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The Tutte Polynomial of Ideal Arrangements

Hery Randriamaro ∗

December 20, 2018

Abstract

The Tutte polynomial is originally a bivariate polynomial enumerating the colorings of a
graph and of its dual graph. But it reveals more of the internal structure of the graph like
its number of forests, of spanning subgraphs, and of acyclic orientations. In 2007, Ardila
extended the notion of Tutte polynomial to hyperplane arrangements, and computed the
Tutte polynomials of the classical root systems for a certain prime power of the first
variable. In this article, we compute the Tutte polynomials of ideal arrangements. Those
arrangements were introduced in 2006 by Sommers and Tymoczko, and are defined for
ideals of root systems. For the ideals of the classical root systems, we bring a slight
improvement of the finite field method showing that it can applied on any finite field
whose cardinality is not a minor of the matrix associated to a hyperplane arrangement.
Computing the minor set associated to an ideal of a classical root system permits us
particularly to deduce the Tutte polynomials of the classical root systems. For the ideals
of the exceptional root systems of type G2, F4, and E6, we use the formula of Crapo.

Keywords: Tutte Polynomial, Hyperplane Arrangement, Root System, Ideal

MSC Number: 05A15, 20D06

1 Introduction

In one of his last papers [10], Tutte described with these words how in 1954 he became
acquainted with the later called Tutte polynomial: “Playing with my W-functions I obtained
a two-variable polynomial from which either the chromatic polynomial or the flow polynomial
could be obtained by setting one of the variables equal to zero, and adjusting signs.” At the
beginning, this polynomial was effectively associated to a graph [9, § 3]. But in 2007, Ardila
extended the notion of Tutte polynomial to hyperplane arrangements [1, § 3].

Let Kn be a field, and a1, . . . , an, b in K such that (a1, . . . , an) 6= (0, . . . , 0). A hyperplane in
Kn is a (n− 1)–dimensional affine subspace H :=

{
(x1, . . . , xn) ∈ Kn | a1x1 + · · ·+anxn = b

}
that we simply denote by H = {a1x1 + · · ·+ anxn = b}. A hyperplane arrangement is a finite
set of hyperplanes in Kn.
Take a hyperplane arrangement A, and denote the set

⋂
H∈AH by ∩A. One says that A is
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central if ∩A 6= ∅. From now on, every hyperplane arrangement we consider is central.
A subarrangement of A is a subset of A. The rank function r is defined for each subarrange-
ment B of A by r(B) := n− dim∩B.

Definition 1.1. the Tutte polynomial of the hyperplane arrangement A is

TA(x, y) :=
∑
B⊆A

(x− 1)r(A)−r(B)(y − 1)#B−r(B).

Characteristic Polynomial. Let L(A) be the set of nonempty intersections of hyperplanes
in A. The elements of L(A) are partially ordered by reverse inclusion with unique minimal
element Rn. The characteristic polynomial of A is χA(q) :=

∑
E∈LA

µ(Rn, E)qdim(E), where
µ denotes the Möbius function of the lattice L(A). The characteristic polynomial gives
important information on the associated hyperplane arrangement. The number of chambers
of A is equal to (−1)nχA(−1). Another example considers a closed chamber C̄ of A. One
says that a point of Rn has a k-dimensional projection on C̄ if its orthogonal projection onto
C̄ lies in the relative interior of a k-dimensional face of C̄. The set of the points for which the
projections on C̄ is k-dimensional forms a cone KC,k. The ratio of volume vk(C) occupied by
KC,k is defined by

vk(C) :=
|KC,k ∩ Sn−1|
|Sn−1|

,

where | · | is the Lebesgue measure, and Sn−1 the unit sphere. Klivans and Swartz proved
that the sum of the vk(C)’s over all chambers C of A is equal to the absolute value of the
coefficient of qr(A)−n+k in χA(q) [5, Theorem 5]. The characteristic polynomial of A is a
specialization of its Tutte polynomial by

χA(q) = (−1)r(A)qn−r(A)TA(1− q, 0).

Graphic Arrangement. A finite simple nonoriented graph G consists of the vertex set [n],
and of a subset E of

(
[n]
2

)
as edge set. To the graph G is associated a hyperplane arrangement

AG in Rn defined by
AG :=

{
{xi − xj = 0}

}
{i,j}∈E .

The Tutte polynomial TAG
(x, y) contains much information on the graph G. As exam-

ples, TAG
(2, 1) counts the number of forests, TAG

(1, 1) the number of spanning forests, and
TAG

(1, 2) the number of spanning subgraphs. Moreover, the correspondence G↔ AG may be
used to pull back results concerning arrangements to results concerning graphs. For example,
Zaslavsky’s chamber counting theorem can be translated into Stanley’s theorem which states
that the number of acyclic orientations for graphs is (−1)nχAG

(−1) [6, Theorem 2.94].

From now on, we work in the Euclidean space Rn with inner product (., .) the usual dot
product. Recall that a reflection su associated to a nonzero vector u is a linear map sending
u to its negative while fixing pointwise the hyperplane u⊥. A root system is a finite set Φ of
nonzero vectors u in Rn satisfying the conditions

• Φ ∩ Ru = {u,−u} for all u ∈ Φ,

• su(Φ) = Φ for every u in Φ,
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• su(v) has integer coefficients for every u, v in Φ.

A root system is irreducible if it cannot be expressed as a disjoint union of two nonempty
subsets Φ1 t Φ2 such that (u1, u2) = 0 for u1 in Φ1, and u2 in Φ2.
Denote by {e1, . . . , en} the standard basis of Rn. There are nine types of irreducible root
systems: The four infinite families of root systems associated to the classical Lie algebras

(An−1, n ≥ 2) ΦAn−1 = {ei − ej | 1 ≤ i 6= j ≤ n},
(Bn, n ≥ 2) ΦBn = {±ei ± ej | 1 ≤ i < j ≤ n} ∪ {±ei | i ∈ [n]},
(Cn, n ≥ 2) ΦCn = {±ei ± ej | 1 ≤ i < j ≤ n} ∪ {±2ei | i ∈ [n]},
(Dn, n ≥ 4) ΦDn = {±ei ± ej | 1 ≤ i < j ≤ n},

and the five exceptional root systems

(G2) ΦG2 =
{
± (ei − ej) | 1 ≤ i < j ≤ 3

}
∪
{
± (2ei − ej − ek) | {i, j, k} = {1, 2, 3}

}
,

(F4) ΦF4 = {±ei ± ej | 1 ≤ i < j ≤ 4} ∪ {±ei | i ∈ [4]} ∪
{1

2
(±e1 ± e2 ± e3 ± e4)

}
,

(E8) ΦE8 = {±ei ± ej | 1 ≤ i < j ≤ 8} ∪
{1

2

8∑
i=1

±ei even number of + signs
}
,

(E7) ΦE7 = {±ei ± ej | 1 ≤ i < j ≤ 6} ∪
{
± (e7 − e8)

}
∪
{
± 1

2

(
e7 − e8 + (

6∑
i=1

±ei odd number of + signs)
)}
,

(E6) ΦE6 = {±ei ± ej | 1 ≤ i < j ≤ 5}

∪
{
± 1

2

(
e8 − e7 − e6 + (

5∑
i=1

±ei odd number of + signs)
)}
.

A vector of a root system is called a root. There exist some subsets ∆ of Φ called simple
systems such that 〈∆〉 = Rn and each root in Φ is a linear combination of roots in ∆ with
coefficients all of the same sign. Fixing a simple system ∆, a positive root system Φ+ consists
of the roots with positive coefficients. We endow Φ+ with the partial order � defined by
u � v, provided v − u is a linear combination of positive roots with positive coefficients.

Definition 1.2. An ideal of a root system Φ is a subset I of Φ+ satisfying the condition

If u ∈ I, and v ∈ Φ+ so that u � v, then v ∈ I.

Let Ic := Φ+ \ I be the complement of an ideal I. The ideal arrangement AI associated to I
is the hyperplane arrangement

AI := {u⊥ | u ∈ Ic}.

Poincaré Polynomial of Ideal. The height of a root v =
∑

u∈∆ xuu is ht(v) :=
∑

u∈∆ xu.
For an ideal I, let λi := #{u ∈ Ic | ht(u) = i}. This gives the height partition λ1 ≥ λ2 ≥ . . .
of Ic. With mI

i := #{λi | λi ≥ λ1− i+ 1}, define the dual partition mI
λ1
≥ mI

λ1−1 ≥ · · · ≥ mI
1

of the λi’s. The numbers mI
i are called the ideal exponents of I.

A subset S of Ic is said Ic-closed if for u, v in S, if u + v ∈ Ic then u + v ∈ S. And S is of
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Weyl type for I if both S and Ic \ S are Ic-closed. Denote by WI the set of subsets of Ic of
Weyl type. Sommers and Tymoczko proved that, for any ideal I of the root systems of type
An−1, Bn, Cn, G2, F4, E6, its Poincaré polynomial is [8, Theorem 4.1]

∑
S∈WI

t#S =

λ1∑
i=1

(1 + t+ t2 + · · ·+ tm
I
i ). (1)

A parabolic subsystem is a subset Φ′  Φ such that there exists a subset ∆′  ∆ with the
property Φ′ = 〈∆′〉 ∩ Φ. Röhrle showed another condition for the ideal I to satisfy (1) [7,
Theorem 1.26, Theorem 1.27]: Suppose that the ideal I of the root system Φ satisfies one of
the following conditions

(i) AI is reducible,

(ii) AI is irreducible, and there exists a maximal parabolic subsystem Φ0 of Φ such that,
with Φc

0 = Φ \Φ0, Φc
0 ∩ Ic 6= ∅, Φc

0 ∩ Ic is linearly ordered, and for any u 6= v in Φc
0 ∩ Ic,

there is w in Φ+
0 so that u, v, and w are linealy dependent.

Suppose that for every proper parabolic subsystem of Φ, the Poincaré polynomials of all ideals
factor as in (1). Then the Poincaré polynomial of I also factors as in (1).

Inductive Freeness of Ideal Arrangement. Denote the polynomial algebra R[x1, . . . , xn]
by S. A linear map θ : S → S is a derivation if, for f, g ∈ S, θ(fg) = fθ(g) + gθ(f). Denote
by Der(S) the S–module of derivations of S. QA being the defining polynomial of A, the S–
submodule D(A) := {θ ∈ Der(S) | θ(QA) ∈ QAS} of Der(S) is the module of A–derivations.
Recall that A is said free if D(A) is a free S–module. Sommers and Tymoczko showed that
AI is free if the root system is associated to An−1, Bn, Cn, or G2 [8, Theorem 11.1].
Let ∅n be the empty arrangement of Rn. The class IF of inductively free arrangements is
the smallest class of hyperplane arrangements satisfying

(1) ∅n ∈ IF for n ≥ 0,

(2) if there exists H ∈ A such that AH ∈ IF , A \ {H} ∈ IF , and expAH ⊆ expA \ {H},
then A ∈ IF .

