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Positive Scalar Curvature and
Applications

Jonathan Rosenberg e David Wraith

We introduce the idea of curvature, including how it
developed historically, and focus on the scalar curva-
ture of a manifold. A major current research topic
involves understanding positive scalar curvature. We
discuss why this is interesting and how it relates to
general relativity.

1 The concept of curvature

A well-known limerick, attributed to Leo Moser and found in [3], says the
following about the famous mathematician Paul Erdés:

A conjecture both deep and profound
Is whether a circle is round.

In a paper of Erdés

Written in Kurdish

A counterexample is found.

Obviously this is a joke, but it has some real mathematical content, because
there are two notions of curvature, that is, “the state of being round”, one
extrinsic and one intrinsic, and a circle has the first and not the second. Extrinsic
curvature is a measure of how a geometric object embedded in space curves
relative to that space. A circle in the plane is a perfect example — at every point
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it is “curving” toward the center, and the curvature of a circle is the reciprocal
1/r of its radius, r. Circles of small radius turn more sharply, and have larger
curvature, than circles of big radius. In fact, in the limit as the radius increases
to infinity, a circle looks less and less “curvy” or “round” relative to the plane
around it. Intrinsic curvature, on the other hand, relates to properties of the
geometry on the object itself, without regard to the space around it. Imagine a
bug who lives on a circle and cannot see anything outside of this one-dimensional
world. From his point of view, the circle is “flat”, in the sense that measurement
of distances is just as on a straight (Euclidean) line. The only difference is that
if he walks far enough, he comes back to his starting point. So from the point
of view of this bug, the circle is not round.

The distinction between intrinsic and extrinsic curvature becomes more
interesting in the case of two-dimensional surfaces. This distinction was first
studied in detail by Carl Friedrich Gauss in the 1820s [4]. As an example,
consider the surface in three-dimensional space given as the graph z = f(z,y)
of the function

1
flz,y) = 3 (Az? + Bzy + Cy?),

where A,B and C are real numbers. To measure the extrinsic geometry of a
surface in 3-dimensional space, we consider the matrix of second derivatives
of f. In this case it is given by

Of particular interest are the quantities H = %(A+ (), called the mean
curvature, and K = AC — BTQ, called the Gaussian curvature. At stationary
points of f, the curvature K is given as the determinant of S, whereas H is
half of its trace. To give another instructive example, the Gaussian curvature
of the sphere

{(z,y,2) | 2* +y* + 2* = R?}

of radius R is equal to K = % (to see why, try calculating the partial derivatives
by writing the top half of the sphere as the graph of a function f(z,y) =

R? — 22 — y?). So the curvature of the sphere is inversely proportional to the
square of its radius. Gauss’s interesting discovery, which he called his Theorema

If we have a function of one variable, which we can picture as a curve in the plane, the
first derivative gives us the slope of the tangent vector at each point. The second derivative is
then the rate of change of the slopes. For a surface, that is, for a function of two variables,
we obtain a matrix for the second derivative because we must calculate the derivatives with
respect to two directions. The matrix of derivatives evaluated at the origin is referred to as
the shape operator of the surface.



Egregium, or “excellent theorem”, is that the Gaussian curvature is actually an
intrinsic invariant, in that it measures the intrinsic geometry and not just the
geometry of the object as it appears in 3-dimensional space. For example, if
K =0, the surface is flat, in the sense that it can locally be flattened onto a flat
sheet of paper (see Figure 1), whereas if K > 0, the surface is called positively
curved, and if K < 0, the surface is negatively curved. In these latter cases, it
can be proved that it is impossible to “flatten” the surface without distortion.
The positive curvature of the earth’s surface explains why any 2-dimensional
map of a portion of the Earth is necessarily distorted, while the fact that the
curvature is the reciprocal of the square of the radius of the Earth (which is on
the order of 6000 km) explains why one could make the mistake of assuming
that the Earth is flat.
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Figure 1: Flattening a surface with K = 0 (left) to a plane (right).

2 Manifolds and scalar curvature

The next major step after Gauss was taken by Riemann [11], who introduced
two of the most fundamental notions in geometry, the notions of a manifold
(of dimension n) and of a Riemannian metric (which he expressed in terms of
what he called a line element), a way of measuring lengths of curves.

