A into indecomposable summands over R/(∆) and
the rank of A as R/(∆) module, using the codimension 1-structure (Cor. 5.10). We can
also deduce that A is not an endomorphism ring over the discriminant if G has generat-
ing pseudo-reflections of order ≥ 3 (Cor. 5.11).
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Then, using Solomon’s theorem and results from Kyoji Saito and Hiroaki Terao we can
identify some of the isotypical components of S/(J) (again for any pseudo-reflection
group G): the isotypical component of the defining representation V of G and its higher
exterior powers ΛlV are given by the cokernels of the natural inclusions ΛlΘR(− log ∆) −→
ΛlΘR of the module of logarithmic derivations into the derivations on R, dubbed the log-
arithmic co-residues. In particular, for l = 1 one gets that j∆, the Jacobian ideal of the dis-
criminant viewed as a module over R/(∆), is a direct summand of S/(J), see Thm. 5.24.
The other isotypical components have yet to be determined in general.

Finally we are asking about the quiver of the algebra A (the McKay algebra): what are
the arrows and relations? Using Young diagrams, we can determine the precise shape of
the McKay quiver of G = Sn (see Thm. 6.3). The quivers for other reflection groups and
the relations remain mysterious.

The paper ends with the example of the discriminant of G = S4 acting on C3, the well-
known swallowtail. Here we can explicitly determine all matrix factorizations for the non-
isomorphic direct summands of S/(J).

The results in this paper have been announced in [BFI17], where more background on the
McKay correspondence and examples may be found.
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2. DRAMATIS PERSONAE

K . . . . . . . . . . . . . . . . . . . . . . an algebraically closed field, mostly C

char K . . . . . . . . . . . . . . . . . . the characteristic of K
V . . . . . . . . . . . . . . . . . . . . . . a finite dimensional vector space over K
n = dimK V . . . . . . . . . . . the dimension of V over K
G 6 GL(V) ∼= GL(n, K) a finite subgroup of K–linear automorphisms of V
Γ = G ∩ SL(V) . . . . . . . . . the kernel of the determinant homomorphism restricted to G
|G| . . . . . . . . . . . . . . . . . . . . . the order of G, assumed not to be divisible by char K
KG . . . . . . . . . . . . . . . . . . . . . the group algebra on G over K. According to our assumption,

a semi–simple K–algebra, product of matrix algebras over K
S = SymK V . . . . . . . . . . . the symmetric algebra on V over K
R = SG . . . . . . . . . . . . . . . . the invariant subring of the action of G on V
SG = K[ f1, ..., fn] . . . . . . . the invariant subring when G 6 GL(V) is a subgroup

generated by pseudo-reflections
di = deg fi . . . . . . . . . . . . . the degrees of basic invariants, so that |G| = d1 · · · dn
m = ∑n

i=1(di − 1) . . . . . . . the number of pseudo-reflections in G
J = det

(
∂ fi
∂xj

)
i,j=1,...,n

. . . . the Jacobian determinant of the basic invariants that is

a polynomial in S of degree m
z . . . . . . . . . . . . . . . . . . . . . . . the squarefree polynomial underlying J
m1 = deg z . . . . . . . . . . . . . the degree of z, that is, the number of mirrors in G
∆ = zJ ∈ SG . . . . . . . . . . . the discriminant of the reflection group G that is thus

of degree m + m1
Vi, i = 0, ..., r, . . . . . . . . . . . representatives of the isomorphism classes of irreducible

G–representations.
V0 = Ktrv = triv . . . . . . . . the trivial representation
V1 = V . . . . . . . . . . . . . . . . . the defining representation G ↪→ GL(V) if that is irreducible
Vdet = det V = |V| . . . . . the linear one-dimensional representation of G afforded by the

determinant of the defining representation V
rankC M . . . . . . . . . . . . . . . the rank function on the minimal primes in Spec C for a module

M over a reduced commutative ring C

Conventions. Throughout the paper let K = C,1 if not explicitly otherwise specified. Let
V be a finite dimensional vector space over the field K and GL(V) the group of invertible
linear transformations on it. If we choose a basis to identify V ∼= Kn, we identify, as usual,

1Most of our results also hold if the characteristic of the field K does not divide the order |G| of the group
G. However, in order to facilitate the presentation, we restrict to K = C.
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GL(n) = GL(n, K) ∼= GL(V) with the group of invertible n× n matrices over K. Further,
let G be a finite subgroup of linear transformations on V. The group G acts then linearly
and faithfully on the polynomial ring S = SymK V ∼= K[x1, ..., xn] over K, where x1, ..., xn
constitutes a K–basis of V. We may consider S as a graded ring with standard grading
|xi| = 1 for all i. If s = f (x) ∈ S, then we write g(s) = f (gx) for the action of g ∈ G on
s, with x = (x1, ..., xn) and gx = (g(x1), ..., g(xn)). Note that if g = (aij)i,j=1,...,n ∈ GL(V),
then gx = (aij)(x1, ..., xn)t, where (−)t denotes the transpose2.

The invariant ring of the action of G on V will be denoted by R := SG = {s ∈ S : g(s) = s
for all g ∈ G}.

Twisted group rings. Assume that G 6 GL(V) is any finite subgroup. The group ring of
G will be denoted by KG. We denote by Q = Q(S) the field of fractions of S and note that
G acts on Q as well. We consider the following K–algebras.

Definition 2.1. Assume G acts on a K–algebra S through K–algebra automorphisms. The
twisted or skew group ring defined by these data is A = S∗G = S⊗̃KKG, where the ⊗̃ is
meant to indicate that A = S⊗K KG as a left S–, right KG–module, but the multiplication
is twisted by the action of G on S.

In more detail, A is the free left S–module with basis indexed by G, thus, A =
⊕

g∈G Sδg,
where δg stands for the basis element parametrized by g ∈ G.

The multiplication is defined to be twisted by the action of G on S in that δgs = g(s)δg, for
s ∈ S, g ∈ G. In particular the multiplication of two elements s′δg′ , sδg is given by

(s′δg′)(sδg) = (s′g′(s))δg′g ∈ Sδg′g for g′, g ∈ G, s′, s ∈ S .

Our notation here follows [KK86a] and is meant to clearly distinguish, say, the element
δgs ∈ A from the element g(s) ∈ S.

However, even if S is commutative, its image is usually not in the centre of A, whence
the ring homomorphism S → A only endows A with an S–bimodule structure over K,
with the action from the left simply multiplication in S, while the action from the right
is determined by δgs = g(s)δg for g ∈ G, s ∈ S. In particular, each left S–module direct
summand Sδg ⊆ A is already an S–bimodule direct summand of A.

Similarly Q ∗ G ∼= Q⊗S A as well as ring homomorphisms Q→ Q ∗ G and QG → Q ∗ G,
where Q = Q(S). As noted in [Aus86, p.515] or in [KK86b, Sect.2], [KK86a, 4.1(I23)] the
map

τ : Q ∗ G−→Q ∗ G , τ( f δg) = g−1( f )δg−1 g ∈ G, f ∈ Q

is an involutive algebra anti-isomorphism that restricts to an anti-isomorphism, denoted
by the same symbol, τ : A

∼=−→ A. In particular, A ∼= Aop as K-algebras.

If |G| is invertible in S, we can set e = 1
|G| ∑g∈G δg. It is an idempotent element of A and

A
(

∑g∈G δg

)
A = AeA ⊆ A is an idempotent ideal in A.

Lemma 2.2. Let e be the idempotent just introduced.

(1) The left multiplication e( ) : S → A, s 7→ es, yields an isomorphism of right A–modules
S
∼=−→ eS = eA.

2Let us point out that many authors use S = SymK(V
∗) with g acting on s = f (x) as g(s) = f (g−1(x)).



MCKAY FOR REFLECTIONS 7

(2) The right multiplication ( )e : S → A, s 7→ se, yields an isomorphism of left A–modules
S
∼=−→ Se = Ae.

(3) The (two–sided) multiplication e( )e : R → A, r 7→ ere = er = re, yields an isomorphism of
rings R

∼=−→ eAe, where R = SG as defined above.
(4) In the commutative squares

S× R
(s,r) 7→sr

//

( )e×e( )e ∼=
��

S

( )e∼=
��

R× S
(r,s) 7→rs

//

e( )e×e( ) ∼=
��

S

e( )∼=
��

Ae× eAe
(ae,ea′e) 7→aea′e

// Ae eAe× eA
(ea′e,ea) 7→ea′ea

// eA

the vertical maps are bijections, thereby identifying the right eAe–module Ae with the (right)
R–module S and the left eAe–module eA with the (left) R–module S. In particular, the induced
map

S⊗R S
( )e⊗e( )−−−−→∼= Ae⊗eAe eA

is an isomorphism of A–bimodules. �

Moreover, taking invariants with respect to the above action of G defines a functor Mod A→
Mod R as the G–invariants form a (symmetric) R–module. In this way, there is, in partic-
ular, a natural homomorphism of rings

−⊗A Ae : A ∼= HomA(A, A) −→ HomeAe(Ae, Ae) ∼= HomR(S, S) .(1)

For any left A-modules M, N, one has HomA(M, N) ∼= HomS(M, N)G, where g ∈ G acts
on an S-linear map f : M −→ N through (g · f )(m) = g( f (g−1(m))). Taking invariants
(−)G is an exact functor, whence also Exti

A(M, N) = Exti
S(M, N)G for all i. In particular,

an A-module M is projective if and only if the underlying S-module is projective.

Lemma 2.3 ([Aus86]). Let S be a regular complete local ring or a graded polynomial ring. One
has a functor

α : P(A) −→ Mod KG, P 7→ S/mS ⊗S P ,
where P(A) denotes the category of projective A-modules and mS denotes the maximal ideal (in
case S is local) or the maximal ideal (x1, . . . , xn) in S (in case S is a polynomial ring in n variables
One also has a functor β in the other direction that sends a KG-module V to S⊗K V. This pair of
functors induces inverse bijections on the isomorphism classes of objects. �

Remark 2.4. Auslander proved this result in the case where S = K[[x, y]] the power
series ring in two variables, a proof for the n-dimensional complete case can be found
e.g. in [LW12]. However, the correspondence also holds in the graded case, i.e., for graded
modules over S = K[x1, . . . , xn] with deg xi = 1. For this one uses Swan’s theorem, see
e.g. [Bas68, XIV, Thm. 3.1].

Quotients of A by idempotent ideals. Let χ be the character of an irreducible G-representation.
This defines the central primitive idempotent associated to this representation as eχ =

1
|G| ∑g∈G χ(g−1)g in KG ⊂ A. If we want to stress that eχ ∈ A, then we write eχ =
1
|G| ∑g∈G χ(g−1)δg. In particular, denote e := etriv = 1

|G| ∑g∈G δg ∈ A the idempotent asso-

ciated to the trivial representation of G, f := edet−1 = 1
|G| ∑g∈G det(g)δg, the idempotent

associated to the inverse determinantal representation.
In the following we will be interested in the quotient algebra A/Aeχ A, where eχ is an
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idempotent associated to a linear character χ. The next two results show that the choice
of the one-dimensional character does not matter and thus we will sometimes switch be-
tween A/AeA and A/A f A.

With Homgps(G, K∗) the group of linear characters, consider the map α : Homgps(G, K∗) −→
AutK−Alg(A),

λ 7→ αλ

αλ

(
∑
g∈G

sgδg

)
= ∑

g∈G
sgλ(g−1)δg .

Lemma 2.5. The map α is a homomorphism of groups. If L is the one-dimensional representation
defined by λ and χ the character of some G-representation W, then L⊗W has character λ ·χ. If W
is irreducible and eχ = 1

|G| ∑g∈G χ(g−1)g the corresponding idempotent in KG, then αλ(eχ) =

eλ·χ. �

Corollary 2.6. Let λ, λ′ be one-dimensional characters of G with respective idempotents eλ, eλ′ .
Then the quotient algebras A/Aeλ A and A/Aeλ′A are isomorphic K-algebras. �

In the next lemma we state some useful properties of the quotient A. For this we recall
the following notion: Let G 6 GL(V) be a finite group and let χ be a linear character. An
element f ∈ S is a relative invariant for χ if g( f ) = χ(g) f for all g ∈ G. The set of relative
invariants for χ is denoted by SG

χ = { f ∈ S : g( f ) = χ(g) f for all g ∈ G}, cf. [Sta77].
Clearly one has SG

triv = SG = R.

Lemma 2.7. Let G 6 GL(V) be a finite group and let χ be a linear character. Assume that SG
χ is

a free R-module of rank 1, that is, there exists a fχ ∈ S such that SG
χ = fχR. Then

S/( fχ) ∼= (A/Aeχ A)e

as S-modules.

Proof. Denote A := A/Aeχ A. Applying −A ⊗ Ae to the exact sequence

0 −→ Aeχ A −→ A −→ A −→ 0

yields the exact sequence (since Ae is a flat A-module)

(2) 0 −→ Aeχ Ae −→ Ae −→ Ae −→ 0.

We have seen in Lemma 2.2 (2) that Ae ∼= Se (an explicit calculation shows that Ae = Se
as sets). Moreover Aeχ Ae = (S fχ)e ∼= S fχ: for this we first use Aeχ Ae = AeχSe. Then
using that δgeχ = χ(g)eχ, for an element (∑g∈G tgδg)eχse in AeχSe we get

∑
g∈G

tgδgeχse =

(
∑
g∈G

χ(g)tg

)
eχse =

(
∑
g∈G

χ(g)tg

)
1
|G| ∑

h∈G
χ(h−1)h(s)δhe

=

(
∑
g∈G

χ(g)tg

)(
1
|G| ∑

h∈G
χ(h−1)h(s)

)
e.

The element ∑h∈G χ(h−1)h(s) is a semi-invariant for χ, so it is in the ideal in R generated
by fχ. Thus it follows that Aeχ Ae ⊆ S fχe. And the element fχe = eχ fχe is in Aeχ Ae, thus
Aeχ Ae ⊇ S fχe. This means that the sequence (2) is isomorphic to

0 −→ S fχe→ Se −→ Ae −→ 0,

which implies that Ae ∼= (S/( fχ))e ∼= S/( fχ) as S-modules. �
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Reflection groups. Here we recall some useful facts about complex reflection groups; see,
for example, [Bou81, LT09, OT92]. We mostly follow the notation in [OT92].

Recall that an element g in GL(V), is

(a) a (true) reflection, if it is conjugate to a diagonal matrix diag(−1, 1, ..., 1). In other
words, as a linear transformation g fixes a unique hyperplane H ⊂ V pointwise and
has additionally −1 6= 1 as an eigenvalue. We call any nonzero eigenvector for the
eigenvalue −1 a root of the reflection and think of it as a vector “perpendicular” to
the mirror H.

(b) a pseudo-reflection, if it is conjugate to a diagonal matrix diag(ζ, 1, ..., 1), where ζ 6= 1 is
a root of unity in K. Again we call the eigenspace H to the eigenvalue 1 the mirror of
g.

For a finite subgroup G 6 GL(V), the subgroup G′ 6 G generated by the pseudo-
reflections is normal in G as the conjugate of a pseudo-reflection is again a pseudo-
reflection. For the same reason the subgroup G′′ 6 G generated by (true) reflections
is normal in G, contained, of course, in G′.

One distinguishes now the extreme possibilities.

Definition 2.8. Given a finite subgroup G 6 GL(V),

(a) G is small if it contains no pseudo-reflections, thus, G′ = 1.
(b) G is a (true) reflection group if it is generated by its (true) reflections, thus, G′′ = G.
(c) G is a complex reflection or pseudo-reflection group if it is generated by its pseudo-reflections,

thus, G′ = G.

In this paper we will always distinguish between true reflection groups as the ones gener-
ated by order 2 reflections and pseudo-reflection groups as the ones generated by pseudo-
reflections.

Example 2.9. Any finite subgroup of SL(V) is small, since it only contains elements with
determinant 1, that is, it does not contain any pseudo-reflections.

The ring SG is a normal Cohen–Macaulay domain by the Hochster–Roberts Theorem
[HR74]. If G 6 SL(V), then SG is Gorenstein and, conversely, if G is small, then SG

is Gorenstein only if G 6 SL(V) according to a theorem by Kei-Ichi Watanabe [Wat74].
Invariant rings of pseudo-reflection groups are distinguished by the following:

Theorem 2.10 (Chevalley–Shephard–Todd). Let G 6 GL(V) be a finite group acting on S.
Then the invariant ring R = SG is a polynomial ring itself, that is, R = K[ f1, ..., fn] ⊆ S, where
the fi are algebraically independent homogeneous polynomials of degree di > 1, if and only if G is
a pseudo-reflection group. Note that, equivalently, the fi form a homogeneous regular sequence in
S.
Moreover, if G is a pseudo-reflection group, then S is free as an R-module, more precisely S ∼=
R⊗K KG, as G-modules, where KG denotes the group ring of G.

This was the second theorem in [Che55] and was as well generalized for pseudo-reflections
in the separable case, see [OT92, Thm. 6.19].

Reflection arrangement and discriminant. Let us now recall some facts regarding pseudo-
reflection groups G 6 GL(V):
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(a) Finite pseudo-reflection groups over the complex numbers have been classified by
Shephard and Todd [ST54]. They contain true reflection groups and thus all finite
Coxeter groups, i.e., all finite groups that admit a realization as a reflection group
over the real numbers. Coxeter groups are precisely those true reflection groups that
have an invariant of degree 2, see [OT92]. Coxeter groups are moreover the pseudo-
reflection groups for which V is isomorphic to its dual V∗, see e.g. [Ser77, Thm. 31].

(b) The polynomials fi in Theorem 2.10 are called the basic invariants of G. They are not
unique but their degrees di are uniquely determined by G and one has an equality
|G| = d1 · · · dn.

(c) Let H ⊂ V be a hyperplane that is fixed by a cyclic subgroup generated by a pseudo-
reflection gH ∈ G of order ρH > 1, so, gH(v) = v + LH(v)aH, where aH ∈ V and
LH(v) is a linear form such that H = {v ∈ V | LH(v) = 0}. The Jacobian

J = Jac( f1, ..., fn) = det
∣∣∣∣ ∂ fi

∂xj

∣∣∣∣
i,j=1,...,n

= u ∏
mirrors H

LρH−1
H

is, up to a nonzero constant multiple u ∈ K∗. Therefore, each linear form LH occurs
with multiplicity ρH− 1. The degree of the Jacobian is m = ∑n

i=1(di− 1), which equals
the number of pseudo-reflections in G.