Hultman proved that the ideal arrangements associated to the root systems of An−1, Bn,
Cn, and G2 are inductively free [4, Theorem 6.6, Theorem 7.1]. Röhrle proved that the ideal
arrangements of type Dn are inductively free [7, Theorem 1.7]. He showed as well that if I is
an ideal of a root system Φ, and I satisfies one of the following conditions

(i) AI is reducible,

(ii) AI is irreducible, and there exists a maximal parabolic subsystem Φ0 of Φ such that
Φc

0 ∩ Ic 6= ∅, Φc
0 ∩ Ic is linearly ordered, and for any u 6= v in Φc

0 ∩ Ic, there is w in Φ+
0

so that u, v, and w are linealy dependent,

(iii) I is composed only of the highest root of Φ+,
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and each ideal arrangement of a proper parabolic subsystem is inductively free, then AI
is inductively free with the nonzero exponents given by the ideal exponents mI

i of I with
the possible exception when the root system is of type E8 and I is one of 4545 ideals [7,
Theorem 1.9, Theorem 1.13, Theorem 1.14, Theorem 1.15].

The aim of this article is to compute, for the four infinite families of root systems,
and for the exceptional root systems G2, F4, and E6, the Tutte polynomials of
their ideal arrangements.

For the root systems of types An−1, Bn, Cn, and Dn, we use a simple transformation of the
Tutte polynomial, called coboundary polynomial of a hyperplane arrangement.

Definition 1.3. The coboundary polynomial of a hyperplane arrangement A is

χ̄A(q, t) :=
∑
B⊆A

qr(A)−r(B)(t− 1)#B.

Since TA(x, y) = 1
(y−1)r(A) χ̄A

(
(x− 1)(y − 1), y

)
, computing the coboundary polynomial of a

hyperplane arrangement is equivalent to computing its Tutte polynomial.

Now, we describe the organization and the contents of this article, and list the main results.
In Section 2, we determine the prime numbers for which the finite field method can be
applied, on one side, and on the other side, we prove that the minor set of the matrix
associated to Φ+

An−1
is {0,±1}, while the minor set of the matrix associated to Φ+

Bn
is

{0, ±20, ±21, . . . , ±2b
n
2
c}. Those are necessary to compute the Tutte polynomial of ideal

arrangements. By the way, we complete the calculations of Ardila by deducing the Tutte
polynomials of the hyperplane arrangements generated by the classical root systems

• AAn−1 =
{
xi − xj = 0

}
1≤i<j≤n,

• ABn = ACn =
{
xi ± xj = 0

}
1≤i<j≤n ∪

{
xi = 0

}
i∈[n]

,

• and ADn =
{
xi ± xj = 0

}
1≤i<j≤n.

For a positive integer n, let p(n) be the nth prime number with p(0) = 2, and define the
polynomial

Ln(x, y, i) :=
∏

j∈[n+1]
j 6=i

(x− 1)(y − 1)− p(j)(
p(i)− p(j)

)
(y − 1)n

.

Moreover, let Par(n) be the set of ordered partitions of n.

Theorem 1.4. For an integer n ≥ 2, let Xm be one of the types in {An−1, Bn, Dn}. Then,
the Tutte polynomial of AXm is

TAXm
(x, y) =

#Φ+
Xm∑

k=0

∑
i∈[m+1]

Lm(x, y, i)× [tk]χ̄AXm

(
p(i), t

)
× yk,
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with χ̄AAn−1

(
p(i), t

)
=

∑
(a1,...,au)∈Par(n)

(
p(i)

u

)(
n

a1, . . . , au

)
t
∑u

k=1 (ak2 )

p(i)
,

χ̄ABn

(
p(i), t

)
=

n∑
a=0

∑
(b1,...,bu)∈Par(n−a)

(p(i)−1
2

u

)(
n− a

b1, . . . , bu

)
2
∑u

k=1 bkta
2+

∑u
k=1 (bk2 ),

χ̄ADn

(
p(i), t

)
=

n∑
a=0

∑
(b1,...,bu)∈Par(n−a)

(p(i)−1
2

u

)(
n− a

b1, . . . , bu

)
2
∑u

k=1 bkta(a−1)+
∑u

k=1 (bk2 ).

In Section 3, we introduce a topology on the shifted Young diagrams, and recall the shifted
Young diagrams associated the classical root systems. The open sets of the later diagrams cor-
respond, in fact, to the ideal arrangements. We particularly see that a full ideal arrangement
corresponds to a full connected open set.

In Section 4, we define the signature sI(i) of an integer i in accordance with an ideal I, and
the partition A(1)| . . . |A(r)|B(1)| . . . |B(s) of [n] in accordance with I. We also need them to
compute the coboundary polynomial of an ideal arrangement. Remark that the signature sI
depends on the ideal I.

In Section 5, we can finally compute the coboundary polynomial of an ideal arrangement
associated to a classical root system. Then, we deduce the Tutte polynomials of the ideal
arrangements associated to ΦAn−1 , ΦBn , ΦCn , and ΦDn . Since the Tutte polynomial of an
ideal arrangement is equal the product of the Tutte polynomials associated to its connected
ideal subarrangements, we just need to consider the full connected ideal arrangements.

Theorem 1.5. Let AI be a full connected ideal arrangement of ΦAn−1, with associated par-

tition A(1)| . . . |A(r), and let R(u) =
{
v ∈ {u+ 1, . . . , r} | sI(A(u)) ∩ sI(A(v)) 6= ∅

}
. Then, the

Tutte polynomial of AI is

TAI
(x, y) =

#Ic∑
k=0

∑
i∈[n]

Ln−1(x, y, i)× [tk]χ̄AI

(
p(i), t

)
× yk,

with χ̄AI

(
p(i), t

)
=

∑
a

(1)
1 +···+a(1)

p(i)
= #A(1)

...
a

(r)
1 +···+a(r)

p(i)
= #A(r)

r∏
u=1

(
#A(u)

a
(u)
1 , . . . , a

(u)
p(i)

)
t
∑p(i)

s=1 (a
(u)
s
2 )+a

(u)
s

∑
v∈R(u) a

(v)
s

p(i)
.

Theorem 1.6. Let AI be a full connected ideal arrangement of ΦBn or ΦCn, with associated
partition A(1)| . . . |A(r)|B(1)| . . . |B(s), and R(u) =

{
l ∈ {u+1, . . . , r} | sI(A(u))∩sI(A(l)) 6= ∅

}
,

R
(v)
A =

{
l ∈ [r] | sI(B(v)) ∩ sI(A(l)) 6= ∅

}
, S(v) =

{
h ∈ [v − 1] | sI(B(v)) ∩ sI(B(h)) 6= ∅

}
,

R0 =
{
l ∈ [r] | sI(0) ∩ sI(A(l)) 6= ∅

}
, and S0 =

{
h ∈ [s] | sI(0) ∩ sI(B(h)) 6= ∅

}
.
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Then, the Tutte polynomial of AI is

TAI
(x, y) =

#Ic∑
k=0

∑
i∈[n+1]

Ln(x, y, i)× [tk]χ̄AI

(
p(i), t

)
× yk

with χ̄AI

(
p(i), t

)
=

∑
a

(1)
0 +···+a(1)

p(i)−1
=#A(1)

...
a

(r)
0 +···+a(r)

p(i)−1
=#A(r)

b
(1)
0 +···+b(1)

p(i)−1
=#B(1)

...
b
(s)
0 +···+b(s)

p(i)−1
=#B(s)

r∏
u=1

(
#A(u)

a
(u)
0 , . . . , a

(u)
p(i)−1

) s∏
v=1

(
#B(v)

b
(v)
0 , . . . , b

(v)
p(i)−1

)
tfB(u,v),

and fB(u, v) =

p(i)−1∑
q=0

((a(u)
q

2

)
+ a(u)

q

∑
l∈R(u)

a(l)
q

)
+ 2b

(v)
0

(b(v)
0 − 1

2
+
∑
l∈R(v)

A

a
(l)
0 +

∑
h∈S(v)

b
(h)
0

)

+

p(i)−1∑
q=1

b(v)
q

(b(v)
q − 1

2
+
∑
l∈R(v)

A

(
a(l)
q + a

(l)
p(i)−q

)
+
∑
h∈S(v)

(
b(h)
q + b

(h)
p(i)−q

))

+

p(i)−1
2∑

q=1

b(v)
q × b

(v)
p(i)−q +

∑
l∈R0

a
(l)
0 +

∑
h∈S0

b
(h)
0 .

Theorem 1.7. Let AI be a full connected ideal arrangement of ΦDn, with associated partition
A(1)| . . . |A(r)|B(1)| . . . |B(s), and let R(u) =

{
l ∈ {u + 1, . . . , r} | sI(A(u)) ∩ sI(A(l)) 6= ∅

}
,

R
(v)
A =

{
l ∈ [r] | sI(B(v)) ∩ sI(A(l)) 6= ∅

}
, and S(v) =

{
h ∈ [v − 1] | sI(B(v)) ∩ sI(B(h)) 6= ∅

}
.

Then, the Tutte polynomial of AI is

TAI
(x, y) =

#Ic∑
k=0

∑
i∈[n+1]

Ln(x, y, i)× [tk]χ̄AI

(
p(i), t

)
× yk

with χ̄AI

(
p(i), t

)
=

∑
a

(1)
0 +···+a(1)

p(i)−1
=#A(1)

...
a

(r)
0 +···+a(r)

p(i)−1
=#A(r)

b
(1)
0 +···+b(1)

p(i)−1
=#B(1)

...
b
(s)
0 +···+b(s)

p(i)−1
=#B(s)

r∏
u=1

(
#A(u)

a
(u)
0 , . . . , a

(u)
p(i)−1

) s∏
v=1

(
#B(v)

b
(v)
0 , . . . , b

(v)
p(i)−1

)
tfD(u,v),
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and fD(u, v) =

p(i)−1∑
q=0

((a(u)
q

2

)
+ a(u)

q

∑
l∈R(u)

a(l)
q

)
+ 2b

(v)
0

(b(v)
0 − 1

2
+
∑
l∈R(v)

A

a
(l)
0 +

∑
h∈S(v)

b
(h)
0

)

+

p(i)−1∑
q=1

b(v)
q

(b(v)
q − 1

2
+
∑
l∈R(v)

A

(
a(l)
q + a

(l)
p(i)−q

)
+
∑
h∈S(v)

(
b(h)
q + b

(h)
p(i)−q

))

+

p(i)−1
2∑

q=1

b(v)
q × b

(v)
p(i)−q.

In Section 6, we show how to compute the Tutte polynomial of an ideal arrangement of Φ+
G2

,

Φ+
F4

, and Φ+
E6

. For most ideals I, one can not directly use the definition of the Tutte poly-

nomial for the computing. Indeed, the algorithm would implement
(

#Ic

k

)
sets of cardinality

k, where k varies from 1 to #Ic, so that the space and time complexity would exceed the
capacity of our computer. That is why we use the formula of Crapo [3, Theorem 2.32] which
reduces the algorithm implementation on

( #Ic

r(AI)

)
sets of cardinality r(AI).

The author would like to thank Gerhard Röhrle to have initiated him to ideal arrangements.

