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An optimal bound for the ratio between ordinary and

uniform exponents of Diophantine approximation

Antoine Marnat

ú
and Nikolay G. Moshchevitin

†

Abstract

We provide a lower bound for the ratio between the ordinary and uniform exponents of
both simultaneous Diophantine approximation to n real numbers and Diophantine approxi-
mation for one linear form in n variables. This question was first considered in the 50’s by
V. Jarník who solved the problem for two real numbers and established certain bounds in
higher dimension. Recently di�erent authors reconsidered the question, solving the problem
in dimension three with di�erent methods. Considering a new concept of parametric geome-
try of numbers, W. M. Schmidt and L. Summerer conjectured that the optimal lower bound
is reached at regular systems. It follows from a remarkable result of D. Roy that this lower
bound is then optimal. In the present paper we give a proof of this conjecture by W. M.
Schmidt and L. Summerer.

1 Introduction
In the 50’s, V. Jarník [6, 7, 8] considered exponents of Diophantine approximation, and in par-
ticular the ratio between ordinary and uniform exponent. An optimal lower bound expressed
as a function of the uniform exponent was established for simultaneous approximation to two
real numbers and for one linear form in two variables. The question was reconsidered recently
by di�erent authors [11, 15, 16, 24, 5, 3]. The optimality of V. Jarník’s inequalities for two
numbers was shown by M. Laurent [11]. The inequality for simultaneous approximation to
three real numbers was obtained by the second named author [15]. Introducing parametric
geometry of numbers [24, 23], W. M. Schmidt and L. Summerer considered recently a new
method to obtain the optimal lower bounds for the approximation to three numbers (both
in the cases of simultaneous approximation and approximation for one linear form in three
variables), and improve the general lower bound in any dimension. They conjectured in this
context that the general lower bound in the problem of approximation to n real numbers arise

úsupported by Austrian Science Fund (FWF), Project I 3466-N35 and EPSRC Programme Grant EP/J018260/1
†supported by Russian Science Foundation (RNF) Project 18-41-05001 in Pacific National University
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from co-called regular systems. The goal of the present paper is to prove this conjecture. To
do this we use Schmidt’s inequality on heights [21] applied to a well-chosen subsequence of
best approximation vectors. Our main result is stated in Theorem 1 below. The optimality
of our bound follows from a recent breakthrough paper by D. Roy [20].

Throughout this paper, the integer n Ø 1 denotes the dimension of the ambient space,
and ◊ = (◊

1

, . . . , ◊
n

) denotes an n-tuple of real numbers such that 1, ◊
1

, . . . , ◊
n

are Q-linearly
independent.

Given n Ø 1 and ◊ œ Rn, we consider the irrationality measure function

Â(t) = min
qœZ+,qÆt

max
1ÆjÆn

Îq◊
j

Î,

which gives rise to the ordinary exponent of simultaneous Diophantine approximation

⁄(◊) = sup{⁄ : lim inf
tæ+Œ

t⁄Â(t) < +Œ}

and the uniform exponent of simultaneous Diophantine approximation

⁄̂(◊) = sup{⁄ : lim sup
tæ+Œ

t⁄Â(t) < +Œ}.

The irrationality measure function

Ï(t) = min
qœZn

,0<max1ÆjÆn |qj |Æt

Îq
1

◊
1

+ · · · + q
n

◊
n

Î

gives rise to the ordinary exponent of Diophantine approximation by one linear form

Ê(◊) = sup{Ê : lim inf
tæ+Œ

tÊÏ(t) < +Œ}

and the uniform exponent of Diophantine approximation by one linear form

Ê̂(◊) = sup{Ê : lim sup
tæ+Œ

tÊÏ(t) < +Œ}.

These exponents were first introduced and studied by A. Khintchine [9, 10] and V. Jarník
[6]. Dirichlet’s Schubfachprinzip ensures that for any ◊ with Q-linearly independent coordi-
nate with 1

Ê(◊) Ø Ê̂(◊) Ø n and ⁄(◊) Ø ⁄̂(◊) Ø 1/n.

Indeed, exponents of Diophantine approximation are about investigating specific ◊ for which
Dirichlet’s Schubfachprinzip can be improved. Ordinary exponents question whether Dirich-
let’s Schubfachprinzip can be improved for approximation vectors of arbitrarily large size t,
while uniform exponents question whether it can be improved for any su�ciently large upper
bound t for the size of approximation vectors. The aim of this paper is to provide a lower
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bound for the ratios ⁄(◊)/⁄̂(◊) and Ê(◊)/Ê̂(◊) as a function of ⁄̂(◊) and Ê̂(◊) respectively, in
any dimension. In dimension n = 1 simultaneous approximation and approximation by one
linear form coincide. Khintchine [10] observed that the uniform exponent for an irrational ◊
always takes the value 1 and it follows from Dirichlet’s Schubfachprinzip that the ordinary
exponent satisfy Ê(◊) = ⁄(◊) Ø 1 = Ê̂(◊) = ⁄̂(◊). In dimension n = 2, Jarník proved in [7, 8]
the inequalities

⁄(◊)
⁄̂(◊)

Ø
⁄̂(◊)

1 ≠ ⁄̂(◊)
, (1)

Ê(◊)
Ê̂(◊) Ø Ê̂(◊) ≠ 1. (2)

These inequalities are optimal by a result of M. Laurent [11]. In [15], Moshchevitin proved
the optimal bound for simultaneous approximation:

⁄(◊)
⁄̂(◊)

Ø
⁄̂(◊) +

Ò
4⁄̂(◊) ≠ 3⁄̂(◊)2

2(1 ≠ ⁄̂(◊))
= 1

2

Q

ca
⁄̂(◊)

1 ≠ ⁄̂(◊)
+

ı̂ıÙ
A

⁄̂(◊)
1 ≠ ⁄̂(◊)

B
2

+ 4⁄̂(◊)
1 ≠ ⁄̂(◊)

R

db . (3)

Schmidt and Summerer provided an alternative proof using parametric geometry of numbers
in [25], and the following bound for approximation by one linear form:

Ê(◊)
Ê̂(◊) Ø


4Ê̂(◊) ≠ 3 ≠ 1

2 . (4)

A simple proof of this bound was given in [16]. In [8], Jarník also provided a lower bound in
arbitrary dimension n Ø 2.

Ê(◊)
Ê̂(◊) Ø Ê̂(◊)1/(n≠1) ≠ 3, provided that Ê̂(◊) > (5n2)n≠1, (5)

⁄(◊)
⁄̂(◊)

Ø
⁄̂(◊)

1 ≠ ⁄̂(◊)
. (6)

In fact, these bounds also apply in a more general setting of simultaneous Diophantine ap-
proximation by a set of linear forms.

Using their new tools of parametric geometry of numbers, Schmidt and Summerer [23]
provided the first general improvement valid for the whole admissible interval of values of the
uniform exponents Ê̂ and ⁄̂.

Ê(◊)
Ê̂(◊) Ø

(n ≠ 2)(Ê̂(◊) ≠ 1)
1 + (n ≠ 3)Ê̂(◊) , (7)

⁄(◊)
⁄̂(◊)

Ø
⁄̂(◊) + n ≠ 3

(n ≠ 2)(1 ≠ ⁄̂(◊))
. (8)
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Here relation (8) is sharper than relation (6). Relation (7) is valid for the whole interval
of possible values of Ê̂(◊), but Jarník’s asymptotic relation (5) is better for large Ê̂(◊). A
simple proof of (8) was given in [5].

In [25] Schmidt and Summerer conjecture that, as in dimension n = 3, the general optimal
lower bound is reached at regular systems. In this paper we show that this conjecture holds.
Let us first introduce some notation.

For given n Ø 1 and 1/n Æ – < 1, we consider the polynomial

R
n,–

(x) = xn≠1 ≠
–

1 ≠ –
(xn≠2 + · · · + x + 1) (9)

and denote by G(n, –) its unique real positive root. For –ú Ø n we denote by 1/Gú(n, –ú)
the unique positive root of R

n,1/–

ú(x).

Theorem 1. For ◊ = (◊
1

, . . . , ◊
n

) such that 1, ◊
1

, . . . , ◊
n

are Q-linearly independent, one has

⁄(◊)
⁄̂(◊)

Ø G(n, ⁄̂(◊)) and
Ê(◊)
Ê̂(◊) Ø Gú(n, Ê̂(◊)). (10)

Furthermore, for any Ê̂ Ø n and any C Ø Gú(n, Ê̂), there exists infinitely many ◊ =
(◊

1

, . . . , ◊
n

) such that 1, ◊
1

, . . . , ◊
n

are Q-linearly independent and

Ê̂(◊) = Ê̂ and Ê(◊) = CÊ̂

and for any 1/n Æ ⁄̂ Æ 1 and any C Ø G(n, ⁄̂), there exists infinitely many ◊ = (◊
1

, . . . , ◊
n

)
such that 1, ◊

1

, . . . , ◊
n

are Q-linearly independent and

⁄̂(◊) = ⁄̂ and ⁄(◊) = C⁄̂.

It follows from Roy’s theorem [20] applied to Schmidt-Summerer’s regular systems [25]
[19] that the lower bound is reached and thus optimal. The second part of Theorem 1 refines
this observation. Note that for any ◊ = (◊

1

, . . . , ◊
n

) such that 1, ◊
1

, . . . , ◊
n

are Q-linearly
independent, we have Ê̂(◊) Ø n and ⁄̂(◊) œ [1/n, 1], (see [4], [12]) hence the constraint on ⁄̂
and Ê̂ is not restrictive.

We can reformulate these lower bounds by the inequalities

1 + Ê(◊) ≠ Ê̂(◊) Ø
A

Ê(◊)
Ê̂(◊)

B
n

and 1 ≠
1

⁄̂(◊)
+

1
⁄(◊) Æ

A
⁄̂(◊)
⁄(◊)

B
n

.

In these formulae appears clearly the natural symmetry property of spectra of Diophan-
tine approximation pointed out by Schmidt and Summerer [23]. It is even more obvious in

4



the proof, as the very same geometric analysis applies to both cases.

The main part of Theorem 1 is the lower bound. The proof uses determinants of best
approximation vectors, following the idea of [15]. It deeply relies on an inequality of Schmidt
[21] applied inductively to a well chosen subsequence of best approximation vectors. The
second part of Theorem 1 is a consequence of the parametric geometry of numbers, and is
proved independently in Section 6.

In the next section, we define the main tools needed for the proof: best approximation
vectors and their properties. With examples of approximation to 3 and 4 numbers in Section
3, we then provide a proof of Theorem 1 in the important case of simultaneous approxima-
tion (Section 4). In Section 5, we explain how an hyperbolic rotation reduces the case of
approximation by one linear form to the case of simultaneous approximation.

2 Main tools
2.1 Sequences of best approximations
We denote by (z

l

)
lœN the sequence of best approximations (or minimal points) to ◊ œ Rn.

This notion was introduced by Voronoi [26] as minimal points in lattices, it was first defined in
our context by Rogers [18]. It has been used implicitly or explicitly in many proofs concerning
exponents of Diophantine approximation. Many important properties of best approximation
vectors are discussed in a survey by Chevallier [1].