(d) The differential form

d f1 ∧ · · · ∧ d fn = Jdx1 ∧ · · · ∧ dxn

is G–invariant, whence J transforms according to gJ = (det g)−1 J, thus, JK affords
the linear, or one dimensional, inverse determinant representation of G.

(e) The element z = ∏H LH is the reduced defining equation of the reflection arrangement
A(G) associated to G. It is easy to see that z is a relative invariant for the linear
character χ = det, that is, for all g ∈ G we have gz = det(g)z. The degree of z is m1,
the number of mirrors of G.

(f) The discriminant of the group action is given by

∆ = zJ = ∏
H⊂A(G)

LρH
H ,

an element of SG of degree ∑κ ρκ = m + m1. The discriminant polynomial ∆ ∈ SG

is always reduced (this follows e.g. from Saito’s criterion and the fact that ΘG
S
∼=

ΘS(− log ∆), see [OT92, Chapter 6] for statements and notation). In particular, if G is
a true reflection group, then ρH = 2 for all H, and thus J = z and z2 = ∆ represents
the discriminant.

(g) The preceding in geometric terms: if G is a pseudo-reflection group, then the quotient
V/G = Spec(SG) is an affine regular variety isomorphic to V ∼= An(K). Under the
natural projection

π : V ∼= Spec(S) −→ V/G ∼= Spec(SG)

the image of the hyperplane arrangement A(G) is the discriminant hypersurface
V(∆) ⊆ V/G.

(h) The discriminant V(∆) in V/G and the hyperplane arrangement A(G) in V are both
free divisors. This means that the module of logarithmic derivations ΘR(− log ∆) =
{θ ∈ ΘR : θ(∆) ∈ (∆)R} is a free R = SG-module and accordingly ΘS(− log z) is a
free S-module. This was first shown by Kyoji Saito for Coxeter groups, cf. [Sai93] and
by Hiroaki Terao for complex reflection groups [Ter80] .
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Example 2.11. The true reflection groups G 6 GL(2, C) are classified via the ADE-Coxeter-
Dynkin diagrams. The discriminant ∆ of such a G is the corresponding ADE-curve singu-
larity, cf. e.g. [Knö84, Section 3]. For example, the A2-curve singularity K[x, y]/(x3 − y2)
is the discriminant of the group S3 acting on C2, see Fig. 1.

.
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.....................

..................

...............
............

......................... ............ ............
............

...............

..................

.....................

........................

...........................

..............................

∆ = y2 − x3

FIGURE 1. The three lines of the hyperplane arrangement of S3 and the
discriminant ∆ on the right.

E. Bannai calculated all discriminants for complex reflection groups G 6 GL(V) in [Ban76].
In particular one sees from this list that all discriminants of reflection groups in GL(V)
are curves of type ADE.

Example 2.12. The true reflection group G24 6 GL(3, C) is a complex reflection group
of order 336 that comes from Klein’s simple group, see [OT92] ex. 6.69, 6.1183 for more
details. The reflection arrangement A(G24) consists of 21 hyperplanes. In loc. cit. the
basic invariants for this group, and the discriminant matrix are determined. One obtains
the equation of the discriminant ∆ as determinant of the discriminant matrix, see Fig. 2.
The discriminant V(∆) is a non-normal hypersurface in C3, whose singular locus consists
of two singular cubic curves meeting in the origin.

FIGURE 2. Two views of the discriminant of the group G24 realized in
R3 with equation ∆ = −2048x9y + 22016x6y3 − 256x7z − 60032x3y5 +
1088x4y2z + 1728y7 + 1008xy4z− 88x2yz2 + z3 = 0.

3In Ex. 6.118 in [OT92] the sign in front of 256x7z is erroneous.
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Isotypical components. Let G 6 GL(V) be a pseudo-reflection group, and adopt the
notation from the last subsection for R, S, z, J, and ∆. Note that R = SG = K[ f1, . . . , fn]
and R/(∆) are graded rings with deg fi = di, the degrees of the basic invariants. The
decomposition of S as an R-module is given as follows: let R+ be the set of invariants
of G with zero constant term. Then S/(R+) is called the coinvariant algebra (here (R+)
denotes the ideal in S generated by elements in R+) and by the Theorem of Chevalley–
Shephard–Todd (Thm. 2.10) one has

S ∼= R⊗K S/(R+)

as graded R-modules. As KG-modules:

S ∼= R⊗K KG .

With notation as above, one has the following simple fact.

Lemma 2.13. Let G be a finite group and M a KG–module. Suppose that r is the class num-
ber of G, i.e. the number of conjugacy class of G or equivalently the number of isomorphism
classes of irreducible representations of G. For Vi an irreducible G–representation, the functors
HomKG(Vi,−) and (−)⊗K Vi are adjoint. We write

evVi : HomKG(Vi, M)⊗K Vi → M

for the evaluation map, which is the natural transformation of the composition of these functors
to the identity functor. The map evVi is a split monomorphism of KG–modules, where G acts on
HomKG(Vi, M)⊗K Vi through the second factor. Its image is the isotypical component of M of
type Vi. The sum of the evaluation maps,

r

∑
i=1

evVi :
r⊕

i=1

HomKG(Vi, M)⊗K Vi
∼=−→ M ,

is an isomorphism of KG–modules. �

If M is a module over the skew group ring S ∗ G, then each HomKG(Vi, M) is a maximal
Cohen–Macaulay module over R = SG.
Thus, as G-representations we have

S ∼=
r⊕

i=1

HomKG(Vi, S)⊗K Vi =
r⊕

i=1

Si ⊗K Vi ,

with notation Si := HomKG(Vi, S).

The Jacobian J ∈ S is an element of the isotypical component of S to the inverse determi-
nantal representation det−1, while z ∈ S is an element of the isotypical component of S
of the determinantal representation det of G, and, as S is a free R–module, the pair (J, z)
constitutes, trivially, a matrix factorization of ∆ ∈ R.

As J and z are relative invariants for G, multiplication with these elements on S is G–
equivariant. More precisely, multiplication with J, z, respectively, yields for each Vi a
graded G–equivariant matrix factorization. For compact notation, set V ′i = Vi ⊗ det,
which is again an irreducible G–representation along with Vi. Further recall that the de-
grees of J and z resp., are m and m1. Now look at the exact sequence

0 −→ S(−m)⊗ det−1 J−→ S −→ S/(J) −→ 0.

Apply HomKG(Vi,−) to get

0 −→ HomKG(Vi, S(−m)⊗ det−1) −→ Si −→ HomKG(Vi, S/(J)) −→ 0 .
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Here HomKG(Vi, S(−m) ⊗ det−1) ∼= HomKG(Vi ⊗ det, S)(−m). If we set as well S′i =
HomKG(V ′i , S) this is S′i(−m). Now denoting HomKG(Vi, S/(J)) = Mi, we have short
exact sequences of graded R–modules

0 // S′i(−m)
J

// Si // Mi // 0

0 // Si(−m−m1)
z
// S′i(−m) // Ni // 0

(3)

with Ni = HomKG(Vi, S/(z))(−m). Here the second one comes from the exact sequence

0 // S(−m−m1)
z
// S⊗ det−1 // S/(z) // 0(4)

We also have the exact sequences

0 // Ni // Si ⊗R R/(∆) // Mi // 0

0 // Mi(−m−m1) // S′i ⊗R R/(∆)(−m) // Ni // 0

(5)

which are already short exact sequences of maximal Cohen–Macaulay R/(∆)–modules.

To sum up this discussion, we can state the following

Lemma 2.14. We have the direct sum decompositions:

S/(J) ∼=
r⊕

i=0

Mi ⊗K Vi and S/(z) ∼=
r⊕

i=0

Ni(m)⊗K V ′i

as graded R/(∆)−KG–bimodules. If ∆ is irreducible it follows that

rankR/(∆) Mi + rankR/(∆) Ni = dimK Vi = rankR Si = rankR S′i .

�

Example 2.15. Consider the representation Vtriv (instead of indexing the representations
by Vi we index again Vρ by a specific representation ρ) and thus V ′triv = Vdet. Then the
exact sequence (3) looks as follows

0 −→ Rz(−m)
J−→ R −→ R/(∆) −→ 0 ,

since S′triv
∼= Rz and Striv ∼= R. This means that Mtriv = R/(∆) and shows that R/(∆) is a

direct summand of S/(J).
For Vdet−1 on the other hand we obtain from (3)

0 −→ R(−m)
J−→ RJ −→ 0 .

Thus Mdet−1 = 0 and the inverse determinantal representation does not contribute a R-
direct summand of S/(J). Note that if G is a true reflection group, then det = det−1.
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Endomorphism rings and Auslander’s theorem. One of the key results by M. Auslan-
der in [Aus86, p.515] asserts that the ring homomorphism (1) from A −→ EndR(S) is an
isomorphism if G is small, for a detailed proof see [Yos90, Prop. 10.9]:

Theorem 2.16 (Auslander). Let S be as above and assume that G 6 GL(V), with dim V = n,
is small and set R = SG. Then we have an isomorphism of algebras:

A = S ∗ G
∼=−→ EndR(S) , sg 7→ (x 7→ sg(x)) .

Moreover, S ∗ G is a CM-module over R and gldim(S ∗ G) = n.

Remark 2.17. By an obvious calculation, one sees that the centre Z(A) = R.

Noncommutative resolutions of singularities and the McKay correspondence. A res-
olution of singularities of an affine scheme X = Spec(R) is a proper birational map
π : X̃ −→ X from a smooth scheme X̃ to X such that π is an isomorphism over the smooth
points of X. Noncommutative resolutions of singularities of a ring R (or of Spec(R))
are certain noncommutative R-algebras that should provide an algebraic analog of this
geometric notion. For the rationale behind the definition and more background about
noncommutative (crepant) resolutions see [Leu12, VdB04, BFI17].

Definition 2.1. Let R be a commutative noetherian ring. Let M be a finitely generated R-
module with supp M = supp R. Then Λ = EndR M is called a noncommutative resolution
(NCR) of R if gldim Λ < ∞.
If Λ is any finitely generated R-algebra that is faithful as R-module and gldim Λ < ∞,
then we call Λ a weak NCR of R. Note that in the case of a weak NCR we do not require
that Λ is an Endomorphism ring or even an R-order.

Remark 2.18. In Van den Bergh’s original treatment [VdB04], a noncommutative crepant
resolution (=NCCR) was defined over a Gorenstein domain. With our definition above, a
NCCR over a commutative noetherian ring R is an NCR that is additionally a nonsingular
order over R. The (weak) NCRs constructed in this paper are (almost) never nonsingular
orders: by definition if a finitely generated R-algebra Λ is a nonsingular R-order, then
gldim(Λ)p = dim Rp for all p ∈ Spec(R). This implies in particular that gldim Λ = dim R.
But our NCRs are of global dimension dim R + 1. For more detail see Remark 3.14 and
Cor. 4.19.
NCRs were first defined in [DITV15] over normal rings, we use here the more general
definition of [DFI15].

In particular, Auslander’s theorem can be reformulated in terms of noncommutative res-
olutions, cf. [VdB04, IW14]:

Theorem 2.19. Let G 6 GL(V) small. Then A = S ∗ G yields a NCCR over R = SG, that is,
A ∼= EndR S has global dimension n and is a nonsingular order over R.

McKay correspondence. The classical McKay correspondence relates the minimal resolu-
tions of quotients of C2 = K2 by finite groups Γ 6 SL(V) to the representation theory of Γ.
Here we just shortly state the correspondences and refer to [Buc12, BFI17, GSV83, Rei02]
for more details.

Let Γ 6 SL(V) be a finite group acting on V with dim V = 2. Denote R := SΓ the invariant
ring under this action. Then X := Spec(R) is a Kleinian singularity, see [Kle93]. Denote
by π : X̃ −→ X the minimal resolution of X and by E =

⋃n
i=1 Ei the exceptional divisor on



MCKAY FOR REFLECTIONS 15

X̃, where the Ei are the irreducible components. The dual resolution graph of X has vertices
indexed by the Ei and there is an edge between Ei and Ej if and only if Ei ∩Ej 6= ∅.

On the representation theoretic side, one considers the McKay quiver of Γ. Let c : Γ ↪→
GL(V) be the defining (or canonical) representation of Γ and denote the irreducible rep-
resentations of Γ by ρi : Γ −→ GL(Vi), i = 0, . . . , n with vector spaces Vi of dimensions
mi. Here the trivial representation is ρ0 : Γ −→ K∗. The McKay quiver of Γ has vertices
indexed by the Vi and there are mij arrows from Vi to Vj if and only if Vi is contained with
multiplicity mij in Vj ⊗V, so mij = dimK HomKG(Vi, V ⊗Vj).

On the algebraic side, look at the Auslander–Reiten quiver of R. Denote by CM(R) the cat-
egory of CM-modules over R. The vertices of the Auslander–Reiten quiver are indexed
by the indecomposable CM-modules Mi, i = 0, . . . , n and there are mij arrows from Mi
to Mj if and only if in the AR-sequence 0 −→ τMj −→ E −→ Mj −→ 0 ending in Mj, the
modules Mi appears with multiplicity mij in E.

By Herzog’s theorem, [Her78], one has the direct sum decomposition

(6) S ∼=
⊕

M∈CM(R)

MaM ,

where the direct sum runs over all isomorphism classes of indecomposable CM-modules.

Theorem 2.20 (Classical McKay correspondence). For a given Γ 6 SL(V), dim V = 2, the
following are in 1− 1-correspondence:

(1) The irreducible components Ei of the exceptional divisor of X̃.
(2) The isomorphism classes of irreducible representations Vi of Γ (minus the trivial represen-

tation).
(3) The isomorphism classes of indecomposable CM-modules Mi on R (without the module R

itself).
(4) The indecomposable R-direct summands of S (except R itself).

Moreover, the multiplicities mi of Ei in the so-called fundamental cycle of X̃ equals the dimension
mi of Vi equals the multiplicity aMi of Mi in the decomposition (6) of S.
The McKay quiver and the Auslander–Reiten quiver are the same and one obtains the dual resolu-
tion graph by removing the vertex for the trivial representation and collapsing the 2-cycles on the
McKay quiver into edges.

We are particularly interested in the correspondences (2)–(4): let us note that all three
points still hold for any finite G 6 GL(V) not containing any pseudo–reflections and
dim V = 2. Herzog’s theorem establishes the correspondence between (3) and (4) and
Auslander’s theorem yields the correspondence between (2) and (4). Moreover, the bijec-
tion between the nonisomorphic R-direct summands of S and the irreducible representa-
tions of Γ 6 GL(V) holds for any dim V = n ≥ 2 if and only if G does not contain any
pseudo-reflections, see [LW12, Cor. 5.20].

3. THE GEOMETRY

Some general facts on group actions. We begin with the following general results on
group actions that we quote from Bourbaki.

Proposition 3.1 ([Bou64, V.1.9 Cor.]). Let G be a finite group that acts through ring automor-
phisms on a commutative integral domain S. The group then acts as well through automorphisms
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on the field of fractions Q(S) of S and the fixed field Q(S)G is the field of fractions of the invariant
integral subdomain R = SG, that is, Q(R) ∼= Q(S)G. �

3.2. In the setting of the preceding Proposition, a crucial role will be played by the map
ϕ : S⊗R S → Maps(G, S) given by ϕ (∑m

i=1 xi ⊗ yi) (g) = ∑m
i=1 xig(yi) ∈ S with (xi, yi) ∈

S× S, for i = 1, ..., m, a finite family of pairs from S. Both source and target of this map
are naturally R–modules and ϕ is R–linear with respect to these structures.

Moreover, identifying naturally Q(R) ⊗R (S ⊗R S) ∼= Q(S) ⊗Q(R) Q(S) and Q(R) ⊗R
Maps(G, S) ∼= Maps(G, Q(S)), the induced map ψ = Q(R) ⊗R ϕ of vector spaces over
Q(R) identifies with ψ (∑m

i=1 xi ⊗ yi) (g) = ∑m
i=1 xig(yi) ∈ Q(S) for (xi, yi) ∈ Q(S)×Q(S)

a finite family of pairs from Q(S).

Galois descent then yields the following fact4:

Proposition 3.3 ([Bou90, V.§10, no.4, Cor. of Prop. 8]). If G is a finite subgroup of the group
of ring automorphisms of a commutative integral domain S, then the map

ψ : Q(S)⊗Q(R) Q(S)−→Maps(G, Q(S))

is bijective. �

The structure of ϕ. (See also [Wat76] for the material of this subsection.)
To study ϕ further, note next that with respect to the natural R–algebra structure on
S ⊗R S and the diagonal R–algebra structure on Maps(G, S) ∼= S|G|, endowed with the
componentwise operations, the map ϕ is a homomorphism of R–algebras. Let evg :
Maps(G, S)→ S be the evaluation at g ∈ G, so that

evg ϕ

(
m

∑
i=1

xi ⊗ yi

)
=

m

∑
i=1

xig(yi) ∈ S

yields an R–algebra homomorphism evg ϕ : S⊗R S→ S.

Lemma 3.4. With notation as just introduced and with hypotheses as in Proposition 3.3, one has

(1) For each g ∈ G, the R–algebra homomorphism evg ϕ is surjective with kernel the prime ideal

Ig = (1⊗ s− g(s)⊗ 1; s ∈ S) ⊆ S⊗R S .

(2) The family of R–algebra homomorphisms (evg)g∈G identifies Maps(G, S) with the S⊗R S–
algebra ∏g∈G(S⊗R S)/Ig.

(3) The kernel of ϕ equals ∩g∈G Ig. The image of ϕ is isomorphic to the reduced R–algebra Im ϕ ∼=
(S⊗R S)/ ∩g∈G Ig.

(4) The ideal ∩g∈G Ig is the nilradical of the ring S⊗R S.
(5) Kernel and cokernel of ϕ are R–torsion modules.