2 Correct Reduction

The finite field method reduces the coboundary polynomial computing for certain prime
powers to a counting problem. We propose a slight improvement of that method which
permits to determine the prime numbers for which it can be used. Then, we compute the
minor sets of the matrices associated to the classical root systems. The finite field method
is, in fact, valid for prime numbers not included in those minor sets. So, we get the valid
prime numbers to use that method and the interpolation formula of Lagrange in order to
compute the coboundary polynomial of an ideal arrangement. By the way, we complete the
calculations of Ardila to obtain the Tutte polynomials associated to the classical root systems.

Definition 2.1. Two hyperplane arrangements A and B are isomorphic if there is an order
preserving bijection between the lattices L(A) and L(B).

A hyperplane arrangement whose coefficients lie in Z is called a Z–arrangement. Furthermore,
for a prime number p, the finite field composed by the integers modulo p is denoted by Fp.

Definition 2.2. Take a Z–arrangement A in Rn, and a prime number p. For a hyperplane
H = {a1x1 + · · ·+ anxn = b} in Rn, define the set H̄ = {ā1x̄1 + · · ·+ ānx̄n = b̄} in Fnp . One
says that A reduces correctly over Fp if

• for every hyperplane H in A, H̄ is a hyperplane in Fnp ,

• and, if we define Ā := {H̄ | H ∈ A}, A and Ā are isomorphic.

Let U = {u1, . . . , um} be a vector set in Rn. Define its associated matrix by

MU := (ui)i∈[m] where ui is the ith row.

Denote by Min(U) the minor set of the matrix MU .
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Lemma 2.3. Take a Z–vector set U in Rn, and a prime number p. Then, the central Z–
arrangement A = {u⊥}u∈U reduces correctly over Fp if p /∈

{
|i| | i ∈ Min(U)

}
.

Proof. Since p /∈
{
|i| | i ∈ Min(U)

}
, for every subset B of A, r(B) = r(B̄). That implies that

• H̄ is a hyperplane in Fnp for every H in A,

• ∀B,B′ ⊆ A : ∩B 6= ∩B′ ⇒ ∩B̄ 6= ∩B̄′,

• ∀B,B′ ⊆ A : ∩B ⊆ ∩B′ ⇒ ∩B̄ ⊆ ∩B̄′.

So, the function from L(A) to L(Ā), mapping ∩B to ∩B̄, is an order preserving bijection.

For a hyperplane arrangement Ā, and a vector x̄ in Fnp , define the hyperplane arrangement

Ā(x̄) := {H̄ ∈ Ā | x̄ ∈ H̄}.

To compute the coboundary polynomial, we use the finite field method based on this theorem.

Theorem 2.4. Consider a Z–vector set U in Rn, and its associated central arrangement
A = {u⊥}u∈U . Let p be a prime number in N \Min(U), and Ā the reduction of A over Fp.
Then,

pn−r(A)χ̄A(p, t) =
∑
x̄∈Fnp

t#Ā(x̄).

Proof. Remark that

(R1) if V̄ is a m-dimensional subspace of Fnp , then #V̄ = pm,

(R2) and, for a strictly positive integer m, we have
∑

I⊆[m] t
|I| = (t+ 1)m.

Then,

pn−r(A)χ̄A(p, t) =
∑
B⊆A

pn−r(B)(t− 1)#B

=
∑
B⊆A

pdim∩B(t− 1)#B =
∑
B̄⊆Ā

pdim∩B̄(t− 1)#B̄

=
∑
B̄⊆Ā

# ∩ B̄ (t− 1)#B̄ (R1)

=
∑
B̄⊆Ā

∑
x̄∈∩B̄

(t− 1)#B̄ =
∑
x̄∈Fnp

∑
B̄⊆Ā(x̄)

(t− 1)#B̄

=
∑
x̄∈Fnp

t#Ā(x̄) (R2).

Recall that

Φ+
An−1

= {ei − ej | 1 ≤ i < j ≤ n} and Φ+
Bn

= {ei ± ej | 1 ≤ i < j ≤ n} ∪ {ei | i ∈ [n]}.

Now, we compute the minor sets of the matrices associated to Φ+
An−1

, and Φ+
Bn

.
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Denote by [±n] the set {−n, . . . ,−1, 1, . . . , n}. For i ∈ [n − 1], and r ∈ [±n] with i < |r|,
define the vector

d(i, r) := ei + sgn(r) e|r|, where sgn is the signum function.

Denote by Dn the set of square matrices M = (ul)l∈[n] of order n such that ul = d(il, rl).

Take a matrix M = (ul)l∈[n] of Dn with detM 6= 0. This determinant condition implies that
there is at most two rows uk = d(ik, rk) and um = d(im, rm) such that ik = im and |rk| = |rm|.

Algorithm D1. Suppose first that M does not contain two such rows. We transform M
into the matrix (1)⊕M′, where M′ ∈ Dn−1.
D1-1. We begin with M =

(
d(il, rl)

)
l∈[n]

.

D1-2. Denote by Ti,j the elementary matrix which switches the ith row with the jth row.
Let k = min{l ∈ [n] | il = 1}.

If k 6= 1, Then set M← T1,k ·M.

D1-3. Denote by Ri,j(m) the elementary matrix which adds the ith row multiplied by a scalar
m to the jth row. Set

M←
∏

2≤l≤n
il=1

R1,l(−1) ·M.

At this step, if M = (ul)l∈[n], we have

• ∀l ∈ [n] : ul = d(il, rl) or ul = −d(il, rl),

• if 2 ≤ l, then il ≥ 2.

D1-4. Denote by Di(m) the elementary matrix which multiplies all elements on the ith row
by a nonzero scalar m. Set

M←
∏

2≤l≤n
ul=−d(il,rl)

Dl(−1) ·M.

D1-5. Denote by Ci,j(m) the elementary matrix which adds the ith column multiplied by a
scalar m to the jth column.

If sgn(r1) = −1 Then set M← M · C1,|r1|(1) Else set M← M · C1,|r1|(−1).

D1-6. Return M.

Example 1. Applying Algorithm D1 on


0 1 −1 0 0
1 0 −1 0 0
1 0 0 1 0
0 0 1 0 1
1 0 0 0 −1

, we obtain


1 0 0 0 0
0 1 −1 0 0
0 0 1 1 0
0 0 1 0 1
0 0 1 0 −1

.
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Algorithm D2. Suppose now that M contains two such rows with rk < 0. We transform
M into a matrix M′ = (u′l)l∈[n] of Dn, with u′1 = d(1,−2) and u′2 = d(1, 2).
D2-1. We begin with M =

(
d(il, rl)

)
l∈[n]

.

D2-2. If m 6= 1 Then set M← T1,k ·M and set M← T2,m ·M Else,
If k 6= 2 Then set M← T2,m ·M and set M← T1,k ·M Else set M← T1,2 ·M.
D2-3. Denote by Li,j the elementary matrix which switches the ith column with the jth

column. Set
M← M · L1,ik · L2,rm .

D2-4. Set
M←

∏
3≤l≤n

ul=−d(il,rl)

Dl(−1) ·M.

D2-5. Return M.

Example 2. Applying Algorithm D2 on


1 0 0 1 0
0 0 1 −1 0
0 1 0 1 0
0 1 0 0 −1
0 1 0 −1 0

, we obtain


1 −1 0 0 0
1 1 0 0 0
0 1 −1 0 0
1 0 0 0 −1
0 1 0 1 0

.

Lemma 2.5. Let M be a square submatrix of order m of a matrix in Dn. Then,

• whether | detM| ∈ {0, 1},

• or there exist an integer m′ ∈ [m], and a matrix M′ ∈ Dm′ such that | detM| = |detM′|.

Proof. Suppose that detM 6= 0. If M ∈ Dm, then we are obviously done. Otherwise, there
is an integer i of [m] such that the ith row of M has entries 0 everywhere except in the jth

position, where it is −1 or 1. Denoting by M(i,j) the submatrix of M obtained by deleting the
ith row and the jth column of M, we obtain |detM| = | detM(i,j)|.
Setting M ← M(i,j), and repeating the same process as long as necessary, whether we end
up at |detM| = 1 at the end, or we come to a nonnegative integer m′ < m and a square
submatrix M′ of M such that M′ ∈ Dm′ and |detM| = |detM′|.

Proposition 2.6. Let M be a square submatrix of a matrix in Dn. Then,

|detM| ∈ {0, 20, 21, . . . , 2b
n
2
c}.

Proof. Suppose that M ∈ Dn with detM 6= 0. This condition infers that there is at most two
rows uk = d(ik, rk) and um = d(im, rm) such that ik = im and |rk| = |rm|.

• If M does not contain two such rows, Algorithm D1 permits us to deduce that there
exists a matrix M′ ∈ Dn−1 such that |detM| = | detM′|.

• Otherwise, Algorithm D2 infers that there is a square submatrix M′ of order n− 2 of a

matrix in Dn such that |detM| =
∣∣∣∣1 −1
1 1

∣∣∣∣ | detM′| = 2| detM′|.

Suppose now that M is a square submatrix of a matrix in Dn such that detM 6= 0. By using
Lemma 2.5, we deduce after a recursive argument that the value of | detM| must belong to
the set {20, 21, . . . , 2b

n
2
c}.
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Denote by An the subset of Dn consisting of the matrices M =
(
d(il, rl)

)
l∈[n]

such that rl < 0.

Lemma 2.7. Let M be a square submatrix of a matrix in An. Then, |detM| ∈ {0, 1}.

Proof. It is known that the dimension of the subspace generated by
{
d(i,−j)

}
1≤i<j≤n is n−1,

as its orthogonal complement is 〈e1 + · · ·+ en〉. Therefore, for every M in An, detM = 0.
Now, suppose that M be a square submatrix of order m of a matrix in An. With an argument
similar to the proof of Lemma 2.5, whether we end up at | detM| = 1 at the end, or we come
to a nonnegative integer m′ ≤ m and a square submatrix M′ of M such that M′ ∈ Am′ and
|detM| = | detM′| = 0.

We come to the main result of this section.

Theorem 2.8. Take an integer n ≥ 2. Then

Min(Φ+
An−1

) = {0, ±1} and Min(Φ+
Bn

) = {0, ±20, ±21, . . . , ±2b
n
2
c}.

Proof. A minor of MΦ+
An−1

is the determinant of a square submatrix of a matrix in An. Then,

we deduce from Lemma 2.7 that Min(Φ+
An−1

) = {0, ±1}.
There exists an integer r ≥ n such that a minor t of MΦ+

Bn
is the determinant of a square

submatrix of a matrix in Dr. From Lemma 2.5, we deduce that

• whether |t| ∈ {0, 1},

• or there exist an integer m ∈ [n], and a matrix M ∈ Dm such that |t| = | detM|.

We conclude, using Proposition 2.6, that Min(Φ+
Bn

) = {0, ±20, ±21, . . . , ±2b
n
2
c}.

Now, we can compute the coboundary polynomials of AAn−1 , ABn , and ADn .

