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Data assimi lat ion: mathematics
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When you describe a physical process, for example,
the weather on Earth, or an engineered system, such
as a self-driving car, you typically have two sources of
information. The first is a mathematical model, and
the second is information obtained by collecting data.
To make the best predictions for the weather, or most
effectively operate the self-driving car, you want to
use both sources of information. Data assimilation
describes the mathematical, numerical and computa-
tional framework for doing just that.

1 How we predict the future

Predicting the weather on Earth is interesting for many reasons. People might
simply want to know if they need to carry an umbrella tomorrow. Safe operation
of airports requires that one knows about the movements of storm systems. One
must warn people in advance of severe weather such as flash floods, tornados, or
hurricanes. The launch of a spacecraft also depends on weather conditions. In
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fact, Earth’s weather is so interesting that the one scientist almost everybody
encounters on a daily basis is the meteorologist that presents your local weather
forecast.

Since there is so much interest in weather forecasting, there are many people
who study it, using a variety of scientific methods and looking at the problem
from different perspectives. For example, we measure temperature and humidity
where we can, we use satellites to track storms, while airplanes and ships report
the wind speeds they encounter. In addition, physicists and mathematicians
work on developing mathematical models for the weather. Computational
scientists work on how to use these models for simulations of Earth’s weather.
The weather forecast that you see on the evening news is a result of combining
all that information.

Often, the combination of information from mathematical weather models
and “observations” of the weather is done by using conditional probability. Our
model gives us certain probabilities, say, the probability of rain on a given day,
and the observations are used to improve these probabilities. Let us explain
this using a simple example. Suppose that I roll a dice and you must guess
which number comes up. You could equally well say 1, 2, 3, 4, 5, or 6, as all
guesses have the same probability of being correct. If I tell you that the number
I see is larger than 3, then you should not guess 1, 2, or 3, since these numbers
have become impossible in view of the additional information I have provided.
In other words, your guess of the number should change because you obtained
new information.

The situation is similar when you forecast the weather. You use a mathe-
matical model to make a forecast. Then you obtain measurements of current
weather, and you want to modify your model, that is, modify the probability
of the weather outcome, to account for this new information. For example, if
you predicted sunshine for today, but today you observe rain, then you need to
change your model and forecast for tomorrow in view of that observation. “Data
assimilation” describes the mathematical foundations and numerical algorithms
of how to make such changes to your model.

Weather prediction is one example where data assimilation is useful, but
more examples can be found in almost every field of science and engineering.
In robotics, for example in a self-driving car, data assimilation algorithms
use sensor data to locate the car in a given map. The map itself must also
be updated regularly based on the sensor measurements. For example, it is
important that a pedestrian crossing the street becomes part of the map the
car uses to navigate.

Another example is hydrology, where one studies the movement, distribution,
and quality of water on Earth. When it rains, some of the rain flows across
Earth’s surface to end up in streams and rivers. Some of the water, however,
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penetrates the soil and travels underground. If you want to predict where this
water ends up and how it flows under the surface, you will need to know what
the structure under the surface looks like. To get an idea, you might drill
a few holes and make some measurements which you then want to combine
with a mathematical model that describes the subsurface flow in between your
measurements. The basic idea then is as before: you want to combine your
model and data. You want to use data assimilation.

2 Mathematics of data assimi lat ion

Data assimilation is done every day. In global numerical weather prediction, it is
actually done every six hours. How? There are currently three main approaches
to data assimilation.

1. Solve the actual problem.
2. Solve an optimization problem.
3. Solve a simplified problem.

An elegant way of performing data assimilation is to compute the conditional
probabilities, as described above, that describe the mathematical model in
view of the data you collected [1, 6]. These conditional probabilities taken all
together describe the probability distribution of our model. We want to obtain
what is called the “expected value” of this distribution.

