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Count ing sel f -avoiding walks on
the hexagonal lat t ice

Hugo Dumini l -Copin 1

In how many ways can you go for a walk along a
lattice grid in such a way that you never meet your
own trail? In this snapshot, we describe some com-
binatorial and statistical aspects of these so-called
self-avoiding walks. In particular, we discuss a recent
result concerning the number of self-avoiding walks
on the hexagonal (“honeycomb”) lattice. In the last
part, we briefly hint at the connection to the geome-
try of long random self-avoiding walks.

1 Self-avoiding walks on a lat t ice

Around the middle of the 20th century, Paul J. Flory 2 and W. J.C. Orr intro-
duced self-avoiding walks (SAWs) as a mathematical model for the shape of
ideal polymers, that are, very long chain-like molecules composed from many
identical small links called monomers [5, 11].

Let us consider a lattice such as the square lattice, the triangular lattice, or
the hexagonal lattice, which you can see in Figure 1. A self-avoiding walk on
the lattice is a sequence of neighboring vertices that avoids returning to any
previously visited vertex. The first question that pops to mind is the following:

How many different SAWs of length n start at a given point?

1 Hugo Duminil-Copin is supported by the NCCR SwissMap and an IDEX chair of Paris
Saclay.
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Figure 1: Examples of self-avoiding walks of length 19 on the square, triangular,
and hexagonal lattices. The unit of length is chosen to be the length
of an edge in the lattice.

In order to address this question, we will first have a more formal look at the
definitions. A graph is a set of vertices together with a set of edges, where an
edge links pairs of vertices: when two vertices are connected by an edge, they are
said to be neighbors of one another. 3 A graph is transitive if every vertex can
be mapped to every other vertex by a “symmetry” of the graph, which means
the graph looks the same from every vertex. In the polymer interpretation,
vertices correspond to monomers, which are linked via edges of the graph.

A graph is called infinite if it has infinitely many vertices, and locally-finite
if every vertex has only finitely many neighbors. We define a lattice to be a
transitive locally-finite infinite graph. In addition to the already encountered
square, triangular, and hexagonal lattices, which are all lying in the plane R2,
a further example of a lattice is the cubic lattice in R3, which has vertex set Z3,
and two vertices are neighbors whenever their distance is 1.

Given a graph G, a walk of length n ∈ N on G is a map γ : {0, . . . , n} → G
such that γ(i) and γ(i+ 1) are neighbors for each i ∈ {0, . . . , n− 1}. A walk is
called self-avoiding if it is injective, that is, γ(i) 6= γ(j) for i 6= j. From now on,
we will only consider walks on graphs that are lattices.

Returning to our previous question of counting self-avoiding walks, choose a
lattice L and let cn denote the number of self-avoiding walks on L starting from
a fixed point. Since the lattice is transitive, this number does not depend on
the choice of that point. For small values of n, the number cn can be computed
by hand and it is fun. For instance, one can find by hand that c6 = 16 926 on
L = Z3. However, as n grows, such computations quickly become impossible to
perform. This is due to the fact that, as we will see below, cn grows exponentially
fast. With today’s technology and efficient algorithms, one may count walks

2 Paul John Flory (1910–1985) eventually received the Nobel Prize in Chemistry in 1974,
giving a Nobel Lecture on Spatial Configuration of Macromolecular Chains.
3 Note to the expert reader: we only consider simple graphs, that is, graphs without loops
or double edges.
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up to length 36 on Z3, see [12], where a new algorithm is used together with
50 000 hours of computing time to get c36 = 2 941 370 856 334 701 726 560 670.
On the square lattice Z2, the largest known enumeration corresponds to walks
of length 71, see [2]. No exact formula is expected to hold for general values
of n, yet it is still possible to study the asymptotic, or limiting, behavior of cn
as n becomes very large. John Hammersley observed in [6] that the sequence cn
has the property that there is a certain positive real number µc(L), called the
connective constant of the lattice, with

lim
n→∞

c 1/n
n = µc(L). (1)

Thus cn is “roughly” µc(L)n for large n. Hammersley’s elegant argument has
become classical in statistical physics and probability. It runs as follows.

Since a SAW of n+m steps can be cut into an n-step SAW and a parallel
translation of an m-step SAW, we infer that

cn+m ≤ cncm,

hence the (cn)n∈N form what is called a sub-multiplicative sequence. From here,
it follows by an exercise on such sequences that there indeed is a constant µc(L)
such that Equation (1) holds. Note that µc(L) is larger than or equal to 1 and
smaller than or equal to the number of neighbors of a point 4 minus 1.

As an example, consider the tree of degree d+ 1. This is the lattice Td that is
uniquely defined by the following two properties: every vertex has degree d+ 1,
and for any two vertices, there is exactly one self-avoiding walk starting at one
vertex and ending at the other. Figure 2 shows an illustration of a part of the
tree T2. 5 One can directly check that cn(Td) = dn, and hence µc(Td) = d.

Figure 2: A finite part of T2, the tree of degree 3. Unlike the image might
suggest, we consider all edges, and thus all the steps in a walk, to
have the same length.

4 Note that this number, called the degree of the lattice, does not depend on the point. For
instance, the hexagonal, square, triangular, and cubic lattices have degrees 3, 4, 6, and 8,
respectively.
5 Note that this is only a combinatorial image – we consider all edges to have the same
length.
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Unfortunately, explicit formulæ for µc(L) are not expected to be frequent,
and mathematicians and physicists only possess numerical 6 predictions for
the most common lattices. For instance, the papers [3, 2] give the following
approximations for the connective constants of Z2 and Z3 – the parentheses
indicate a possible error in these digits:

µc(Z2) = 2.63815853035(2),
µc(Z3) = 4.684039931(27).