Theorem 2.9. For an integer n ≥ 2, let Xm be one of the types in {An−1, Bn, Dn}. Then,
the coboundary polynomial of AXm is

χ̄AXm
(q, t) =

#Φ+
Xm∑

k=0

∑
i∈[m+1]

( ∏
j∈[m+1]
j 6=i

q − p(j)

p(i)− p(j)

)
× [tk]χ̄AXm

(
p(i), t

)
× tk,

with χ̄AAn−1

(
p(i), t

)
=

∑
(a1,...,au)∈Par(n)

(
p(i)

u

)(
n

a1, . . . , au

)
t
∑u

k=1 (ak2 )

p(i)
,

χ̄ABn

(
p(i), t

)
=

n∑
a=0

∑
(b1,...,bu)∈Par(n−a)

(p(i)−1
2

u

)(
n− a

b1, . . . , bu

)
2
∑u

k=1 bkta
2+

∑u
k=1 (bk2 ),

χ̄ADn

(
p(i), t

)
=

n∑
a=0

∑
(b1,...,bu)∈Par(n−a)

(p(i)−1
2

u

)(
n− a

b1, . . . , bu

)
2
∑u

k=1 bkta(a−1)+
∑u

k=1 (bk2 ).
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Proof. The degree of [tk]χ̄AXm
(q, t) in variable q is less than or equal to m. From Lemma 2.3,

and Theorem 2.8, we know that
(
p(i), [tk]χ̄A(p(i), t)

)
, with i ∈ [m+ 1], are m+ 1 valid data

tuples. Then, using the polynomial interpolation of Lagrange, we obtain

χ̄AXm
(q, t) =

#Φ+
Xm∑

k=0

∑
i∈[m+1]

( ∏
j∈[m+1]
j 6=i

q − p(j)

p(i)− p(j)

)
× [tk]χ̄AXm

(
p(i), t

)
× tk.

Using the finite field method, Ardila proved that for all powers of a large enough prime q,

1 + q
∑
n∈N∗

χ̄AAn
(q, t)

xn

n!
=
(∑
n∈N

t(
n
2)
xn

n!

)q
[1, Theorem 4.1],

∑
n∈N

χ̄ABn
(q, t)

xn

n!
=
(∑
n∈N

2nt(
n
2)
xn

n!

) q−1
2
(∑
n∈N

tn
2 xn

n!

)
[1, Theorem 4.2],

∑
n∈N

χ̄ADn
(q, t)

xn

n!
=
(∑
n∈N

2nt(
n
2)
xn

n!

) q−1
2
(∑
n∈N

tn(n−1)x
n

n!

)
[1, Theorem 4.3].

The polynomials χ̄AAn−1

(
p(i), t

)
, χ̄ABn

(
p(i), t

)
, and χ̄ADn

(
p(i), t

)
are respectively deduced

from [1, Theorem 4.1], [1, Theorem 4.2], and [1, Theorem 4.3].

Example 3. Using SageMath, we compute the coboundary polynomial χ̄AA12
(q, t), and deduce

the Tutte polynomial TA12(x, y) = y66+12y65+78y64+364y63+1365y62+4368y61+12376y60+
31824y59 + 75582y58 + 167960y57 + 13xy55 + 352716y56 + 143xy54 + 705419y55 + 858xy53 +
1351922y54 + 3718xy52 + 2495130y53 + 13013xy51 + 4452668y52 + 39039xy50 + 7708415y51 +
104104xy49+12981111y50+252824xy48+21313292y49+568854xy47+34183578y48+78x2y45+
1200914xy46+53644734y47+780x2y44+2401750xy45+82488835y46+4290x2y43+4584372xy44+
124439172y45 + 17160x2y42 + 8400392xy43 + 184366182y44 + 55770x2y41 + 14845402xy42 +
268521682y43 +156156x2y40 +25395942xy41 +384782112y42 +390390x2y39 +42181568xy40 +
542887488y41 + 892320x2y38 + 68193697xy39 + 754658542y40 + 286x3y36 + 1896180x2y37 +
107530137xy38+1034170357y39+2574x3y35+3792360x2y36+165670648xy37+1397857032y38+
12870x3y34 +7204626x2y35 +249773810xy36 +1864518656y37 +47190x3y33 +13092300x2y34 +
368979039xy35+2455199604y36+141570x3y32+22879350x2y33+534690507xy34+3192906717y35+
368082x3y31+38610000x2y32+760812702xy33+4102137897y34+858858x3y30+63127350x2y31+
1063901124xy32+5208196422y33+715x4y28+1840410x3y29+100267596x2y30+1463187583xy31+
6536274030y32+5720x4y27+3682250x3y28+155060620x2y29+1980439175xy30+8110295765y31+
25740x4y26+6961240x3y27+233921545x2y28+2639608972xy29+9951530017y30+85800x4y25+
12540528x3y26+344807320x2y27+3466233342xy28+12076978342y29+235950x4y24+21659352x3y25+
497305380x2y26+4486536197xy27+14497575092y28+566280x4y23+36027420x3y24+702617916x2y25+
5726217783xy26+17216245827y27+1287x5y21+1226940x4y22+57915000x3y23+973411725x2y24+
7208935734xy25+20225890047y26+9009x5y20+2460315x4y21+90240150x3y22+1323519990x2y23+
8954517000xy24+23507359590y25+36036x5y19+4639635x4y20+136645509x3y21+1767482925x2y22+
10976952480xy23+27027494637y24+108108x5y18+8308300x4y19+201522321x3y20+2319877131x2y21+
13282216168xy22+30737260554y23+270270x5y17+14214200x4y18+289949660x3y19+2994411277x2y20+
15865968404xy21+34570017053y22+1716x6y15+594594x5y16+23333310x4y17+407552860x3y18+
3802864780x2y19+18711238546xy20+38439949834y21+10296x6y14+1204632x5y15+36911160x4y16+
560321190x3y17 + 4754000680x2y18 + 21786110775xy19 + 42240691636y20 + 36036x6y13 +
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2290860x5y14 + 56525040x4y15 + 754462566x3y16 + 5852533830x2y17 + 25041209765xy18 +
45844190249y19+96096x6y12+4117113x5y13+84041100x4y14+996144864x3y15+7097905815x2y16+
28406477814xy17+49100042277y18+1716x7y10+216216x6y11+7018011x5y12+121546425x4y13+
1291054050x3y14+8482363890x2y15+31786670916xy16+51835895826y17+8580x7y9+456456x6y10+
11447436x5y11 +171372201x4y12 +1644037395x3y13 +9988126005x2y14 +35055564258xy15 +
53860118169y16+25740x7y8+900900x6y9+18078060x5y10+236384148x4y11+2058775719x3y12+
11583115401x2y13+38049502062xy14+54968456400y15+1287x8y6+60060x7y7+1647360x6y8+
27717690x5y9 +319875556x4y10 +2536227408x3y11 +13213854732x2y12 +40561541020xy13 +
54956679987y14 + 5148x8y5 + 145860x7y6 + 2869152x6y7 + 41342730x5y8 + 424848710x4y9 +
3070406768x3y10 +14794737022x2y11 +42339276044xy12 +53641257890y13 +x12 +715x9y3 +
12870x8y4 +308880x7y5 +4975971x6y6 +60537048x5y7 +553491510x4y8 +3642506725x3y9 +
16196480443x2y10 + 43092548434xy11 + 50889618637y12 + 66x11 + 286x10y + 2145x9y2 +
45045x8y3 +626340x7y4 +8270262x6y5 +87038952x5y6 +705403842x4y7 +4213159665x3y8 +
17238306085x2y9 + 42518818056xy10 + 46659503176y11 + 1925x10 + 14300x9y+ 113685x8y2 +
1317030x7y3+13498485x6y4+121050930x5y5+870740871x4y6+4709432013x3y7+17688057387x2y8+
40352717405xy9 + 41042986985y10 + 32670x9 + 308022x8y + 2449590x7y2 + 21010990x6y3 +
160690530x5y4 + 1023013992x4y5 + 5013315307x3y6 + 17283458049x2y7 + 36445235541xy8 +
34305690705y9 +357423x8 +3740880x7y+28330302x6y2 +193708515x5y3 +1110769660x4y4 +
4969514550x3y5+15799102176x2y6+30871572303xy7+26905602867y8+2637558x7+28139826x6y+
193426233x5y2 + 1055099045x4y3 + 4427328620x3y4 + 13168529088x2y5 + 24040142841xy6 +
19469297133y7+13339535x6+135486780x5y+801375861x4y2+3353221300x3y3+9638525325x2y4+
16736474040xy5+12703397135y6+45995730x5+416102258x4y+1979224104x3y2+5859961536x2y3+
10012432430xy4+7237654710y5+105258076x4+784515160x3y+2716328472x2y2+4857283288xy3+
3436086940y4+150917976x3+829158408x2y+1746026568xy2+1263741336y3+120543840x2+
397126080xy + 316499040y2 + 39916800x+ 39916800y.

3 Shifted Young Diagram

We introduce some definitions on the shifted Young diagram, and associate a topology on it.
Then, we expose the shifted Young diagrams associated to the positive root systems of the
classical Lie algebras. These diagrams play a central role in our computing as the open sets
of these diagrams correspond to the ideal arrangements [2, Theorem 3.1].

Definition 3.1. A shifted Young diagram Y is a finite collection of boxes arranged rows,
b(i, j) designating the box of the ith row and the jth column, such that,

• if Y has more than one row,

• if b(i, li) resp. b(i, ri) designates the leftmost resp. rightmost box on the ith row of Y ,

then li ≤ li+1 and ri ≥ ri+1.

If a shifted Young diagram Y has k rows, then the k-tuple (r1 − l1 + 1, . . . , rk − lk + 1) is
called its shape. The box set of Y is

B :=
{
b(i, j) | i ∈ [k], j ∈ {lk, . . . , rk}

}
.

Definition 3.2. Take a shifted Young diagram Y , and a box b(i, j) of B. The box set Bi,j

of Y generated by b(i, j) is

Bi,j :=
{
b(u, v) ∈ B | u ≥ i, v ≥ j

}
.

14



Lemma 3.3. Define the set O :=
{
Bi,j | i ∈ [k], j ∈ {lk, . . . , rk}

}
. Then, O is a basis for

the topological space (B,O). We denote by T the topology of (B,O).

Proof. Let Bi1,j1 ,Bi2,j2 ∈ O, and i = max(i1, i2), j = max(j1, j2). Then Bi1,j1 ∩Bi2,j2 = Bi,j

which belongs to O.

Definition 3.4. Let O be an element of the topology T of a shifted Young diagram with k
rows. There exist an integer m ≤ k, and m tuples (i1, j1), . . . , (im, jm) such that

(1) O =
⋃
l∈[m]

Bil,jl ,

(2) ∀h, l ∈ [m], Bih,jh * Bil,jl ,

(3) ∀h, l ∈ [m], h < l⇒ ih < il.

The set of generating boxes of O is GO :=
(
b(il, jl)

)
l∈[m]

.

Definition 3.5. We say that an open set O of a shifted Young diagram Y with k rows is full
if
{
b(i, ri) | i ∈ [k]

}
⊆ O.

Example 4. For the same shifted Young diagram, in Figure 1,

• the open set O1 =
{
b(3, 4),b(3, 5),b(3, 6),b(4, 4),b(4, 5),b(4, 6),b(5, 4)

}
is not full,

• but is the open setO2 =
{
b(1, 6),b(1, 7),b(2, 6),b(2, 7),b(3, 6),b(4, 4),b(4, 5),b(4, 6),b(5, 4)

}
.