Proof. (1) For any x ∈ S, one has evg ϕ(x ⊗ 1) = x ∈ S, whence evg ϕ is surjective. Its
kernel is as claimed due to the following standard argument: Clearly, Ig ⊆ Ker(evg ϕ),
and if evg ϕ (∑m

i=1 xi ⊗ yi) = ∑m
i=1 xig(yi) = 0 in S, then

m

∑
i=1

xi ⊗ yi =
m

∑
i=1

(xi ⊗ yi − xig(yi)⊗ 1) = (xi ⊗ 1)
m

∑
i=1

(1⊗ yi − g(yi)⊗ 1) ∈ Ig .

Because S⊗R S/Ig ∼= S is a domain, Ig ⊆ S⊗R S is prime.

4This result has also been called “a strong form of Hilbert’s Theorem 90”; see https://math.berkeley.

edu/~ogus/Math_250A/Notes/galoisnormal.pdf

https://math.berkeley.edu/~ogus/Math_250A/Notes/galoisnormal.pdf
https://math.berkeley.edu/~ogus/Math_250A/Notes/galoisnormal.pdf
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Regarding (2), note that (evg)g∈G : Maps(G, S)→ ∏g∈G S is bijective by definition and (1)
reveals the S⊗R S–algebra structure induced by ϕ on Maps(G, S).

The first part of assertion (3) is an immediate consequence of (1) as ϕ = (evg ϕ)g∈G. The
second assertion then follows.

As concerns (4), Proposition 3.3 shows that S⊗R S and its image have the same reduction.
As the image is reduced, the claim follows — see alternatively [Wat76, Lemma 2.5] for a
direct argument.

Likewise, (5) follows from Proposition 3.3. �

Remark 3.5. It seems worthwhile to point out the following consequence of (2) above: For
f ∈ Maps(G, S), the map s f s′ = ϕ(s⊗ s′) f ∈ Maps(G, S) is given by s f s′(g) = sg(s′) f (g)
for g ∈ G. In particular, even though Maps(G, S) ∼= S|G| as a ring, it is not a symmetric
S–bimodule when viewed as a S–bimodule via ϕ.

The geometric interpretation of ϕ. With X = Spec S, the reduced and irreducible affine
scheme defined by the integral domain S, the scheme Y = Spec R identifies with the orbit
scheme Y = X/G of X modulo the action of G. The canonical map X → Y corresponds
to the inclusion R ⊆ S and Spec(S⊗R S) ∼= X ×Y X ⊆ X × X is the (schematic) graph of
the equivalence relation defined by the action of G on X.

For g ∈ G, one may identify Spec(S⊗R S/Ig) ∼= Im(Spec(evg ϕ) : {g} × X → X ×Y X),
image of the map (g, x) 7→ (x, g(x)) for x ∈ X. The map ϕ corresponds then to Spec(ϕ) :
G × X = äg∈G{g} × X → X ×Y X. Proposition 3.3 says that this morphism of schemes
is generically an isomorphism, and its image is the graph of the group action, GX :=⋃

g∈G Im(Spec(evg ϕ) : {g} × X ⊆ X ×Y X with its reduced structure. Moreover, GX =

(X ×Y X)red is the reduced underlying scheme of X ×Y X, so that the only difference
between GX and X×Y X can be embedded components in X×Y X.

Interpretation in terms of the twisted group algebra. The foregoing facts admit the fol-
lowing interpretation in terms of the twisted group algebra A = S ∗ G, where G is still a
finite subgroup of the group of ring automorphisms of the commutative domain S.

Proposition 3.6. With the assumptions just made, the map x ⊗ y 7→ ∑g∈G xδgy defines a sur-

jective homomorphism α : S⊗R S � A
(

∑g∈G δg

)
A of S–bimodules, while β : Maps(G, S) →

A, (sg)g∈G 7→ ∑g∈G sgδg is an isomorphism of S–bimodules over R when Maps(G, S) is viewed
as an S–bimodule via ϕ. Note, however, that β is clearly not an isomorphism of algebras.

There is a commutative diagram of S–bimodule homomorphisms

A
(

∑g∈G δg

)
A �
�

// A

0 //
⋂

g∈G Ig // S⊗R S

α

OOOO

ϕ
// Maps(G, S) ,

∼= β

OO

with the bottom row an exact sequence. In particular, as S–bimodules

A

(
∑
g∈G

δg

)
A ∼= (S⊗R S)/ ∩g∈G Ig .
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Proof. It is clear that α is a homomorphism of S–bimodules with respect to the natu-
ral S–bimodule structures on A and its ideal A

(
∑g∈G δg

)
A. It is surjective as for a =

∑h,h′∈G shδh and a′ = ∑h′∈G δh′s′h′ in A one has

a

(
∑
g∈G

δg

)
a′ = ∑

h,h′∈G
shδh

(
∑
g∈G

δg

)
δh′s′h′ = ∑

h,h′∈G
sh

(
∑
g∈G

δg

)
s′h′ = α

(
∑

h,h′∈G
sh ⊗ s′h′

)
,

because δh

(
∑g∈G δg

)
δh′ = ∑g∈G δhgh′ = ∑g∈G δg for any h, h′ ∈ G.

Note that establishing β as an isomorphism of S⊗R S–modules uses Lemma 3.4(2).

By definition of the various objects and morphisms we have

α(x⊗ y) = ∑
g∈G

xδgy = ∑
g∈G

xg(y)δg = βϕ(x⊗ y)

in A, whence the commutativity of the square in the diagram.

What we have established so far shows that the image of βϕ equals A
(

∑g∈G δg

)
A ⊆ A,

isomorphic as S–bimodule to S⊗R S/ ∩g∈g Ig. �

Corollary 3.7. If in the above setting S⊗R S is reduced then α is a bijection and the bijections
α, β identify the map ϕ with the inclusion of the two–sided ideal A

(
∑g∈G δg

)
A into A. �

If |G| is invertible in S, let again e = 1
|G| ∑g∈G δg ∈ A, cf. Section 2.

Corollary 3.8. If |G| is invertible in S, then one can identify ϕ : S⊗R S→ Maps(G, S) with the
homomorphism of A–bimodules µ : Ae⊗eAe eA→ A with µ(ae⊗ ea′) = aea′. �

The structure of ϕ for reflection groups. Now we return to the situation where S =
SymK V and the finite group G 6 GL(V) acts linearly on S. In the following key result
the equivalence (1)⇐⇒(2) is due to J. Watanabe [Wat76, Cor.2.9, Cor.2.12, Lemma 2.7].

Theorem 3.9. For a finite subgroup G 6 GL(V) with |G| invertible in K the following are
equivalent.

(1) The group G is generated by pseudo–reflections in GL(V).
(2) The ring S⊗R S is Cohen–Macaulay.
(3) The ring S⊗R S is a complete intersection in the polynomial ring S⊗K S.

If these equivalent conditions are satisfied then S⊗R S is reduced and ϕ : S⊗R S→ Maps(G, S)
is injective. This ring homomorphism is the normalization morphism for S⊗R S.

Proof. As stated above, (1)⇐⇒(2) is due to Watanabe and clearly (3)=⇒(2). It thus suffices
to show (1)=⇒(3). With S = SymK V ∼= K[x1, ..., xn] the polynomial ring, S ⊗K S ∼=
SymK(V ⊕ V) ∼= K[x′1, ..., x′n; x′′1 , ..., x′′n ] is a polynomial ring in 2n variables, where we
have set x′i = xi ⊗ 1 and x′′i = 1⊗ xi.

With fi ∈ R ⊆ S basic invariants, so that R = K[ f1, ..., fn] ⊆ S, one has the presentation

S⊗R S ∼= K[x′1, ..., x′n; x′′1 , ..., x′′n ]/( fi(x′′)− fi(x′); i = 1, ..., n) .

Since S is flat (even free) over R by the Chevalley–Shephard–Todd theorem, the R–regular
sequence f = ( f1, ..., fn) is also regular on S. As S is flat over K, the sequence ( fi ⊗ 1)i is
regular in S⊗K S with quotient S/(f)⊗K S. As S/(f) is flat over K, it follows that (1⊗ fi)i
forms a regular sequence in S/(f) ⊗K S. Hence ( f1 ⊗ 1, ..., fn ⊗ 1, 1 ⊗ f1, ..., 1 ⊗ fn) is a
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regular sequence in S⊗K S. This implies that (1⊗ fi − fi ⊗ 1)i is a regular sequence since
it is part of the regular sequence ( fi ⊗ 1− 1⊗ fi, 1⊗ fi)i. Thus, S⊗R S = S⊗K S/( fi ⊗ 1−
1⊗ fi)i=1,...,n is a complete intersection ring as claimed.

Concerning the remaining assertions, if S⊗R S is Cohen–Macaulay it cannot contain any
nontrivial torsion submodule, whence ϕ is injective by Lemma 3.4(5). As ϕ is injec-
tive and generically an isomorphism by Proposition 3.3, it suffices to note that the ring
Maps(G, S) ∼= S|G| is normal. �

Question 3.10. Can one strengthen Theorem 3.9 by showing that G is a group generated
by pseudo–reflections if, and only if, S⊗R S is reduced?

A note on normalization and conductor ideals. If ν : C → C̃ is the normalization ho-
momorphism of a reduced commutative ring C, then applying HomC(−, C) to ν yields
an inclusion ν∗ = HomC(ν, C) : HomC(C̃, C)↪→C. The image is the conductor ideal c ⊆ C
(with respect to its normalization.) It is as well an ideal in the larger ring C̃ and is the
largest ideal of C with this property. Alternatively, one may define the conductor ideal as
the annihilator c = annC C̃/C.

Below we will use the following facts.

Lemma 3.11. Assume the commutative ring C is noetherian and Gorenstein with its normaliza-
tion C̃ a Cohen–Macaulay C–module. In this case,

(1) The C–module C̃/C is Cohen–Macaulay of Krull dimension dim C− 1.
(2) As C–modules Ext1

C(C̃/C, C) ∼= C/c.
(3) As C–modules Ext1

C(C/c, C) ∼= C̃/C.
(4) There are isomorphic short exact sequences of C–modules

0 // C/c

∼=
��

// C̃/c

∼=
��

// C̃/C //

∼=
��

0

0 // Ext1
C(C̃/C, C) // Ext1

C(C̃/c, C) // Ext1
C(C/c, C) // 0 .

(5) The conductor ideal c is a maximal Cohen–Macaulay C–module.
(6) If C̃ is a regular ring, then the (reduced) vanishing locus V(c) ⊆ Spec C is the (reduced)

singular locus of C

Proof. Because the normalization homomorphism is generically an isomorphism, the Krull
dimension of C̃/C is at most dim C − 1. Because both C̃ and C are Cohen–Macaulay of
Krull dimension dim C by assumption, the short exact sequence

0 // C ν
// C̃ // C̃/C // 0(†)

shows that the depth of C̃/C is at least dim C − 1, whence the dimension and depth
coincide and are equal to dim C− 1, thus establishing (1).

For (2) note that Exti
C(C̃, C) = 0 for i 6= 0 as C̃ is a (necessarily maximal) Cohen–

Macaulay C–module. Applying HomC( , C) to the short exact sequence (†) and noting
that HomC(C̃/C, C) = 0 one obtains the short exact sequence of C–modules

0 Ext1
C(C̃/C, C)oo Coo coo 0 ,oo
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and so (2) follows.

As to (3), just apply HomC( , C) to the short exact sequence

0 // c
ν
// C // C/c // 0

and observe that HomC(c, C) ∼= C̃ as C̃, being maximal Cohen–Macaulay over C, is a
reflexive C–module.

Finally, apply HomC( , C) to the short exact sequence

0 // c
ν
// C̃ // C̃/c // 0

to obtain first Ext1
C(C̃/c, C) ∼= C̃/c and then (4).

Item (5) follows from (2) as Ext1
C(C̃/C, C) is a Cohen–Macaulay C–module (of Krull di-

mension dim C − 1) along with C̃/C. Now use the short exact sequence 0 → c → C →
C/c ∼= Ext1

C(C̃/C, C)→ 0 to conclude.

Item (6) follows from the fact that V(c) describes the non–normal locus of Spec C, thus,
V(c) ⊆ Sing(C). Outside of V(c), the normalization homomorphism is an isomorphism,
thus, Spec C is regular there as this holds for C̃ by assumption. �

Translating this into a statement for the twisted group algebra, we obtain the following
structure theorem for the algebra A = A/AeA.

Theorem 3.12. Assume the finite subgroup G 6 GL(V) with |G| invertible in K is generated by
pseudo–reflections5 and let A = S ∗ G be the twisted group algebra.

(1) The ideal AeA of A is projective both as left or as right A–module.
(2) For any (left or right) A–modules M, N, restriction of scalars along A � A yields isomor-

phisms of R–modules Exti
A(M, N)

∼=−→ Exti
A(M, N) for all integers i. In other words, the

ring homomorphism A � A is a homological epimorphism; see [GL91, Thm. 4.4.(5),
(5’)].

In particular, A is of finite global dimension at most n = dim V. Moreover, A is a Cohen–
Macaulay R–module of Krull dimension dim R− 1.

Proof. (1) In view of Corollary 3.8 and Theorem 3.9, the multiplication map Ae⊗eAe eA→
AeA is an isomorphism of A–bimodules. It thus suffices to prove that Ae⊗eAe eA is projec-
tive as (one–sided) A–module. Using again Corollary 3.8, we have also the identification
S⊗R S ∼= Ae⊗eAe eA as A–bimodules. Moreover, by the Chevalley–Shephard–Todd the-
orem, S is a free R–module, whence S⊗R S is free as left or right S–module. Now S ∼= Ae
is a projective left A–module and eA ∼= S is a projective left eAe ∼= R–module. Thus,
Ae⊗eAe eA is projective as left A–module. The statement for the right module structure
follows by symmetry.

It is well known that (1) implies (2). This is shown in [APT92] for Artin algebras, but their
arguments apply to any rings. For a reference that makes no such restrictive assumption,
see [GL91, Thm. 4.4] and [Kra15, Lemma 2.7].

As gldim A = n, property (2) implies gldim A 6 gldim A. With S⊗R S ∼= Ae⊗eAe eA and
A ∼= Maps(G, S), as S⊗R S–module A identifies with the cokernel of the normalization
homomorphism ϕ : S ⊗R S → Maps(G, S). As S ⊗R S is a complete intersection, thus,

5We allow G to be the trivial group.
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Gorenstein, and Maps(G, S) ∼= S|G| is Cohen–Macaulay, Lemma 3.11 (1) applies to show
that A is a Cohen–Macaulay module of Krull dimension n− 1, equivalently as S⊗R S or
R–module, as claimed. �

Corollary 3.13. Let S be as above and G 6 GL(V) be a finite group generated by pseudo-
reflections. Let A = S ∗ G and eχ = e2

χ ∈ A an idempotent associated to a linear character χ.
Then:
(1) The quotient algebra A = A/Aeχ A is Koszul.
(2) If G 6= µ2, then gldim A = n.

Proof. By Cor. 2.6 we may assume that χ is the trivial character and thus eχ = e =
1
|G| ∑g∈G δg. Denote by V the defining representation of G. Following [Aus86], the Koszul
complex of K

0 −→ S(−n)⊗K det V −→ S(−n + 1)⊗K

n−1∧
V −→ · · · −→ S −→ K −→ 0

yields an A-projective resolution of K. A minimal projective A-resolution for any sim-
ple A-module W is obtained by tensoring this complex with W over K, with G acting
diagonally:

0 −→ S(−n)⊗K det V ⊗K W −→ S(−n + 1)⊗K

n−1∧
V ⊗K W −→ · · ·

· · · −→ S⊗K W −→W −→ 0

Since e is the idempotent for the trivial representation K, any irreducible representation
W 6∼= K gives rise to a nonzero projective A-module S⊗K W.
By the theorem, part (1), tensoring the above A-projective resolution of W with −⊗A A
yields an A-projective resolution of W (cf. Thm. 1.6. and Ex. 1 of [APT92]). From this fol-
lows that A is Koszul and gldim A ≤ n.
For the equality we show that Extn

A(W, det V ⊗W) 6= 0. Since G 6= µ2 in statement (2),
there exists W 6= K and W 6= det(V)−1 such that W and det V ⊗W yield nonzero A-
modules. For any A- modules M, N it holds that Exi

A(M, N) = Exti
S(M, N)G. Moreover,

by the theorem, one has Exti
A(M, N)

∼=−→ Exti
A(M, N) for all M, N ∈ Mod(A). The projec-

tion S⊗K det V ⊗K W −→ det V ⊗K W represents a nonzero element of Extn
S(W, det V ⊗K

W) that is G-invariant. Thus Extn
S(W, det V ⊗K W)G 6= 0. �

Remark 3.14. If G = µ2, then since G is generated by a reflection we can choose a basis
of V so that G is generated by diag(−1, 1, . . . , 1). Let C = K[x2, . . . , xn]. Then an explicit
calculation shows that the global dimension of A drops indeed: one may realize A =
(K[x1, . . . , xn] ∗ µ2) as the order (

K[x2
1] K[x2

1]
x2

1K[x2
1] K[x2

1]

)
⊗ C.

In this description, e is the idempotent matrix e11 and AeA is of the form(
K[x2

1] K[x2
1]

x2
1K[x2

1] x2
1K[x2

1]

)
⊗ C.

Thus A ∼= C, of global dimension n − 1 < n = gldim A. Note here that R/(∆) ∼= C is
regular and moreover A ∼= R/(∆).
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Until the end of this section we assume the hypotheses of theorem 3.12 that G 6 GL(V)
is generated by pseudo–reflections and that |G| is invertible in K.

3.15. Our next goal is to determine the annihilator of A as S⊗R S–module, equivalently,
in view of the preceding Theorem 3.12 and Lemma 3.11, the conductor ideal (of the nor-
malization) of S⊗R S.

To this end consider the elements fi(x′′)− fi(x′) in S⊗K S and write

fi(x′′)− fi(x′) =
n

∑
j=1
∇j

i(x
′, x′′)(x′′j − x′j)(∗)

for suitable elements ∇j
i(x
′, x′′) ∈ S ⊗K S. Note that ∇j

i(x, x) = ∂ fi/∂xj ∈ S and recall
that

J = det(∂ fi/∂xj) ∈ S ,

is the Jacobian of the basic invariants fi.

Lemma 3.16. For g ∈ G, one has ϕ(det(∇j
i(x
′, x′′))) = Jδ1 ∈ Maps(G, S).

Proof. By definition of ϕ, and because it is a ring homomorphism, one has

ϕ(det(∇j
i(x
′, x′′)))(g) = det(∇j

i(x, gx)) ∈ S .