Let us return to the example of the roll of a dice we introduced earlier. The
dice has six sides, with the numbers 1, 2, 3, 4, 5 and 6. The appearance of one
side, say 1, is as likely as the appearance of any other side. That means that
the probability of rolling a 1 is 1/6, and the probability of rolling a 2, 3, 4, 5,
or 6 is also 1/6. In this case, the distribution is called “uniform”. The expected
value is defined to be the sum of the numbers, multiplied by their probabilities:

E = 1 · 1
6 + 2 · 1

6 + 3 · 1
6 + 4 · 1

6 + 5 · 1
6 + 6 · 1

6 = 3.5

You can approximate this expected value by repeatedly rolling the dice, that is,
by drawing “samples”. Suppose you draw 10 samples and you get the sequence
shown in the first two rows of Table 1 (we actually rolled a dice to obtain this
sequence). An approximation of the expected value is the sample average, which
means the sum of the ten outcomes, divided by ten:

Ê10 = 1
10 · (5 + 3 + 6 + 2 + 1 + 2 + 5 + 1 + 3 + 1) = 29

10 = 2.9

The approximation gets better when you have more samples. An approximation
based on 60 samples, which are also shown in Table 1, is given by the sum of
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Roll-number 1 2 3 4 5 6 7 8 9 10
Outcome 5 3 6 2 1 2 5 1 3 1

Roll-number 11 12 13 14 15 16 17 18 19 20
Outcome 5 3 1 4 1 2 4 5 6 3

Roll-number 21 22 23 24 25 26 27 28 29 30
Outcome 5 2 1 3 1 6 3 1 5 3

Roll-number 31 32 33 34 35 36 37 38 39 40
Outcome 3 6 3 2 1 6 3 3 1 4

Roll-number 41 42 43 44 45 46 47 48 49 50
Outcome 5 6 4 3 1 6 4 3 6 6

Roll-number 51 52 53 54 55 56 57 58 59 60
Outcome 1 5 5 5 6 1 3 3 1 6

Table 1: Rolling a dice 60 times

all 60 outcomes, divided by 60:

Ê60 = 1
60 · (sum of all outcomes) ≈ 3.42

You can see that the approximation Ê60 ≈ 3.42 is now pretty close to the
expected value E = 3.5. We encourage you to draw more samples, say 100, and
you should get an answer even closer to 3.5. You can also tell ten of your friends
to each draw 100 samples, then collect the results and average over all outcomes
you and your friends observed. The result should be close to 3.5. If you were
able to draw infinitely many samples, then you would obtain 3.5 exactly [3].

Returning to our general situation, our aim is to estimate the expected
value of the distribution given by the conditional probabilities. The method of
sampling, as illustrated above, is called the Monte Carlo method. More precisely,
this method consists of estimating an expected value by drawing many samples
from a given distribution and finding the average of all of these samples. As
we take more samples, the estimate should be closer to the desired value. The
name “Monte Carlo” comes from that of the famous casino in Monaco and
dates from the 1940s, when this sampling method was used to solve problems in
physics related to the development of the atomic bomb. However, the method
has a longer history; we can find examples appearing in the mathematical and
statistical literature starting from the 1900s.

The main justification for the use of Monte Carlo methods comes from what
are known as the “laws of large numbers”. There are two of these important
results, the “weak” and the “strong” law. Roughly speaking, the weak law tells
us that if we assume that the expected value we want to estimate exists, as
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we take the average of more and more samples, the error between the sample
average and the desired one shrinks to zero. The strong law gives us slightly
more information, in that it says that for any chosen margin of error, no matter
how small, there will always exist a number such that if we average at least that
many samples, we will have an error that is at most the one we have chosen.
Notice that we had to assume that the expected value we want to estimate
exists. But actually we have already done this: if we didn’t believe that this
value existed, we wouldn’t be trying to estimate it.

In practise, if you wanted to use Monte Carlo for data assimilation, then
you would create ways of drawing samples from the conditional probabilities
defined jointly by your mathematical model and the data. You can “use your
imagination to do this” 3 and many scientists and mathematicians work together
on finding new and effective ways to draw samples from probability distributions
that are not necessarily well understood. Designing such methods for data
assimilation is very difficult. Briefly, and we will explain in more detail in Section
3, the reason is that doing data assimilation in this way becomes increasingly
difficult the larger the problem is, in the sense of the number of variables to
account for and the quantity of data collected. This is called the “curse of
dimensionality”, and, for this reason, data assimilation techniques of this kind
are only used in relatively “small” problems.