To introduce the concept of a manifold, let us begin by presenting the most
elementary examples: the Euclidean spaces, of which there is one in each
dimension. In dimension one we have the set of real numbers, which we can
interpret as a line. In dimension two, we have the set of pairs of real numbers,
{(x,y) | z,y € R}, or R? for short, and by viewing pairs as coordinates we can
identify R? with the plane. In dimension three we have R® = {(z,y, 2) | z,y, 2 €
R}, or in other words, the set of triples of real numbers, which we can identify
with three-dimensional space. As we can consider collections of n real numbers



(or n-tuples) for any positive integer n, we can define n-dimensional Euclidean
space by R"™ = {(z1, ..., x,) | 1, ..., x, € R}, though if n > 3 this is not so easy
to picture!

At this point it is worth commenting on the notion of dimension in math-
ematics. Although the idea of working in high dimensions might seem like
science fiction, in fact the mathematical reality is much more mundane. The
number of dimensions an object possesses is simply the number of parameters
required to describe it. For instance, consider a pair of bugs living on a table-top.
Each of the bugs can move to any point on the table (other than the point
currently occupied by its friend), and we can describe the position of each bug
by specifying a pair of coordinates. Thus to describe the positions of both
bugs at any point in time requires four coordinates, and if we think about
the set of all possible positions of the bugs, this is simply a subset of R*. If
we want to record the position of the bugs as they change over time, then we
need to introduce a time parameter, meaning that we are now working in R>.
Indeed the movement of the bugs can then be described by a path through this
five-dimensional space.

The idea of a manifold generalizes in a natural way the notion of a surface.
Notice that any surface (for example the sphere) has the property that it locally
looks like a region of the plane R2. Locally means that it is true for a small
neighbourhood of each point, but not for the surface as a whole. More precisely,
if we zoom in on any point, then what we see is essentially indistinguishable
from a neighbourhood within R%?. An n-dimensional manifold is the concept
which results from an obvious generalization of this idea: an n-manifold M™
is an object which locally resembles R", the n-dimensional Euclidean space.
This “locally Euclidean” nature of manifolds allows us to generalize some of the
natural notions of Euclidean space, such as coordinates: if we restrict attention
to small enough pieces of M, our position is determined by the values of n local
coordinates x1,xs, - ,x,. With a little work we can generalize differential and
integral calculus to a manifold setting. Indeed differentiation is a key tool for
understanding the curvature of manifolds.

It is important to emphasize that the notion of a manifold is not just a
generalization for generalization’s sake. Manifolds occur naturally throughout
mathematics, science and beyond. For example, the set of points which our
pair of bugs above can occupy forms a four-dimensional manifold. If these bugs
happened instead to live on the surface of a ball, specifying the position of
each bug would need three spatial coordinates, so the positions of both at any
time can be recorded by an element of RS. The set of all possible positions of
the two bugs is still a four-dimensional manifold (as the surface of the ball is
two-dimensional, two of the dimensions are contributed by each bug), however
now our manifold is naturally a subset of RS.



It is a theorem due to John Nash [10], a mathematician more famous for
his contributions to game theory7 that any manifold, having any degree
of distortion, can be embedded into any Euclidean space of sufficiently high
dimension in such a way that its shape is preserved. Embedding means that we
can identify every point on the manifold with a point in the Euclidean space
in such a way that the local properties are preserved. Moreover, in any one
of these Euclidean spaces, we have infinitely many choices for this embedding.
This suggests that if we want to investigate the geometry on our manifold, it
would be be useful to have some way of doing this which avoids first having
to choose some explicit embedding into an ambient space. In other words, we
would like to find an intrinsic viewpoint from which to consider the geometric
properties of manifolds. Riemann proposed a way of doing this, by introducing
the concept that is now known as a Riemannian metric. Although we will not
define this idea precisely, as it is somewhat technical, we will outline its key
features.

In general a metric is a way of measuring the distance between any two
points in a given space. For example, in the plane, the “usual” metric is defined
by setting the distance between two points to be the length of the straight line
segment that joins them. This is not the only option though, we could instead
define the distance between two points to be the sum of the distance between
the z-coordinates and the distance between the y-coordinates. This is known
as the tazi-cab metric. On a surface we can measure lengths using a piece of
string: given two points on the surface, imagine it is possible to run the string
along the surface between the two points. (This is easier in theory than in
practice!) Now pull the string taut, keeping it in contact with the surface, so
it now occupies the shortest path between the two points. This shortest path
is called a geodesic. In the plane R? with the usual metric the geodesics are
straight lines; on the surface of the sphere they are arcs of great circles. If we
mark the string where it meets the two points, taking it off the surface and
pulling it straight allows us to measure the distance with a ruler.