Let k Ø 1 be an integer. Let L and N be two applications from Zk to R
+

, where N
represent the size of an approximation vector in Zk and L represent the approximation error.
We call a sequence of best approximation vectors (z

l

)
lØ0

œ (Zk)N to L with respect to N a
sequence such that

• N(z
l

) is a strictly increasing sequence with lower bound 1,
• L(z

l

) is a strictly decreasing sequence with upper bound 1,
• for any approximation vector z œ Zk, if N(z) < N(z

l+1

) then L(z) Ø L(z
l

).

In general we do not have uniqueness of such a sequence, and existence follows if L reaches
a minimum on sets of the form

E
B

= {X œ Zk|N(X) Æ B},

where B is any real bound.

5



In the context of best approximation vectors for simultaneous Diophantine approximation
for Q-independent numbers 1, ◊

1

, ..., ◊
n

the sequence is unique, and we can write

z
l

= (q
l

, a
1,l

, a
2,l

, . . . , a
n,l

) œ Zn+1, l œ N with q
l

> 0.

Set
L

⁄

(z
l

) := ›
l

= max
1ÆiÆn

|q
l

◊
i

≠ a
i,l

| and N
⁄

(z
l

) := q
l

.

By definition of best approximations

1 < q
1

< q
2

< · · · < q
l

< q
l+1

< · · · and 1 > ›
1

> ›
2

> · · · > ›
l

> ›
l+1

> · · · (11)

We may also assume that q
1

is large enough so that for every l Ø 1

›
l

Æ q≠–

l+1

, (12)

where – < ⁄̂(◊).

In the context of best approximation vector for approximation by one linear form, we can
write

z
l

= (q
1,l

, q
2,l

, . . . , q
n,l

, a
l

) œ Zn+1, l œ N.

Set
L

Ê

(z
l

) := L
l

= q
1,l

◊
1

+ · · · + q
n,l

◊
n

≠ a
l

and N
Ê

(z
l

) := M
l

= max
1ÆjÆn

|q
j

|.

Due do the symmetry we may assume that L
l

> 0. In the Q-independent case this defines
vectors z

l

uniquely. By definition of best approximations

1 < M
1

< M
2

< · · · < M
l

< M
l+1

< · · · and 1 > L
1

> L
2

> · · · > L
l

> L
l+1

> · · ·

We may also assume that M
1

is large enough so that for every l Ø 1

L
l

Æ M≠–

ú

l+1

. (13)

where –ú < Ê̂(◊).

In the context of simultaneous Diophantine approximation, provided that 1, ◊
1

, . . . , ◊
n

are
linearly independent over Q, it is known that a sequence of best approximation vectors ulti-
mately spans the whole space Rn+1. However in the context of approximation by one linear
form, the situation is di�erent: it may happen that vectors of best approximation span a
strictly lower dimensional subspace of Rn+1. See the surveys [13, 14] by Moshchevitin and
the paper [1] by Chevallier for more details. Fortunately, if best approximation vectors do not
span the whole space Rn+1 we get a sharper result, since G(n, –) is a decreasing function of
n. Thus, we may assume without loss of generality that in both contexts best approximation
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vectors ultimately span the whole space Rn+1.

Whenever 1, ◊
1

, . . . , ◊
n

are linearly dependent over Q, consider ◊̃ = (◊
i1 , . . . , ◊

ip) a largest
subset of the components of ◊ which satisfy the linear independence property over Q with
1. It is easy to check that ◊̃ and ◊ have the same exponents, and thus results of lower di-
mension apply. Thus, we may assume without loss of generality that 1, ◊

1

, . . . , ◊
n

are linearly
independent over Q.

Using sequences of best approximations vectors, proving that

⁄(◊)
⁄̂(◊)

Ø G

is equivalent to showing that there exists arbitrarily large indices k with q
k+1

∫ qG

k

. Similarly,
proving that

Ê(◊)
Ê̂(◊) Ø G

is equivalent to showing that there exists arbitrarily large indices k with M
k+1

∫ MG

k

. This
observation relies on the expression of exponents of Diophantine approximation in terms of
best approximation vectors

Ê = lim sup
kæŒ

A

≠
log(L

k

)
log(M

k

)

B

, Ê̂ = lim inf
kæŒ

A

≠
log(L

k

)
log(M

k+1

)

B

,

⁄ = lim sup
kæŒ

A

≠
log(›

k

)
log(q

k

)

B

, ⁄̂ = lim inf
kæŒ

A
log(›

k

)
log(q

k+1

)

B

.

The proofs in the case of simultaneous approximation and approximation by one linear form
rely on the same geometric analysis. The idea is to consider an arbitrarily large index k, and
construct a pattern of best approximation vectors in which at least one pair of successive best
approximation vectors satisfies

q
k+1

∫ qG

k

or M
k+1

∫ MG

k

(14)

for the required G. Here and below, the Vinogradov symbols π, ∫ and ® refer to constants
depending on ◊ but not the index k.

Given a sublattice � µ Zn+1, we denote by det(�) the fundamental volume of the lattice
� in the linear subspace È�ÍR. We recall well known facts about best approximation vectors
and fundamental determinants of the related lattices.
Lemma 1. Two consecutive best approximation vectors z

i

and z
i+1

are Q-linearly indepen-
dent and form a basis of the integer points of the rational subspace they span.

Èz
i

, z
i+1

ÍZ = Èz
i

, z
i+1

ÍR fl Zn+1.
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See for example [2, Lemma 2].

Lemma 2. For any l Ø 1, consider �
l

the lattice with basis z
l

, z
l+1

and the lattice �
l

with
basis z

l≠1

, z
l

, z
l+1

. In the context of simultaneous approximation we have the estimates of
their fundamental volumes

det(�
l

) ® ›
l

q
l+1

, (15)
det(�

l

) π ›
l≠1

›
l

q
l+1

, (16)

In the context of approximation by one linear form, we do not have directly such esti-
mates. In section 5 we explain how hyperbolic rotation provides an helpful analogue.

The proof of Lemma 2 is well known, see for example [1] or [14]. For the sake of complete-
ness, and because we want to adapt the proof for the case of approximation by one linear
form, we provide a detailed proof. The upper bounds rely on the following lemma (see [22,
Lemma 1]), while the lower bounds comes from Minkowski’s first convex body theorem.

Lemma 3. Assume X
1

, . . . , X
m

are vectors of an Euclidean space En, and have coordinates
X

t

= (x
t,1

, . . . , x
t,m

) for 1 Æ t Æ m in some Cartesian coordinate-system of En. Then
det2(X

1

, . . . , X
m

) is the sum (with
!

m

n

"
summands) of the squares of the absolute values of

the determinants of the (m ◊ m)-submatrices of the matrix (x
t,j

)
1ÆtÆm,1ÆjÆn

.

Proof of Lemma 2. The proof relies on the geometric fact that the best approximation z
l

=
(q

l

, a
1,l

, a
2,l

, . . . , a
n,l

) œ Zn+1 satisfy (11). We first prove the upper bounds.

Consider the 2-dimensional fundamental volume of the lattice spanned by z
l

, z
l+1

. The
coordinates of these vectors form the matrix

A
q

l

a
1,l

· · · a
n,l

q
l+1

a
1,l+1

· · · a
n,l+1

B

.

However it is not convenient to use this matrix to apply Lemma 3. We consider a special
choice of Cartesian coordinates. We take the system of orthogonal unit vector (e

0

, e
1

, . . . , e
n

)
in the following way: e

0

is parallel to (1, ◊
1

, . . . , ◊
n

) and e
1

, · · · , e
n

are arbitrary. Then, in
our new coordinates

z
l

= (Z
l

, �
1,l

, . . . , �
n,l

)

where Z
l

® q
l

and |�
i,l

| π ›
l

.
Now we consider the 2 ◊ (n + 1) matrix

A
Z

l

�
1,l

· · · �
n,l

Z
l+1

�
1,l+1

· · · �
n,l+1

B

.
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If M
i,j

is the (2 ◊ 2) minor of index i, j, we have by Lemma 3

det(�
l

)2 =
ÿ

0Æi<jÆn

M2

i,j

π max
0Æi<jÆn

M2

i,j

π |Z
l+1

|2 max
1ÆiÆn

|�
i,l

|2 π (›
l

q
l+1

)2.

Consider the 3-dimensional fundamental volume det(�
l

) of the lattice spanned by z
l≠1

, z
l

, z
l+1

.
Denote by M

i,j,k

the 3 ◊ 3 minors of the matrix
Q

ca
Z

l≠1

�
1,l≠1

· · · �
n,l≠1

Z
l

�
1,l

· · · �
n,l

Z
l+1

�
1,l+1

· · · �
n,l+1

R

db .

By Lemma 3 we have

det(�
l

)2 π
ÿ

0Æi<j<kÆn

M2

i,j,k

π max
0Æi<j<kÆn

M2

i,j,k

π |Z
l+1

�
l

�
l≠1

|2 π |q
l+1

›
l

›
l≠1

|2.

We now prove the lower bound for det(�
l

). Consider the symmetric convex body

� = {z | |z
0

| < q
l+1

, max
1ÆjÆn

|z
0

◊
i

≠ z
i

| < ›
l

}

and its intersection P with the plan generated by Èz
l

, z
l+1

ÍR. The intersection P flÈz
l

, z
l+1

ÍZ
is reduced to zero by definition of the best approximation. Hence Minkowski’s first convex
body theorem ensures that the 2-dimensional volumes satisfy

det
2

(P ) Æ 4 det(�
l

).

But the volume det
2

P is larger than the 2-dimensional volume � of the projection of P on
the plan spanned by (1, ◊) and z

l

. The result follow from � ∫ q
l+1

›
l

.

Notation We denote by calligraphic letter S sets of best approximation vectors {z
k

, . . . , z
m

}.
Given such a set S, we denote by greek letters � = Èz

k

, . . . , z
m

ÍZ the lattice spanned by its
elements, and by bold roman letters S = Èz

k

, . . . , z
m

ÍR the rational subspace spanned over R.
Finally, we denote with gothic letters S the underlying lattice of integer points S = S fl Zn.
Note that � µ S. If our objects are 2-dimensional, we rather use the letters L, �, L and L.

We sometimes call a set S pattern. By pattern we mean a set of triples of best approxima-
tion vectors that is described by indices. For example if S is the set {zzz

‹≠1

, zzz
‹

, zzz
‹+1

, zzz
k≠1

, zzz
k

, zzz
k+1

},
its associated indices are ‹ and k. If a pattern S is the union of say four patterns S

1

, S
2

, S
3

and S
4

, we denoted it by
S : S

1

≠ S
2

≠ S
3

≠ S
4

.

If moreover the two patterns S
2

and S
3

generate the same rational subspace, we denoted by

S : S
1

≠ S
2

© S
3

≠ S
4

.
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Finally, if the rational subspaces generated by S
1

and S
2

have intersection Q and Q = QflZn

is its lattice of integer points, we denote it by either

S
1

≠
Q

S
2

or S
1

≠
Q

S
2

.

2.2 Key lemma
Lemma 4 (�≠ ≠

�

�
+

). In the context of simultaneous Diophantine approximation, consider
(z

l

)
lœN the sequence of best approximations to the point ◊ œ Rn. Suppose that k > ‹ and

triples
S≠ := {zzz

‹≠1

, zzz
‹

, zzz
‹+1

} and S
+

:= {zzz
k≠1

, zzz
k

, zzz
k+1

}
consist of linearly independent consecutive best approximation vectors. Consider the three-

dimensional lattices

S≠ = Èzzz
‹≠1

, zzz
‹

, zzz
‹+1

ÍR fl Zn, and S
+

= Èzzz
k≠1

, zzz
k

, zzz
k+1

ÍR fl Zn

and suppose that
Èzzz

‹

, zzz
‹+1

ÍZ = Èzzz
k≠1

, zzz
k

ÍZ =: �. (17)
Suppose that for positive s and t the following estimate holds

(detS≠)s (detS
+

)t ∫ det �. (18)

Suppose that the index of our vectors are large enough so that for – < ⁄̂(◊).