Figure 1: The open Sets O1 and O2

The next step helps us to see which hyperplanes play a role in our calculations. We adopt
the following notation, with i < j:

• the tuple (i, j) represents the hyperplane {xi = xj},

• the tuple (i,−j) represents the hyperplane {xi = −xj},

• the tuple (i, 0) represents the hyperplane {xi = 0}.

(A) For type An−1, we use the simple system ∆An−1 =
{
αi = ei − ei+1 | i ∈ [n − 1]

}
. Its

suitable Young diagram YAn−1 has shape (n − 1, n − 2, . . . , 1), and boxes bA(i, j) filled with
hyperplanes according to the assignment bA(i, j) = (αi + · · · + αn−j)

⊥, 1 ≤ i ≤ j ≤ n − 1.
With the adopted notation, bA(i, j) = (i, n− j + 1), 1 ≤ i ≤ j ≤ n− 1.
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Example 5. The shifted Young diagram YA7 is

(1, 8) (1, 7) (1, 6) (1, 5) (1, 4) (1, 3) (1, 2)
(2, 8) (2, 7) (2, 6) (2, 5) (2, 4) (2, 3)
(3, 8) (3, 7) (3, 6) (3, 5) (3, 4)
(4, 8) (4, 7) (4, 6) (4, 5)
(5, 8) (5, 7) (5, 6)
(6, 8) (6, 7)
(7, 8)

(B) For type Bn, we use the simple system ∆Bn =
{
αi = ei− ei+1 | i ∈ [n− 1]

}
t {αn = en}.

Its suitable Young diagram YBn has shape (2n − 1, 2n − 3, . . . , 1), and boxes bB(i, j) filled
with hyperplanes according to the assignment

bB(i, j) =

{ (
αi + · · ·+ αj + 2(αj+1 + · · ·+ αn)

)⊥
, 1 ≤ j ≤ n− 1

(αi + · · ·+ α2n−j)
⊥, n ≤ j ≤ 2n− 1

.

With the adopted notation, we have

bB(i, j) =


(
i,−(j + 1)

)
, 1 ≤ i ≤ j ≤ n− 1

(i, 0), j = n
(i, 2n− j + 1), n < j ≤ 2n− 1

.

Example 6. The shifted Young diagram YB6 is

(1,−2) (1,−3) (1,−4) (1,−5) (1,−6) (1, 0) (1, 6) (1, 5) (1, 4) (1, 3) (1, 2)
(2,−3) (2,−4) (2,−5) (2,−6) (2, 0) (2, 6) (2, 5) (2, 4) (2, 3)

(3,−4) (3,−5) (3,−6) (3, 0) (3, 6) (3, 5) (3, 4)
(4,−5) (4,−6) (4, 0) (4, 6) (4, 5)

(5,−6) (5, 0) (5, 6)
(6, 0)

(C) For type Cn, we use the simple system ∆Cn =
{
αi = ei− ei+1 | i ∈ [n−1]

}
t{αn = 2en}.

Its suitable Young diagram YCn has shape (2n − 1, 2n − 3, . . . , 1), and boxes bC(i, j) filled
with hyperplanes according to the assignment

bC(i, j) =

{
αi + · · ·+ αj−1 + 2(αj + · · ·+ αn−1) + αn, 1 ≤ j ≤ n− 1
αi + · · ·+ α2n−j , n ≤ j ≤ 2n− 1

.

With the adopted notation, we have

bC(i, j) =


(i, 0), 1 ≤ i = j ≤ n
(i,−j), 1 ≤ i < j ≤ n
(i, 2n− j + 1), n < j ≤ 2n− 1

.

Example 7. The shifted Young diagram YC6 is

(1, 0) (1,−2) (1,−3) (1,−4) (1,−5) (1,−6) (1, 6) (1, 5) (1, 4) (1, 3) (1, 2)
(2, 0) (2,−3) (2,−4) (2,−5) (2,−6) (2, 6) (2, 5) (2, 4) (2, 3)

(3, 0) (3,−4) (3,−5) (3,−6) (3, 6) (3, 5) (3, 4)
(4, 0) (4,−5) (4,−6) (4, 6) (4, 5)

(5, 0) (5,−6) (5, 6)
(6, 0)
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(D) For type Dn, we use the simple system ∆Dn =
{
αi = ei − ei+1 | i ∈ [n − 1]

}
t {αn =

en−1 + en}. Its suitable Young diagram YDn has shape (2n − 2, 2n − 4, . . . , 2), and boxes
bD(i, j) filled with hyperplanes according to the assignment

bD(i, j) =


(
αi + · · ·+ αj + 2(αj+1 + · · ·+ αn−2) + αn−1 + αn

)⊥
, 1 ≤ j ≤ n− 2

(αi + · · ·+ αn−2 + αn)⊥, j = n− 1
(αi + · · ·+ α2n−j)

⊥, n ≤ j ≤ 2n− 1

.

With the adopted notation, we have

bD(i, j) =

{ (
i,−(j + 1)

)
, 1 ≤ i ≤ j ≤ n− 1

(i, 2n− j), n− 1 < j ≤ 2n− 2
.

Example 8. The shifted Young diagram YD6 is

(1,−2) (1,−3) (1,−4) (1,−5) (1,−6) (1, 6) (1, 5) (1, 4) (1, 3) (1, 2)
(2,−3) (2,−4) (2,−5) (2,−6) (2, 6) (2, 5) (2, 4) (2, 3)

(3,−4) (3,−5) (3,−6) (3, 6) (3, 5) (3, 4)
(4,−5) (4,−6) (4, 6) (4, 5)

(5,−6) (5, 6)

4 Partition in Accordance

The partition in accordance with an ideal complement is a partition from which we compute
the coboundary polynomial of this ideal. Each box of a shifted Young diagram we consider
represents now a hyperplane (i, j). If (i, j) corresponds to the box b(u, v), we use (i, j)
instead of b(u, v), and write B(i, j) for the box set Bu,v to emphasize the hyperplane context.
Moreover, since a box set is a hyperplane arrangement, we can consider an ideal arrangement
as a subset of YXm , where Xm is any type in {An−1, Bn, Cn, Dn}. Remark that, since the
coboundary polynomial of an open set is equal the product of the coboundary polynomials
associated to its connected components, we just need to consider the full connected open sets
or, equivalently, the full connected ideal arrangements.

Definition 4.1. Take a full connected ideal arrangement AI of ΦXm , with generating boxes
GI =

(
(il, jl)

)
l∈[k]

. The signature sI(i) of an integer i in accordance with I is

sI(i) :=
{
l ∈ [k] | i appears in at least one box of B(il, jl)

}
.

Define the integer set of I by II := {i ∈ Z | i appears in at least one box of AI}.

Algorithm P. We transform [m] into the partition A(1)| . . . |A(r)|B(1)| . . . |B(s) in accor-
dance with an ideal I.
P-1. We partition [m] in A|B such that

∀i ∈ A : −i /∈ II and ∀i ∈ B : −i ∈ II .

P-2. We partition A in A(1)| . . . |A(r) such that

• ∀i ∈ [r], ∀u, v ∈ A(i), sI(u) = sI(v),
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• ∀i, j ∈ [r], ∀u ∈ A(i), ∀v ∈ A(j), i 6= j ⇒ sI(u) 6= sI(v).

P-3. We partition B in B(1)| . . . |B(s) such that

• ∀i ∈ [s], ∀u, v ∈ B(i), sI(−u) = sI(−v),

• ∀i, j ∈ [s], ∀u ∈ B(i), ∀v ∈ B(j), i 6= j ⇒ sI(−u) 6= sI(−v).

Definition 4.2. Let AI be a full connected ideal arrangement of ΦXm . With the notation of
Algorithm P, the partition PI of [m] in accordance with I is PI := A(1)| . . . |A(r)|B(1)| . . . |B(s).

(A) Let BAn−1 be the box set of the diagram YAn−1 . The box set generated by a hyperplane
(i, j) of BAn−1 is

BAn−1(i, j) =
{

(u, v) | i ≤ u < v ≤ j
}
.

LetAI be a full connected ideal arrangement of ΦAn−1 , GI =
(
(il, jl)

)
l∈[k]

, and u a nonnegative

integer. Then,
sI(u) = {l ∈ [k] | il ≤ u ≤ jl}.

Example 9. The ideal arrangement AIa of ΦA7 , with GIa =
(
(1, 3), (2, 5), (4, 7), (6, 8)

)
, is

AIa =

(1, 3) (1, 2)
(2, 5) (2, 4) (2, 3)
(3, 5) (3, 4)

(4, 7) (4, 6) (4, 5)
(5, 7) (5, 6)

(6, 8) (6, 7)
(7, 8)

The signatures in accordance with Ia are

i 1 2 3 4 5 6 7 8

sIa(i) {1} {1, 2} {1, 2} {2, 3} {2, 3} {3, 4} {3, 4} {4}

The partition of [8] in accordance with Ia is PIa = {1}|{2, 3}|{4, 5}|{6, 7}|{8}.

Lemma 4.3. Let AI be a full connected ideal arrangement of ΦAn−1 with associated partition

A(1)| . . . |A(r). Then,

AI =
r⊔
i=1

(
A(i)

2

)
t
(
A(i) ×

⊔
j∈R(i)

A(j)
)

with R(i) =
{
j ∈ {i+ 1, . . . , r} | sI(A(i)) ∩ sI(A(j)) 6= ∅

}
.

Proof. Let GI =
(
(il, jl)

)
l∈[k]

:

• If l ∈ sI(A(i)), then
(
A(i)

2

)
⊆ BAn−1(il, jl).

• And if l ∈ sI(A(i)) ∩ sI(A(j)), then A(i) ×A(j) ⊆ BAn−1(il, jl).
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Therefore,
r⊔
i=1

(
A(i)

2

)
t
(
A(i) ×

⊔
j∈R(i)

A(j)
)
⊆ AI .

Now, take (x, y) ∈ AI , which means (x, y) ∈ BAn−1(il, jl) for l ∈ [k]. There are i, j ∈ [r] such

that x ∈ A(i), and y ∈ A(j):

• If i = j, then (x, y) ∈
(
A(i)

2

)
.

• If i 6= j, since sI(A
(i)) ∩ sI(A(j)) 6= ∅, then (x, y) ∈ A(i) ×A(j).

(B) Define the linear order ≺b on {−n, . . . ,−1, 0, 1, . . . , n} by

1 ≺b 2 ≺b . . . n ≺b 0 ≺b −n ≺b · · · ≺b −2 ≺b −1.

Consider a box (i, j) of YBn . The box subset BBn(i, j) generated by (i, j) is

BBn(i, j) =
{

(u, v) | i �b u �b n, u ≺b v �b j
}
.

Let AI be a full connected ideal arrangement of ΦBn , GI =
(
(il, jl)

)
l∈[k]

, and u a nonnegative

integer. Then,
sI(u) = {l ∈ [k] | il �b u �b jl}.