The other two techniques mentioned above, optimization and simplifying the
problem, are often used in practice, even on very large and important problems
such as numerical weather prediction. By an “optimization problem” we mean
that you try to calibrate your model in a way that its output is as close as
possible to the data you collected. You can quantify the mismatch, or error,
between model output and data by what is called a “cost function”, and your
“optimal” model output is the one that yields the smallest error, which is also
the smallest value given by the cost function. Typically, the cost function
is related to a formulation of the data assimilation problem by conditional
probabilities again [7]. Optimization-based data assimilation algorithms are
in use in operational numerical weather prediction, and some people say that
progress in data assimilation is one of the main drivers for the increase in
forecast skill over the past decades [2].

However, since the implementation of these techniques in the form of com-
puter code can be tricky, there are problems for which this optimization approach
is too complicated and difficult. In these cases you can make use of a very
powerful method for solving difficult problems: just don’t do it. Instead, you
solve an easier problem, whose solution is not too far from the difficult problem
you really want to solve.

3 This is a quote of somebody who creates such algorithms for a living. We collected this
quote during a workshop at MFO on the topic of data assimilation.
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In data assimilation, this approach can be applied as follows. If the mathe-
matical model is simple enough, the conditional probabilities that appear are
also simple. By a simple mathematical model we mean one that is linear. Recall
that a linear function f(x) is one that satisfies f(αx + βy) = αf(x) + βf(y),
where α and β are any numbers you want. Linear functions are usually easier
to deal with than functions that are not linear. For example, it is much easier
to solve the equation f(x) = 0 if we have the linear function f(x) = 2x+ 1 than
if we have the non-linear function f(x) = x2 + cos(x).

Linear models that appear in data assimilation satisfy similar conditions, and
linear models are also “easy” to deal with. A linear model gives rise to “easy”
conditional probabilities, which are described by a “Gaussian” distribution.
What makes Gaussian probabilities simple is that all you need to know about
them are two numbers, namely, the mean and the variance. 4 The mean is
the average value you expect to encounter, that is, it is another name for the
expected value. The variance describes the variation around the mean that
you should expect when you perform repeated experiments. In short, if you
have a linear model and Gaussian probabilities, then you can perform data
assimilation “easily” (see also the next section). Unfortunately, almost every
physical process or engineered system does not appear naturally as a linear
model, and the probabilities that you observe in practice are rarely Gaussian. 5

One way forward is to “linearize” your model. That means you replace the
actual model by a linear version of it. The linearized model now gives rise
to Gaussian probabilities and so you are in business to solve this simplified
problem. The solution you obtain can be very close to the solution of the
nonlinear problem if the linearization is done carefully enough to capture most
of the dominant behaviors of your model. The Kalman filter [5] is the original
data assimilation method for a class of linear problems, and versions of it,
including the “extended” Kalman filter and “ensemble” Kalman filter [4] are
used in many nonlinear problems.

3 Why is this di f f icul t?

Data assimilation seems “easy”. The problem is elegantly formulated in terms
of conditional probabilities and there are three classes of methods to solve the
problem. What is difficult about this?

One difficulty lies in the problem formulation. In order to set up the

4 This dependence on exactly two parameters is similar to linear functions, for which you
only need to specify the slope and the y-intercept.
5 There is an important result in probability theory, called the “Central Limit Theorem”,
which says that in some circumstances these probabilities are actually Gaussian. However,
there are many situations where this theorem is not applicable. For more information, see [3].
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conditional probabilities, one relies on assumptions about the distribution of
errors. For example, one must specify how “far” one expects the model outputs
to be from the collected data. This is inherently difficult, because it requires
statements, often in a precise mathematical sense, about things we truly do
not know. How can we define the errors of a measured temperature to the
output of a mathematical model, which is invented and does not “know” what
a temperature actually is? Sometimes, one tries a few (or many) assumptions
that describe such errors and then uses the one that leads to the “best” results.
Here “best” usually refers to the set of assumptions that lead to the most useful
forecasts and model outputs. Mathematical or computational convenience may
also play a role. If one is not sure what assumptions to make, one first can try
assumptions which simplify the problem.

Another difficulty is that the conditional probabilities are often far from
“standard”, that is, far from probabilities that mathematicians or scientists
understand well. This is mostly due to the fact that models of complicated
physical or engineered processes are also complicated. Drawing samples from
conditional probabilities that arise from complex mathematical models is a
current topic of mathematical research.