›
j

Æ q≠–

j+1

for j = ‹ ≠ 1, ‹, k ≠ 1, k. (19)
Define

g(s, t) = –s

(1 ≠ –)(s ≠ w(s, t)) = –(t + w(s, t) ≠ 1) ≠ w(s, t) + 1
(1 ≠ –)t . (20)

where the second equality comes from w(s, t) œ (0, 1) being the root of the equation

w2 ≠
3

s + 1 + –

1 ≠ –
t

4
w + s = 0. (21)

Then
either q

‹+1

∫ qg(s,t)

‹

or q
k+1

∫ q
g(s,t)

k

. (22)

When the parameters are s = t = 1, this lemma provides directly the result for the ap-
proximation to 3 numbers (Proof from [15], see subsection 3.1 for details). Parameters s and
t are needed in higher dimension. We exhibit a range of pairs of triples of consecutive best
approximation vectors, denoted by an index, satisfying conditions of Lemma 4. Parameters
s and t appear with values depending on dimension and the geometry of best approximation
vectors that need to be optimize with respect to g(s, t). To prove Theorem 1, we show in-
ductively that the optimized parameter g(s, t) is root of the polynomial R

n

defined by (9).

10



Proof of Lemma 4. We use Lemma 2. Substituting (15) in (18) in light of (17), since Èzzz
‹≠1

, zzz
‹

, zzz
‹+1

ÍZ µ
S≠ and Èzzz

k≠1

, zzz
k

, zzz
k+1

ÍZ µ S
+

it follows that

(›
‹≠1

›
‹

q
‹+1

)s(›
k≠1

›
k

q
k+1

)t ∫ (›
‹

q
‹+1

)w(s,t)(›
k≠1

q
k

)1≠w(s,t).

This means that either
(›

‹≠1

›
‹

q
‹+1

)s ∫ (›
‹

q
‹+1

)w(s,t)

or
(›

k≠1

›
k

q
k+1

)t ∫ (›
k≠1

q
k

)1≠w(s,t).

Now we take into account (19). We have either

qs–

‹

π q
(1≠–)(s≠w(s,t))

‹+1

or
q

1≠w(s,t)+–(t+w(s,t)≠1)

k

π q
t(1≠–)

k+1

.

Hence (22) by definition of g.

Our proof relies on Schmidt’s inequality on height (see [21], in fact this inequality was
already used in the last section in [15]). It provides the setting to apply Lemma 4 simultane-
ously for di�erent parameters s, t.

Proposition 1 (Schmidt’s inequality). Let A, B be two rational subspaces in Rn, we have

H(A + B) · H(A fl B) π H(A) · H(B). (23)

where the height H(A) is the fundamental volume of the lattice of integer points det(A) =
det(A fl Zn).

2.3 Properties of the polynomial Rn and the optimized g

In this subsection, we state various properties needed for the proof.

The polynomial R
n

defined in (9) can be defined inductively the following way:
I

R
2

(X) = X ≠ —,

R
n+1

(X) = XR
n

(X) ≠ —,
(24)

where — is –

1≠–

for simultaneous approximation. To obtain the polynomial R
n,1/–

ú for the
linear form setting, one may put — = 1

–

ú≠1

in (24).

11



From (20) and (21), we see that g satisfies the equation

g2 ≠
3

— + 1 ≠ s

t

4
g ≠ s—

t
= 0. (25)

In particular, we can use this equation to compute the optimal value of either s or t when
the other parameter is 1. Namely,

s = g2 ≠ —g ≠ g

— ≠ g
, for g = g(s, 1) (26)

t = —

g(g ≠ —) , for g = g(1, t) (27)

s = g2 ≠ —g ≠ —

g ≠ —
= R

3

(g)
g ≠ —

, for g = g(1 ≠ s, 1), (28)

t = g2 ≠ —g ≠ —

g(g ≠ —) = R
3

(g)
g(g ≠ —) , for g = g(1, 1 ≠ t). (29)

3 Examples: simultaneous approximation to three
and four numbers.
In this section, we describe in details the proofs in the cases of simultaneous approximation
to three and four numbers. The aim is to provide concrete examples of the construction
of patterns of best approximation vectors on simple examples before moving to arbitrary
dimension in Section 4. An example for approximation by one linear form will be presented
in Section 5.3.1.

3.1 Simultaneous approximation to three numbers
Consider ◊ œ R3 with Q-linearly independent coordinates with 1. Consider (z

l

)
lœN a sequence

of best approximations vectors to ◊. Recall that as we consider simultaneous approximation,
the sequence (z

l

)
lœN spans the whole space R4.

Lemma 5. For arbitrarily large indices k
0

, there exists indices k > ‹ > k
0

and triples of
consecutive best approximation vectors

S≠ := {zzz
‹≠1

, zzz
‹

, zzz
‹+1

} and S
+

:= {zzz
k≠1

, zzz
k

, zzz
k+1

}

consisting of linearly independent vectors. Setting

S≠ := Èzzz
‹≠1

, zzz
‹

, zzz
‹+1

ÍR fl Zn and S
+

:= Èzzz
k≠1

, zzz
k

, zzz
k+1

ÍR fl Zn

we have
S≠ fl S

+

=: � = Èzzz
‹

, zzz
‹+1

ÍZ = Èzzz
k≠1

, zzz
k

ÍZ and ÈS≠ fi S
+

ÍR = R4. (30)

12



This was proved in [15].

Denote by S
4

the pattern of best approximation vectors described in Lemma 5 (see Figure
1 ). Lemma 5 ensures that the pattern S

4

enables to apply Lemma 4 for arbitrarily large
indices.

Here we chose k
0

su�ciently large for (19) to hold. Schmidt’s inequality (23) provides
(18) with parameters s = t = 1.

Lemma 4 provides that for any – < ⁄̂(◊),

q
l+1

∫ qg–
l

for l = ‹ or k, where g
–

is solution of the equation (25) with s = t = 1. Namely

g2

–

≠ —g
–

≠ — = R
3

(g
–

) = 0

which provides

g
–

=
— +


—2 + 4—

2 =
– +

Ô
4– ≠ 3–2

2(1 ≠ –) .

Hence for every – < ⁄(◊), we have

⁄(◊)
⁄̂(◊)

Ø g
–

=
– +

Ô
4– ≠ 3–2

2(1 ≠ –) .

We deduce the lower bound (3).

We now explain how to obtain the pattern of best approximation vectors in Lemma 5. It
is the basic step for a more general construction in higher dimension.

Proof of Lemma 5. Figure 1 may be usefull to understand the construction.
Consider (z

l

)
lœN a sequence of best approximation vectors to ◊ œ R3, and an arbitrarily large

index k
0

. Since (z
l

)
lØk0 spans a 4-dimensional subspace, we can define k to be the smallest

index such that
dimÈz

k0 , z
k0+1

, . . . , z
k

, z
k+1

ÍR = 4.

Note that by minimality, z
k+1

is not in the 3-dimensional subspace spanned by (z
l

)
k0ÆlÆk

.
In particular, since two consecutive best approximation vectors are linearly independent the
three consecutive best approximation vectors z

k≠1

, z
k

, z
k+1

are linearly independent. Set
‹ > k

0

to be the largest index such that

dimÈz
‹≠1

, z
‹

, . . . , z
k

, z
k+1

ÍR = 4.

13



Note that by maximality, z
‹≠1

is not in the 3-dimensional subspace spanned by (z
l

)
‹ÆlÆk+1

.
In particular, since two consecutive best approximation vectors are linearly independent the
three consecutive best approximation vectors z

‹≠1

, z
‹

, z
‹+1

are linearly independent. More-
over, combining both observations we deduce that the lattice

� := Èz
‹

, z
‹+1

, . . . , z
k≠1

, z
k

ÍR fl Z4 = Èzzz
‹

, zzz
‹+1

ÍZ = Èzzz
k≠1

, zzz
k

ÍZ

is 2-dimensional, and spanned by two consecutive best approximation vectors (see Lemma
1). Hence, the considered indices ‹ and k provide 6 best approximation vectors satisfying
Lemma 5.

z
‹≠1

z
‹

z
‹+1

�≠
�

+

�

z
k≠1

z
k

z
k+1

Figure 1: All best approximation vectors with index between ‹ and k lie in the 2-dimensional

lattice �. The four bold vectors are linearly independent and span the whole space.

3.2 Simultaneous approximation to four numbers
In the case of simultaneous approximation to four numbers, we select a pattern S

5

of best
approximation vectors that combines two patterns S

4

coming from Lemma 5. This is the
first step of the induction for arbitrary dimension, where we combine two patterns of lower
dimension. Thus, it is an enlightening example. Note that in this simple case, a proper
choice of parameters was made in [3, equalities after formula (13) from the case i(�) = 1].
The example of approximation by one linear form for 4 numbers is presented in Section 5.3.1

Consider ◊ œ R4 with Q-linearly independent coordinates with 1. Consider (z
l

)
lœN a

sequence of best approximation vectors to ◊.

Lemma 6. Let k
0

be an arbitrarily large index. There exists indices k
0

< r
0

< r
1

Æ r
2

< r
3

such that the following holds.
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1. The triples of consecutive best approximation vectors

S
ri := {z

ri≠1

, z
ri , z

ri+1

}, 0 Æ i Æ 3

consist of linearly independent vectors spanning a 3-dimensional subspace S

3,i

:= ÈS
riÍR.

2. The two triples of consecutive best approximation vectors S
r1 and S

r2 generate the same
rational subspace

Q := S

3,1

= S

3,2

.

3. The pairs of consecutive best approximation vectors z
r0 , z

r0+1

and z
r1≠1

, z
r1 span the

same 2-dimensional lattice

�
0

:= Èz
r0 , z

r0+1

ÍZ = Èz
r1≠1

, z
r1ÍZ = S

3,0

fl S

3,1

fl Z5.

4. The pairs of consecutive best approximation vectors z
r2 , z

r2+1

and z
r3≠1

, z
r3 span the

same 2-dimensional lattice

�
1

:= Èz
r2 , z

r2+1

ÍZ = Èz
r3≠1

, z
r3ÍZ = S

3,2

fl S

3,3

fl Z5.

5. Both quadruples of best approximation {z
r0≠1

, z
r0 , z

r0+1

, z
r1+1

} and {z
r2≠1

, z
r3≠1

, z
r3 , z

r3+1

}
consist of linearly independent vectors.

6. The whole space R5 is spanned by

Èz
r0≠1

, z
r0 , z

r0+1

, z
r1+1

, z
r3+1

ÍR = ÈS
3,0

fi Q fi S

3,2

ÍR = R5.

We discuss the meaning of the lemma, and apply it to the proof of the main result for si-
multaneous approximation to four numbers. The proof is postponed at the end of the section.

The 5-dimensional pattern described in Lemma 6 is denoted by

S
5

: S
3,0

≠
�0

S
3,1

© S
3,2

≠
�1

S
3,3

.