Example 10. The ideal arrangement AIb of ΦB6 , such that GIb =
{

(1, 4), (2, 0), (4,−5)
}

, is

AIb =

(1, 4) (1, 3) (1, 2)
(2, 0) (2, 6) (2, 5) (2, 4) (2, 3)
(3, 0) (3, 6) (3, 5) (3, 4)

(4,−5) (4,−6) (4, 0) (4, 6) (4, 5)
(5,−6) (5, 0) (5, 6)

(6, 0)

The signatures in accordance with Ib are

i 1 2 3 4 5 6 0 −6 −5

sIb(i) {1} {1, 2} {1, 2} {1, 2, 3} {2, 3} {2, 3} {2, 3} {3} {3}

The partition of [6] according to Ib is PIb = {1}|{2, 3}|{4}|{5, 6}.
Let B be a subset of N∗. Define

B̃ := {±i | i ∈ B}, and

{
B̃
2

}
:=
{

(i,±j) | i, j ∈ B, i < j
}
.
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Lemma 4.4. Take a full connected ideal arrangement AI of ΦBn with associated partition
A(1)| . . . |A(r)|B(1)| . . . |B(s). Let,

• AIA =
r⊔
i=1

(
A(i)

2

)
t
(
A(i) ×

⊔
l∈R(i)

A(l)
)

with R(i) =
{
l ∈ {i+ 1, . . . , r} | sI(A(i)) ∩ sI(A(l)) 6= ∅

}
,

• AIB =

s⊔
j=1

{
B̃(j)

2

}
t
( ⊔
l∈R(j)

A

A(l) t
⊔

h∈S(j)

B(h)
)
× B̃(j)

with R
(j)
A =

{
l ∈ [r] | sI(B(j)) ∩ sI(A(l)) 6= ∅

}
and S(j) =

{
h ∈ [j − 1] | sI(B(j)) ∩ sI(B(h)) 6= ∅

}
,

• AI0 =
( ⊔
l∈R0

A(l) t
⊔
h∈S0

B(h)
)
× {0}

with R0 =
{
l ∈ [r] | sI(0) ∩ sI(A(l)) 6= ∅

}
and S0 =

{
h ∈ [s] | sI(0) ∩ sI(B(h)) 6= ∅

}
.

Then AI = AIA t AIB t AI0.

Proof. Let GI =
(
(il, jl)

)
l∈[k]

:

• If l ∈ sI(A(i)) resp. sI(B
(j)), then

(
A(i)

2

)
resp.

{
B̃(j)

2

}
⊆ BBn(il, jl).

• If l ∈ sI(A(i)) ∩ sI(A(l)), then A(i) ×A(l) ⊆ BBn(il, jl).

• If l ∈ sI(A(i)) ∩ sI(B(j)), then A(i) × B̃(j) ⊆ BBn(il, jl).

• If l ∈ sI(B(h)) ∩ sI(B(j)), i < j, then B(h) × B̃(j) ⊆ BBn(il, jl).

• If l ∈ sI(A(i))∩sI(0) resp. sI(B
(j))∩sI(0), then A(i)×{0} resp. B(j)×{0} ⊆ BBn(il, jl).

So, AIA t AIB t AI0 ⊆ AI .
Now, take (x, y) ∈ AI , which means (x, y) ∈ BBn(il, jl) for l ∈ [k]. If y 6= 0, then there are
i, j ∈ [r] ∪ [s] such that x ∈ A(i) ∪B(i), and y ∈ A(j) ∪B(j):

• If i = j, then (x, y) ∈
(
A(i)

2

)
∪
{
B̃(i)

2

}
.

• If i 6= j, suppose for example that x ∈ A(i), and y ∈ B(j). Since sI(A
(i))∩ sI(B(j)) 6= ∅,

then (x, y) ∈ A(i) × B̃(j). The proof is analogous for the other cases.

(C) Define the linear order ≺c on {−n, . . . ,−1, 1, . . . , n} by

1 ≺c 2 ≺c . . . n ≺c −n ≺c · · · ≺c −2 ≺c −1.
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Consider a box (i, j) of YCn . The box subset BCn(i, j) generated by (i, j) is

BCn(i, j) :=


{

(u, v) | i �c u ≺c v �c j
}

if j > 0,{
(u, v) | i �c u �c n− 1, u ≺c v �c j

}
t
{

(u, 0) | − j �c u �c n
}

if j < 0,
YCn

(
i,−(i+ 1)

)
t
{

(u, 0) | i �c u �c n
}

if j = 0.

Let AI be a full connected ideal arrangement of ΦCn , GI =
(
(il, jl)

)
l∈[k]

, and u a nonnegative

integer. Then,

sI(x) =

{
{l ∈ [k] | il �c i �c jl} if x 6= 0,
{l ∈ [k] | jl ≤ 0} if x = 0.

Example 11. The ideal arrangement AIc of ΦC6 , such that GIc =
{

(1, 4), (2,−6), (4, 0)
}

, is

AIc =

(1, 4) (1, 3) (1, 2)
(2,−6) (2, 6) (2, 5) (2, 4) (2, 3)
(3,−6) (3, 6) (3, 5) (3, 4)

(4, 0) (4,−5) (4,−6) (4, 6) (4, 5)
(5, 0) (5,−6) (5, 6)

(6, 0)

The signatures in accordance with Ic are

i 1 2 3 4 5 6 −6 −5 0

sIc(i) {1} {1, 2} {1, 2} {1, 2, 3} {2, 3} {2, 3} {2, 3} {3} {2, 3}

The partition of [6] in accordance with Ic is PIc = {1}|{2, 3}|{4}|{5}|{6}.

Lemma 4.5. Take a full connected ideal arrangement AI of ΦCn with associated partition
A(1)| . . . |A(r)|B(1)| . . . |B(s). Let,

• AIA =

r⊔
i=1

(
A(i)

2

)
t
(
A(i) ×

⊔
l∈R(i)

A(l)
)

with R(i) =
{
l ∈ {i+ 1, . . . , r} | sI(A(i)) ∩ sI(A(l)) 6= ∅

}
,

• AIB =
s⊔
j=1

{
B̃(j)

2

}
t
( ⊔
l∈R(j)

A

A(l) t
⊔

h∈S(j)

B(h)
)
× B̃(j)

with R
(j)
A =

{
l ∈ [r] | sI(B(j)) ∩ sI(A(l)) 6= ∅

}
and S(j) =

{
h ∈ [j − 1] | sI(B(j)) ∩ sI(B(h)) 6= ∅

}
,

• AI0 =
( ⊔
l∈R0

A(l) t
⊔
h∈S0

B(h)
)
× {0}

with R0 =
{
l ∈ [r] | sI(0) ∩ sI(A(l)) 6= ∅

}
and S0 =

{
h ∈ [s] | sI(0) ∩ sI(B(h)) 6= ∅

}
.

Then AI = AIA t AIB t AI0.

Proof. It is analogous to the proof of Lemma 4.4.
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(D) Consider a box (i, j) of YDn . The box subset BDn(i, j) generated by (i, j) is

BDn(i, j) =
{

(u, v) | i �c u �c n− 1, u ≺c v �c j
}
.

Let AI be a full connected ideal arrangement of ΦDn , GI =
(
(il, jl)

)
l∈[k]

, and u a nonnegative

integer. Then,
sI(u) = {l ∈ [k] | il �c u �c jl}.

Example 12. The ideal arrangement AId of ΦD6 , such that GId =
{

(1, 3), (2, 6), (4,−5)
}

, is

AId =

(1, 3) (1, 2)
(2, 6) (2, 5) (2, 4) (2, 3)
(3, 6) (3, 5) (3, 4)

(4,−5) (4,−6) (4, 6) (4, 5)
(5,−6) (5, 6)

The signatures in accordance with AId are

i 1 2 3 4 5 6 −6 −5

sId(i) {1} {1, 2} {1, 2} {2, 3} {2, 3} {2, 3} {3} {3}

The partitions of [6] in accordance with Id is PId = {1}|{2, 3}|{4}|{5, 6}.

Lemma 4.6. Take a full connected ideal arrangement AI of ΦDn, with associated partition
A(1)| . . . |A(r)|B(1)| . . . |B(s). Let,

• AIA =
r⊔
i=1

(
A(i)

2

)
t
(
A(i) ×

⊔
l∈R(i)

A(l)
)

with R(i) =
{
l ∈ {i+ 1, . . . , r} | sI(A(i)) ∩ sI(A(l)) 6= ∅

}
,

• AIB =

s⊔
j=1

{
B̃(j)

2

}
t
( ⊔
l∈R(j)

A

A(l) t
⊔

h∈S(j)

B(h)
)
× B̃(j)

with R
(j)
A =

{
l ∈ [r] | sI(B(j)) ∩ sI(A(l)) 6= ∅

}
and S(j) =

{
h ∈ [j − 1] | sI(B(j)) ∩ sI(B(h)) 6= ∅

}
.

Then AI = AIA t AIB .

Proof. It is analogous to the proof of Lemma 4.4.

5 Hyperplane Counting

We compute the coboundary polynomial χ̄AI

(
p(i), t

)
of an ideal arrangement associated to

a classical root system, for prime numbers p(i) strictly bigger than 2. That computing is
based on the finite field method, the minors associated to the classical root systems, and the
partition in accordance with an ideal. By means of the polynomial interpolation of Lagrange,
one can deduce the deduce the coboundary polynomial

χ̄AI
(q, t) =

#AI∑
k=0

∑
i∈
[
r(AI)+1

]
( ∏
j∈
[
r(AI)+1

]
j 6=i

q − p(j)

p(i)− p(j)

)
× [tk]χ̄AI

(
p(i), t

)
× tk.
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We keep the notation of Section 3 stating that a tuple (i, j) represents a hyperplane. The
examples in this section are computed with SageMath.

Lemma 5.1. Take two subsets A,B of [n] such that, for every i ∈ A, and j ∈ B, we have
i < j. For x̄ = (x̄1, . . . , x̄n) ∈ Fnq , define the sets

ai(x̄) := {u ∈ A | x̄u = ī} and bi(x̄) := {u ∈ B | x̄u = ī}.

(1) Consider the hyperplane arrangement A =

(
A
2

)
. Then

#Ā(x̄) =

q−1∑
i=0

(
#ai(x̄)

2

)
.

(2) Consider the hyperplane arrangement A = A×B. Then

#Ā(x̄) =

q−1∑
i=0

#ai(x̄)×#bi(x̄).

(3) Consider the hyperplane arrangement A =

{
Ã
2

}
. Then

#Ā(x̄) = #a0(x̄)2 −#a0(x̄) +

q−1∑
i=1

(
#ai(x̄)

2

)
+

q−1
2∑
j=1

#aj(x̄)×#a−j(x̄).

(4) Consider the hyperplane arrangement A = A× B̃. Then

#Ā(x̄) = 2×#a0(x̄)×#b0(x̄) +

q−1∑
i=1

#ai(x̄)×#bi(x̄) +

q−1∑
j=1

#aj(x̄)×#b−j(x̄).

(5) Consider the hyperplane arrangement A = A× {0}. Then

#Ā(x̄) = #a0(x̄).