For g = 1 ∈ G, this evaluates to J. For g 6= 1, as the fi are G–invariant, one has in S⊗K S

fi(x′′)− fi(x′) = fi(g(x′′))− fi(x′)

=
n

∑
j=1
∇j

i(x
′, g(x′′))(g(x′′j )− x′j) ,

and specializing x′′, x′ 7→ x, this becomes 0 = ∑n
j=1∇

j
i(x, g(x))(g(xj)− xj) in S, whence

the linear system
(
∇j

i(x, g(x))
)
(v1, ..., vn)T = 0 has the nontrivial solution (vj)j=1,...,n =

((g(xj)− xj))j=1,...,n 6= 0 over the domain S. This forces the determinant det(∇j
i(x, gx)) to

vanish. �

Corollary 3.17. In A, one has the containment of ideals A(Jδ1)A ⊆ AeA. In particular, A is
annihilated by J both as left or right S–module.

Proof. By Lemma 3.16, βϕ
(

det
(
∇j

i(x
′, x′′)

))
= Jδ1 in A and Jδ1 = α

(
det

(
∇j

i(x
′, x′′)

))
∈

AeA. �

In fact we have the following precise description of the annihilator of A as S ⊗R S–
module.

Proposition 3.18. The annihilator ideal of A in S⊗R S is the conductor ideal c of the normaliza-
tion of S⊗R S and

c = annS⊗RS A =
(

det(∇j
i(g(x′), x′′)), g ∈ G

)
.

The image of this ideal under ϕ is ϕ(c) = Maps(G, JS) = J Maps(G, S) ⊆ Maps(G, S), the
principal ideal generated by the Jacobian J·1 in Maps(G, S).
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Proof. The first statement has been explained already. We next use that for C = S ⊗R S
and C̃ = Maps(G, S) the C–module A identifies with C̃/C. To determine the conductor, it
suffices to compute Ext1

C(A, C) by Lemma 3.11(2).

To this end observe first that C = S⊗R S ∼= S⊗K S/(regular sequence), where the regular
sequence is of length n = dim C. This implies that naturally

Ext1
C(A, C) ∼= Extn+1

S⊗KS(A, S⊗K S) .

To determine the latter extension module, we make explicit the free S⊗K S–resolution of
A as mapping cone of the S⊗K S–resolutions of C = S⊗R S and of C̃ =

⊕
g∈G S⊗R S/Ig,

respectively.

As S ⊗R S is the complete intersection S ⊗K S modulo the regular sequence ( fi(x′′) −
fi(x′))i, a free S⊗K S–resolution is given by the Koszul complex on that regular sequence,

Kf = K(( fi(x′′)− fi(x′))i, S⊗K S) '−→ S⊗R S ,

where ' is to indicate that that complex is a resolution.

Now for g ∈ G one has Ig = (x′′i − g(x′i); i = 1, ..., n) ⊆ S⊗R S by Lemma 3.4(1). Applying
g to the first tensor factor in equation (∗) shows

fi(x′′)− fi(g(x′)) =
n

∑
j=1
∇j

i(g(x′), x′′)(x′′j − g(x′j)) .

As fi is G–invariant, fi(g(x′)) = fi(x′) and so there is a containment

( fi(x′′)− fi(x′); i = 1, ..., n) ⊆ (x′′j − g(x′j); j = 1, ..., n) ⊂ S⊗K S

of ideals in S⊗K S. In particular, S⊗R S/Ig ∼= S⊗K S/(x′′j − g(x′j); j = 1, ..., n) as S⊗K S–
modules.

The sequence (x′′j − g(x′j))j is regular in S⊗K S as it consists of linearly independent linear
forms. Thus, S⊗R S/Ig is as well a complete intersection in S⊗K S with free resolution
the Koszul complex on that regular sequence,

Kg = K((x′′j − g(x′j))j, S⊗K S) '−→ S⊗R S/Ig .

With Mg =
(
∇j

i(g(x′), x′′)
)

the indicated n× n matrix over S⊗K S, its exterior powers
provide for a lift of the evaluation homomorphism evg ϕ : S ⊗R S → S ⊗R S/Ig to a
morphism between the resolutions. Putting all these facts together, we obtain

Kf
'

//

(Λ•Mg)g∈G

��

S⊗R S

ϕ

��

∏g∈G Kg
'
// Maps(G, S) .

With Φ = (Λ•Mg)g∈G the indicated morphism between resolutions, the mapping cone
on Φ yields a resolution of A ∼= Maps(G, S)/ Im(ϕ) as S ⊗K S–module. This mapping
cone is a complex of free S ⊗K S–modules of length n + 1, whence we can calculate
Extn+1

S⊗KS(A, S ⊗K S) simply as the cokernel of the last differential in the S ⊗K S–dual of
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that mapping cone. The result is easily seen to be

Extn+1
S⊗KS(A, S⊗K S) = S⊗R S/

(
det Mg; g ∈ G

)
= S⊗R S/

(
det

(
∇j

i(g(x′), x′′)
)

; g ∈ G
)

.

Therefore, c =
(

det
(
∇j

i(g(x′), x′′)
)

; g ∈ G
)
⊆ S⊗R S as claimed.

By the same reasoning as in Lemma 3.16, it follows that ϕ
(

det
(
∇j

i(g(x′), x′′)
))

= Jδg ∈
Maps(G, S). �

Corollary 3.19. If G is generated by (pseudo–)reflections of order 2, then J is a squarefree product
of linear forms and so S/c ⊆ (S/(J))|G| is reduced, V(c) = Sing(S⊗R S) ⊆ Spec(S⊗R S). �

Corollary 3.20. For G generated by pseudo–reflections, consider the map ψ : Maps(G, S) →
S⊗R S given by

ψ(∑
g∈G

sgδg) = ∑
g∈G

sg det
(
∇j

i(g(x′), x′′)
)

.

This is S–linear on the left and ϕψ = J idMaps(G,S).

As both Maps(G, S) and S ⊗R S are free (left) S–modules, the pair (ϕ, ψ) constitutes a matrix
factorization of J ∈ S whose cokernel is A as left S–module. In particular, A is a maximal Cohen–
Macaulay module over the hypersurface ring S/(J). �

The map ϕ and the group matrix. Moreover, Lemma 3.11 has the following interesting
consequence: In the matrix factorization (ϕ, ψ) of J with coker ϕ = A, the morphism ψ is
the transpose of ϕ up to base change. Indeed, the S/(J)–dual of A, say, with respect to
the left S–module structure, is the first syzygy module of A as S/(J)–module.

The equation det(ϕψ) = J|G| that follows from ϕψ = J id then entails that

J|G| = det(ϕ)det(ψ) = det(ϕ)2 ,

thus det(ϕ) = J|G|/2. Now J = ∏m1
i=1 Lri−1

i , where the Li are the linear forms defining
the mirrors of G and ri is the order of the cyclic group that leaves the mirror invariant.
The hyperplanes {Li = 0} are the irreducible components of the hyperplane arrangement
and on such a component the rank of A is accordingly (ri − 1)|G|/2. Note that this is an
integer, as |G| odd implies that each ri is odd too.

Next note that ∆ = zJ = ∏i Lri
i . Grouping the hyperplanes into orbits under the action of

G, we get ∆ = ∏
q
j=1 ∆j, where ∆j = ∏Lk∈Oj

Lrk
k with Oj an orbit and q the number of such

orbits. These ∆j are the irreducible factors of ∆ in R. Note that the exponents rk are the
same for each linear form in an orbit. We abuse notation and denote this common value
for Oj also by rj, giving ∆j = (∏Lk∈Oj

Lk)
rj . Since the stabilizer of a hyperplane in Oj has

order rj we have that |Oj| · rj = |G|. Hence we obtain the following result.

Corollary 3.21. The rank of A along the component ∆j of the discriminant is (rj− 1)|G||Oj|/2 =
(rj−1)|G|2

2rj
= (rj

2)
|G|2
r2

j
.

We give an alternate proof of this fact that additionally describes the codimension one
structure of A in Corollary 5.10.
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4. NONCOMMUTATIVE RESOLUTIONS OF DISCRIMINANTS

Matrix factorizations as quiver representations, Knörrer’s functors. In order to com-
pare modules over the discriminant and the skew group ring, we will interpret Knörrer’s
functors from [Knö84] and [Knö87] more generally for path algebras via recollements.
This yields a reformulation of Eisenbud’s theorem [Eis80] and a generalization of Knörrer’s
result ([Knö87, Prop. 2.1]) in Theorem 4.3 and Remark 4.6.

Modules over path algebras: Let R be a commutative regular ring, f ∈ R and let

(7) B = R e+ e−

v

u

f
.

This stands for the associative R-algebra generated by e+, e−, u, v, modulo the relations

e2
+ = e+ , e2

− = e− , e− + e+ = 1 ,
u = e+ue− , v = e−ve+ ,
uv = f e+ , vu = f e− .

Note that B is free as a R-module with basis the four elements e−, e+, u, v.
A right B-module M corresponds to a quiver representation of the form

M+ M− ,

vM

uM

f

where M+ = Me+ and M− = Me− are R-modules and uM and vM are R-linear and must
satisfy uMvM = f IdM+ and vMuM = f IdM− . Note here that M is isomorphic to M+ ⊕M−
as R-modules via restriction of scalars. In the following we use the shorthand notation

M := (M+

vM
�
uM

M−) .

A morphism between B-modules M = (M+�vM
uM

M−) and M′ = (M′+�
v′M
u′M

M′−) corre-
sponds to a pair (α−, α+) of R-module homomorphisms such that the diagram

(8) M+
vM
//

α+
��

M−
uM
//

α−
��

M+

α+
��

M′+ v′M
// M′− u′M

// M′+

commutes.

Conversely, if we start with a quiver representation (M+�vM
uM

M−), then M := M+⊕M−
is naturally a right B-module. If M is finitely generated projective as a R-module, then the
pair (uM, vM) is called a matrix factorization of f over R and the B-module (M+�vM

uM
M−)

is called a (maximal) Cohen–Macaulay module over B. The category of such modules is de-
noted CM(B).
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Lemma 4.1. Let B be an algebra of the form (7). Then:

(a) B = e+B⊕ e−B is the sum of two projective B-modules.
(b) B/Be+B ∼= B/Be−B ∼= R/( f ). In particular, there are natural algebra surjections B �

R/( f ).
(c) e+Be+ ∼= e−Be− ∼= R .
(d) The centre of B is R.

Proof. The first assertion is clear. We show the other claims for e+, for e− they follow
similarly. For (b) first compute e+B = e+(e+R⊕ uR⊕ vR⊕ e−R) = e+R⊕ uR and from
this

Be+B = B(e+R⊕ uR) = e+R⊕ uR⊕ vR⊕ vuR .
Now using vu = e− f it follows that

B/Be+B ∼= e−R/e− f R ∼= e−(R/( f )) ∼= R/( f ) .

For (c) multiply e+B = e+R⊕ uR with e+ from the right and get e+R ∼= R. For (d) note
first that R ⊆ Z(B), as B is a R-algebra. Take x ∈ Z(B), then from e+x = xe+ and ux = xu
it follows that x = r(e+ + e−) for some r ∈ R. Thus Z(B) = R. �

In order to relate modules over B and over R/( f ) we look at the standard recollement
induced by e−. It is given by

Mod B/Be−B Mod B Mod e−Be− ,

i∗ = −⊗B B/Be−B

i! = HomB(B/Be−B,−)

i∗

j! = −⊗e−Be− e−B

j∗ = Home−Be−(Be−,−)

j∗ = HomB(e−B,−)

where

• (i∗, i∗, i!) and (j!, j∗, j∗) are adjoint triples,
• the functors i∗, j∗, and j! are fully faithful,
• Im(i∗) = ker(j∗).

From this it follows that there exist exact sequences

(9)
j! j∗ −→ idMod B −→ i∗i∗ −→ 0,

0 −→ i∗i! −→ idMod B −→ j∗ j∗ ,

see e.g. [FP04, Prop. 4.2]. Note that with Lemma 4.1, one can write i∗ = − ⊗B R/( f ),
i! = HomB(R/( f ),−). Moreover, j∗ = HomB(e−B,−) ∼= −⊗B Be−. One easily verifies
the following statements:

Lemma 4.2. Let M be a B-module, C be a R/( f ) = B/Be−B-module and N be a R = e−Be−-
module. The functors in the standard recollement are determined by

• i∗C = (0� C),
• i!(M) = ker vM ,
• i∗(M) = coker uM ,
• j∗(M) = M− = e−M ,
• j!(N) = N ⊗R e−B = N ⊗R (R� f

id R) = (N� f
id N) ,
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• j∗(N) = HomR(Be−, N) ∼= (N�id
f N) . �

Recall the definition of an Iwanaga–Gorenstein ring:

Definition 4.1. An associative ring Λ is called Iwanaga–Gorenstein if it is noetherian on
both sides and the injective dimension of Λ as a left and right Λ-module is finite.

Theorem 4.3. Let R be a commutative regular ring with f ∈ R, f 6= 0 and B as before,

B = R e+ e−

v

u

f
.

The ring B is Iwanaga–Gorenstein and M = (M+�vM
uM

M−) ∈ CM(B) if and only if i∗M is in
CM(R/( f )), where i∗ is coming from the recollement as described above. The functor i∗ induces
an equivalence of categories

CM(B)/〈e−B〉 ' CM(R/( f )) ,

where e−B is the ideal in the category CM(B) generated by the object e−B.

Proof. To show that B is Iwanaga–Gorenstein, first note that B is noetherian, since it is
finitely generated over R. Set M∗ = HomR(M, R) for a B-bimodule M. Since R is Goren-
stein, it has a finite injective R-module resolution

0 −→ R −→ I0 −→ · · · −→ Im −→ 0.

Then apply HomR(B∗,−) to get a complex of B-modules

0 −→ B∗∗ −→ J0 −→ · · · −→ Jm −→ 0.

Because B is finite free over R, we have B∗∗ ∼= B as a B-module and the Ji are injective
B-modules. Moreover, the sequence stays exact, thus represents an injective B-module
resolution of B. The argument works for either the left or right module structure on B.

Now assume that M = (M+�vM
uM

M−) is in CM(B). Recall that this means that M+ and
M− are projective over R. Set C := coker(uM) = i∗(M). Because f is a non-zero-divisor
in R, multiplication by f on M− is injective and so is uM as vMuM = f idM− . Therefore

(10) 0 −→ M−
uM−−→ M+ −→ C −→ 0

is a projective resolution of C over R. This implies C = i∗(M) ∈ CM(R/( f )) by the
Auslander–Buchsbaum formula, and so i∗ defines a functor CM(B) to CM(R/( f )).

Conversely, take any Cohen–Macaulay module C over R/( f ) and let (10) be a projective
resolution of C over R with M+ and M− free R-modules. One can find uM and vM such
that

(11)

0

0

M−

M−

M+

M−

C

0

0

0

f id vM uM 0 0
uM

id

is a short exact sequence of B-modules, that is, uMvM = vMuM = f . The leftmost column
of this diagram corresponds to the B-module (M−�

f
id M−) = j! j∗M, which is isomorphic
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to a direct summand of (e−B)m for some m ≥ 0, since M− is projective over R. In partic-
ular, that B-module is projective and the B-module M = (M+�v

u M−) is in CM(B) and
coker(u) = i∗(M) = C. This shows that i∗ is a dense functor from CM(B) to CM(R/( f )).
Note that we just established that there is a short exact sequence of functors

(12) 0 −→ j! j∗ −→ idCM(B) −→ i∗i∗ −→ 0

from CM(B) to mod(B), where mod(B) stands for the category of finitely generated B-
modules. Here idCM(B) −→ i∗i∗ is the restriction of the unit of the adjunction (i∗, i∗) to
CM(B). Further, i∗(e−B) = 0, whence i∗ factors through the quotient CM(B)/〈e−B〉.
From the exact sequence (12) one easily sees that the functor CM(B)/〈e−B〉 −→ CM(R/( f ))
induced by i∗ is fully faithful. For fullness, note that any morphism α : i∗i∗M → i∗i∗M′
in CM(R/( f )) lifts to a morphism in CM(B) through the projective resolutions of i∗i∗M
and i∗i∗M′, and for faithfulness note that if α = 0, then any morphism representing α in
CM(B) factors through e−B. �

Example 4.4. The matrix factorizations to the two indecomposable projective B-modules
e−B and e+B are (R� f

id R) and (R�id
f R), respectively. In particular, one sees that i∗(e−B) =

0 and i∗(e+B) = R/( f ).

Interpreting Theorem 4.3 in terms of matrix factorizations, note that CM(B) ' MF( f ),
the category of matrix factorizations of f . Let I be the ideal in the category MF( f ) gener-
ated by the matrix factorization R� f

id R. If f is a nonzerodivisor in R then by the above
result, the functor coker(u−) : MF( f ) −→ CM(R/( f )) induces an equivalence of cate-
gories

(13) MF( f )/I ' CM(R/( f )),

which is a reformulation of [Eis80, Section 6].

Let T := R[z]/(z2 − f ), so that Spec(T) is the double cover of Spec(R) ramified over
V( f ) = { f = 0}. The canonical R-involution on T that sends z to −z defines a group
action of µ2 = 〈σ | σ2 = 1〉 on T. Let B′ = T ∗ µ2 be the corresponding twisted group
algebra.

Proposition 4.5. With notation as just introduced

(1) B′ ∼= R〈z, δσ〉/〈z2 − f , δσz + zδσ = 0, δ2
σ = 1〉.

(2) Sending δσ 7→ e+ − e− and z 7→ u + v defines an injective R-algebra homomorphism B′ to
B.

(3) If 2 is a unit in R, then this R-algebra homomorphism is bijective, with the inverse sending
e± 7→ 1

2 (1± δσ), while u 7→ 1
2 (1 + δσ)z and v 7→ 1

2 (1− δσ)z.

Proof. All statements follow from the fact that B′ is a free R-module with basis 1, z, δσ, zδσ

and B is a free R-module with basis e+, e−, u, v as we observed at the beginning of this
subsection. �

Remark 4.6. Assuming that 2 is a unit in R and expressing the recollement in terms of B′,
one regains the functors in [Knö87]. In particular, Theorem 4.3 implies Knörrer’s result

CM(T ∗ µ2) ' MF( f )
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as established in [Knö87, Prop. 2.1].
Combining this with the equivalence (13) one has the equivalence of categories

CM(T ∗ µ2)/(e−B) ' MF( f )/I ' CM(R/( f )) .