Note that it consists of two 4-dimensional patterns

S
4,0

: S
3,0

≠
�0

S
3,1

given by indices ‹ = r
0

and k = r
1

in Lemma 5 and

S
4,1

: S
3,2

≠
�1

S
3,3

given by indices ‹ = r
2

and k = r
3

in Lemma 5. These two 4-dimensional patterns S
4,0

and
S

4,1

intersect on the 3-dimensional subspace Q. Thus,

S
5

: S
4,0

≠
Q

S
4,1

.
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S
5

S
4,0

S
3,0

µ

S
3,1

∏

µ
S

4,1

S
3,2

µ

S
3,3

∏

∏

=

Q

Figure 2: Binary tree sketching the situation described in Lemma 6.

For the pattern S
5

, Schmidt’s inequality (23) provides

detS
3,0

detQdetS
3,3

∫ det �
0

det �
1

where S
i,j

= S

i,j

fl Z5 and Q = S
3,1

= S
3,2

. It can be rewritten as

detS
3,0

(detS
3,1

)x

det �
0

· (detS
3,2

)1≠x detS
3,3

det �
2

∫ 1 (31)

with arbitrary x œ (0, 1). This means that

either detS
3,0

(detS
3,1

)x

det �
0

∫ 1 or (detS
3,2

)1≠x detS
3,3

det �
2

∫ 1.

Applying Lemma 4 two times with parameters (s, t) = (1, x) and (s, t) = (1 ≠ x, 1) we get
the lower bound

⁄

⁄̂
Ø g

where g is given by the optimization equations

g = g(1, x) = g(1 ≠ x, 1). (32)

From (27), (28) we have

x = —

g(g ≠ —) = R
3

(g)
g ≠ —

and so g satisfies the equation

R
4

(g) = gR
3

(g) ≠ — = 0.

This proves first part of Theorem 1 for simultaneous approximation to four numbers.

Here, there is one parameter x to optimize. In higher dimension, we have many more,
and need to compute the optimization of these parameters inductively.
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Proof of Lemma 6. Figure 3 may be usefull to understand the construction.
Consider (z

l

)
lœN a sequence of best approximation vectors to ◊ œ R4, and an arbitrarily large

index k
0

. Set r
3

to be the smallest index such that

dimÈz
k0 , z

k0+1

, . . . , z
r3 , z

r3+1

ÍR = 5.

Note that by minimality, z
r3+1

is not in the 4-dimensional subspace spanned by (z
l

)
k0ÆlÆr3 .

In particular, since two consecutive best approximation vectors are linearly independent the
three consecutive best approximation vectors z

r3≠1

, z
r3 , z

r3+1

are linearly independent and
span a 3-dimensional lattice denoted by �

3

. Set r
0

> k
0

to be the largest index such that

dimÈz
r0≠1

, z
r0 , . . . , z

r3 , z
r3+1

ÍR = 5.

Note that by maximality, z
r0≠1

is not in the 4-dimensional subspace spanned by (z
l

)
r0ÆlÆr3+1

.
In particular, since two consecutive best approximation vectors are linearly independent the
three consecutive best approximation vectors z

r0≠1

, z
r0 , z

r0+1

are linearly independent and
span a 3-dimensional lattice denoted by �

0

. Moreover, combining both observations we deduce
that

Q := Èz
r0 , z

r0+1

, . . . , z
r3≠1

, z
r3ÍR

is a 3-dimensional rational subspace.
Now appears the induction step: we apply the same procedure in lower dimension to the
two 4-dimensional subspaces

S

4,0

:= Èz
r0≠1

, z
r0 , . . . , z

r3≠1

, z
r3ÍR and S

4,1

:= Èz
r0 , z

r0+1

, . . . , z
r3 , z

r3+1

ÍR.

Note that it gives a proof of Lemma 5.
Set r

1

to be the smallest index such that

Èz
r0≠1

, z
r0 , . . . , z

r1 , z
r1+1

ÍR = S

4,0

.

Note that by minimality, z
r1+1

is not in the 3-dimensional subspace S

3,0

spanned by (z
l

)
r0≠1ÆlÆr1 .

In particular, since two consecutive best approximation vectors are linearly independent the
three consecutive best approximation vectors z

r1≠1

, z
r1 , z

r1+1

are linearly independent and
span a 3-dimensional lattice �

1

included in Q = S

3,1

. By construction, r
0

is already the
largest index such that

Èz
r0≠1

, z
r0 , . . . , z

r1≠1

, z
r1ÍR = S

4,0

.

Hence, Èz
r0 , z

r0+1

, . . . , z
r1≠1

, z
r1ÍZ =: �

0

is a 2-dimensional lattice spanned by either Èz
r0 , z

r0+1

ÍZ
or Èz

r1≠1

, z
r1ÍZ, and is the intersection S

3,0

fl S

3,1

fl Z5 (see Lemma 1).
Set r

2

to be the largest index such that

Èz
r2≠1

, z
r2 , . . . , z

r3 , z
r3+1

ÍR = S

4,1

.

Note that z
r2≠1

is not in the 3-dimensional subspace S

3,3

spanned by (z
l

)
r2ÆlÆr3+1

. In
particular, since two consecutive best approximation vectors are linearly independent the
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three consecutive best approximation vectors z
r2≠1

, z
r2 , z

r2+1

are linearly independent and
span a 3-dimensional lattice �

2

included in Q = S

3,1

. By construction, r
3

is already the
smallest index such that

Èz
r2≠1

, z
r2 , . . . , z

r3 , z
r3+1

ÍR = S

4,1

.

Hence, Èz
r2 , z

r2+1

, . . . , z
r3≠1

, z
r3ÍZ =: �

1

is a 2-dimensional lattice spanned by Èz
r2 , z

r2+1

ÍZ
or Èz

r3≠1

, z
r3ÍZ, and is the intersection Q fl S

3,3

fl Z5 (see Lemma 1).

Note that we may have r
1

= r
2

. Lattices �
1

and �
2

may not coincide, but are both
sub-lattice of Q = Q fl Z5.

�

0

z
r0≠1

z
r0

z
r0+1

�

0

z
r1≠1

z
r1

z
r1+1

Q = S
3,1

= S
3,2

z
r2+1

z
r2

z
r2≠1

�

1

z
r3+1

z
r3

z
r3≠1

�

3

�

2

�

1

Figure 3: Selected sequence of best approximation vectors.

In Figure 3, the dashed lines should be interpreted as follows. The best approxima-
tion vectors (z

l

)
r0ÆlÆr1 generate the 2-dimensional lattice �

0

. The best approximation
vectors (z

l

)
r2ÆlÆr3 generate the 2-dimensional lattice �

1

. The best approximation vectors
(z

l

)
r1≠1ÆlÆr2+1

generate the 3-dimensional rational subspace Q = S

3,1

= S

3,2

. The five bold
vectors span the whole space R5.

4 Arbitrary dimension
Consider ◊ œ Rn with Q-linearly independent coordinates with 1. Consider (z

l

)
lœN a sequence

of best approximation vectors to ◊.

Lemma 7. Let k
0

be an arbitrarily large index. There exists 2n≠2 indices k
0

< r
0

<
r

1

, . . . , r
2

n≠2≠2

< r
2

n≠2≠1

such that the following holds.
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1. The triples of consecutive best approximation vectors

S
3,l

= {z
rl≠1

, z
rl , z

rl+1

}, 0 Æ l Æ 2n≠2 ≠ 1

consist of linearly independent vectors spanning a 3-dimensional rational subspace S
3,l

.
2. For 4 Æ k Æ n + 1 and 0 Æ l Æ 2n≠k+1 ≠ 1 , denote by S

k,l

the set of best approximation
vectors

S
k,l

= fi2

k≠3≠1

‹=0

S
3,2

k≠3
l+‹

.

S
k,l

spans the k-dimensional rational subspace S

k,l

.
3. The rational subspaces S

k,l

satisfy the relations

S

k,2l

fi S

k,2l+1

= S

k+1,l

(33)
S

k,2l

fl S

k,2l+1

= S

k≠1,4l+1

= S

k≠1,4l+2

=: Q

k≠1,l

. (34)

In particular, Q

2,l

is spanned by both z
r4l+1 , z

r4l+1+1

and z
r4l+2≠1

, z
r4l+2.

4. The full space Rn+1 is spanned by

Èz
r0≠1

, z
r0 , z

r0+1

, z
r1+1

, z
r2+1

, . . . , z
r2n≠3≠1+1

ÍR = Èfi2

n≠k+1≠1

l=0

S

k,l

ÍR, 3 Æ k Æ n + 1.

In particular, S

n+1,0

= Rn+1.
Here, the first index always denote the dimension of the considered object. For a given

dimension k, there is 2n≠k+1 subspaces S

k,l

and 2n≠k≠1 subspaces Q

k,l

of dimension k.

A weaker pattern of best approximation vectors was already considered for any dimension
in [17, §2.3].

Lemma 7 coincide with Lemma 5 for the approximation to three numbers and with Lemma
6 for the approximation to four numbers. In the later case, we have �

j

≥ Q
2,j

for 0 Æ j Æ 1.

We can partially describe the situation with the binary tree from Figure 4, where each
child is included in its parent. In particular, the parent of a given rational subspace S

k,l

is
S

k+1,‡(l)

where ‡ is the usual shift on the binary expansion.

We may write the recursive step of the construction of patterns as follows:

S
n+1,0

: S
n,0

≠
Qn≠1,0

S
n,1

where Q

n≠1,0

is a n≠1 dimensional subspace. For S

n,0

, S

n,1

and Q

n≠1,0

the rational subspaces
and their underlying lattices S

n,0

, S
n,1

and Q
n≠1,0

, Schmidt’s inequality (23) provides
detS

n,0

· detS
n,1

detQ
n≠1,0

∫ 1. (35)

This relation enables us to shift the optimization equation in the next dimension as obtained
in the next lemma.
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S
n+1,0

S
n,0

S
n≠1,0

S
n≠2,0

.

.

.

µ

.

.

.

∏

µ

S
n≠2,1

∏

µ

S
n≠1,1

S
n≠2,2

µ

S
n≠2,3

∏

∏

µ

S
n,1

S
n≠1,2

.

.

.

µ

.

.

.

∏

µ

S
n≠1,3

∏

∏

Q
n≠1,0

Q
n≠2,0

Q
n≠2,1

=

=

=

=

=

Figure 4: Binary tree sketching the situation described in Lemma 7.

Lemma 8. Consider the pattern of best approximation vectors S
n+1,0

and its sub-patterns
given by Lemma 7. Here as before, S

k,l

= S

k,l

flZn+1 and Q
k,l

= Q

k,l

flZn+1 are the integer
points lattices of the rational subspace S

k,l

and Q

k,l

. Then

2

n≠4≠1Ÿ

l=0

A
det (S

3,4l

) det (Q
3,l

)1≠yn≠4

det (Q
2,2l

)

B
wn≠4,l

·
2

n≠4≠1Ÿ

l=0

A
det (Q

3,l

)1≠zn≠4 det (S
3,4l+3

)
det (Q

2,2l+1

)

B
w

Õ
n≠4,l

∫ 1,

(36)
where the parameters w

k,l

, wÕ
k,l

, y
k

and z
k

are defined inductively by

0 = y
0

+ z
0

≠ 1 (37)

(y
k+1

, z
k+1

) = F (y
k

, z
k

) =
A

y
k

y
k

+ z
k

≠ y
k

z
k

,
z

k

y
k

+ z
k

≠ y
k

z
k

B

(38)

1 = w
0,0

= wÕ
0,0

(39)

w
k+1,2l

= w
k,l

, w
k+1,2l+1

= (1 ≠ z
k

)wÕ
k,l

, wÕ
k+1,2l

= (1 ≠ y
k

)w
k,l

and wÕ
k+1,2l+1

= wÕ
k,l

.
(40)
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Furthermore, the parameters satisfy the relations

2

n≠4≠1ÿ

l=0

(2 ≠ y
n≠4

)w
n≠4,l

+ (2 ≠ z
n≠4

)wÕ
n≠4,l

= n ≠ 1, (41)

2

n≠4≠1ÿ

l=0

w
n≠4,l

+ wÕ
n≠4,l

= n ≠ 2. (42)

We prove Lemma 7 and then Lemma 8 at the end of this section. Here we first finish the
proof of Theorem 1 in the case of simultaneous approximation.