Proof. (1) Let i, j ∈ A with i < j. Then, x̄ ∈ (i, j) if and only if x̄i = x̄j .
(2) Let i ∈ A, j ∈ B. Then, x̄ ∈ (i, j) if and only if x̄i = x̄j .
(3) Let i, j ∈ A with i < j. Then, x̄ ∈ (i,−j) if and only if x̄i = −x̄j .
(4) Let i ∈ A, j ∈ B. Then, x̄ ∈ (i,−j) if and only if x̄i = −x̄j .
(5) Let i ∈ A. Then, x̄ ∈ (i, 0) if and only if x̄i = 0̄.

Theorem 5.2. Let AI be a full connected ideal arrangement of ΦAn−1, with associated par-

tition A(1)| . . . |A(r), and let R(u) =
{
v ∈ {u+ 1, . . . , r} | sI(A(u)) ∩ sI(A(v)) 6= ∅

}
. Then, for

a positive integer i, we have

χ̄AI

(
p(i), t

)
=

∑
a

(1)
1 +···+a(1)

p(i)
= #A(1)

...
a

(r)
1 +···+a(r)

p(i)
= #A(r)

r∏
u=1

(
#A(u)

a
(u)
1 , . . . , a

(u)
p(i)

)
t
∑p(i)

s=1 (a
(u)
s
2 )+a

(u)
s

∑
v∈R(u) a

(v)
s

p(i)
.
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Proof. For a vector x̄ = (x̄1, . . . , x̄n) in Fnp , define the set a
(i)
k (x̄) := {u ∈ A(i) | x̄u = k̄}. We

have dim∩AI = 1 for every full connected ideal arrangement AI of ΦAn−1 . Then,

p(i)χ̄AI
(q, t) =

∑
x̄∈Fn

p(i)

t#ĀI(x̄)

=
∑

x̄∈Fn
p(i)

t
#
⊔r

i=1 (A
(i)

2 )t
(
A(i)×

⊔
j∈R(i) A

(j)
)

(x̄)
(Lemma 4.3)

=
∑

x̄∈Fn
p(i)

t
∑p(i)−1

s=0

∑r
i=1 (#a

(i)
s (x̄)
2 ) + #a

(i)
s (x̄)

∑
j∈R(i) #a

(j)
s (x̄)

(Lemma 5.1 (1, 2))

=
∑

a
(1)
1 +···+a(1)

p(i)
=#A(1)

...
a

(r)
1 +···+a(r)

p(i)
=#A(r)

r∏
i=1

(
#A(i)

a
(i)
1 , . . . , a

(i)
p(i)

)
t
∑p(i)

s=1

∑r
i=1 (a

(i)
s
2 )+a

(i)
s

∑
j∈R(i) a

(j)
s .

Example 13. The coboundary polynomial of the ideal arrangement AIa in Example 9 is
χ̄AIa

(q, t) = t15 + 2qt13 + q2t11− 2t13 + 4q2t10 + 8qt11 + 6q3t8 + 16q2t9− 8qt10− 9t11 + 2q4t6 +
6q3t7 − 14q2t8 − 36qt9 + 4t10 + 8q4t5 + 45q3t6 + 43q2t7 + 24qt8 + 20t9 + 10q5t3 + 64q4t4 +
34q3t5− 207q2t6− 144qt7− 16t8 + q7 + 15q6t+ 75q5t2 + 69q4t3− 244q3t4− 146q2t5 + 312qt6 +
95t7−15q6−180q5t−701q4t2−810q3t3 +124q2t4 +90qt5−152t6 +95q5 +887q4t+2585q3t2 +
2394q2t3 + 376qt4 + 14t5 − 329q4 − 2294q3t− 4683q2t2 − 2856qt3 − 320t4 + 672q3 + 3276q2t+
4144qt2 + 1193t3 − 808q2 − 2440qt− 1420t2 + 528q + 736t− 144, and its Tutte polynomial is

TAIa
(x, y) = x2y6 + 2xy7 + y8 + x7 + 2x4y3 + 6x3y4 + 9x2y5 + 10xy6 + 5y7 + 8x6 + 10x5y

+ 14x4y2 + 22x3y3 + 33x2y4 + 32xy5 + 15y6 + 26x5 + 50x4y + 73x3y2 + 83x2y3

+ 68xy4 + 29y5 + 44x4 + 94x3y + 120x2y2 + 96xy3 + 38y4 + 41x3 + 82x2y

+ 77xy2 + 32y3 + 20x2 + 32xy + 16y2 + 4x+ 4y.

Theorem 5.3. Let AI be a full connected ideal arrangement of ΦBn, with associated partition
A(1)| . . . |A(r)|B(1)| . . . |B(s), and R(u) =

{
l ∈ {u+ 1, . . . , r} | sI(A(u)) ∩ sI(A(l)) 6= ∅

}
,

R
(v)
A =

{
l ∈ [r] | sI(B(v)) ∩ sI(A(l)) 6= ∅

}
, S(v) =

{
h ∈ [v − 1] | sI(B(v)) ∩ sI(B(h)) 6= ∅

}
,

R0 =
{
l ∈ [r] | sI(0) ∩ sI(A(l)) 6= ∅

}
, and S0 =

{
h ∈ [s] | sI(0) ∩ sI(B(h)) 6= ∅

}
.

Then, for a positive integer i, we have

χ̄AI

(
p(i), t

)
=

∑
a

(1)
0 +···+a(1)

p(i)−1
=#A(1)

...
a

(r)
0 +···+a(r)

p(i)−1
=#A(r)

b
(1)
0 +···+b(1)

p(i)−1
=#B(1)

...
b
(s)
0 +···+b(s)

p(i)−1
=#B(s)

r∏
u=1

(
#A(u)

a
(u)
0 , . . . , a

(u)
p(i)−1

) s∏
v=1

(
#B(v)

b
(v)
0 , . . . , b

(v)
p(i)−1

)
tfB(u,v),
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with fB(u, v) =

p(i)−1∑
q=0

((a(u)
q

2

)
+ a(u)

q

∑
l∈R(u)

a(l)
q

)
+ 2b

(v)
0

(b(v)
0 − 1

2
+
∑
l∈R(v)

A

a
(l)
0 +

∑
h∈S(v)

b
(h)
0

)

+

p(i)−1∑
q=1

b(v)
q

(b(v)
q − 1

2
+
∑
l∈R(v)

A

(
a(l)
q + a

(l)
p(i)−q

)
+
∑
h∈S(v)

(
b(h)
q + b

(h)
p(i)−q

))

+

p(i)−1
2∑

q=1

b(v)
q × b

(v)
p(i)−q +

∑
l∈R0

a
(l)
0 +

∑
h∈S0

b
(h)
0 .

Proof. We have dim∩AI = 0 for every full connected ideal arrangement AI of ΦBn . The
proof is similar to that of Theorem 5.2, using Lemma 4.4 and Lemma 5.1 (1, 2, 3 ,4, 5).

Example 14. The coboundary polynomial of the ideal arrangement AIb in Example 10 is
χ̄AIb

(q, t) = t21 +qt18− t18+2qt15 +2q2t13 +4qt14−2t15−4qt13−4t14 +3q2t11 +2qt12 +2t13 +

q3t9 + 5q2t10− 4qt11− 2t12 + q2t9− 2qt10 + t11 + 6q3t7 + 24q2t8 + 4qt9− 3t10 + 9q3t6 + 2q2t7−
40qt8−6t9 +3q4t4 +33q3t5 +50q2t6−14qt7 +16t8 +23q4t3 +123q3t4−18q2t5−225qt6 +6t7 +
q6 + 21q5t+ 123q4t2− q3t3− 783q2t4− 290qt5 + 166t6− 21q5− 327q4t− 1362q3t2− 853q2t3 +
1427qt4 + 275t5 + 178q4 + 1965q3t+ 5391q2t2 + 2508qt3− 770t4− 774q3− 5625q2t− 8778qt2−
1677t3 + 1801q2 + 7494qt+ 4626t2 − 2085q − 3528t+ 900, and its Tutte polynomial is

TAIb
(x, y) = y15 + xy13 + 6y14 + 5xy12 + 20y13 + 15xy11 + 50y12 + 2x2y9 + 37xy10 + 105y11

+ 8x2y8 + 80xy9 + 194y10 + x3y6 + 23x2y7 + 156xy8 + 322y9 + 3x3y5 + 54x2y6

+ 276xy7 + 486y8 + 12x3y4 + 112x2y5 + 445xy6 + 672y7 + x6 + 3x4y2 + 37x3y3

+ 214x2y4 + 662xy5 + 854y6 + 15x5 + 29x4y + 99x3y2 + 370x2y3 + 899xy4

+ 989y5 + 88x4 + 241x3y + 586x2y2 + 1096xy3 + 1021y4 + 252x3 + 682x2y

+ 1102xy2 + 888y3 + 352x2 + 728xy + 568y2 + 192x+ 192y.

Theorem 5.4. Let AI be a full connected ideal arrangement of ΦCn, with associated partition
A(1)| . . . |A(r)|B(1)| . . . |B(s), and R(u) =

{
l ∈ {u+ 1, . . . , r} | sI(A(u)) ∩ sI(A(l)) 6= ∅

}
,

R
(v)
A =

{
l ∈ [r] | sI(B(v)) ∩ sI(A(l)) 6= ∅

}
, S(v) =

{
h ∈ [v − 1] | sI(B(v)) ∩ sI(B(h)) 6= ∅

}
,

R0 =
{
l ∈ [r] | sI(0) ∩ sI(A(l)) 6= ∅

}
, and S0 =

{
h ∈ [s] | sI(0) ∩ sI(B(h)) 6= ∅

}
.

Then, for a positive integer i, we have

χ̄AI

(
p(i), t

)
=

∑
a

(1)
0 +···+a(1)

p(i)−1
=#A(1)

...
a

(r)
0 +···+a(r)

p(i)−1
=#A(r)

b
(1)
0 +···+b(1)

p(i)−1
=#B(1)

...
b
(s)
0 +···+b(s)

p(i)−1
=#B(s)

r∏
u=1

(
#A(u)

a
(u)
0 , . . . , a

(u)
p(i)−1

) s∏
v=1

(
#B(v)

b
(v)
0 , . . . , b

(v)
p(i)−1

)
tfB(u,v),
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with fB(u, v) =

p(i)−1∑
q=0

((a(u)
q

2

)
+ a(u)

q

∑
l∈R(u)

a(l)
q

)
+ 2b

(v)
0

(b(v)
0 − 1

2
+
∑
l∈R(v)

A

a
(l)
0 +

∑
h∈S(v)

b
(h)
0

)

+

p(i)−1∑
q=1

b(v)
q

(b(v)
q − 1

2
+
∑
l∈R(v)

A

(
a(l)
q + a

(l)
p(i)−q

)
+
∑
h∈S(v)

(
b(h)
q + b

(h)
p(i)−q

))

+

p(i)−1
2∑

q=1

b(v)
q × b

(v)
p(i)−q +

∑
l∈R0

a
(l)
0 +

∑
h∈S0

b
(h)
0 .

Proof. We have dim∩AI = 0 for every full connected ideal arrangement AI of ΦCn . The
proof is similar to that of Theorem 5.2, using Lemma 4.5 and Lemma 5.1 (1, 2, 3 ,4, 5).