The skew group ring and Bilodeau’s isomorphisms. The results here were inspired by
work of Bilodeau [Bil05]. In the following, K is a commutative ring and G a finite group
such that the order |G| of G is invertible in K. Set eG = 1

|G| ∑g∈G g ∈ KG, the idempotent in
the group algebra that belongs to the trivial representation of G. Similarly, for a subgroup
H 6 G we set eH = 1

|H| ∑h∈H h ∈ KG and say that this idempotent element in KG is
defined by H.

If Γ, H 6 G are complementary subgroups in that Γ ∩ H = {1}, where 1 ∈ G is the
identity element, and HΓ = G, then every element g ∈ G can be written uniquely as
g = hγ with h ∈ H, γ ∈ Γ, and also uniquely as g = γ′h′ with γ′ ∈ Γ, h′ ∈ H.

One has eG = eHeΓ = eΓeH in KG, and for Γ normal in G it holds that geΓ = eΓg for all
g ∈ G, thus, eΓ is then a central idempotent.

Lemma 4.7. Let M be a left KΓ–module. The K–submodule MΓ = {m ∈ M | γm =
m for each γ ∈ Γ} equals eΓ M.

Proof. If γm = m for each γ ∈ Γ, then
(
∑γ∈Γ γ

)
m = |Γ|m, that is, eΓm = m, and so

MΓ ⊆ eΓ M. On the other hand, γeΓ = eΓ for each γ ∈ Γ, thus, eΓ M ⊆ MΓ. �

Corollary 4.8. If Γ acts through K–algebra automorphisms on a K–algebra S, then T := SΓ =
eΓS is a K–subalgebra of S.

Proof. This is obvious from the description T = SΓ = {s ∈ S | γs = s for each γ ∈ Γ}. �

Lemma 4.9. With notation as before, let Γ 6 G be a normal subgroup and set T = SΓ and
H = G/Γ. The quotient group H acts naturally on T through K–algebra automorphisms and
one can form T ∗ H accordingly. There are a natural isomorphism S ⊗K KH ∼= AeΓ as right
T ∗ H–modules and a K–algebra isomorphism T∗H ∼= eΓ AeΓ, where A = S ∗ G, as before.

Proof. As stated just before Lemma 4.7, for Γ normal in G, one has geΓ = eΓg for each
g ∈ G. Further, γeΓ = eΓ = eΓγ, whence the element geΓ = eΓg depends solely on the
coset gΓ. In that way, heΓ = eΓh is a well–defined element of KG for any h ∈ H.

Accordingly, the map S⊗K KH → AeΓ that sends s⊗ h 7→ s(heΓ) ∈ AeΓ is well defined.
It is bijective as for a = ∑g∈G sgδg ∈ A one has

aeΓ = ∑
g∈G

sgδgeΓ

= ∑
gΓ∈H

∑
γ∈Γ

sgγδgδγeΓ

= ∑
h=gΓ∈H

(∑
γ∈Γ

sgγ)(heΓ)
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whence aeΓ 7→ ∑h=gΓ∈H(∑γ∈Γ sgγ)⊗ h yields the inverse map. It also follows from this
calculation that ∑h′∈H th′δh′ ∈ T ∗ H acts from the right on AeΓ by

aeΓ

(
∑

h′∈H
th′δh′

)
=

(
∑

h=gΓ∈H
shheΓ

)(
∑

h′∈H
th′δh′

)
= ∑

h,h′∈H
shh(th′)(hh′eΓ)

= ∑
h′′∈H

(
∑

hh′=h′′
shh(th′)

)
h′′eΓ ,

where we have used that eΓt = teΓ and eΓh = heΓ for t ∈ T and h ∈ H.

Transporting this structure to S⊗K KH under the bijection onto AeΓ, we obtain that (s⊗
h)∑h′∈H th′δh′ = ∑h′ sh(th′)⊗ hh′ defines the right T ∗ H–module structure on S ⊗K KH
that makes the bijection above T ∗ H–linear.

Furthermore, that bijection is Γ–equivariant with respect to the left Γ–actions γ(s⊗ h) =
γ(s)⊗ h and γ(aeΓ) = δγaeΓ ∈ AeΓ ⊆ A. Taking Γ–invariants returns the isomorphism of
right T ∗ H–modules

(S⊗ H)Γ ∼= SΓ ⊗ H = T ⊗ H

and

(AeΓ)
Γ = eΓ AeΓ ,

whence

T ⊗ H ∼= eΓ AeΓ .

Transporting the algebra structure on the right to the left via this isomorphism, one ob-
tains T ∗ H ∼= eΓ AeΓ as K–algebras. �

Remark 4.10. If Γ 6 G admits a complement, necessarily isomorphic to H, then the nat-
ural K–algebra homomorphism T ∗ H → S ∗ H induces the T ∗ H–module structure on
S ∗ H ∼= S⊗K KH.

Now we come to the key result.

Proposition 4.11. Let Γ, H 6 G be complementary subgroups with Γ normal in G. With G
acting through K–algebra automorphisms on some K–algebra S and with T = SΓ, the group
H acts naturally on EndT(S) through algebra automorphisms and there is an isomorphism of
K–algebras Φ : EndT(S) ∗ H

∼=−→ EndT∗H(S ∗ H), where S ∗ H is considered a right T ∗ H–
module.

Proof. If h ∈ H and α ∈ EndT(S), then (hα)(s) = h(α(h−1(s))) defines the action of H on
EndT(S) through algebra automorphisms. Namely, hα is T–linear because

(hα)(st) = h(α(h−1(st)))

= h(α(h−1(s)h−1(t)))

as H acts through algebra automorphisms on S,

= h(α(h−1(s))h−1(t))
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as α is T–linear and h−1(t) ∈ T,

= h(α(h−1(s)))h(h−1(t))

= (hα)(s)t .

That H acts through algebra automorphisms on EndT(S) follows from

(h(αβ))(s) = h(αβ(h−1(s)))

= h(α(h−1(hβh−1(s))

= (hα)((hβ)(s)) .

Accordingly one can form the twisted group algebra EndT(S) ∗ H as in Definition 2.1.

The map Φ sends α = ∑h∈H αhδh, with αh ∈ EndT(S), to the map Φ(α) : S ∗ H → S ∗ H
defined by

Φ(α)

(
∑

h′∈H
sh′δh′

)
=

(
∑

h∈H
αhδh

)(
∑

h′∈H
sh′δh′

)
= ∑

h,h′∈H
αh(h(sh′))δhδh′

= ∑
h′′∈H

(
∑

hh′=h′′
αh(h(sh′))

)
δh′′ .

To show that Φ is a homomorphism of K–algebras, with β = ∑h′∈H βh′δh′ ∈ EndT(S) ∗ H
one finds first

αβ = ∑
h,h′∈H

αhh(βh′)δhh′

and then

Φ(αβ)

(
∑

h′′∈H
sh′′δh′′

)
= Φ

(
∑

h,h′∈H
αhh(βh′)δhh′

)(
∑

h′′∈H
sh′′δh′′

)
= ∑

h,h′,h′′∈H
(αhh(βh′))((hh′)(sh′′))δhh′h′′ ,

whereas

Φ(α)Φ(β)

(
∑

h′′∈H
sh′′δh′′

)
= Φ(α)

(
∑

h′,h′′∈H
βh′(h′(sh′′))δh′h′′

)
= ∑

h,h′,h′′∈H
αh(h(βh′(h′(sh′′)))δhh′h′′

= ∑
h,h′,h′′∈H

αh(h(βh′)(h(h′(sh′′))))δhh′h′′

= ∑
h,h′,h′′∈H

(αhh(βh′)((hh′)(sh′′))δhh′h′′ .

Thus, Φ(αβ) = Φ(α)Φ(β) as claimed.
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To check that Φ(α) constitutes an T∗H–linear endomorphism of S ∗ H it suffices to note
that there is a commutative diagram of homomorphisms of K–algebras

EndT(S) ∗ H Φ
// EndT∗H(S ∗ H)

T ∗ H
ϕ

ff

ψ

77

where ϕ is induced by the K–algebra homomorphism T → EndT(S) that sends t ∈ T
to λt, the (left) multiplication by t on S, and ψ represents left multiplication by T ∗ H on
S ∗ H. Indeed,

Φϕ(tδh)

(
∑

h′∈H
sh′δh′

)
= Φ(λtδh)

(
∑

h′∈H
sh′δh′

)
= ∑

h′∈H
th(sh′)δhh′

= (tδh)

(
∑

h′∈H
sh′δh′

)

= ψ(tδ)

(
∑

h′∈H
sh′δh′

)
.

Finally, we show that Φ is an isomorphism by exhibiting the inverse. Let f : S ∗H → S ∗H
be a right T ∗ H–linear map. Then

f

(
∑

h∈H
shδh

)
= ∑

h∈H
f (shδ1)δh

as f is T ∗ H–linear. Therefore, f is uniquely determined by f (shδ1) = ∑h∈H fh(s)δh,
where in turn fh(s) ∈ S is uniquely determined as the δh form a basis of the (right) S–
module S ∗ H. Now f is T–linear on the right, whence necessarily for any s ∈ S, t ∈ T the
expression

f (stδ1) = ∑
h∈H

fh(st)δh

equals

f (sδ1)t =

(
∑

h∈H
fh(s)δh

)
t

= ∑
h∈H

fh(s)h(t)δh

Comparing coefficients of δh it follows that fh(st) = fh(s)h(t) for each h ∈ H. This implies
that the map αh(s) = fh(h−1(s)) is in EndT(S) and Ψ( f ) = ∑h∈H αhδh yields the inverse
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of Φ. Indeed,

ΦΨ( f )

(
∑

h′∈H
sh′δh′

)
= Φ( ∑

h∈H
αhδh)( ∑

h′∈H
sh′δh′)

= ∑
h′′∈H

(
∑

hh′=h′′
αh(h(sh′))

)
δh′′

= ∑
h′′∈H

(
∑

hh′=h′′
( fh(h−1(h(sh′))))

)
δh′′

= ∑
h,h′∈H

fh(sh′)δhδh′

= f

(
∑

h′∈H
sh′δh′

)
.

One checks analogously that ΨΦ(α) = α for any α ∈ EndT(S) ∗ H. �

To sum up, let us interpret the preceding result in terms of A = S ∗ G:

Proposition 4.12. As noted before, we have

• T∗H ∼= eΓ AeΓ, an isomorphism of K–algebras.
• S∗H ∼= AeΓ, an isomorphism of right eΓ AeΓ–modules.

Furthermore, left multiplication by elements of A defines a K–algebra homomorphism

A→ EndeΓ AeΓ(AeΓ) ∼= EndT∗H(S ∗ H)
Ψ−→∼= EndT(S) ∗ H .

Moreover, as Γ, H are complementary subgroups in G, one has A = S ∗ G ∼= (S ∗ Γ) ∗ H as
K–algebras and, as any skew group ring is isomorphic to its opposite, the sequence of ring homo-
morphisms becomes

(S ∗ Γ) ∗ H ∼= A→ EndeΓ AeΓ(AeΓ) ∼= EndT∗H(S ∗ H)
Ψ−→∼= EndT(S) ∗ H .

Now there is always the natural K–algebra homomorphism f : S ∗ Γ→ EndT(S) and the compo-
sition of this sequence of K–algebra homomorphisms is just f ∗ H.

Remark 4.13. By Auslander’s theorem, if G 6 GL(V) and S = K[V], or S = K[[V]], is
the polynomial ring, respectively the power series ring on the finite dimensional vector
space V over K, then f , and as a consequence also f ∗H, are isomorphisms if Γ contains no
pseudo–reflections in its linear action on S. Thus the above result generalizes Auslander’s
theorem to the case where G 6 GL(V) is a pseudo-reflection group. Here Γ = G ∩ SL(V)
is small and H is the quotient G/Γ in the exact sequence 1 −→ Γ −→ G −→ G/Γ −→ 1.

Intermezzo: Specializing to reflection groups.

Invariant ring T = SΓ in terms of R = SG. In the following let V be a finite dimensional
vector space over K and G 6 GL(V) be a true reflection group. Set Γ := G ∩ SL(V) and
H := det G ∼= µ2(K) = 〈σ〉. This means that we have an exact sequence of groups

1 −→ Γ −→ G
det |G−−−→ H −→ 1.
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This sequence splits (by definition G is generated by pseudo-reflections). Let S = K[x1, . . . , xn],
T = SΓ, R = SG = K[ f1, . . . , fn] ⊆ S and J = det

(
( ∂ fi

∂xj
)ij

)
the Jacobian of G. Note that,

since G is generated by order 2 reflections, J is equal to z, the polynomial defining the
hyperplane arrangement of G and the discriminant of G is ∆ = z2 ∈ R.

Lemma 4.14. With notation as just introduced, the invariant ring T satisfies T ∼= R⊕ JR as an
R-module and T ∼= R[J]/(J2 − ∆) as rings.

Proof. This follows from Stanley [Sta77]: let SG
χ be the set of invariants relative to the linear

character χ, i.e., SG
χ = { f ∈ S : g( f ) = χ(g) f for all g ∈ G}. In Lemma 4.1 loc. cit. it is

shown that
SΓ = SG

triv⊕ SG
det−1

as SG = R-modules, where triv denotes the trivial character and det−1 denotes the inverse
of the determinantal character. Since SG

triv = SG = R and SG
det−1 is generated by J = z over

R (see either [Sta77] or [OT92, Chapter 6]), it follows that

T ∼= R⊕ JR.

From Stanley’s description of T as R-module, we also see how H = G/Γ ∼= µ2 = 〈σ〉
acts on R[J]: σ is the identity on R and σ(J) = det−1(σ)(J) = −J, since the Jacobian is a
semi-invariant for det−1 of the reflection group. �

Remark 4.15. If G is a pseudo-reflection group, then by [Sta77], the module of relative
invariants SG

det is generated by z, the reduced equation for the hyperplane arrangement
and SG

det−1 is generated by the Jacobian J. Then the relation for the discriminant is zJ = ∆
(see [OT92], Examples 6.39, 6.40 and Def. 6.44).

The hyperplane arrangement S/(J). Keeping the notation from above, we further write A =
S ∗ G, B = T ∗ H and set e = 1

|G| ∑g∈G δg, eΓ = 1
|Γ| ∑γ∈Γ δγ, e− = 1

2 (1 − δσ) and the

(inverse) determinantal idempotent f = 1
|G| ∑g∈G det−1(g)δg. Here we show how the

module S/(J) over the discriminant R/(∆) can be seen as the image of the B-module
AeΓ.

Proposition 4.16. Denote by i∗ = −⊗B B/Be−B : Mod(B) −→ Mod(B/Be−B) the standard
recollement functor. Then i∗AeΓ

∼= S/(J) as B/Be−B ∼= R/(∆)-module.

Proof. First compute

i∗AeΓ = AeΓ ⊗B B/Be−B ∼= AeΓ/AeΓe−B.

Since e−eΓ = eΓe− = f and B ∼= eΓ AeΓ (see Proposition 4.12), this is

AeΓ/AeΓe−B ∼= AeΓ/AeΓe−eΓ AeΓ
∼= AeΓ/A(eΓe−)(e−eΓ)AeΓ

∼= AeΓ/A f AeΓ
∼= (A/A f A)eΓ.

Consider the trivial idempotent e in A. Since Γ is of index 2 in G and H is the cokernel
of Γ −→ G, it follows that e + f = eΓ and with A = A/A f A one sees that AeΓ

∼= Ae.
From Lemma 2.7 it follows that Ae ∼= S/(J), since J generates the R-module of relative
invariants for χ = det−1. �
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The main theorem.

Theorem 4.17. Let G 6 GL(V) be a finite true reflection group with H := det G ∼= µ2 = 〈σ〉
and set Γ = G ∩ SL(V). Let T = SΓ, R = SG ⊆ S, J the Jacobian of G and the discriminant
∆ = J2 ∈ R. Further denote by A = S ∗ G the skew group ring, A = A/Aeχ A, with eχ ∈ A an
idempotent for a linear representation χ, and B = T ∗ H. Then:

(i) Then there is an equivalence of categories

CM(R/∆) ' CM(B)/〈e−B〉,
where e− is the idempotent e− = 1

2 (1− δσ) in B.
(ii) The skew group ring A is isomorphic to EndB(AeΓ) = EndB(S ∗H) , where eΓ = 1

|Γ| ∑γ∈Γ δγ.

(iii) The quotient algebra A = A/Aeχ A is isomorphic to EndR/∆(i∗(AeΓ)), where i∗ comes
from the standard recollement of mod B, mod Be−B and mod B/Be−B.

(iv) The R/(∆)-module i∗(AeΓ) is isomorphic to S/(J), which implies that

A ∼= EndR/(∆)(S/(J)).

Proof. Without loss of generality we may assume that eχ = f = 1
|G| ∑g∈G det−1(g)δg,

cf. Cor. 2.6. From Theorem 4.3 it follows that

CM(B)/〈e−B〉 ' CM(B/Be−B).

The equivalence is induced by i∗ : Mod(B)
−B⊗B/Be−B−−−−−−−→ Mod(B/Be−B), as seen in the

proof of Theorem 4.3. Since B/Be−B is isomorphic to R/(∆) (see Cor. 4.1, b), it follows
that

i∗ : CM(B)/〈e−B〉 '−→ CM(R/(∆)).
By Prop. 4.12, A = S ∗G is isomorphic to HomB(S⊗H, S⊗H). Since i∗ is an equivalence,
it follows that

i∗(HomB(S⊗ H, S⊗ H)) ∼= HomR/∆(i∗(S⊗ H), i∗(S⊗ H)).