We do not need to compute explicitly the values of w
k,l

or wÕ
k,l

. From formula (36), we
deduce that there exists an index 0 Æ l Æ 2n≠4 ≠ 1 such that either

det (S
3,4l

) det (Q
3,l

)1≠yn≠4

det (Q
2,2l

) ∫ 1 or
det (Q

3,l

)1≠zn≠4 det (S
3,4l+3

)
det (Q

2,2l+1

) ∫ 1

Applying Lemma 4 twice, the optimization constant g is given by

g = g(1, 1 ≠ z
n≠4

) = g(1 ≠ y
n≠4

, 1)

where (y
0

, z
0

) = F ≠n+4(y
n≠4

, z
n≠4

) satisfies y
0

+ z
0

≠ 1 = 0.

By formulae (28) and (29), we get

y
n≠4

= R
3

(g)
R

2

(g) and z
n≠4

= R
3

(g)
gR

2

(g) .

Then, the recurrence formula (38) provides that for 4 Æ k Æ n

y
n≠k

= R
k≠1

(g)
R

k≠2

(g) and z
n≠k

= R
k≠1

(g)
gR

k≠2

(g) (43)

if k is odd and
y

n≠k

= R
k≠1

(g)
gR

k≠2

(g) and z
n≠k

= R
k≠1

(g)
R

k≠2

(g) (44)

if k is even.
Indeed we prove (43) and (44) by induction.

Suppose y
n≠k

= Rk≠1(g)

Rk≠2(g)

and z
n≠k

= Rk≠1(g)

gRk≠2(g)

. Since

F ≠1(y
n≠k

, z
n≠k

) =
3

y
n≠k

+ z
n≠k

≠ 1
z

n≠k

,
y

n≠k

+ z
n≠k

≠ 1
y

n≠k

4
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we compute

y
n≠k≠1

= y
n≠k

+ z
n≠k

≠ 1
z

n≠k

= R
k≠1

(g)/R
k≠2

(g) + R
k≠1

(g)/gR
k≠2

(g) ≠ 1
R

k≠1

(g)/gR
k≠2

(g) = R
k

(g)
R

k≠1

(g) ,

z
n≠k≠1

= y
n≠k

+ z
n≠k

≠ 1
y

n≠k

= R
k

(g)
gR

k≠1

(g) .

Hence we obtain the formulae (28) and (29) by symmetry and initialization for k = 4.
In particular, (y

0

, z
0

) =
1

Rn≠1(g)

gRn≠2(g)

, Rn≠1(g)

Rn≠2(g)

2
or

1
Rn≠1(g)

Rn≠2(g)

, Rn≠1(g)

gRn≠2(g)

2
depending on the parity

of n. This leads to

0 = y
0

+ z
0

≠ 1 = gR
n≠1

(g) + R
n≠1

(g) ≠ gR
n≠2

(g)
gR

n≠2

(g) = R
n

(g)
gR

n≠2

(g) .

That is, R
n

(g) = 0. So we proved the bound (14) holds for arbitrary large indices, and in
arbitrary dimension n, for the required g.

This proves first part of Theorem 1 for simultaneous approximation.

Proof of Lemma 7. Figure 4 may be usefull to understand the construction.
Let k

0

∫ 1. We prove the lemma by induction in the dimension n. Suppose that we can
construct a pattern S

m,0

of 2m≠3 triples of consecutive best approximation vectors given by
indices k

0

< r
0

< r
1

, . . . , r
2

m≠3≠2

< r
2

m≠3≠1

spanning a m-dimensional rational space. Such
a construction for m = 4, 5 holds via Lemmas 5 and 6. This provides the initialization.

Consider (z
l

)
lœN a sequence of best approximation vectors spanning a (m+1)-dimensional

rational space S

m+1

. Set r
2

m≠2≠1

to be the smallest index such that

Èz
k0 , z

k0+1

, . . . , z
r2m≠2≠1

, z
r2m≠2≠1+1

ÍR = S

m+1

.

Note that z
r2m≠2≠1+1

is not in the m-dimensional subspace spanned by (z
l

)
k0ÆlÆr2m≠2≠1

. In
particular, since two consecutive best approximation vectors are linearly independent the
three consecutive best approximation vectors z

r2m≠2≠1≠1

, z
r2m≠2≠1

, z
r2m≠2≠1+1

are linearly
independent and span a 3-dimensional subspace denoted by S

3,2

m≠2≠1

. Set r
0

> k
0

to be the
largest index such that

Èz
r0≠1

, z
r0 , . . . , z

r2m≠2≠1
, z

r2m≠2≠1+1

ÍR = S

m+1

.

Note that z
r0≠1

is not in the m-dimensional subspace spanned by (z
l

)
r0ÆlÆr2m≠1≠1+1

. In
particular, since two consecutive best approximation vectors are linearly independent the
three consecutive best approximation vectors z

r0≠1

, z
r0 , z

r0+1

are linearly independent and
span a 3-dimensional subspace denoted by S

3,0

. Moreover, combining both observations we
get that

Q

m≠1,0

:= Èz
r0 , z

r0+1

, . . . , z
r2m≠2≠1≠1

, z
r2m≠2≠1

ÍR
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is a m ≠ 1-dimensional subspace.
We use the induction hypothesis for the two m-dimensional subspaces

S

Õ
m

:= Èz
r0≠1

, z
r0 , . . . , z

r2m≠2≠1≠1

, z
r2m≠2≠1

ÍR and S

ÕÕ
m

:= Èz
r0 , z

r0+1

, . . . , z
r2m≠2≠1

, z
r2m≠2≠1+1

ÍR

for kÕ
0

= r
0

≠ 1 and kÕÕ
0

= r
0

respectively. This provides two patterns S Õ
m

and S ÕÕ
m

of triples
of best approximation vectors defined by indices r

0

Æ rÕ
0

< rÕ
1

, . . . , rÕ
2

m≠3≠2

< rÕ
2

m≠3≠1

and
r

0

+ 1 Æ rÕÕ
0

< rÕÕ
1

, . . . , rÕÕ
2

m≠3≠2

< rÕÕ
2

m≠3≠1

satisfying the conditions of Lemma 7. A key
observation is that by definition of r

0

, we necessarily have rÕ
0

= r
0

. Similarly, by definition
of r

2

m≠2≠1

, we necessarily have r
2

m≠2≠1

= rÕÕ
2

m≠3≠1

. It follows that both sub-patterns S Õ
m≠1,1

and S ÕÕ
m≠1,0

span the rational subspace Q

m≠1,0

. Hence, the pattern S defined by the triples
given by indices

r
i

= rÕ
i

and r
i+2

m≠3 = rÕÕ
i

for 0 Æ i Æ 2m≠3 ≠ 1

combining the two sub-patterns S Õ
m

and S ÕÕ
m

satisfies the required properties at the rank m+1.

S : S Õ
m

≠
Qm≠1,0

S ÕÕ
m

.

Since (z
l

)
lœN a sequence of best simultaneous approximation vectors to ◊ œ Rn spans the

whole space Rn+1, Lemma 7 follows.

Remark. Note that the proof provides a m-dimensional pattern for ◊ œ Rn where m is the
dimension of the space spanned by its best approximation vectors. Furthermore, note that this
construction holds for both simultaneous approximation and approximation by one linear form.

Proof of Lemma 8. We prove by induction a more general formula

2

k≠1≠1Ÿ

l=0

A
det (S

n≠k,4l

) det (S
n≠k,4l+1

)1≠yk≠1

det (S
n≠k≠1,8l+1

)

B
wk≠1,l

◊

2

k≠1≠1Ÿ

l=0

A
det (S

n≠k,4l+2

)1≠zk≠1 det (S
n≠k,4l+3

)
det (S

n≠k≠1,8l+3

)

B
w

Õ
k≠1,l

∫ 1.

(45)

If we write it in terms of Q

i,j

= S

i,4j+1

= S

i,4j+2

, we have

2

k≠1≠1Ÿ

l=0

A
det (S

n≠k,4l

) det (Q
n≠k,l

)1≠yk≠1

det (Q
n≠k≠1,2l

)

B
wk≠1,l

◊

2

k≠1≠1Ÿ

l=0

A
det (Q

n≠k,l

)1≠zk≠1 det (S
n≠k,4l+3

)
det (Q

n≠k≠1,2l+1

)

B
w

Õ
k≠1,l

∫ 1.

(46)
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Lemma 8 is the latter formula for k = n ≠ 3.

We call factors of the first product, of the form
A

det (S
n≠k,4l

) det (Q
n≠k,l

)1≠yk≠1

det (Q
n≠k≠1,2l

)

B
wk≠1,l

factors of Type I, and factors of the second product of the form
A

det (Q
n≠k,l

)1≠zk≠1 det (S
n≠k,4l+3

)
det (Q

n≠k≠1,2l+1

)

B
w

Õ
k≠1,l

factors of Type II.

Initialization follows the steps of approximation to four numbers. Namely, Schmidt’s
inequality (23) provides

Y
__]

__[

det(S
n,0

) det(S
n,1

) ∫ det(Q
n≠1,0

) det(S
n+1,0

) ,

det(S
n≠1,0

) det(S
n≠1,1

) ∫ det(Q
n≠2,0

) det(S
n,0

) ,

det(S
n≠1,2

) det(S
n≠1,3

) ∫ det(Q
n≠2,1

) det(S
n,1

) .

(47)

Since S
n+1,0

spans the whole space Rn+1, we have detS
n+1,0

= 1 and using the fact that
detQ

n≠1,0

= detS
n≠1,1

= detS
n≠1,2

(by (34) ), we get the formula

det(S
n≠1,0

) det(Q
n≠1,0

) det(S
n≠1,3

)
det(Q

n≠2,0

) det(Q
n≠2,1

) ∫ 1.

Setting w
0,0

= wÕ
0,0

= 1 and y
0

and z
0

such that y
0

+ z
0

≠ 1 = 0, we can rewrite

A
det(S

n≠1,0

) det(Q
n≠1,0

)1≠y0

det(Q
n≠2,0

)

B
w0,0 A

det(Q
n≠1,0

)1≠z0 det(S
n≠1,3

)
det(Q

n≠2,1

)

B
w

Õ
0,0

∫ 1.

This establishes the expected formula for k = 1. In the inductive step, Schmidt’s inequality
(23) splits each term of the product in two terms involving rational subspaces of lower di-
mension, and shift the values of the parameters y

k

and z
k

.

Indeed, for 3 Æ i Æ n + 1 and 0 Æ j Æ 2n+1≠i ≠ 1, Schmidt’s inequality provides

det(S
i≠1,2j

) det(S
i≠1,2j+1

)
det(Q

i≠2,j

) ∫ det(S
i,j

). (48)
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.