Basic plane geometry requires the notions of length and angles. We can
think of an angle on a surface as being specified by two curves meeting at a
point. For example, consider two lines of longitude on the earth meeting at the
north pole. Of course the lines of longitude are really curves, but at any point
such a curve has a tangent line, which is the straight line best fitting the curve
at the point in question. At the north pole, all the possible tangent lines lie in
the horizontal plane through the pole. Thus given any two lines of longitude,
we obtain two tangent lines at the north pole belonging to the same plane (the
tangent plane to the sphere at the pole), and we know how to measure angles in
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a plane. There is nothing special here about the sphere, lines of longitude, or
the north pole: we can undertake angle measurements in exactly the same way
at any point in any surface with any suitable pair of curves specifying an angle.

A Riemannian metric is a device which provides a manifold with notions
of lengths and angles, and starting from this we can investigate any aspect
of geometry. Thus a Riemannian metric provides a manifold with geometry,
but crucially the converse is also true: any geometry expressed by a manifold
corresponds to some Riemannian metric (for a given manifold, there may be
more than one choice of Riemannian metric). So once a manifold has been
equipped with a Riemannian metric, it makes sense to ask about areas or
volumes for example, or to ask about curvature.

The Gaussian curvature, mentioned earlier, is the standard notion of cur-
vature on a surface. It pre-dates Riemann’s introduction of manifolds and
Riemannian metrics. Although we all have an intuitive idea of curvature, it is
important to know what the Gaussian curvature actually measures. We will
provide one description below, but different (though equivalent) approaches are
possible.

Everyone knows that the angles of a triangle add up to 180° degrees. However,
as a general statement this popular phrase is simply not true! What is true is
that the angles of a triangle in the plane add up to 180° degrees. But triangles
can exist in spaces other than planes. Consider for example a sphere, or the
surface of the earth. We can choose three distinct points on the sphere and
join them with geodesics (remember that these are the shortest paths along the
surface between these points). This results in what is called a geodesic triangle
on our sphere. If we add the angles of this triangle, we will find that they add
up to more than 180° degrees. Try drawing on a sphere the triangle that has
one vertex at the north pole and the other two on the equator at a distance of
one quarter of the circumference. You will find that the angles in this triangle
are three right angles, so add up to 270°. Thus the angles of a triangle on a
spherical surface are “fatter” than those of the corresponding triangle (that
is, with the same side lengths) in the plane. On the other hand, if we were to
repeat this exercise on a surface shaped like a saddle, the angles would add
up to less than 180° degrees: the angles of a triangle on a saddle are “thinner’
than the corresponding angles in the plane. An example is shown in Figure 2.
Thus if a, 5 and v denote the size of the angles in our geodesic triangle, the
quantity a + 8 + v — 180, called the angle excess, detects the way in which
the surface bends, with spherical surfaces having positive angle excess, planes
having angle excess identically zero, and saddles with negative angle excess.

)

Although it detects curvature, the angle excess is not equivalent to the
Gaussian curvature. The problem is that the angle excess will generally depend
on the triangle you choose to look at, whereas what we would like is a way to



Figure 2: A triangle on a saddle-like surface, with angles that add up to less
than 180°.

produce a number at each point of the surface which in some sense represents
the curvature at that point. The idea behind the Gaussian curvature is as
follows. Consider an infinite sequence of geodesic triangles containing some
given point, which shrink down to the point, though never quite reach it. It
turns out that if we divide the angle excess for each of these triangles by the area
of the triangle, then the sequence of numbers we obtain always approaches some
number, and this limiting number is precisely the Gaussian curvature at the
point. Thus as suggested above, spheres are positively curved and saddles (like
the surface z = 2% — y?) are negatively curved. In fact a surface at any point of
positive Gaussian curvature will, to some extent, locally resemble a sphere, and
will locally resemble a saddle in the case of negative Gaussian curvature.