Example 15. The coboundary polynomial of the ideal arrangement AIc in Example 11 is
χ̄AIc

(q, t) = t21 + qt18 − t18 + 2qt15 + 2q2t13 + 3qt14 − 2t15 − 3qt13 − 3t14 + 2q2t11 + 3qt12 +
t13 + q3t9 + 6q2t10 − 2qt11 − 3t12 − 6qt10 + 4q3t7 + 25q2t8 + 16qt9 + 13q3t6 + 25q2t7 − 52qt8 −
17t9 + 3q4t4 + 37q3t5 + 17q2t6− 80qt7 + 27t8 + 23q4t3 + 107q3t4− 73q2t5− 152qt6 + 51t7 + q6 +
21q5t + 123q4t2 + 13q3t3 − 636q2t4 − 111qt5 + 122t6 − 21q5 − 327q4t − 1366q3t2 − 963q2t3 +
1046qt4 + 147t5 + 178q4 + 1965q3t+ 5419q2t2 + 2764qt3− 520t4− 774q3− 5625q2t− 8838qt2−
1837t3 + 1801q2 + 7494qt+ 4662t2 − 2085q − 3528t+ 900, and its Tutte polynomial is

TAIc
(x, y) = y15 + xy13 + 6y14 + 5xy12 + 20y13 + 15xy11 + 50y12 + 2x2y9 + 37xy10 + 105y11

+ 8x2y8 + 79xy9 + 194y10 + x3y6 + 22x2y7 + 152xy8 + 323y9 + 3x3y5 + 51x2y6

+ 269xy7 + 491y8 + 10x3y4 + 105x2y5 + 438xy6 + 685y7 + x6 + 3x4y2 + 35x3y3

+ 207x2y4 + 662xy5 + 878y6 + 15x5 + 29x4y + 103x3y2 + 378x2y3 + 920xy4

+ 1024y5 + 88x4 + 241x3y + 602x2y2 + 1130xy3 + 1055y4 + 252x3 + 682x2y

+ 1118xy2 + 904y3 + 352x2 + 728xy + 568y2 + 192x+ 192y.

Theorem 5.5. Let AI be a full connected ideal arrangement of ΦDn, with associated partition
A(1)| . . . |A(r)|B(1)| . . . |B(s), and let R(u) =

{
l ∈ {u + 1, . . . , r} | sI(A(u)) ∩ sI(A(l)) 6= ∅

}
,

R
(v)
A =

{
l ∈ [r] | sI(B(v)) ∩ sI(A(l)) 6= ∅

}
, and S(v) =

{
h ∈ [v − 1] | sI(B(v)) ∩ sI(B(h)) 6= ∅

}
.

Then, for a positive integer i, we have

χ̄AI

(
p(i), t

)
=

∑
a

(1)
0 +···+a(1)

p(i)−1
=#A(1)

...
a

(r)
0 +···+a(r)

p(i)−1
=#A(r)

b
(1)
0 +···+b(1)

p(i)−1
=#B(1)

...
b
(s)
0 +···+b(s)

p(i)−1
=#B(s)

r∏
u=1

(
#A(u)

a
(u)
0 , . . . , a

(u)
p(i)−1

) s∏
v=1

(
#B(v)

b
(v)
0 , . . . , b

(v)
p(i)−1

)
tfD(u,v),
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with fD(u, v) =

p(i)−1∑
q=0

((a(u)
q

2

)
+ a(u)

q

∑
l∈R(u)

a(l)
q

)
+ 2b

(v)
0

(b(v)
0 − 1

2
+
∑
l∈R(v)

A

a
(l)
0 +

∑
h∈S(v)

b
(h)
0

)

+

p(i)−1∑
q=1

b(v)
q

(b(v)
q − 1

2
+
∑
l∈R(v)

A

(
a(l)
q + a

(l)
p(i)−q

)
+
∑
h∈S(v)

(
b(h)
q + b

(h)
p(i)−q

))

+

p(i)−1
2∑

q=1

b(v)
q × b

(v)
p(i)−q.

Proof. We have dim∩AI = 0, for every full connected ideal arrangement AI of ΦDn . The
proof is similar to that of Proposition 5.2, using Lemma 4.6 and Lemma 5.1 (1, 2, 3, 4).

Example 16. The coboundary polynomial of the ideal arrangement AId in Example 12 is
χ̄AId

(q, t) = t16 + qt14− t14 + qt12 + 3q2t10 + 4qt11− t12− 2qt10− 4t11 + q3t7 + 11q2t8 + 2qt9−
t10 + 5q3t6 + q2t7 − 23qt8 − 2t9 + 13q3t5 + 35q2t6 + 21qt7 + 12t8 + 16q4t3 + 72q3t4 − 19q2t5 −
134qt6−23t7 + q6 + 16q5t+ 72q4t2−9q3t3−292q2t4−19qt5 + 94t6−16q5−192q4t−631q3t2−
353q2t3 + 332qt4 + 25t5 + 104q4 + 899q3t + 2012q2t2 + 923qt3 − 112t4 − 350q3 − 2037q2t −
2717qt2 − 577t3 + 639q2 + 2205qt+ 1264t2 − 594q − 891t+ 216, and its Tutte polynomial is

TAId
(x, y) = xy9 + y10 + 5xy8 + 5y9 + 3x2y6 + 16xy7 + 15y8 + x3y4 + 12x2y5 + 38xy6 + 34y7

+ x6 + 8x3y3 + 38x2y4 + 79xy5 + 63y6 + 10x5 + 16x4y + 34x3y2 + 81x2y3

+ 134xy4 + 95y5 + 39x4 + 87x3y + 152x2y2 + 191xy3 + 117y4 + 74x3

+ 162x2y + 196xy2 + 112y3 + 68x2 + 116xy + 72y2 + 24x+ 24y.

6 Exceptional Root Systems

We introduce a linear order on the exceptional root systems Φ+
G2

, Φ+
F4

, and Φ+
E6

, and expose
the formula of Crapo by means of this order. As the formula of Crapo computes the Tutte
polynomial of a vector set, we draw the Hasse diagram of these root systems in order to
visualize the vectors that make up their ideals. Then, we compute some examples of Tutte
polynomials of ideal arrangements. These computings are done with SageMath.

Take an exceptional root system ΦXn , Xn ∈ {G2, F4, E6}, associated to a simple system
∆Xn = {α1, . . . , αn}. Define the function l : Φ+

Xn
→ N∗ by

if u =

n∑
i=1

uiαi, then l(u) :=

u1 times︷ ︸︸ ︷
1 . . . 1 . . .

un times︷ ︸︸ ︷
n . . . n .

It is clear that l is a bijection between Φ+
Xn

and l(Φ+
Xn

). Define the linear order � on Φ+
Xn

by

∀a, b ∈ Φ+
Xn

: a� b ⇔ l(a) < l(b).

Let r be the rank function of vector sets in Rn, and X a subset of Φ+
Xn

. A basis of X is a
subset B of X such that r(B) = |B| = r(X). Denote by B(X) the basis set of X.
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For a subset A of X, and an element x in X, define the set

A�x := {a ∈ A | a� x}.

Let X be a subset of Φ+
Xn

, and take a basis B in B(X):

• Let b ∈ B. One says that b is an internal active element of B if

∀x ∈ X�b \B : r
(
{x} t (B \ {b})

)
< n.

• Let x ∈ X \B. One says that x is an external active element of B if

r
(
{x} tB�x

)
= r(B�x).

Denote by i(B) resp. e(B) the number of internal resp. external active elements of a basis
B. We compute the Tutte polynomial of the hyperplane arrangement A = {x⊥}x∈X by using
the formula of Crapo [3, Theorem 2.32]

TA(x, y) =
∑

B∈B(X)

xi(B)ye(B).

In our case, X is a complement Φ+
Xn
\I of an ideal I of Φ+

Xn
. We represent the Hasse diagram

of (Φ+
G2
,�) resp. (Φ+

F4
,�) resp. (Φ+

E6
,�) in Figure 2 resp. 3 resp. 4. In the Hasse diagrams,

a vector u of Φ+
Xn

is represented by Xl(u).

Example 17. G1112 is the vector (3, 1), F1234 is the vector (1, 1, 1, 1), and E123445 is the
vector (1, 1, 1, 2, 1, 0).

Figure 2: Hasse Diagram of (Φ+
G2
,�)

An ideal I of Φ+
Xn

is a connected graph in the Hasse diagram of (Φ+
Xn
,�) containing its

maximal element. We compute the following Tutte polynomials with the formula of Crapo.
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Figure 3: Hasse Diagram of (Φ+
F4
,�)

Example 18. The vector tuple Ig =
(
(3, 1), (3, 2)

)
is an ideal of Φ+

G2
, and the Tutte polynomial

of its associated hyperplane arrangement is TAIg
(x, y) = x2 + y2 + 2x+ 2y.

Example 19. The vector tuple
If =

(
(1, 1, 1, 1), (1, 1, 2, 1), (1, 2, 2, 1), (1, 2, 3, 1), (1, 2, 3, 2), (1, 2, 4, 2), (1, 3, 4, 2), (2, 3, 4, 2)

)
is an ideal of Φ+

F4
, and the Tutte polynomial of its associated hyperplane arrangement is

TAIf
(x, y) = y12 + 4y11 + 10y10 + 20y9 + 35y8 + 2xy6 + 56y7 + 7xy5 + 82y6 + 19xy4 + 111y5

+ x4 + 5x2y2 + 45xy3 + 137y4 + 12x3 + 25x2y + 83xy2 + 147y3

+ 48x2 + 109xy + 125y2 + 64x+ 64y.

Example 20. The vector tuple

Ie =
(
(1, 1, 1, 2, 1, 0), (1, 1, 1, 2, 1, 1), (1, 1, 2, 2, 1, 0), (1, 1, 2, 2, 1, 1), (1, 1, 1, 2, 2, 1), (1, 1, 2, 2, 2, 1),

(1, 1, 2, 3, 2, 1), (1, 2, 2, 3, 2, 1)
)
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Figure 4: Hasse Diagram of (Φ+
E6
,�)

is an ideal of Φ+
E6

, and the Tutte polynomial of its associated hyperplane arrangement is

TAIe
(x, y) = y22 + 6y21 + 21y20 + 56y19 + 126y18 + 252y17 + xy15 + 462y16 + 5xy14 + 791y15

+ 18xy13 + 1281y14 + 52xy12 + 1978y13 + 129xy11 + 2927y12 + 295xy10 + 4163y11

+ 5x2y8 + 623xy9 + 5688y10 + 26x2y7 + 1212xy8 + 7445y9

+ 110x2y6 + 2176xy7 + 9288y8 + 346x2y5 + 3596xy6 + 10957y7

+ x6 + 79x3y3 + 892x2y4 + 5404xy5 + 12065y6

+ 22x5 + 62x4y + 303x3y2 + 1829x2y3 + 7235xy4 + 12159y5

+ 191x4 + 762x3y + 2863x2y2 + 8292xy3 + 10860y4

+ 818x3 + 3184x2y + 7646xy2 + 8136y3 + 1728x2 + 4872xy + 4584y2 + 1440x+ 1440y.
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