.

.

S
i,j

S
i≠1,2j

S
i≠2,4j

µ
S

i≠2,4j+1

∏

µ

S
i≠1,2j+1

S
i≠2,4j+2

µ
S

i≠2,4j+3

∏

∏

Q
i≠2,j

=

=

Type IIType I

Figure 5: Situation to apply Schmidt’s inequality.

Inductive step. Assume that (45) holds for some 1 Æ k < n ≠ 3. In the product (45),
there are two types of factors: factors of Type I and of Type II. Each of these factors splits
into two factors, one of Type I and one of Type II. We first deal with factors of Type I. For
every 0 Æ l Æ 2k≠1 ≠ 1, we can apply Schmidt’s inequality (48) with parameters i = n ≠ k
and j = 4l and j = 4l + 1 respectively to split

A
det (S

n≠k,4l

) det (S
n≠k,4l+1

)1≠yk

det (Q
n≠k≠1,2l

)

B
wk,l

(49)

π

Q

ccccca

A
det(S

n≠k≠1,8l

) det(S
n≠k≠1,8l+1

)
det(Q

n≠k≠2,4l

)

B A
det(S

n≠k≠1,8l+2

) det(S
n≠k≠1,8l+3

)
det(Q

n≠k≠2,4l+1

)

B
1≠yk

det (Q
n≠k≠1,2l

)

R

dddddb

wk,l

.

Considering that Q

n≠k,2l

= S

n≠k,8l+1

= S

n≠k,8l+2

, for any u œ (0, 1) we can write
A

det(S
n≠k≠1,8l

) det(S
n≠k≠1,8l+1

)u(1≠yk)

det(Q
n≠k≠2,4l

)

B
wk,l

◊

A
det(S

n≠k≠1,8l+2

)1≠u det(S
n≠k≠1,8l+3

)
det(Q

n≠k≠2,4l+1

)

B
(1≠yk)wk,l

∫ (49)
(50)

Similarly, for factors of Type II, for any v œ (0, 1), using (48) with i = n≠k and j = 4l+2
and j = 4l + 3 respectively, and the fact that Q

n≠k,l+1

= S

n≠k,8l+5

= S

n≠k,8l+6

we get
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A
det (S

n≠k,4l+2

)1≠zk≠1 det (S
n≠k,4l+3

)
det (Q

n≠k≠1,2l+1

)

B
w

Õ
k,l

π
A

det(S
n≠k≠1,8l+4

) det(S
n≠k≠1,8l+5

)1≠v

det(Q
n≠k≠2,4l+2

)

B
(1≠zk)w

Õ
k,l

◊
A

det(S
n≠k≠1,8l+6

)v(1≠zk) det(S
n≠k≠1,8l+7

)
det(Q

n≠k≠2,4l+3

)

B
w

Õ
k,l

(51)

Combining the splitting of Type I (50) and Type II (51) factors in the induction hypothesis
(45), it appears that we should define the parameters (y

k+1

, z
k+1

) to be solutions of the system
in variables (u, v)

u(1 ≠ y
k

) = 1 ≠ v and 1 ≠ u = v(1 ≠ z
k

).

That is
y

k

=
y

k+1

+ z
k+1

≠ 1
z

k+1

and z
k

=
y

k+1

+ z
k+1

≠ 1
y

k+1

or equivalently

y
k+1

=
y

k

y
k

+ z
k

≠ y
k

z
k

and z
k+1

=
z

k

y
k

+ z
k

≠ y
k

z
k

.

The last equality coincide with the definition F (y, z) in (38).

This and the parameters (40) establish formula (45) for k + 1.

We now prove the relation (41) and (42) by descending induction, showing that for any
4 Æ k Æ n

2

n≠k≠1ÿ

l=0

(2 ≠ y
n≠k

)w
n≠k,l

+ (2 ≠ z
n≠k

)wÕ
n≠k,l

= n ≠ k + 3, (52)

2

n≠k≠1ÿ

l=0

w
n≠k,l

+ wÕ
n≠k,l

= n ≠ k + 2. (53)

First, note that

w
0,0

+ wÕ
0,0

= 2, and w
0,0

(2 ≠ y
0

) + wÕ
0,0

(2 ≠ z
0

) = 3,

hence we have initialization at k = n.

Assume that for some 4 Æ k Æ n (52) and (53) holds. The two sums represent the number
of determinants that appears respectively at the numerator and at the denominator in (36).
The key is to observe the splitting in (49) : the new sum for the denominator is the sum from
the previous numerator, while at the numerator, the previous denominator is doubled but we
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have a simplification with one denominator. Namely, using the recurrence formula (38) and
(40) for the parameters

2

n≠k+1≠1ÿ

l=0

w
n≠k+1,l

+ wÕ
n≠k+1,l

=
2

n≠k≠1ÿ

l=0

w
n≠k+1,2l

+ w
n≠k+1,2l+1

+ wÕ
n≠k+1,2l

+ wÕ
n≠k+1,2l+1

=
2

n≠k+1≠1ÿ

l=0

w
n≠k,l

+ wÕ
n≠k,l

(1 ≠ z
n≠k

) + wÕ
n≠k,l

+ w
n≠k,l

(1 ≠ y
n≠k

)

=
2

n≠k≠1ÿ

l=0

(2 ≠ y
n≠k

)w
n≠k,l

+ (2 ≠ z
n≠k

)wÕ
n≠k,l

= n ≠ k + 3,

2

n≠k+1≠1ÿ

l=0

w
n≠k+1,l

(2 ≠ y
n≠k+1

) + wÕ
n≠k+1,l

(2 ≠ z
n≠k+1

) =
2

n≠k≠1ÿ

l=0

(w
n≠k+1,2l

+ w
n≠k+1,2l+1

)(2 ≠ y
n≠k+1

)

+
2

n≠k≠1ÿ

l=0

(wÕ
n≠k+1,2l

+ wÕ
n≠k+1,2l+1

)(2 ≠ z
n≠k+1

)

=
2

n≠k≠1ÿ

l=0

w
n≠k,l

(3 ≠ 2y
n≠k

) + wÕ
n≠k,l

(3 ≠ 2z
n≠k

)

= 2(n ≠ k + 3) ≠ (n ≠ k + 2) = n ≠ k + 4.

Hence the result by descending induction.

5 Approximation by one linear form
In this section, we explain how the very same geometry of a subsequence of best approximation
vectors provides Theorem 1 for approximation by one linear form. We need to consider a
hyperbolic rotation to get a suitable analogue of the estimates in Lemma 2. For this, we use
Schmidt’s inequalities on heights in a slightly larger context than rational subspaces.

5.1 About Schmidt’s inequalities on heights
As stated in Proposition 1, Schmidt’s inequality applies to rational subspaces and the lattice
of integer points. Let � µ Rd be a complete lattice, that plays the role of integer points. Let
M µ Rd be a subspace, it is called �-rational if the lattice

M = M fl �

is complete, i.e. if ÈMÍR = M.
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Lemma 9. The intersection of two �-rational subspaces is �-rational.

The proof is the same as for rational subspaces, and use the description of subspaces by
their orthogonal vectors.

Definition. Given a fixed complete lattice �, we define the height H
�

of a �-rational subspace
M to be the fundamental volume

H
�

(M) = det(M) = det(M fl �)

of the �-points of M.

Proposition 2 (Schmidt’s inequality). Let � be a complete lattice. Let A, B be two �-rational
subspaces in Rn, we have

H
�

(A + B) · H
�

(A fl B) π H
�

(A) · H
�

(B). (54)

Proof. Let M

1

and M

2

be two �-rational subspaces. Denote their �-rational intersection
N = M

1

fl M

2

. Let E be a basis of N fl �. We complete E to a basis of M

i

fl � by a collection
of vectors µ

i

in �, for i = 1, 2. Consider the volume vol(E , µ
1

, µ
2

) of the parallelepiped
generated by the basis vectors (E , µ

1

, µ
2

). Then,

vol(E , µ
1

, µ
2

) Ø vol((M
1

+ M

2

) fl �) = H
�

(M
1

+ M

2

).

Let µúú
1

denote de projection of µ
1

on M

2

parallel to N. Then det(µúú
1

) = H
�

(M
1

)/H
�

(N)
and

det(E , µ
1

, µ
2

) = det(E , µ
2

) det(µúú
1

) = H
�

(M
2

) · H
�

(M
1

)/H
�

(N).

Hence we obtain the formula

H
�

(M
1

+ M

2

) · H
�

(M
1

fl M

2

) π H
�

(M
1

) · H
�

(M
2

)

for the underlying complete lattice �.

5.2 Hyperbolic rotation
Given (z

l

)
lœN = (q

1,l

, . . . , q
n,l

, a
l

) a sequence of best approximations to a point ◊ œ Rn for
the approximation by one linear form, we can extract a subsequence satisfying Lemma 7. For
approximation by one linear form, it may happen that the sequence of best approximation
vectors spans a subspace of dimension m < n + 1 in Rn+1 (see [1]). In this case, Theorem 1
holds with the stronger lower bound Gú(m, Ê̂(◊)) instead of Gú(n, Ê̂(◊)) (see Remark after
Proof of Lemma 7). In the sequel, we suppose that the best approximation vectors span the
full space. In particular the coordinates ◊

1

, . . . , ◊
n

are linearly independent with 1.
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Consider the matrix

L =

Q

cccca

1 · · · 0 0
...

...
...

...
0 · · · 1 0
◊

1

· · · ◊
n

1

R

ddddb
.

We can consider the sequence of best approximation as points of the lattice L = L.Zn+1

with
(z̃

l

)
lœN = L.(z

l

)
lœN œ L.

Here, we simply replace the last coordinate a
l

by the error of approximation L
l

.

Consider a large parameter T , and the hyperbolic rotation

G
T

=

Q

cccca

T ≠1 · · · 0 0
...

...
...

...
0 · · · T ≠1 0
0 · · · 0 T n

R

ddddb
.

The lattice LÕ = G
T

L is complete since the determinants of L and G
T

are 1.

Consider the sequence (zÕ
l

)
lœN œ LÕ defined by

(zÕ
l

)
lœN = G

T

L(z
l

)
lœN œ LÕ

where

zÕ
l

= (zÕ
1,l

, . . . , zÕ
n,l

, zÕ
n+1,l

)
= (T ≠1q

1,l

, . . . , T ≠1q
n,l

, T nL
l

).

For best approximation by one linear form we defined M
l

= max
1ÆiÆn

|z
i,l

|, and after
hyperbolic rotation we have

max
1ÆiÆn

|zÕ
i,l

| Æ M
l

T ≠1.

Since we assume that the best approximation vectors (z
l

)
lœN span the full space Rn+1, we

can apply Lemma 7 to (z
l

)
lœN and obtain a set of indices (r

k

)
0Æ2

n≠2≠1

. Denote

S Õ
3,l

= {zÕ
rl≠1

, zÕ
rl

, zÕ
rl+1

} = G
T

LS
3,l

, 0 Æ l Æ 2n≠2 ≠ 1

and for 4 Æ k Æ n + 1 and 0 Æ l Æ 2n≠k+1 ≠ 1 , denote by S Õ
k,l

the set of best approximation
vectors

S Õ
k,l

= fi2

k≠3≠1

‹=0

S Õ
3,2

k≠3
l+‹

= G
T

LS
k,l

.
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Since G
T

and L have determinant 1, these sets satisfies the properties of linear indepen-
dence and inclusion listed in Lemma 7.