Given that the notion of a manifold generalizes the notion of a surface, and
that a Riemannian metric provides a manifold with geometry, it is natural to
try and look for a generalization of the Gaussian curvature which works for all
Riemannian manifolds, that is, manifolds equipped with a Riemannian metric.
The basic idea is to reduce the problem back to dimension two. Consider an
n-dimensional Riemannian manifold M. At a point x in M we have a “tangent
space”, which consists of all directions tangent to M at z. We can think of
this as a copy of R™ with its origin “attached” to M at x, in the same way
that we identified a horizontal plane as tangent to a sphere at the north pole
in a previous example. Within this n-dimensional tangent space, there are
infinitely many two-dimensional planes passing through the origin. Any one
of these planes P can locally be integrated to a surface as follows: for v € P
we follow the geodesic which starts at x with initial velocity v, and we follow
this geodesic for some short time. Unifying these geodesics (over all possible
starting velocities v € P) then yields a small piece of surface through x whose
tangent space at x is P. This surface has a Gaussian curvature at x. We define
this Gaussian curvature to be the sectional curvature of M at x corresponding
to the chosen plane.



The sectional curvature can therefore take many values at any point in
a manifold, since there are infinitely many tangent planes at which we can
evaluate it. This means that it is quite different from the Gaussian curvature,
which as we have seen, is a function on a surface with each point having a single
value. It is not unreasonable to hope to find a similar function on a Riemannian
manifold, and in fact there is a straightforward way to do this. One merely
takes the average of the sectional curvatures at each point (where we average
over all 2-dimensional planes in the tangent space). The resulting function is
called the scalar curvature of the manifold.

Being an average, one would expect much of the detailed curvature informa-
tion present in the sectional curvature to be lost, and indeed this is the case.
Nevertheless, there is still interesting geometric information remaining in the
scalar curvature. For example, if B(z,r) denotes a “ball” of radius r about
a point z in a manifold M™, by which we mean the set of all points in the
manifold that are at most a distance r away from x, then the (n-dimensional)
volume of B(z,r) has an approximation for very small r given by the formula

~ T TL(TL — 1) 2

vol(B(z,r)) = r w(n)(l - ms(zs)r ),
where s(z) denotes the scalar curvature at z, and w(n) is the volume of the
standard n-dimensional ball of radius 1 in R™. For example, w(2) is the area of
a disc of radius 1 in the plane, so w(2) = 7, and w(3) = 47/3 is the volume of a
sphere of radius 1. Thus the scalar curvature controls the volume of small balls
in the manifold. To get a clearer idea of what this formula tells us, consider
the case of the surface of a sphere of radius R again. Then, as already noted,
w(2) = m and the scalar curvature is just the Gaussian curvature, which here
equals 1/R?, so we find

2 L
vol(B(x,r)) = r 7'('(1 " )
In other words, the larger the radius of the sphere, the closer the surface is to
being flat, and the closer the area of a disc on the surface is to being equal to
2.

Whether the scalar curvature is positive or negative is of particular interest,
though it is not as straightforward to interpret as the Gaussian curvature. It
can be proved that any manifold of dimension at least three can be given a
Riemannian metric with everywhere negative scalar curvature [8]. However
the same cannot be said for positive scalar curvature: having positive scalar
curvature imposes certain restrictions on a manifold. This raises the question
of which manifolds admit metrics with positive scalar curvature. Although our
understanding of this is well-developed, the picture at the time of writing is
still some way from being complete.



Let us consider surfaces again. The usual round sphere (of any radius) has
positive Gaussian curvature, as previously discussed. However the torus, which
is what we call the surface of a donut, does not admit a Riemannian metric
with everywhere positive Gaussian curvature, meaning that no matter how
you embed this object into Euclidean space, there will always be points on the
surface around which the torus appears to be flat or saddle-like. The same
is true for a donut with two, three, or indeed any number of holes. We can
generalize the notions of spheres and tori into higher dimensions. For example
if n is any positive integer, the unit radius n-dimensional sphere is defined to be

8" = {(x1, 22, s Tpp1) | 2 a3 + .+ apyy =1} CRYTL

Notice that using this notation the standard two-dimensional sphere is denoted
52, and the circle S'. For these objects in dimensions greater than two, the
analogous comments apply when the Gaussian curvature is replaced by the
scalar curvature.