Now using S ⊗ H ∼= AeΓ (as right B-module) from Lemma 4.9 yields that i∗(S ⊗ H) =
i∗AeΓ = S/(J) by Prop. 4.16. Thus in total we get

i∗(A) ∼= EndR/(∆)(S/(J))

in CM(R/(∆)).
On the other hand, compute the image of A = HomB(AeΓ, AeΓ) in CM(B)/〈e−B〉: we
have to identify all morphisms AeΓ −→ AeΓ that factor through copies of e−B. These are
sums of elements of the form α ◦ β with α ∈ HomB(e−B, AeΓ) and β ∈ HomB(AeΓ, e−B).
Since e− is an idempotent, it follows e.g. from Lemma 4.2 [ASS06] that the first Hom is
isomorphic (as right e−Be− = R-modules)

HomB(e−B, AeΓ) ∼= HomB(B, AeΓ)e− ∼= AeΓe− = A f ,

since e−eΓ = eΓe− = f . For the other Hom, note that e−B = e−eΓ AeΓ = f AeΓ and thus
HomB(AeΓ, e−B) = HomB(AeΓ, f AeΓ). For each f β ∈ HomB(AeΓ, AeΓ) one sees that the
natural map Φ : f HomB(AeΓ, AeΓ) −→ HomB(AeΓ, f AeΓ) sending f β to (aeΓ 7→ f β(aeΓ))
is surjective and moreover injective. Thus Φ is an isomorphism. It follows that

HomB(AeΓ, e−B) ∼= f HomB(AeΓ, AeΓ) ∼= f A

as rings. In total we get

HomB(AeΓ, AeΓ)/〈e−B〉 ∼= A/ ((A f )( f A)) ∼= A/A f A .
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�

This theorem immediately yields that A/A f A is a noncommutative resolution of the dis-
criminant R/(∆).

Remark 4.18. By Example 2.15 R/(∆) is a direct summand of S/(J). Using Thm. 5.3 of
[DFI16] it follows that the centre of A is equal to Z(EndR/(∆)(S/(J)) = R/(∆).

Corollary 4.19. Notation as in the theorem. If G 6∼= µ2, then A/Aeχ A ∼= EndR/(∆)(S/(J))
yields a NCR of R/(∆) of global dimension n. If G ∼= µ2, then A/Aeχ A ∼= R/(∆) is a NCCR
of R/(∆).

Proof. By the theorem A/Aeχ A ∼= EndR/(∆)(S/(J)). By Cor. 2.6 A/Aeχ A ∼= A/AeA. By
Corollary 3.13 the global dimension of A/AeA is n if G 6∼= µ2. For the remaining case,
cf. Rmk. 3.14 and note that R/(∆) is regular. �

Corollary 4.20 (McKay correspondence). The nontrivial irreducible G-representations are in
1− 1-correspondence to the indecomposable projective A-modules, that are in 1− 1-correspondence
to the isomorphism classes of R/(∆)-direct summands of S/(J).

Proof. Take A = A/AeA. Similar as in Lemma 2.3 one has functors α, β between P(A) and
Mod(KG). This yields a bijection between the irreducible representations of KG (except
the trivial one) and indecomposable projective A modules. On the other hand, decom-
pose S/(J) =

⊕
i Mai

i as a finite direct sum of CM-modules over R/(∆). Then the inde-
composable projective EndR/(∆)(S/(J))-modules are of the form HomR/(∆)(S/(J), Mi),
which yields the second bijection. �

Example 4.21. (The normal crossings divisor as discriminant and its skew group ring)
This example was our main motivation for investigating the relationship between A/AeA
and EndR/(∆)(S/(J)): The reflection group G = (µ2)n acts on V = Kn via the reflections
σ1, . . . , σn with

σi(xj) =

{
xj if i 6= j
−xj if i = j .

So G can be realized as the subgroup of GL(V) generated by the diagonal matrices

si =


1 0 0 0 0

0
. . . 0 0 0

0 0 −1 0 0

0 0 0
. . . 0

0 0 0 0 1

 .

It is easy to see that the invariant ring R = SG = K[x2
1, . . . , x2

n] = K[ f1, . . . , fn]. Then the
Jacobian determinant J = z of the basic invariants ( f1(x), . . . , fn(x)) is J = 2nx1 · · · xn.
We may omit the constant factor 2n for the remaining considerations. The hyperplane ar-
rangement corresponding to G is the normal crossing divisor S/(J) = K[x1, . . . , xn]/(x1 · · · xn).
The discriminant ∆ is given by ∆ = J2 = f1 · · · fn. So the coordinate ring of the discrimi-
nant is R/(∆) = K[ f1, . . . , fn]/( f1 · · · fn).
By Theorem 4.17, the ring A = A/AeA ∼= EndR/(∆)(S/(J)) yields a NCR of R/(∆). Here
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we can explicitly compute the decomposition of S/(J) as R/(∆)-module:

S/(J) ∼=
⊕
I([n]

xI ·
(

R/( f [n]\I)
)

,

where [n] denotes the set {1, . . . , n} and f L = ∏l∈L fl for a subset L ⊆ [n]. This holds
because S ∼=

⊕
I([n] RxI as R-module and AnnR(S/(J)) = J2 = ∆. Thus (RxI)/( f [n]) ∼=

(R/( f [n]\I)) · xI for any I ( [n], and it follows that S/(J) is a faithful R/(∆)-module.
In [DFI15, Thm. 5.5] it was shown that the module M =

⊕
I([n] R/(∏i∈I fi) gives a non-

commutative resolution of global dimension n of the normal crossing divisor R/(∆). This
was proven by showing that EndR/(∆)(M) is isomorphic to the order

(14)
(

x J\IK[x1, . . . , xn]
)

I,J
⊂ K[x1, . . . , xn]

2n×2n
, where I, J ⊆ [n].

On the other hand, one can also compute that the skew group ring A is in this case is A =
(K[x1, . . . , xn] ∗ (µ2)n) ∼=

⊗n
i=1 Λ1, where Λ1 is the skew group ring K[x] ∗ µ2. Forming

the quotient by AeA yields the order (14).

Coda: Results in dimension 2. If G 6 GL(V), dim V = 2, is a true reflection group,
then the relation between R = SG, T = SΓ and R/(∆) can be interpreted in context
of the classical McKay correspondence, cf. Section 2: in this case T is isomorphic to
K[x, y, z]/(z2 + ∆(x, y)), where {z2 + ∆ = 0} is an Kleinian surface singularity. More-
over, T is of finite CM-type, that is, there are only finitely many isomorphism classes of
indecomposable CM-modules. By Herzog’s Theorem [Her78], S is a representation gen-
erator for T, that is, addT(S) = CM(T).

In the following we show that with Theorem 4.17 one obtains that R/(∆) is an ADE-
curve and the hyperplane arrangement S/(J) yields a natural representation generator
for R/(∆):

Theorem 4.22. Let G 6 GL(V), dim V = 2, be a true reflection group, with invariant ring
SG = R and discriminant R/(∆). Then R/(∆) is of finite CM-type and consequently Spec(R/(∆))
is an ADE curve singularity. Moreover, addR/(∆)(S/(J)) = CM(R/(∆)).

Proof. By Theorem 4.17 A = A/AeA ∼= EndR/(∆)(S/(J)) has global dimension 2. More-
over, R/(∆) is a direct summand of S/(J). This we deduce from Ae ∼= S/(J)e and mul-
tiplying by e from the left yields a direct summand of A, which can be calculated as
eAe ∼= R/(∆). It follows that S/(J) is a generator-cogenerator in the sense of Iyama
[Iya03]: since R/(∆) is Gorenstein, this just means that R/(∆) ∈ addR/(∆)(S/(J)). Now
one can use the Auslander lemma, cf. [Iya03, DFI15] to see that R/(∆) is of finite CM
type, and thus add(S/(J)) = CM(R/(∆)). The only Gorenstein curves of finite CM-type
are the ADE-curves, see [GK85]. �

5. ISOTYPICAL COMPONENTS AND MATRIX FACTORIZATIONS

Let G 6 GL(V) be any finite pseudo-reflection group. In this section we study direct
sum decompositions of S/(J) and A. Moreover, the Hilbert–Poincaré series of the direct
summands of S/(J) as a R/(∆) = SG/(∆)-modules are computed. Thus we also able to
compute the ranks of these direct summands over R/(∆) in case ∆ is irreducible. In the
case of G = Sn we can even give a more explicit description using Young diagrams. We
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also compute the rank of A for any finite pseudo-reflection group in two ways: using the
codimension 1 structure and with Hilbert–Poincaré series (in case ∆ is irreducible).

Hilbert–Poincaré series of isotypical components of S/(J). Here we look at the Hilbert–
Poincaré series of the direct summands Mi of S/(J): recall from Section 2 that Mi was de-
fined to be the R/(∆)-module HomKG(Vi, S/(J)), where Vi is an irreducible G-representation.
Further we have Si = HomKG(Vi, S) and S′i = HomKG(V ′i , S) = HomKG(Vi ⊗ det, S).
From the exact sequence (3) it follows that that

HMi(t) = HSi(t)− tmHS′i
(t) .

Let KSi(t) and KS′i
(t) be the numerator polynomials of the Hilbert-Poincaré series of Si and

S′i respectively and HR(t) = 1
∏n

i=1(1−tdi )
and HR/(∆)(t) = 1−tm+m1

∏n
i=1(1−tdi )

the Hilbert–Poincaré

series of R and R/(∆) respectively. Then HMi(t) can be written as

(15) HMi(t) = HR(t)
(

KSi(t)− tmKS′i
(t)
)
= HR/(∆)(t)

(
KSi(t)− tmKS′i

(t)
)

1− tm+m1
.

Remark 5.1. The numerator polynomials KSi of the HMi are called fake degree polynomials,
see e.g. [Car93], or generalized Kostka polynomials, see [GP92].

Example 5.2. In the case of G = Sn, the irreducible representations of G correspond to
partitions λ of n and each partition λ is given by a Young diagram, see e.g. [FH91]. Then
the corresponding Hilbert–Poincaré series for the λ-isotypical component Sλ of S is given
as

(16) HSλ
(t) =

n

∏
k=1

t fk

1− thk
,

where fk denotes the length of the leg of the hook of the k-cell and hk denotes the length
of the hook of the k-cell (see Kirillov [Kir84, Thm. 1]) [Note here: for fk the k-cell itself is
not counted and for the hooklength it is counted once, cf. [FH91]].

Ranks of the isotypical components of S/(J). The ranks of the Mi = HomKG(Vi, S/(J)) over
R/(∆) can be computed by evaluating HMi(t) in t = 1, at least when ∆ is irreducible:

Lemma 5.3. Let R = K[x1, . . . , xn] be graded by deg xi = di ∈ N, let ∆ ∈ R be a quasi-
homogeneous polynomial, R/(∆) be a domain, and let M be a finitely generated CM module over
R/(∆). Then

rankR/(∆)(M) = lim
t→1

HM(t)
HR/(∆)(t)

.

Proof. Let S′ = K[y1, . . . , yn−1], where the yi form a system of parameters of R/(∆), then
M is a finitely generated module over S′ Note that the Hilbert–Poincaré series of M (and
of R/(∆)) does not change if we consider both modules over S′. If M is a graded CM-
module over the graded CM ring R/(∆), then rank(M) =

eS′ (M)
eS′ (R/(∆)) , see [Nor68, Theorem

18] (cf. also Thm. 4.7.9 in [BH93]). Here eS′(−) denotes the multiplicity of a module over
S′. By work of Smoke [Smo72], one can interpret eS′(M) as limt→1(χS′(K)HM(t)), where
χS′(M) is the so-called generalized multiplicity of M, also cf. [Sta78], and χS′(K) is equal
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to ∏n−1
i=1 (1 − td′i), where d′i = deg yi. Since both M and R/(∆) have ranks, both limits

limt→1(χS′(K)HM(t)) and limt→1(χS′(K)HR/(∆)(t)) exist and thus

rankR/(∆)(M) =
limt→1(χS′(K)HM(t))

limt→1(χS′(K)HR/(∆)(t))
= lim

t→1

HM(t)
HR/(∆)(t)

.

�

Proposition 5.4. With notation as above, let Vi be an irreducible representation of G. Then the
rank over R/(∆) of the Vi-isotypical component of S/(J), Mi, is given by

rankR/(∆) Mi =
1

m + m1

(
m dim V ′i +

dKS′i
dt

(1)− dKSi

dt
(1)

)
,

where V ′i stands again for the twisted representation Vi ⊗ det. If G is a true reflection group, this
simplifies to

rankR/(∆) Mi =
1
2

dim V ′i +

dKS′i
dt (1)− dKSi

dt (1)
m

 .

Proof. Using expression (15) and Lemma 5.3 for HMi(t) we get

rankR/(∆) Mi = lim
t→1

HR/(∆)(t)
KSi (t)−tmKS′i

(t)

1−tm+m1

HR/(∆)(t)

 = lim
t→1

(
KSi(t)− tmKS′i

(t)

1− tm+m1

)
.

By the rule of l’Hospital this limit is equal to

lim
t→1

 dKSi
dt (t)−mtm−1KS′i

(t)− tm
dKS′i

dt (t)

−(m + m1)tm+m1−1

 .

Evaluating this expression in t = 1 yields the above expression. If G is generated by order
2 reflections, then m = m1 and also det = det−1, so one obtains the second formula. �

Proposition 5.5. In case of G = Sn and an irreducible representation λ the rank of the λ-
isotypical component Mλ of S/(J) is given by

(17) rankR/(∆)(Mλ) = dim(Vλ)

(
1
2
+

A− F
2m

)
,

where F = ∑k fk is the total footlength and A = ∑k ak is the total armlength of the Young diagram
corresponding to λ.

Proof. The rank of Mλ over R/(∆) is given as

rankR/(∆) Mλ = lim
t→1

HMλ
(t)

HR/(∆)(t)
= lim

t→1

HSλ
(t)− tmHSλ′

(t)
HR/(∆)(t)

,

where λ′ is the conjugate partition to λ. Note that the hooklengths of the conjugate parti-
tions are the same, that is, the hooklength hk of the k-cell in λ is the same as the hooklength
h′k of the corresponding k-cell in λ′. On the other hand, one has that the footlength fk in
λ is equal to the armlength a′k in λ′ and vice versa. Moreover, these are connected to
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the hooklength via hk = fk + ak + 1. Now substitute Kirillov’s formula (16) in the above
equation:

rankR/(∆) Mλ = lim
t→1

 1
∏n

k=1(1−thk )
(tF − tm+A)

1−t2m

∏n
k=1(1−tdk )

 = lim
t→1

[(
tF − tm+A

1− t2m

)
·
(

∏n
k=1(1− tdk)

∏n
k=1(1− thk)

)]
,

where dk are the degrees of the basic invariants of Sn. Now using l’Hospital’s rule for the
two factors in the product yields:

rankR/(∆) Mλ =
m + A− F

2m
·

n

∏
k=1

dk

hk
.

Since dk = k for all k = 1, . . . , n, the product ∏n
k=1

dk
hk

= n!
∏n

k=1 hk
= dim(Vλ) by the hook-

length formula, see e.g. [FH91]. This yields the formula in (17). �

Indecomposable summands and rank of A. Let G 6 GL(V) be a finite group. Let Γ be
a normal subgroup in G containing no pseudo-reflections and H a complementary sub-
group such that Γ ∩ H = {1} and ΓH = G. Here we will determine the indecomposable
summands of A and then, in the case when G is a true reflection group, of S/(J) over
R/(∆).
Recall from Section 4 that A ∼= EndB(AeΓ) with B = T ∗ H = eΓ AeΓ. Let {e(i)j } be a com-

plete set of orthogonal primitive idempotents of KG with e(i)j belonging to the irreducible
G-representation Vi, j = 1, . . . , dim Vi.

Lemma 5.6. (1) The right A-module e(i)j A is projective and indecomposable and A ∼=
⊕

i,j e(i)j A.

(2) The modules e(i)j AeΓ are indecomposable (right) B = eΓ AeΓ-modules.

Proof. For (1) we have to show that E = EndA(e
(i)
j A) has no nontrivial idempotents (see

[HGK04, Lemma 2.4.3.]). Now E is positively graded and idempotents necessarily reside
in degree 0. The ring E can be written as EndA(e

(i)
j A) = e(i)j EndA(A)e(i)j = e(i)j Ae(i)j . Now

look at the degree 0 part of this module:

(e(i)j Ae(i)j )0 ∼= e(i)j KGe(i)j
∼= e(i)j EndK(Vi)e

(i)
j
∼= K .

For (2) note that EndB(e
(i)
j AeΓ) = e(i)j EndB(AeΓ)e

(i)
j = e(i)j Ae(i)j by Prop. 4.12. �

Now we get back to true reflection groups G. Here Γ = G ∩ SL(V) and H ∼= µ2 generated
by some reflection σ. Let e− = 1

2 (1− δσ) be the idempotent in B. Then e−B = e−eΓ AeΓ =
f AeΓ with f = edet−1 .

Lemma 5.7. When G is a finite true reflection group, then the e(i)j AeΓ are contained in CM(B)/〈e−B〉
and are indecomposable. Moreover,⊕

i,j

i∗(e(i)j AeΓ) ∼= S/(J) ,

where i∗ : Mod(B) −→ Mod(B/Be−B) is the functor from the standard recollement. Moreover,
i∗(e(i)j AeΓ) is indecomposable as R/(∆) ∼= B/Be−B-module.
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Proof. For the first claim, we have to show that e(i)j AeΓ are free R-modules. For this, note
that AeΓ is left projective over A and hence projective over S and then also over R. Since
multiplication with e(i)j on AeΓ is R-linear, e(i)j AeΓ is a direct summand of a projective R-
module. The indecomposability follows from general considerations: Suppose that X ∈
Mod(B) is indecomposable but decomposes as Y ⊕ Z with Y, Z 6= 0 in Mod(B)/〈e−B〉.
This implies that there exist U, V ∈ 〈e−B〉 such that X⊕U ∼= Y⊕Z⊕V in Mod(B). Since
Mod B is Krull–Schmidt, this is a contradiction.
Now using the equivalence i∗ : CM(B)/〈e−B〉 ' CM(R/(∆)) from Theorem 4.3 the
remaining assertions follow. �

Remark 5.8. Since f = e(ν)1 for the 1-dimensional representation Vν = det, one sees that
AeΓ
∼=
⊕

i,j e(i)j AeΓ
∼=
⊕

i 6=ν,j e(i)j AeΓ in CM(B)/〈e−B〉. No other direct summand can be in
〈e−B〉 and thus stays non-zero in the quotient.

The structure of A in codimension 1. Let R be a DVR with parameter t and quotient field Q.
Let Λ be a standard hereditary order over R. So

Λ =


R · · · · · · R

tR
. . . · · ·

...
...