Further in the proof of Theorem 1, we need an estimate of the fundamental volumes of
the lattices �Õ

k

= ÈzÕ
k

, zÕ
k+1

ÍZ and �Õ
k

= ÈzÕ
k≠1

, zÕ
k

, zÕ
k+1

ÍZ spanned by consecutive independent
vectors zÕ

l

.
For large T , we can follow a similar proof as Lemma 2.

Lemma 10. Fix an index k. Let T be large enough so that

T > M
k+1

and T > L
≠1/n

k≠1

(55)

Given two consecutive and linearly independent best approximation vectors z
k

, z
k+1

, the fun-
damental volume det �Õ

k

satisfies

det �Õ
k

® L
k

T nM
k+1

T ≠1 = L
k

M
k+1

T n≠1. (56)

Given three consecutive and linearly independent best approximation vectors z
k≠1

, z
k

, z
k+1

,
the fundamental volume det �Õ

k

satisfies

det �Õ
k

π L
k≠1

T nM
k

T ≠1M
k+1

T ≠1 = L
k≠1

M
k

M
k+1

T n≠2. (57)

Proof. For T satisfying (55), we see that zÕ
l

= (T ≠1q
1,l

, . . . , T ≠1q
n,l

, T nL
l

) satisfies

|T nL
l

| > 1 and |T ≠1q
i,l

| < 1 for 1 Æ i Æ n. (58)

Consider the 2 ◊ (n + 1) matrix
A

zÕ
1,k

. . . zÕ
n,k

zÕ
n+1,k

zÕ
1,k+1

. . . zÕ
n,k+1

zÕ
n+1,k+1

B

=
A

T ≠1q
1,k

. . . T ≠1q
n,k

T nL
k

T ≠1q
1,k+1

. . . T ≠1q
n,k+1

T nL
k+1

B

.

and the 3 ◊ (n + 1) matrix
Q

ca
zÕ

1,k≠+1

. . . zÕ
n,k≠1

zÕ
n+1,k≠1

zÕ
1,k

. . . zÕ
n,k

zÕ
n+1,k

zÕ
1,k+1

. . . zÕ
n,k+1

zÕ
n+1,k+1

R

db =

Q

ca
T ≠1q

1,k≠1

. . . T ≠1q
n,k≠1

T nL
k≠1

T ≠1q
1,k

. . . T ≠1q
n,k

T nL
k

T ≠1q
1,k+1

. . . T ≠1q
n,k+1

T nL
k+1

R

db .

Using Lemma 3, the squares of the fundamental volumes det �Õ
k

and det �Õ
k

are sums of
squares of 2 ◊ 2 and 3 ◊ 3 minors. As for Lemma 2, the conditions (58) provide the upper
bounds L

k

T nM
k+1

T ≠1 = L
k

M
k+1

T n≠1 for the 2 ◊ 2 minors and L
k≠1

T nM
k

T ≠1M
k+1

T ≠1 =
L

k≠1

M
k

M
k+1

T n≠2 for the 3 ◊ 3 minors. The upper bound for the fundamental volumes
follows.

The lower bound of det �Õ
k

, follows from Minkowski’s first convex body theorem as well,
considering the symmetric convex body G

T

L� and its intersection with �Õ
l

reduced to zero.
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Here, we need a large parameter T to obtain a good upper bound for the minors. If T = 1,
such upper bound are false.

Remark. In the case of a lattice generated by both

� := ÈzÕ
‹

, zÕ
‹+1

ÍZ = ÈzÕ
k≠1

, zÕ
k

ÍZ
we have

det � ® L
‹

M
‹+1

T n≠1 ® L
k≠1

M
k

T n≠1. (59)

5.3 Proof of the main theorem for approximation by one linear
form
The proof in the case of approximation by one linear form follow the same steps as in the case
of simultaneous approximation. Considering (z

l

)
lœN a sequence of best approximations to a

point ◊ œ Rn, we obtain via Lemma 7 a set of indices satisfying good properties. Suppose
that k

0

is large enough so that for –ú < Ê̂(◊).

L
j

Æ M≠–

ú

j+1

, for j Ø k
0

. (60)

The hyperbolic rotation (zÕ
l

)
lœN = G

T

L · (z
l

)
lœN, where T ∫ 1 is fixed, preserves the

property of linear independence, and hence the structure of the pattern of best approximation
vectors constructed in Lemma 7. We consider the rotated sets S Õ

k,l

= G
T

L · S
k,l

, QÕ
k,l

=
G

T

L · Q
k,l

from the sets S
k,l

and Q
k,l

defined in Lemma 7. We denote respectively by SÕ
k,l

and QÕ
k,l

the lattices of their G
T

L-points.
We apply Schmidt’s inequalities for heights to the G

T

L-rational subspaces S Õ
k,l

= G
T

L·S
k,l

,
to obtain the lower bounds of Lemma 8

2

n≠4≠1Ÿ

l=0

Q

ca
det

1
SÕ

3,4l

2
det

1
QÕ

3,l

2
1≠yn≠4

det
1
QÕ

2,2l

2

R

db

wn≠4,l

·
2

n≠4≠1Ÿ

l=0

Q

ca
det

1
QÕ

3,l

2
1≠zn≠4 det

1
SÕ

3,4l+3

2

det
1
QÕ

2,2l+1

2

R

db

w

Õ
n≠4,l

∫ 1

(61)
where the parameters y

n≠4

, z
n≠4

, w
n≠4,l

and wÕ
n≠4,l

satisfy (38).

As for the proof of Lemma 4, we want to split the denominators. Indeed,

QÕ
2,2l

= ÈzÕ
r4l

, zÕ
r4l+1

ÍZ = ÈzÕ
r4l+1≠1

, zÕ
r4l+1ÍZ (62)

QÕ
2,2l+1

= ÈzÕ
r4l+2 , zÕ

r4l+2+1

ÍZ = ÈzÕ
r4l+3≠1

, zÕ
r4l+3ÍZ (63)

and we can split both det
1
QÕ

2,2l

2
and det

1
QÕ

2,2l+1

2
with their two expressions coming from

(59). Now we should consider the following parameters for 0 Æ s, t Æ 1

gú(s, t) = (1 ≠ –ú)s
(1 ≠ –ú)s ≠ wú(s, t) = (1 ≠ –ú)(1 ≠ wú(s, t) ≠ t)

t
. (64)
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where the second equality comes from wú(s, t) œ (0, 1) being the root of the equation

wú2 ≠
A

1 ≠ t ≠
s

–ú ≠ 1

B

wú +
s

–ú ≠ 1 = 0. (65)

Note that it is analogous to g(s, t) and w(s, t) defined in (21) (20) (Lemma 4).

Applying the estimates of Lemma 10, and the splittings of denominator (59) with param-
eters wú(1, 1 ≠ z

n≠4

) and wú(1 ≠ y
n≠4

, 1) we get

2

n≠4≠1Ÿ

l=0

Q

a
!
L

r4l≠1

M
r4lMr4l+1

T n≠2

" !
L

r4l+1≠1

M
r4l+1M

r4l+1+1

T n≠2

"
1≠yn≠4

(L
r4lMr4l+1

T n≠1)w

ú
(1≠yn≠4,1)

!
L

r4l+1≠1

M
r4l+1T n≠1

"
1≠w

ú
(1≠yn≠4,1)

R

b
wn≠4,l

·

2

n≠4≠1Ÿ

l=0

Q

a
!
L

r4l+2≠1

M
r4l+2M

r4l+2+1

T n≠2

"
1≠zn≠4 !

L
r4l+3≠1

M
r4l+3M

r4l+3+1

T n≠2

"

!
L

r4l+2M
r4l+2+1

T n≠1

"
w

ú
(1,1≠zn≠4)

!
L

r4l+3≠1

M
r4l+3T n≠1

"
1≠w

ú
(1,1≠zn≠4)

R

b
wn≠4,l

∫ 1

Furthermore, by (41) and (42), T has the same power (n ≠ 1)(n ≠ 2) at numerator and
denominator and can be simplified.

2

n≠4≠1Ÿ

l=0

Q

a (L
r4l≠1

M
r4lMr4l+1

)
!
L

r4l+1≠1

M
r4l+1M

r4l+1+1

"
1≠yn≠4

(L
r4lMr4l+1

)w

ú
(1≠yn≠4,1)

!
L

r4l+1≠1

M
r4l+1

"
1≠w

ú
(1≠yn≠4,1)

R

b
wn≠4,l

·

2

n≠4≠1Ÿ

l=0

Q

a
!
L

r4l+2≠1

M
r4l+2M

r4l+2+1

"
1≠zn≠4 !

L
r4l+3≠1

M
r4l+3M

r4l+3+1

"

!
L

r4l+2M
r4l+2+1

"
w

ú
(1,1≠zn≠4)

!
L

r4l+3≠1

M
r4l+3

"
1≠w

ú
(1,1≠zn≠4)

R

b
wn≠4,l

∫ 1

Hence, at least one of the following four inequalities holds:

L
r4l≠1

M
r4lMr4l+1

∫ (L
r4lMr4l+1

)w

ú
(1≠yn≠4,1) ,

!
L

r4l+1≠1

M
r4l+1M

r4l+1+1

"
1≠yn≠4 ∫

!
L

r4l+1≠1

M
r4l+1

"
1≠w

ú
(1≠yn≠4,1)

,
!
L

r4l+2≠1

M
r4l+2M

r4l+2+1

"
1≠zn≠4 ∫

!
L

r4l+2M
r4l+2+1

"
w

ú
(1,1≠zn≠4)

,

L
r4l+3≠1

M
r4l+3M

r4l+3+1

∫
!
L

r4l+3≠1

M
r4l+3

"
1≠w

ú
(1,1≠zn≠4)

.

Following the proof of Lemma 4, from (60) and the definitions of gú (64) and wú(65) we
deduce

M
‹+1

∫ Mg

ú
(s,t)

‹

(66)
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for either ‹ = r
4l

, r
4l+1

, r
4l+2

or r
4l+3

, and (s, t) = (1, 1 ≠ z
n≠4

) or (1 ≠ y
n≠4

, 1) respectively.

Using (64) and (65), we see that 1/gú satisfies the same equation as g (25) up to symmetry
in s and t

1/gú2 ≠
3

— + 1 ≠ t

s

4
· 1/gú ≠ t—

s
= 0. (67)

In particular, we can use this equation to compute the optimal value of either s or t when
the other parameter is 1. Namely,

t = (gú)≠2 ≠ —(gú)≠1 ≠ —

(gú)≠1 ≠ —
= R

3

((gú)≠1)
(gú)≠1 ≠ —

, for gú = gú(1 ≠ t, 1), (68)

s = (gú)≠2 ≠ —(gú)≠1 ≠ —

(gú)≠1((gú)≠1 ≠ —) = R
3

((gú)≠1)
(gú)≠1((gú)≠1 ≠ —) , for gú = gú(1, 1 ≠ s). (69)

Similarly to the case of simultaneous approximation, we have

gú = gú(1, 1 ≠ z
n≠4

) = gú(1 ≠ y
n≠4

, 1)

and the properties of gú and z
n≠4

, y
n≠4

provide that R
n

(1/gú) = 0.

5.3.1 Example of approximation to 4 numbers
To make the ideas of the proof clearer, we give an example in the simple case of approximation
to 4 numbers.