If a manifold admits a Riemannian metric with positive scalar curvature (or if
a surface admits positive Gaussian curvature), such a metric is not unique. That
is, the manifold can express many different shapes with the positive curvature
property. To see why, consider again an ordinary sphere. If we were to deform
the shape very slightly (imagine again a balloon), then its curvature would
change slightly. Provided this change is sufficiently small, the curvature will
remain positive. Clearly, we can perform such small deformations in infinitely
many different ways, demonstrating that in fact any manifold which admits a
positive scalar curvature metric must admit infinitely many!

The next natural question to ask is what can be said about the collection
of all positive scalar curvature metrics on any manifold for which this set is
non-empty. It is not obvious that anything interesting can be said at all, but
this set of metrics turns out to be a fascinating object in its own right, and
is the focus of much current research. The ultimate aim is to have a good
understanding of the topology of this set of metrics. One curious feature is that
we can observe different phenomena in different dimensions, however we will
postpone further discussion on this topic until Section 4.

3 Connections to general relativity

In the last section of the lecture in which he introduced the concepts of manifold
and curvature [11], Riemann speculated that space itself might be a manifold and
that its curvature might have physical significance. This prediction was borne
out in a spectacular way in Albert Einstein’s general theory of relativity [2].
Einstein’s idea (which he got in part from Hendrik Lorentz, Hermann
Minkowski, and Henri Poincaré) was to consider space and time as different



“slices” through a single manifold called space-time. Thus if our physical universe
is 3-dimensional, by adding time as another coordinate we get a 4-dimensional
space-time. The geometry of this manifold is not exactly Riemannian, it is
instead something called “pseudo-Riemannian”. In many respects though, Rie-
mannian geometry works as usual and one can define scalar curvature as before.
Einstein’s idea is that the curvature of space-time encodes what we think of as
the “gravitational field”. The basic equation of general relativity then says, under
the simplifying assumption that one is looking at a portion of space-time where
there is no matter (for example, in interstellar space), that space-time is what
is now called an Einstein manifold, which means that the Ricci curvature is a
constant. Here the Ricci curvature is an intermediate between the full curvature
and the scalar curvature. It is calculated for a given direction in the manifold
by taking the average over the sectional curvatures in two-dimensional slices
which contain this direction, instead of averaging over all sectional curvatures.

This formulation uses “pseudo-Riemannian” geometry, and it would be nice
to link it up with (ordinary) Riemannian geometry. We can do this if we assume
that space-time splits as M? x R, where the first factor is “space” (with a
genuine Riemannian metric, possibly time-dependent) and the second factor is
“time”

Now one can ask a natural question. Given a 3-manifold with a Riemannian
metric, what geometric constraints does general relativity place on it so that it
can be the “space” of space-time? This question (which one can generalize to
arbitrary dimensions, though the connection with physics then becomes more
obscure) led to what is called the positive mass conjecture. In many cases this
is an actual theorem, the positive mass theorem [14, 15, 16], but generalizations
of the theorem are still a subject of active research today.

The positive mass theorem basically concerns the following situation. Sup-
pose M is a manifold with a Riemannian metric, and M is such that it “extends
out to infinity”. Also assume that out towards infinity, M is very close to a
flat Euclidean space. (Imagine a physical situation where M is 3-dimensional,
represents the “space” of space-time, and there is no matter out near infinity, so
that space is not curved there.) Then from the equations of general relativity,
one can infer from the metric of M what the mass had to be in the “curved”
part of M. The positive mass theorem says that this mass is positive. While
this might seem intuitively obvious (thinking of our own universe, or even solar
system), it is not at all obvious mathematically.

Indeed, the classical Schwarzschild and Robertson—Walker space-times are of this form.
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4 Spaces of positive scalar curvature metrics

As we hinted above, much current research is about the question of what the
space RT(M) of Riemannian metrics of positive scalar curvature on a given
manifold M looks like. The space of all Riemannian metrics, without curvature
restrictions, is always contractible, that is, it can be continuously “squished” to
a point. To make the discussion more concrete, let us investigate this property
for spheres S™ in various dimensions n. It has been known for a long time that
RT(S?) is contractible [13, Theorem 3.4], but that R (S™) not only fails to be
contractible but in fact has infinitely many “path components” if n is of the
form 4k + 3 with k£ > 1 an integer ([5, Theorem 4.47] and [12, Theorem 2.6]).
Let us consider what this means in more detail.