. . . . . .
...

tR · · · tR R

 ⊆ Rn×n ⊆ Qn×n

Let e be a rank one idempotent in Λ. By this we mean that e2 = e and e has rank one as a
matrix in Qn×n.

Lemma 5.9. Let e ∈ Λ be a rank one idempotent. Then there is a ring isomorphism φ : Λ → Λ
such that φ(e) = e11 the matrix unit.

Proof. We first note that e has rank one and so e = uvt, the outer product of vectors u, v in
Rn since R is a domain. So

e =

u1v1 u1v2 · · ·
u2v1 u2v2 · · ·

...
...

. . .

 .

Note that we have two expressions for the trace of e:

u1v1 + · · ·+ unvn = 1.

Now if uivi ∈ tR for all i, this would contradict the above equation, so for some j we must
have ujvj /∈ tR, so uj, vj ∈ R∗ the units of R.

Now let

y =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . · · · 0

0 0 · · · · · · 1
t 0 · · · · · · 0

 .

By conjugating Λ by y we can assume that j = 1.

So now u1, v1 ∈ R∗ but e ∈ Λ so uivj ∈ tR for i > j. So in particular u2v1, . . . , unv1 ∈ tR.
But v1 ∈ R∗. So we must have u2, . . . , un ∈ tR.
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Let

M =


u1 −v2 −v3 · · · −vn
u2 v1 0 · · · 0
u3 0 v1 · · · 0
...

...
. . . . . .

...
un 0 · · · 0 v1


We note that M has the following properties:

(1) det M ∈ R∗.
(2) M−1ΛM = Λ.
(3) M−1eM = e11.

and so our isomorphism φ is simply conjugation by M.

To verify the first property note that if we reduce modulo t the det M = u1vn−1
1 6= 0.

Checking the next properties is made easier by verifying that RM = MR and eM =
Me11. �

Let A = S ∗ G be a skew group ring where G is any finite subgroup of GL(V). Let p be a
height one prime ideal of the centre R = SG. Since A is homologically homogeneous in
the sense of [BH84] (also see [VdB04]) we see that the global dimension of Ap = A⊗R Rp

is one. So Ap is a hereditary order. By the structure theory of hereditary orders, as in
Reiner [Rei75], there is an étale extension R′ of the DVR Rp so that AR′ = A ⊗R R′ is
Morita equivalent to a standard hereditary order:

AR′ =


R′ · · · · · · R′
tR′ R′ · · · R′

...
. . . . . . R′

tR′ · · · tR′ R′


[g1,...,gN ]

where the exponent means that we replace the i, j entry (−) by (−)gi×gj . We know that if
we extend the prime ideal p to pR′we get the usual formula for ramification |G| = ∑ ei figi.
Our étale extension can be chosen to split all residue field extensions. So we have that all
fi = 1 and further that |G| = e1g1 + · · ·+ eN gN . Since S is Galois over SG, the ramification
indices ei at the point p are all the same. So we obtain:

AR′ =


R′ · · · · · · R′
tR′ R′ · · · R′

...
. . . . . . R′

tR′ · · · tR′ R′


g×g

⊆ (R′)rg×rg

where r is the ramification of the cover S over SG at the codimension one point p. Now
if we take a rank one idempotent of A, we obtain a rank one idempotent e of AR′ . By
Lemma 5.9, we can suppose that e = e11 ∈ (R′)eg×eg.

So now we note that

AR′/(AR′eAR′) '


0 0 · · · 0
0 L · · · L
...

. . . . . .
...

0 · · · 0 L


g×g

⊆ Lrg×rg ,
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where L = Q(R′). We record the above observations in the following statement.

Corollary 5.10. Let A = S ∗G be a skew group ring with G any finite subgroup of GL(V). Then
let p be a height one prime of the discriminant of the map SG → S. Let r be the ramification index
of this extension at p and let L be the algebraic closure of the residue field at p. Let A = A/(AeA).
Then

A⊗ L '


L L · · · L
0 L · · · L
...

. . . . . .
...

0 · · · 0 L


g×g

⊆ L(r−1)g×(r−1)g

where rg = |G|. Then the rank of A over the generic point p is (r
2)(|G|/r)2.

Note that if m1 is the number of mirrors over our generic point p in the discriminant and
m is the number of pseudo-reflections with those mirrors, then

m1(r− 1) = m

where r is the order of the pseudo-reflections with those mirrors, which is the ramification
index. This gives (

r
2

)
|G|2
r2 =

r(r− 1)|G|2
2r2

=
(r− 1)|G|2

2r

=
|G|2

2
m1(r− 1)

m1 + m1(r− 1)

=
|G|2

2
m

m1 + m
.

Note that the above corollary also allows us to conclude the following.

Corollary 5.11. If G 6 GL(V) is generated by pseudo-reflections, some of which have order≥ 3,
then A is not an endomorphism ring over R/(∆).

Proof. Suppose there is an R/(∆)-module M such that A ∼= EndR/∆(M). Let p be an
associated prime ideal of R/(∆) and let L be the algebraic closure of its residue field.
Then since R/(∆) is reduced, we see that

EndR/∆(M)⊗ L ∼= EndL(Ln) ∼= Ln×n

where n is the rank of M on the component corresponding to p. On the other hand,
Corollary 5.10 shows that A⊗ L has a nontrivial Jacobson radical unless the ramification
index r = 2. Therefore G must be a true reflection group. �

Remark 5.12. (Rank of A via Hilbert–Poincaré series) Here we sketch an alternative way
to determine the rank of A as R/(∆)–module, at least when ∆ is irreducible: Again as-
sume that G 6 GL(V) is any finite pseudo-reflection group. If we consider the Hilbert–
Poincaré series of t, where S is graded in the standard way with |xi| = 1 and |g| = 0 for
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g ∈ G, one has

HAeA(t) =
∏n

i=1(1− tdi)

(1− t)2n =
∏n

i=1
(

∑di−1
j=0 tj)

(1− t)n ,

HA(t) =
|G|

(1− t)n ,

whence

HA(t) =
|G| −∏n

i=1
(

∑di−1
j=0 tj)

(1− t)n .

Using Lemma 5.3 and the expression for HR/(∆)(t), the rank is given by

lim
t→1

HA(t)/HR/(∆)(t) = |G| lim
t→1

(
|G| −∏n

i=1
(

∑di−1
j=0 tj))

1− tm+m1
,(18)

where we have used that

lim
t→1

n

∏
i=1

( di−1

∑
j=0

tj) = n

∏
i=1

di = |G| .

For the remaining limit one applies the rule of l’Hospital and obtains

lim
t→1

HA(t)/HR/(∆)(t) = |G|
− |G|2 m
−(m + m1)

=
|G|2

2
m

m + m1
.

Example 5.13. If we take G = µd, acting on K[x] as above, then the formula becomes

lim
t→1

HA(t)/HR/(∆)(t) =
d2

2
d− 1

d
=

(
d
2

)
.

In the Shephard–Todd classification these are the groups denoted by G3 or G(d, 1, 1).

Example 5.14. One can explicitly compute the rank of A for any finite unitary reflection
group with irreducible discriminant in the Shephard–Todd list with the above:

rankR/(∆)(A) =
|G|2

2
m

m + m1
.

The number m of reflections is given as ∑n
i=1(di − 1), where n is the rank of G, and di

are the degrees of the basic invariants. The number m1, that is, the number of differ-
ent mirrors is given by the sum of the co-exponents of G. These are the degrees of the
homogeneous generators minus 1 of the logarithmic derivation module of the reflection
arrangement corresponding to G [OT92, Cor. 6.63]. All these numbers can be found in the
literature, see e.g. [ST54, Table VII] for the orders and degrees and [OT92, Table B.1] for
the co-exponents.
Note that the groups labeled G1 in the Shephard–Todd list are the symmetric groups,
which are true reflection groups, so

rankR/(∆)(A) =

(
|G|
2

)2

.

For the remaining groups one can determine in which cases the discriminant is irre-
ducible, cf. Appendix C in [OT92].
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Identifying isotypical components. The main result of this section is to identify the mod-
ule of logarithmic vector fields ΘR(− log ∆) ∼= ΘG

S and its exterior powers Θm
R (− log ∆) =∧m(ΘR(− log ∆)) ∼= (

∧m ΘS)
G as isotypical components of the natural representation V

and its exterior powers
∧m V and their corresponding matrix factorizations. The modules

of logarithmic differential forms and logarithmic residues were first defined and studied
by Kyoji Saito in [Sai80].

We start with recalling some facts from linear algebra, and introducing the notation for
logarithmic vector fields, where we follow [OT92].

5.15. Recall the following result from linear algebra: Let ϕ : P → Q be a linear map be-
tween finite projective modules of same rank m over some commutative ring C. With Λi

the ith exterior power over C and |P| = det P = ΛmP, |Q| = det Q = ΛmQ the invertible
C–modules given by the top exterior powers of P and Q, respectively, one has isomor-
phisms of C–modules ΛiP ∼= |P| ⊗C Λm−iP∗ and ΛiQ ∼= |Q| ⊗C Λm−iQ∗ induced from
the nondegenerate pairing Λi ⊗C Λm−i → Λm . Consider the composition

ϕadj ϕ : ΛiP
Λi ϕ−−−→ ΛiQ ∼= |Q| ⊗C Λm−iQ∗

|Q|⊗CΛm−i ϕ∗−−−−−−−−→ |Q| ⊗C Λm−iP∗ ∼= |Q|/|P| ⊗C ΛiP ,

where the adjugate morphism ϕadj is the composition of the maps to the right of ϕ, while
|Q|/|P| is shorthand for the invertible C–module |Q| ⊗C |P|−1. The top exterior power of
ϕ defines the C–linear map Λm ϕ : |P| → |Q| and the associated C–linear section det ϕ =
Λm ϕ⊗C |P|−1 : C → |Q|/|P| of the invertible line bundle |Q|/|P| is the determinant of
ϕ. The Laplace expansion of the determinant then translates into

ϕadjϕ = (det ϕ) idP : ∧i P −→ (|Q|/|P|)⊗C ∧iP .

5.16. We maintain our usual set-up: G 6 GL(V) is a finite group generated by pseudo-
reflections as subgroup of GL(V), and S = SymK(V) denotes the polynomial ring defined
by V over K, with R = SG the invariant subring. Recall that R ∼= SymK W is a polynomial
ring in its own right, with W ∼= R+/R2

+ the graded K–vector space generated by the
classes of the basic invariants fi ∈ R+.

We denote by Ω1
S the Kähler differential forms on S over K and by ΘS = HomS(Ω1

S, S)
its S–dual, isomorphic to the S–module of K-linear derivations, or vector fields, on S =
SymK(V). We define Ω1

R and ΘR similarly by replacing V with W.

Restricting a derivation on S to V = Sym1
K V ⊂ S yields canonical isomorphisms

ΘS = HomS(Ω1
S, S)

∼=−→ HomK(V, S) ∼= S⊗K V∗ , D 7→ D|V .

Similarly,
Θi

S = HomK(ΛiV, S) = S⊗K ΛiV∗

Ωi
S = HomK(ΛiV∗, S) = S⊗K ΛiV.

and these hold if we replace S with R and V with W.

5.17. If a group G acts on S through K–algebra automorphisms then G also acts naturally
on Ω1

S and ΘS, respectively.

Let again denote R = SG, then ΘG
S is the R-module of G-invariant derivations and (Ω1

S)
G

the R-module of G-invariant differential forms. Employing the isomorphisms above, it
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follows that
ΘG

S
∼=−→ HomK(V, S)G ∼= HomKG(V, S) ,

or, in other words, that the V-isotypical component of S is ΘG
S ⊗V.

Lemma 5.18. If the defining representation V is an irreducible G–representation then the evalu-
ation map

ev : ΘG
S ⊗K V → S

identifies ΘG
S with the isotypical component of S that belongs to V. In particular, the evaluation

map is a split R–monomorphism. �

5.19. We have the Jacobian map of S-modules Ω1
R ⊗R S

jac−→ Ω1
S defined by the inclusion

of K–algebras R ↪→ S. This gives the Zariski–Jacobi sequence 0 −→ Ω1
R ⊗R S

jac−→ Ω1
S −→

Ω1
S/R −→ 0, see e.g. [Mat86, Thm 25.1]. Note that jac is injective because Ω1

R ⊗R S is a free
S–module as R is smooth over K, while the potential kernel is supported on the critical
locus of the morphism Spec S→ Spec R, thus must be zero as the morphism is generically
smooth.

Applying ( )∗ = HomS(−, S) yields the map jac∗ : ΘR ⊗ S→ ΘS.

(†) 0←− T1
S/R ←− ΘR ⊗ S

jac∗←−− ΘS ←− 0 ,

where T1
S/R
∼= Ext1

S(Ω
1
S/R, S) is the first tangent cohomology of S over R. In particular,

the determinant of the (transposed) Jacobian matrix is given by the S–linear co-section

det(jac∗) : S−→Θn
R ⊗S (Θn

S)
∗ ∼= S⊗ |V|/|W| ,

where |V|/|W| is again shorthand for det V ⊗K (det W)−1.

5.20. Taking G–invariants is exact and applied to the short exact sequence (†) above it
returns

0←− j∆ ←− ΘR
(jac∗)G

←−−− ΘG
S ←− 0 .

In [OT92, Cor. 6.57] it is shown that the R–linear inclusion (jac∗)G identifies ΘG
S with

ΘR(− log ∆) = {θ ∈ ΘR : θ(∆) ∈ ∆R}, the R-module of logarithmic vector fields along
the discriminant ∆. We have the natural inclusions

µ∗ : ΘR(− log ∆) ∼= ΘG
S

(jac∗)G

−−−→ ΘR

ζ∗ : ΘR(− log ∆)⊗ S ∼= ΘG
S ⊗ S −−−→ ΘS .

Accordingly, j∆ = Coker (µ∗) can be identified with the Jacobian ideal of the discriminant,

j∆ ∼= {D(∆) + (∆) | D ∈ ΘR} ⊆ R/(∆) ,

and the determinant of µ∗ is the discriminant of G. It yields the R–linear co-section

det(µ∗) : R−→Θn
R(− log ∆)⊗R (Θn

R)
∗ ∼= R⊗ |W|/|W ′| ,

where W ′ is a graded K–vector space so that ΘR(− log ∆) ∼= R ⊗ (W ′)∗. In particular,
R⊗ |W ′| is a free R–module of rank 1 generated in degree −c, where c = ∑n

i=1 ci is the
sum of the co–degrees 0 = c1 6 · · · 6 cn, so that ΘR(− log ∆) ∼= ⊕n

i=1R(−ci).

As ΘR ∼= ⊕n
i=1R(di), the degree of the discriminant is |∆| = ∑n

i=1(di + ci).
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Example 5.21. If G is a duality group, then di − ci = d1, while di + cn−i+1 = dn, the Coxeter
number of G. Thus for such a group, |∆| = h · n = ∑n

i=1(2di − d1). Coxeter and Shephard
groups are duality groups, and for Coxeter groups d1 = 2 so that for these groups |∆| =
2 ∑n

i=1(di − 1), twice the number of reflections in that group, as it should be.

5.22. By [OT92, Thm. 6.59] the map ΘR(− log ∆)⊗R S −→ ΘS is an inclusion as well and
identifies in this way the S–modules ΘR(− log ∆)⊗R S ∼= ΘS(− log z), where ΘS(− log z) ⊆
ΘS is the S–module of logarithmic vector fields along the hyperplane arrangement given
by {z = 0} ⊆ Spec S.

Using the same analysis as before, it follows that z has degree |z| = ∑n
i=1(ci + 1), equal,

by definition, to the sum of the co-exponents of G, equal as well to the number of mirrors
or reflecting hyperplanes defined by G (this number has been denoted earlier as m1).

We note the following facts.

Proposition 5.23. (a) If the defining representation V of the pseudo-reflection group G 6 GL(V)
is irreducible, then ΛiV are irreducible for 1 ≤ i ≤ dim(V).

(b) Ωi
R
∼= (Ωi

S)
G ∼= (S⊗ΛiV)G

(c) Θi
R(− log ∆) ∼= (Θi

S)
G ∼= (S⊗ΛiV∗)G

Proof. The first statement is well known, e.g., [GM06, Thm. 4.6]. The second is [OT92,
Theorem. 6.49], and the third statement follows immediately from [OT92, Prop. 6.70],
which are both special cases of Solomon’s theorem [OT92, Prop. 6.47]. �

Now we come to main goal of this section to identify some of the R–direct summands of
S/(J). By the above, we have the following pair of dual commutative diagrams:

ΘS ΘS

jac∗

��

ΩS

ζ
��

ΩS

ΘR(− log ∆)⊗R S
µ∗⊗S

//

ζ∗

OO

ΘR ⊗R S ΩR(log ∆)⊗R S ΩR ⊗R S
µ⊗S
oo

jac

OO

ΘR(− log ∆)
µ∗

//

OO

ΘR

OO

ΩR(log ∆)

OO

ΩR
µ

oo

OO

Here the top squares are commutative diagrams of S-modules and the bottom squares
are commutative diagrams of R-modules. Let ι : ΛiV → Ωi

S and ι∗ : Λn−iV∗ ⊗ Θn−i
S

be the natural inclusions. The above maps give us the following pair of commutative
diagrams where the vertical maps of the top two squares are the multiplication in the
exterior algebra, a⊗ b 7→ a ∧ b.

(19) Θn
S

Λn jac∗
// Θn

R ⊗R S

Θi
S ⊗Θn−i

S

∧

OO

Λi jac∗ ⊗Λn−i jac∗
// Θi

R ⊗Θn−i
R ⊗R S

∧⊗S

OO

Θi
R(− log ∆)⊗R Λn−iV∗

Λiµ∗⊗Λn−iV∗
//

Λiζ∗⊗ι∗

OO

Θi
R ⊗R Λn−iV∗

Θi
R⊗(Λn−i jac∗ ◦ι∗)

OO
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(20) Ωn
S

Λnζ
// Ωn

R(log ∆)⊗R S

Ωn−i
S ⊗Ωi

S

∧

OO

Λn−iζ⊗Λiζ
// Ωn−i

R (log ∆)⊗Ωi
R(log ∆)⊗R S

∧⊗S

OO

Ωn−i
R ⊗ΛiV

Λn−iµ⊗ΛiV
//

Λn−i jac⊗ι

OO

Ωn−i
R (log ∆)⊗ΛiV

Ωn−i
R (log ∆)⊗(Λiζ◦ι)

OO

The top squares of these diagrams commute since if φ : P → Q is a map of free S-
modules, then Λ•φ : Λ•P → Λ•Q is an homomorphism of S-algebras. We know that
ΛnΩ1

R(log ∆) ∼= Ωn
R(log ∆) ∼= Ωn

R(|∆|), since ∆ is a free divisor, and zJ = ∆ so we obtain
the following maps

Ωn
R ⊗R S

J−−−−→ Ωn
S

z−−−−→ Ωn
R(|∆|)⊗R S.