A third difficulty is that many problems are “big”. By big we mean that
the number of variables that define the conditional probabilities is very large.
Coming back to the example of numerical weather prediction, one can imagine
that a model for the global weather requires that one specifies a lot of variables.
In principle, you need to specify all meteorological quantities, for instance, the
temperature, wind and humidity, at all locations on the globe. This is not
possible because it would required infinitely many numbers. What one does
instead is to specify meteorological variables on a “grid”, which specifies a
fixed but large number of locations around the globe. In this way, a global
mathematical weather model can have several hundred million variables. The
number of data points is also large. Every six hours, between two and ten
million measurements are used to update the mathematical model.

The model itself, and the data assimilation method must then be implemented
in the form of computer code. For a problem of the size of the global atmosphere,
this requires careful algorithm design and coding. Today’s data assimilation
technology for numerical weather prediction is often based on optimization
techniques or methods for simplified (linearized) problems. Many researchers
also work on combining the three approaches.

In problems that are characterized by a large number of variables, as already
mentioned in the previous section, one must often fight the “curse of dimen-
sionality”. 6 What is meant by this curse is that solving a problem becomes

6 This is true for many problems, not just data assimilation.
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increasingly difficult as the number of variables, or “dimension”, increases, and
the rate with which the difficulty increases is very high.

You may recall the exponential function f(x) = ex (where e ≈ 2.718 is
Euler’s number), which grows very quickly with x. For example, e1 ≈ 2.718,
e2 ≈ 7.389, e3 ≈ 20.086. The “curse of dimensionality” is that if x is the
number of variables, then the difficulty level is ex. As an example, in Monte
Carlo methods, the difficulty level may by described by the number of samples
required to compute an expected value with a given accuracy, for example, with
10% error (in the rolling the dice example above, we used 60 samples). For
the data assimilation of numerical weather prediction, the number of variables
is 200 million (or more). The difficulty level, as measured by the number of
samples required is then e200·106 which is much larger than the number of atoms
in the universe (estimated to be between 1078 to 1082). It is impossible to
draw that many samples, even on today’s powerful super-computers. There is
currently a lot of interest in the problem of somehow overcoming the curse of
dimensionality, especially in Monte Carlo sampling and data assimilation, but
at this time it is unclear how to do it. In a future snapshot, you might read
about the solution of how to overcome these difficulties without making overly
simplifying assumptions.

4 Summary

Data assimilation means to merge a mathematical model with information
obtained from data (measurements). Many scientific and engineering problems
require data assimilation. The list of problems where data assimilation is useful
is very long but includes numerical weather prediction, hydrology, personalized
medicine, cognitive science, and robotics. We have discussed a few of these
applications but focussed on numerical weather prediction. We have also
introduced the three main approaches to solving data assimilation problems,
and explained why solving data assimilation problems is difficult.

The difficulties one encounters are of course different from problem to problem.
You can imagine that solving a data assimilation problem in the context of
numerical weather prediction is very different from solving a data assimilation
problem related to a self-driving car. In fact every scientific or engineering
problem has its very own challenges and characteristics. Challenges can include
an immense number of variables, or probabilities that are far from those we
understand well. Each data assimilation problem also comes with its own
mathematical model and data types, and the computational architecture you
can use to solve it may also vary. For example, you are probably given a large
computer when you make a weather forecast, but to operate a self-driving car,
you have access to much less computational power.
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In view of data assimilation’s wide use in different applications, it is surprising
that all of these problems have essentially the same formulation in terms of
conditional probabilities and three main avenues to success (Monte Carlo
methods, optimization and linearization). It is up to the mathematician,
engineer and scientist to combine these methods to from a suitable recipe
for the solution of the data assimilation problem at hand. In this context,
mathematics is particularly useful to identify “classes” of problems that consist
of problems which are characterized by a certain set of common specifications.
Once a problem class is determined, one can look for suitable algorithms for
the solution of all problems within that class.

The authors currently focus on analyzing approximate solutions to data
assimilation problems, studying computational requirements of the various
solution techniques, and also designing new algorithms for the numerical solution
of data assimilation problems. To do so, they use “classical” numerical analysis
techniques such as “expansions in a small parameter”, “optimal transport”, and
“numerical optimization”.
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