As noted above, the set of all Riemannian metrics on a manifold is contractible,
so we can think of this as an infinite featureless “soup” of metrics, or, equivalently,
geometries on our manifold. If we move around this soup in a continuous fashion,
this is equivalent to continuously changing the geometry on our manifold.
Suppose now we have two metrics which have positive scalar curvature. We can
move through the soup of all metrics in many different ways from one of these
geometries to the other. The question is: can we move from one to the other
in such a way that all the intermediate geometries also have positive scalar
curvature? On the two-dimensional sphere the answer is yes, but on S4*+3
with £ > 1, the above result tells us the answer is no. In fact it is possible to
choose infinitely many different positive scalar curvature metrics on S**+3 such
that no two of them can be joined by a path through positive scalar curvature
metrics. This is what is meant by the statement that R+ (S**3) has infinitely
many path components when k > 1.

Imagine we can view the soup of all metrics through special glasses which
will highlight for us all metrics of positive scalar curvature. What we will see
is a collection of “islands” of positive scalar curvature within the space of all
metrics. Think of the soup now as minestrone! Each of these pieces floating in
our soup is a path component of positive scalar curvature metrics. On S*+3
we have infinitely many such pieces in our infinite bowl of soup. This, however,
raises a further natural question: what can one say about these components of
positive scalar curvature? What shape, or what features, do these pieces have?
This turns out to be an even more delicate question, which we are only just
starting to answer.

The first issue to consider is what kind of features we should look for. There
are many ways in which one could interpret this question, but one could start
by looking to identify “holes” in our space of positive scalar curvature metrics.

In order to illustrate our approach, let us consider the more straightforward
problem of identifying such holes in the two-dimensional sphere S2. If we draw
any loop on this sphere, we can contract this loop down to a point without
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it having to leave the surface. Think of the loop as a stretched rubber band
lying on the sphere, and then contract the rubber band. More formally, we can
think of such a loop as a continuous map from the circle into the sphere, in
other words, as a map L: S' — S2. We say that all such loops are “homotopic
to a constant loop” to convey the contracting-a-rubber-band idea using more
mathematical language. In greater detail, we say that two continuous maps
from a space X to a space Y are homotopic if one can be deformed continuously
into the other; a constant map is a map C: X — Y such that C(z) = y, for all
x € X and some fixed 39 € Y, so a constant loop on S? is just a map S' — 5?2
for which the image of every point in S! is the same fixed point in S2. The
concept of maps being homotopic is very useful: there is, in general, a vast
array of possible maps X — Y, but if we choose to view two homotopic maps
as equivalent (since they essentially contain the same information), then this
means we can focus on a much smaller collection of maps. In particular, our
observation that all loops on the sphere can be squished to a constant loop
means that there is essentially only one loop on S? that we need consider,
namely, a constant loop at some choice of “basepoint”. It is not difficult to
see that the same can be said for loops on any other sphere S™ with n > 2.
Intuitively, we can think of this statement as saying that no loop on S™ for
n > 2 encloses a two-dimensional hole, since if it did, we could not contract the
loop over the hole.

There is, however, an obvious hole in the sphere. This is the three-dimensional
hole enclosed by the sphere itself. We can capture this hole using the ideas
above by saying that there are continuous maps S? — S? (for example the
“identity map” which maps each point of S? to itself) which cannot be squished
to a point, or more formally, which are not homotopic to a constant map. Again,
we can make the situation more tractable for ourselves by considering only
homotopy classes (that is, considering only one representative from each set of
homotopic maps) rather than all such maps.

Even though there are clearly no more holes to detect in S?, there is nothing
to stop us trying to extrapolate the above ideas by considering homotopy classes
of maps S™ — S? for n > 3. Perhaps not obviously, it turns out that this is an
interesting thing to do, and it uncovers subtle aspects of the topology. This
line of enquiry can be traced back to 1931, when Heinz Hopf discovered the
existence of a map (now known as the “Hopf map”) from S® to S? which is not
homotopic to a constant map [7].

The computation of homotopy classes of maps from spheres into other spaces
is usually difficult, but can be achieved in some important cases. One nice
feature of such homotopy classes of maps is that they come ready-equipped with
a natural algebraic structure: for a given sphere S™ and a given target space
X, the set of homotopy classes of maps S™ — X form a group, which is a basic
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form of algebraic object, denoted by 7, (X). This is called the n-dimensional
homotopy group of X, and if n = 1, it is called the fundamental group of X.
(We have omitted some technical details surrounding the definition of homotopy
groups, however the above can be taken as accurate provided that X is path-
connected, that is, that any two points in X can be joined by a continuous
path.) Notice that we have argued above that the fundamental group of the
sphere S™ is trivial (which means it consists of a single element) for n > 2.