Now we apply the functor HomKG(ΛiV,−) ⊗K ΛiV to this sequence. We first simplify
the terms

HomKG(ΛiV, Ωn
S)
∼= (Ωn

S ⊗ΛiV∗)G ∼= (Ωn−i
S )G ∼= Ωn−i

R
∼= Ωn

R ⊗Θi
R ,

HomKG(ΛiV, Ωn
R ⊗ S) ∼= (Ωn

R ⊗ S⊗ΛiV∗)G

∼= Ωn
R ⊗ (Θi

S)
G

∼= Ωn
R ⊗Θi

R(− log ∆)
∼= Ωn

R(log ∆)(−|∆|)⊗Θi
R(− log ∆)

∼= Ωn−i
R (log ∆) .

Here we have used the fact that Ωn(log ∆) ∼= Ωn(|∆|). Now applying the functor with its
natural transformation to the identity functor yields the following commutative diagram:

Ωn
R ⊗ S

Λn jac∗ ⊗Ωn
R⊗ΛnV

// Ωn
S

Λnζ
// Ωn

R(|∆|)⊗ S

Ωn−i
R (log ∆)(−|∆|)⊗ΛiV //

OO

Ωn−i
R ⊗ΛiV

OO

Λn−iµ⊗ΛiV
// Ωn−i

R (log ∆)⊗ΛiV

OO

Ωn
R ⊗Θi

R(− log ∆)⊗ΛiV
Ωn

R⊗Λiµ∗⊗ΛiV
//

∼
OO

Ωn
R ⊗Θi

R ⊗ΛiV //

∼
OO

Ωn
R ⊗Θi

R(− log ∆)(|∆|)⊗ΛiV

∼
OO

where we have presented two isomorphic interpretations of the bottom row. It is clear
that this diagram commutes since the left square with the bottom row is the outer square
of the diagram (19) tensored with ΩR ⊗ΛnV after applying the isomorphisms Λn−iV∗ ⊗
Vn ∼= ΛiV and Θi

R ⊗Ωn
R
∼= Ωn−i

R , and the upper right square is the diagram (20). Note
that the cokernel of Λn−iµ : Ωn−i

R → Ωn−i
R (log ∆) is the (n− i)-th logarithmic residue, see

[Sai80]. We call the cokernel Λiµ∗ : Θi
R(− log ∆) → Θi

R the i-th logarithmic co-residue of
∆. It is clear that the vertical maps are the evaluations of the natural transformation.
Lastly, since the maps on the bottom row are uniquely determined by commuting with
the diagram, we obtain the following result.
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Theorem 5.24. For all i with 1 ≤ i ≤ dim V, there is a matrix factorization of ∆ given by the
pair of maps Λn−iµ and Λiµ∗ ⊗ Ωn

R. The cokernels of these maps are the logarithmic residues
and co-residues with a degree shift |Ωn

R|, which occur as R/(∆)-direct summands of S/(z) and
S/(J) respectively, with multiplicity (n

i ) = dim ΛiV. In particular, the first logarithmic residue
coker(µ) and coker(µ∗) = j∆ are summands of S/(z) and S/(J) respectively, of multiplicity n.

Example 5.25. Let G = G(r, 1, n) ∼= µr o Sn be the full monomial group acting in the usual
way on S = K[x1, . . . , xn]. Let pi = 1

ir ∑j xri
j be the ith power sum function of the xm

i ,
for i ≥ 1. One choice of generators for the invariants is p1, . . . , pn. So R = K[p1, . . . , pn]

as in [ST54, Section 6]. It is now easy to compute that jac = (xjr−1
i )ij in terms of the

bases dpi and dxj of ΩR and ΩS respectively. A basis of ΘR(− log ∆) ∼= ΘG
S is given by

θi = ∑j x(i−1)r+1
j

∂
∂xj

as seen in [OT92, Appendix B.1], and so ζ∗ = (x(i−1)r+1
j )ij in terms of

the bases θi and ∂
∂xj

of ΘR(− log ∆) and ΘS respectively. Now we can compute µ = ζ jac =

r((i + j− 1)pi+j−1)ij in terms of the bases dpi and θi. From this it is easy to compute

J = det(jac) = (x1 · · · xn)
r−1 ∏

i<j
(xr

i − xr
j )

z = det(ζ) = x1 · · · xn ∏
i<j

(xr
i − xr

j ).

Lastly, the maps Λiµ∗ and Λn−iµ will determine a matrix factorization for ∆ for each i.

6. MCKAY QUIVERS

Recall the McKay quiver Mc(V, G), which was defined in Section 2: let G 6 GL(V) be
finite with irreducible representations V0 = triv, V1 = V = Vstn the defining representa-
tion, V2, . . . , Vd. The McKay quiver consists of vertices corresponding to the Vi and there
are mij arrows from Vi to Vj if Vj, where mij = dimK HomKG(Vi, V ⊗Vj).
For G 6 SL(V), dim V = 2, the McKay quiver is an extended Coxeter–Dynkin dia-
gram ∆ with arrows in both directions. One can show that the skew group algebra
A = S ∗ G is Morita equivalent to Π∆, the preprojective algebra of the corresponding
extended Coxeter–Dynkin diagram ∆, see [RVdB89]. The preprojective algebra of ∆ is
defined to be K∆ modulo the preprojective relations.
A natural question is now to determine the McKay quivers Mc(V, G) for pseudo-reflection
groups G and to to find whether A resp. A are Morita equivalent to the path algebra of
McKay(G) modulo suitable relations.
Here we can describe at least the McKay quiver for G = Sn, the relations remain mysteri-
ous.

McKay quiver for Sn. We describe the McKay quiver of the group Sn with its standard
irreducible representation as a reflection group Vstn. Recall that the irreducible represen-
tations Vλ of Sn are indexed by partitions λ of n, which we shall label by Young diagrams.
Hence the vertices of the McKay quiver are given by partitions of n.

Consider Sn−1 as a subgroup of Sn by taking the permutations that fix n, and let

Res : Mod KSn → Mod KSn−1

Ind : Mod KSn−1 → Mod KSn
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be the restriction and induction functors. Frobenius reciprocity states that these functors
are adjoint.

We also need the following lemmas.

Lemma 6.1 ([FH91],Ex. 4.43). Let λ be a partition of n. Then

Res Vλ =
⊕

τ

Vτ ,

where the sum is over all partitions τ of n− 1 that are obtained by removing a single block from
λ.

Lemma 6.2 ([FH91],Ex. 3.16,Ex. 3.13). Write Ktrv for the trivial representation. If we induce
and restrict in general we get

Ind Res V ∼= V ⊗ Ind Ktrv

and for the particular case of Sn−1 ⊂ Sn we have

Ind Ktrv ∼= Vstn ⊕ Ktrv .

We write the number of distinct parts of a partition λ = (λ1, . . . , λk) as p(λ).

Theorem 6.3. Consider the McKay quiver of Sn with vertices indexed by partitions of n. Let
τ 6= λ be partitions of n. Then there is an arrow from λ to τ if and only if λ can be formed from
τ by moving a single block. The number of loops on λ is p(λ)− 1, one less than the number of
distinct parts of λ.

Proof. Consider two representations Vλ, Vτ of Sn. We have

HomKSn−1(Res Vλ, Res Vτ) ∼= HomKSn(Ind Res Vλ, Vτ)
∼= HomKSn(Vλ ⊗ Ind Ktrv, Vτ)
∼= HomKSn(Vλ ⊗ (Vstn ⊕ Ktrv), Vτ)
∼= HomKSn((Vλ ⊗Vstn)⊕Vλ, Vτ)

Now if λ 6= τ we have that HomKSn(Vλ, Vτ) = 0. So since Vstn ∼= V∗stn we obtain

HomKSn(Vλ ⊗Vstn, Vτ) ∼= HomKSn(Vλ, Vstn ⊗Vτ)

which is the number of arrows from λ to τ in the McKay quiver. So we only need
to note that dim HomKSn−1(Res Vλ, Res Vτ) is also the number of isomorphic irreducible
summands of Res Vλ and Res Vτ. Since we obtain these from removing single blocks from
λ and τ there can be at most one in common and we obtain the description as stated in
the theorem. Now suppose that λ = τ so we obtain

HomKSn−1(Res Vλ, Res Vλ) = HomKSn((Vλ ⊗Vstn)⊕Vλ, Vλ)

= HomKSn(Vλ ⊗Vstn, Vλ)⊕ K
∼= HomKSn(Vλ, Vstn ⊗Vλ)⊕ K

Now note that dim HomKSn−1(Res Vλ, Res Vλ)− 1 is the number of loops on λ and this is
also the number of partitions τ of n − 1 obtained from λ by removing one block. Note
that this number is p(λ)− 1. �
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7. EXTENDED EXAMPLE: S4 AND THE SWALLOWTAIL

Consider the case of G = S4 acting on K3. We will give an explicit description of the direct
summands of S/(J) over the discriminant.
For this example, S = k[x, y, z], R = k[u, v, w] and

J = (x− y)(x− z)(y− z)(2x + y + z)(2y + x + z)(2z + x + y).

A generator of the discriminant ideal (∆) can be computed as the determinant of the
matrix (Jac)T(Jac), where Jac =

(
∂ fi
∂xj

)
is the Jacobian matrix, cf. [Sai93, OT92]. An explicit

equation is:
∆ = −v4 − 2u3v2 + 9u4w + 6uv2w− 6u2w2 + w3.

Spec(R/(∆)) is called the swallowtail. Its singular locus consist of two curves: a parabola
(the “self-intersection locus”) and a cusp, meeting at the origin, see Fig. 3.

Now let us sketch the computation of the matrix for multiplication by J. Consider the
map induced by multiplication by J on S

S
J−→ S

We know that S is a free R-module and that J2 = ∆ ∈ R, so

S
J−→ S

J−→ S

is a matrix factorization of ∆ over R by definition. We wish to decompose S/(J) into
indecomposable CM-modules over R/∆. We can use the grading and the G-action to
provide information about the decomposition.

First recall that R = K[ f1, . . . , fn] and let (R+) be the ideal in S generated by f1, . . . , fn.
Recall that (see Section 2) S/(R+) ∼= KG as G-representations, and S/(R+)⊗K R ∼= S as
graded RG-modules.

In this example G = S4. Let us call the irreducible representations

K, V, W, V ′, det

corresponding to the partitions

4 = , 3 + 1 = , 2 + 2 = , 2 + 1 + 1 = , 1 + 1 + 1 + 1 = .

We have that

S/(R+) ' K(0)⊕V(−1)⊕V(−2)⊕W(−2)⊕V(−3)⊕V ′(−3)⊕V ′(−4)⊕W(−4)⊕V ′(−5)⊕det(−6) ,

where the number in (−) indicates the degree shift.

By Section 5, S will decompose into isotypical components via the isomorphism

S ∼=
⊕

Vi irreps of G

HomKG(Vi, S)⊗K Vi

which gives us that the map S
J−→ S decomposes into components of the form

HomKG(U, S)⊗K U
J−→ HomKG(U ⊗ det, S)⊗K U ⊗ det

for each irreducible representation U of G.
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So for our example S4 we have the following components

K(0)⊗ R→ det(−6)⊗ R(21)

det(−6)⊗ R→ K(0)⊗ R(22)

(V(−1)⊕V(−2)⊕V(−3))⊗ R→ (V ′(−3)⊕V ′(−4)⊕V ′(−5))⊗ R(23)

(V ′(−3)⊕V ′(−4)⊕V ′(−5))⊗ R→ (V(−1)⊕V(−2)⊕V(−3))⊗ R(24)

(W(−2)⊕W(−4))⊗ R→ (W(−2)⊕W(−4))⊗ R(25)

where the maps are the R-linear maps given by multiplication by J restricted to each
component. Combining the first two components of lines (21) and (22) we obtain the
matrix factorization

R −→ JR −→ R
where both maps are multiplication by J. The cokernels of the two maps are 0 and R/∆
respectively. By choosing bases of V(−1) ⊕ V(−2) ⊕ V(−3) and V ′(−3) ⊕ V ′(−4) ⊕
V ′(−5) we can express multiplication by J in the other components as matrices with
entries in R. From (23) and (24) we get a pair of 9× 9 matrices

M1 : (V(−1)⊕V(−2)⊕V(−3))⊗ R→ (V ′(−3)⊕V ′(−4)⊕V ′(−5))⊗ R

M2 : (V ′(−3)⊕V ′(−4)⊕V ′(−5))⊗ R→ (V(−1)⊕V(−2)⊕V(−3))⊗ R

By choosing bases appropriately one can show that both matrices are Kronecker products
with the 3× 3 identity matrix I3 so M1 = A⊗ I3 and M2 = B⊗ I3. Similarly, for (25) we
can compute a matrix

M3 : (W(−2)⊕W(−4))⊗ R→ (W(−2)⊕W(−4))⊗ R

and M3 = C⊗ I2 for some choice of basis.

We can identify the matrices A, B, C involved in the matrix factorizations of ∆ by using
Hovinen’s thesis [Hov09, Thm. 4.4.7], where the graded rank one CM-modules over R/∆
are classified (via matrix factorizations):

Theorem 7.1 (Hovinen). Every graded one rank 1 CM-module over the swallowtail ∆ is isomor-
phic to one of the following list (up to degree shift):

(1) the free module R/(∆),
(2) the ideal (v, w) and its R/(∆)-dual,
(3) the restriction of the so-called open swallowtail and its R/(∆)-dual, i.e., the ideal defining the

self-intersection locus of ∆,
(4) the modules of the family {M2,t : t ∈ C} of 2× 2-matrices:

M2,t = coker
(

w− (t2 − 1)u2 v2 + (t− 2)2(t + 1)u3

v2 − (t− 1)(t + 2)2u3 w2 + 6uv2 + (t2 − 7)u2w + (t2 − 4)2u4

)
,

(5) the modules of the family {M4,0,t : t ∈ C∗} of 3× 3-matrices:

M4,0,t = coker

−w + 1
t2 (1− 2t)u2 0 v2 + 1

t (t
2 − 4t + 1)uw + 2v3

v −w 0
− (t+1)2

t u v −w + t(t− 2)u2


(6) the modules of the family {M4,−3,t : t ∈ C∗} of 3× 3-matrices:

M4,−3,t = coker

−w + 1
t2 (t + 4)(3t + 4)u2 0 v2 + 1

t (t
2 − t + 4)uw− 1

t (t + 3)(3t + 4)u2

v −w + 3u2 0
1
t (t + 1)(t + 4)u v −w + (t + 1)(t + 3)u2

 .
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Note here that M4,−3,−2 is the matrix factorization of the normalization R̃/(∆).

Moreover, the modules are characterized by the first fitting ideals of their corresponding matrix
factorizations. This means that the modules in (1)–(6) are pairwise nonisomorphic.

The result is that S/(J) is a direct sum of 4 nonisomorphic CM-modules corresponding
to the nontrivial irreducible representations of S4. One can calculate the ranks explicitly
or use the formulas in Section 2:

Theorem 7.2. As a R/∆-module,

S/(J) ∼= M ⊕M3 ⊕M3 ⊕M2 ,

where M ∼= R/(∆), M ∼= M4,−3,−2, the Jacobian ideal of R/(∆) (also isomorphic to the
normalization of R/∆), M is the syzygy of M , i.e., the module of logarithmic derivations
along ∆, and M ∼= M2,0, which is isomorphic to the ideal defining the singular cusp in ∆ = 0.
The ranks of the modules over R/(∆) are rank(M ) = rank(M ) = rank(M ) = 1 and
rank(M ) = 2.

In particular, this shows that rankR/(∆)(S/(J)) = 12, and thus rankR/(∆)(EndR/(∆)(S/(J)) =
rank(A) = 144, as we computed earlier. In Fig. 3 below the curves corresponding to the
modules M and M are sketched on the swallowtail from two different perspectives.

FIGURE 3. The swallowtail.

For this example, one can also draw the McKay quiver, see (26). The quiver of A is ob-
tained from (26) by deleting the vertex and incident arrows corresponding to the deter-
minantal representation .

(26) .
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[ASS06] I. Assem, D. Simson, and A. Skowroński. Elements of the representation theory of associative algebras.
Vol. 1, volume 65 of London Mathematical Society Student Texts. Cambridge University Press, Cam-
bridge, 2006. Techniques of representation theory. 35

[Aus86] M. Auslander. Rational singularities and almost split sequences. Transactions of the AMS,
293(2):511–531, 1986. 1, 6, 7, 14, 21

[Ban76] Etsuko Bannai. Fundamental groups of the spaces of regular orbits of the finite unitary reflection
groups of dimension 2. J. Math. Soc. Japan, 28(3):447–454, 1976. 11

[Bas68] H. Bass. Algebraic K-theory. W. A. Benjamin, Inc., New York-Amsterdam, 1968. 7
[BFI17] R.-O. Buchweitz, E. Faber, and C. Ingalls. Noncommutative resolutions of discriminants. 2017. to

appear in the proceedings of the ICRA 2016. 4, 14
[BH84] K. A. Brown and C. R. Hajarnavis. Homologically homogeneous rings. Trans. Amer. Math. Soc.,

281(1):197–208, 1984. 42
[BH93] W. Bruns and J. Herzog. Cohen-Macaulay rings, volume 39 of Cambridge Studies in Advanced Mathe-

matics. Cambridge University Press, Cambridge, 1993. 38
[Bil05] J. Bilodeau. Auslander algebras and simple plane curve singularities. In Representations of algebras

and related topics, volume 45 of Fields Inst. Commun., pages 99–107. Amer. Math. Soc., Providence,
RI, 2005. 29
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