Consider a sequence of best approximation vectors to ◊ œ R4 by one linear form. We may
assume that it spans R5. For an index k

0

∫ 1 we apply Lemma 6. It provides a pattern of
best approximation vectors

zzz
r0≠1

, zzz
r0 , zzz

r0+1

; zzz
r1≠1

, zzz
r1 , zzz

r1+1

; zzz
r2≠1

, zzz
r2 , zzz

r2+1

, zzz
r3≠1

, zzz
r3 , zzz

r3+1

;

of linearly independent triples satisfying properties of Lemma 6. Consider T such that T >

M
r3+1

and T > L
≠1/n

r3≠1

, we apply the hyperbolic rotation to the integer vectors zzz
j

to get

zzzÕ
j

= G
T

L · zzz
j

for j = r
0

≠ 1, r
0

, r
0

+ 1, r
1

≠ 1, r
1

, r
1

+ 1, r
2

≠ 1, r
2

, r
2

+ 1, r
3

≠ 1, r
3

, r
3

+ 1.

For 0 Æ i Æ 3 we consider the subspace

S

3,i

= ÈzzzÕ
ri≠1

, zzzÕ
ri

, zzzÕ
ri+1

ÍR

and its lattice of G
T

L points
S

3,i

= S

3,i

fl G
T

L.
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We recall that
S

3,1

= S

3,2

= Q

Consider the 2-dimensional lattices

�
0

:= ÈzÕ
r0 , zÕ

r0+1

ÍZ = ÈzÕ
r1≠1

, zÕ
r1ÍZ = S

3,0

fl S

3,1

fl G
T

L

and
�

1

:= ÈzÕ
r2 , zÕ

r2+1

ÍZ = ÈzÕ
r3≠1

, zÕ
r3ÍZ = S

3,2

fl S

3,3

fl G
T

L.

We apply Schmidt’s inequality (Propositon 2) with underlying lattice G
T

L to obtain the
analogue of (31)

detS
3,0

(detS
3,1

)x

det �
0

· (detS
3,2

)1≠xdetS
3,3

det �
1

∫ 1.

By Lemma 10, we get

L
r0≠1

M
r0M

r0+1

T 2(L
r1≠1

M
r1M

r1+1

T 2)x

L
r0M

r0+1

T 3

· (L
r2≠1

M
r2M

r2+1

T 2)1≠xL
r3≠1

M
r3M

r3+1

T 2

L
r3≠1

M
r3T 3

∫ 1.

Here, T disappears as it has power 6 at numerator and denominator :

3 + 3 = 6 = 2 + 2x + 2(1 ≠ x) + 2.

We deduce
L

r0≠1

M
r0M

r0+1

(L
r1≠1

M
r1M

r1+1

)x

L
r0M

r0+1

· (L
r2≠1

M
r2M

r2+1

)1≠xL
r3≠1

M
r3M

r3+1

L
r3≠1

M
r3

∫ 1.

Since the lattices �
0

and �
1

are both generated by two distinct pairs of consecutive best
approximation vectors, we deduce from (59) that

L
r0M

r0+1

® L
r1≠1

M
r1 and L

r2M
r2+1

® L
r3≠1

M
r3 .

Hence we can replace

L
r0M

r0+1

by (L
r0M

r0+1

)w

ú
(1,x)(L

r1≠1

M
r1)1≠w

ú
(1,x)

and
L

r3≠1

M
r3 by (L

r2M
r2+1

)w

ú
(1≠x,1)(L

r3≠1

M
r3)1≠w

ú
(1≠x,1),

where wú(s, t) is defined by (65).

We deduce that at least one of the four following inequalities holds
Y
_____]

_____[

L
r0≠1

M
r0M

r0+1

∫ (L
r0M

r0+1

)w

ú
(1,x)

(L
r1≠1

M
r1M

r1+1

)x ∫ (L
r1≠1

M
r1)1≠w

ú
(1,x)

(L
r2≠1

M
r2M

r2+1

)1≠x ∫ (L
r2M

r2+1

)w

ú
(1≠x,1)

L
r3≠1

M
r3M

r3+1

∫ (L
r3≠1

M
r3)1≠w

ú
(1≠x,1)

.
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We deduce from the definition (64) of gú = gú(1, x) = gú(1 ≠ x, 1) that

M
‹+1

∫ Mg

ú
‹

for either ‹ = r
0

, r
1

, r
2

or r
3

. From (69) we have

x = —

1/gú(1/gú ≠ —) = R
3

(1/gú)
1/gú ≠ —

and so gú satisfies the equation

R
4

(1/gú) = 1/gúR
3

(1/gú) ≠ — = 0.

6 Construction of points with given ratio
In this last section, we prove the second part of Theorem 1. To construct points with given
ratio, we place ourselves in the context of parametric geometry of numbers introduced by
Schmidt and Summerer in [24]. We refer the reader to [12, §2] for the notation used in this
paper and the presentation of the parametric geometry of numbers. We use the notation
introduced by D. Roy in [20] which is essentially dual to the one of W. M. Schmidt and
L. Summerer [23]. We believe we should denote generalized n-systems by Roy-systems. We
fully use Roy’s theorem [20] as stated in [12, Theorem 5] to deduce the existence of a point
with expected properties from an explicit family of Roy-systems with three parameters. The
construction shows how the values G(n, –) and Gú(n, –ú) appear naturally in the context of
parametric geometry of numbers, and why they are reached at regular systems.

Fix the dimension n Ø 2, and consider the case of approximation by one linear form.
Fix the three parameters Ê̂ Ø n, fl = Gú(n, Ê̂) and c Ø 1. Consider the Roy-system P on
the interval [1, cfl] depending on these parameters whose combined graph is given below by
Figure 6, where

P
1

(1) =
1

1 + Ê̂
, P

k

(1) = flk≠2P
1

(1) for 2 Æ k Æ n+1 and P
k

(cfl) = cflP
k

(1) for 1 Æ k Æ n+1.

The fact that all coordinates sum up to 1 for q = 1 follows from 1/fl being the root of
the polynomial R

n,1/Ê̂

(9). On each interval between two consecutive division points, there
is only one line segment with slope 1. On [1, q

0

], there is one line segment of slope 1 starting
from the value 1

1+Ê̂

and reaching the value cfl

n

1+Ê̂

. Then, each component P
k

increases from
fl

k≠1

1+Ê̂

to cfl

k≠1

1+Ê̂

with slope 1 where k decreases from k = n down to k = 2.
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· · · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · ·

1

1+Ê̂

fl

1+Ê̂

fl

k≠1

1+Ê̂

fl

k

1+Ê̂

cfl

n

1+Ê̂

cfl

n≠1

1+Ê̂

cfl

k+1

1+Ê̂

cfl

k

1+Ê̂

cfl

1+Ê̂

fl

n≠1

1+Ê̂

1

cflq
1

q
0

Figure 6: Pattern of the combined graph of P on the fundamental interval [1, cfl]

We extend P to the interval [1, Œ) by self-similarity. This means, P (q) = (cfl)mP ((cfl)≠mq)
for all integers m. In view of the value of P and its derivative at 1 and cfl, one sees that the
extension provides a Roy-system on [1, Œ).

Note that for c = 1, the parameter q
0

and q
1

coincide and we constructed a regular system.

Roy’s Theorem [20] provides the existence of a point ◊ in Rn such that

1
1 + Ê̂(◊) = lim sup

qæ+Œ

P
1

(q)
q

,

1
1 + Ê(◊) = lim inf

qæ+Œ

P
1

(q)
q

.

Here, self-similarity ensures that the lim sup (resp. lim inf) is in fact the maximum (resp. the
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minimum) on the interval [1, cfl[. Thus,
1

1 + Ê̂(◊) = max
[1,cfl[

P
1

(q)
q

=
P

1

(1)
1 =

1
1 + Ê̂

,

1
1 + Ê(◊) = min

[1,cfl[

P
1

(q)
q

=
P

1

(q
0

)
q

0

=
1

cflÊ̂ + 1
where

q
0

=
c(fln + · · · + fl2 + fl) + 1

1 + Ê̂
=

c(flÊ̂) + 1
1 + Ê̂

.

Hence,

Ê̂(◊) = Ê̂ and Ê(◊) = cflÊ̂.

and we constructed the required points since c Ø 1 and fl = Gú(n, Ê̂).

Consider the case of simultaneous approximation. Fix the three parameters 1 Ø ⁄̂ Ø 1/n,
fl = G(n, ⁄̂) and c Ø 1. Consider the Roy-system P on the interval [1, cfl] depending on these
parameters whose combined graph is given below by Figure 7, where

P
n+1

(1) =
⁄̂

1 + ⁄̂
, P

k

(1) = fln≠kP
1

(1) for 1 Æ k Æ n and P
k

(cfl) = cflP
k

(1) for 2 Æ k Æ n + 1.

The fact that all coordinates sum up to 1 for q = 1 follows from fl being the root of
the polynomial R

n,

ˆ

⁄

(9). Up to change of origin and rescaling, this is the same pattern
as shown by Figure 6. We extend P to the interval [1, Œ) by self-similarity. This means,
P (q) = (cfl)mP ((cfl)≠mq) for all integers m. In view of the value of P and its derivative at
1 and cfl, one sees that the extension provides a Roy-system on [1, Œ).

For c = 1, the parameter q
0

and q
1

coincide and we constructed a regular system.

Roy’s Theorem [20] provides the existence of a point ◊ in Rn such that
⁄̂(◊)

1 + ⁄̂(◊)
= lim inf

qæ+Œ

P
n+1

(q)
q

,

⁄(◊)
1 + ⁄(◊) = lim sup

qæ+Œ

P
n+1

(q)
q

.

Here, self-similarity ensures that the lim sup (resp. lim inf) is in fact the maximum (resp.
the minimum) on the interval [1, cfl[. Thus,

⁄̂(◊)
1 + ⁄̂(◊)

= min
[1,cfl[

P
n+1

(q)
q

=
P

n+1

(1)
1 =

⁄̂

1 + ⁄̂
,

⁄(◊)
1 + ⁄(◊) = max

[1,cfl[

P
n+1

(q)
q

=
P

n+1

(q
1

)
q

1

=
cfl⁄̂

1 + cfl⁄̂
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· · · · · ·

· · · · · ·

· · · · · ·

fl≠(n≠1)—

fl≠(n≠2)—

fl≠k+1—

fl≠k—

cfl—

c—

cfl≠k+1—

cfl≠k+2—

cfl≠(n≠2)—

—

1

cflq
1

q
0

Figure 7: Pattern of the combined graph of P on the fundamental interval [1, cfl], where — =

ˆ

⁄

1+

ˆ

⁄

.

where

q
1

=
⁄̂(c(fln + · · · + fl2 + fl) + 1)

1 + ⁄̂
=

⁄̂(cfl + 1/⁄̂)
1 + ⁄̂

.

Hence,
⁄̂(◊) = ⁄̂ and ⁄(◊) = cfl⁄̂.

and we constructed the required points since c Ø 1 and fl = G(n, ⁄̂).

Such self-similar Roy-systems provide infinitely many distinct points ◊ œ Rn via Roy’s
theorem with Q-linearly independent coordinates with 1, as explained in [12, end of §3]. The
Q-linear independence comes from P

1

(q) æ Œ when q æ Œ. The construction of infinitely
many points follows from a change of origin with the same pattern and self-similarity.
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