Figure 3: A torus, with two loops.

To provide a different example, consider a torus, that is, the boundary of a
donut, or the inner-tube of a tyre. There is an obvious loop which runs once
around the inner-most part of the torus. It is not difficult to see that this loop,
in contrast to all loops on the sphere, is not homotopic to a constant loop. In
fact, with a little more thought one can write down infinitely many more loops
on the torus which are neither homotopic to a constant loop, nor homotopic to
each other, see Figure 3. Thus the fundamental group of the torus is non-trivial,
and we have found a tool which allows us to distinguish between the topology
of spheres and tori.

The question is now: what can we say about the homotopy groups of spaces
of positive scalar curvature metrics? Can these groups be non-trivial, and if
so which ones, and how non-trivial? The simple answer to this question is yes,
these groups can be non-trivial and in some cases highly non-trivial; however,
our understanding of such phenomena is far from being complete. The most
comprehensive answer to this question to date regards “spin” manifolds in
dimension six and upwards: the homotopy groups 7 (R (M)) are non-zero for
infinitely many k& [1]. For some of the 7, we know that they are non-trivial, for
others, we even know that they are infinite, but for others we don’t even know
if they are trivial or not.
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All in all, the space of positive scalar curvature metrics on a given manifold
will typically have a highly complicated topological structure. The homotopy
group results might suggest that the path components which make up this space
take the form of a bizarre kind of Swiss cheese, with holes over an infinite range
of dimensions. This is much more complicated than the minestrone analogy
might lead us to believe! In fact, it is likely that the space of positive scalar
curvature metrics is more complicated still than the study of homotopy groups
is capable of revealing. Of course, this makes the result about the space of
positive scalar curvature metrics on S? being contractible all the more striking.

To conclude this snapshot, let us return once more to the (apparently simpler)
question of whether the space of positive scalar metrics within the space of all
metrics is connected. The fact that for all Kk > 1 we observe the same kind
of disconnectedness phenomenon on S%+3 is not a coincidence; in fact there
is some evidence that in high dimensions, the topology of R (S™) should be
periodic in n, with period 8.

It is then natural to ask: Is the space of positive scalar curvature metrics on
the three-dimensional sphere S2 also disconnected? The method of proof of the
original theorem required techniques of high-dimensional topology, and does
not work in dimension 3. In fact, somewhat paradoxically, manifold topology is
actually much easier in dimensions 5 and up than in dimensions 3 and 4, which
are most closely related to physical reality! But in a spectacular result from
2012, Marques [9] showed that the space R (S93) is connected. The method of
proof suggests that R+ (S%) might be contractible.

Ve e

Figure 4: Picture of Ricci flow on a general metric of positive scalar curvature
on S3. The “dumbbell” on the left pinches off into two smaller
spheres.

How can one approach the topology of R*(S3)? The answer is by using two
ingredients. First of all, we can analyze the special subset of metrics for which
the sectional curvature is constantly equal to 1. Using results of [6], it can be
deduced that this subset is contractible. The next ingredient uses a technique
based on the Ricci flow, which is connected to the Ricci curvature that we
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already encountered in the previous section. Starting with a Riemannian metric
g(0) on S3, we can let it evolve under the differential equation d%—(tt) = —2Ricy ),
where Ric,; is the Ricci curvature of the (time-varying) metric g(t), with both
Ricy(y) and g(t) viewed as tensors (basically, as matrices). The effect of this
flow is to “smooth out” the metric to make it more “sphere-like”. It turns out
that one can also show easily that under the Ricci flow, the scalar curvature
can only increase. So the Ricci flow preserves the space RT(S3).

One might hope, therefore, that Ricci flow should contract R (93) down to
the contractible space of metrics of constant curvature 1, which is contractible,
and thus that RT(S?) itself is contractible. Unfortunately, this is too naive,
since the Ricci flow for a general metric almost always develops singularities,
and various “necks” will pinch off (see Figure 4). Nevertheless, there is some
hope that with sufficient control of the singularities, one could get a modification
of this idea to work.
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