2 The connect ive constant of the hexagonal lat t ice

In 1980, Bernard Nienhuis [10] suggested that the hexagonal lattice H is an
exception among lattices, in the sense that its connective constant can be very
explicitly stated. More precisely, Nienhuis conjectured that

µc(H) =
√

2 +
√

2.

This beautiful prediction relied on a correspondence between different models
of statistical physics and remained mathematically elusive.

Recently, Stanislas Smirnov and I provided a rigorous proof of this result [4].
The argument is quite instructive. While we cannot describe it in such a short
number of pages, let us still highlight one important aspect of the proof, and
refer the avid reader to the original paper.

From now on, we view the hexagonal lattice H as lying in the complex
plane C. Consider a finite domain D, that is, a finite subset of edges of H, and
pick a mid-edge a on the boundary of D, as in Figure 3. For every mid-edge z
in D, consider the self-avoiding walks in D that start from a and end at z. For
such a walk γ, let Wγ(a, z) be equal to the number of left turns minus the
number of right turns made by γ when going from a to z, times π

3 . Introduce
a complex-valued function F defined on every mid-edge z, and depending on
parameters σ and x, by the summation formula 7

F (z) :=
∑

γ SAW in D
from a to z

e−iσWγ (a,z)x# vertices in γ . (2)

In our example in Figure 3, the blue walk from a to z passes through 24 vertices,
making 9 left and 15 right turns, and thus contributes a term e2πiσx24 to the
sum in Formula (2).

6 that is, approximatively computed
7 the symbol # stands for ‘number of’
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Figure 3: A domain D in the hexagonal lattice, with its boundary contour (in
red) and little boxes at the boundary mid-edges. Blue: a self-avoiding
walk in D from a boundary mid-edge a to an interior mid-edge z.
Green: a discrete contour bounding a subdomain D′ of D, together
with its decomposition into elementary triangular contours.

The advantage of the function F , which is called the parafermionic observable,
is that when σ = 5/8 and x = 1/

√
2 +
√

2, it enjoys a very special property:
around every vertex v of D, the values of F at the adjacent mid-edges p, q,
and r, indexed in counter-clockwise order, satisfy the relation

F (p) + e2iπ/3 F (q) + e4iπ/3 F (r) = 0. (3)

The coefficients in Relation (3) are such that the left-hand side can be seen as
a sum along an “elementary contour on the dual lattice”, up to a multiplicative
factor. While this sentence may appear as an adjunction of strange words, the
interpretation is quite simple:

A contour in H is a path c = (zi)i≤n of neighboring faces of H, where zi is
the complex number at the center of the corresponding face. The contour is
closed when c starts and ends on the same face, that is, zn and z0 are equal. For
an example, see the green paths in Figure 3 and Figure 4. Define the discrete
integral of a function F on mid-edges along such a contour c by∮

c

F (z) dz :=
n−1∑
i=0

F (pi)(zi+1 − zi), (4)
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Figure 4: Zooming in on a vertex v of the hexagonal lattice, we see the adjacent
mid-edges p, q, and r, and the centers z0, z1, and z2 of the adjacent
faces forming the corresponding elementary contour. All elementary
contours together form the triangular “dual” lattice.

where pi is the center of the edge bordered by the faces corresponding to zi
and zi+1. Note that − i√

3 (zi+1 − zi) ∈ {1, e2iπ/3, e4iπ/3} for every 0 ≤ i < n.
Equation (3) at vertex v states that the discrete integral of F along the

discrete “triangular” contour going through the three faces around v vanishes,
see Figure 4. Now, assume furthermore that the domain D has no “hole”. Then
one may decompose any closed discrete contour in D into a sum of elementary
triangular contours. Since the discrete integral of the observable F along each
of these elementary contours is zero, we deduce that the discrete integral of F
vanishes for any discrete contour in D.

This property seems to be a discretization of a property characterizing
holomorphic functions, which are complex-valued functions of a complex variable
that are “complex differentiable”: the contour integrals of a holomorphic function
vanish, as long as the contour does not go around a “hole” of the domain. 8

Thus, one may interpret Relation (3) as a discrete version of holomorphicity. In
our context, discrete, as opposed to “continuous”, describes the concept that
the variable “jumps” from mid-edge to mid-edge of the lattice H, instead of
moving continuously in the complex plane C.

Nevertheless, a word of caution is necessary. One of the key properties
of holomorphic maps is that so-called boundary value problems have unique
solutions – when two holomorphic functions have the same values on the
boundary of a domain, they must agree on its interior, too. Let us try to do the
same at the discrete level. Imagine for a moment that we wish to determine
a discrete function F using only its boundary values and Relation (3) around
every vertex. We have one unknown variable per mid-edge z, namely the value

8 Note to the more advanced reader: this is known as Cauchy’s integral theorem. Taken
together with Morera’s theorem, which states the converse, it asserts that this property can
actually be taken as definition of holomorphicity.
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of F (z), and one relation per vertex. For example, a discrete boundary value
problem for the green domain D′ in Figure 3 would have 11 boundary values,
20 unknowns, and 17 relations. Note that

3 # interior vertices = #boundary mid-edges + 2 # interior mid-edges,

because every vertex is adjacent to 3 edges, and every mid-edge is adjacent to 1
or 2 interior vertices, depending on whether it is on the boundary or on the
interior of the domain. Therefore, there are typically more unknown variables
than relations, and therefore many solutions to this system of linear equations.

We are seemingly facing a dead end: in the discrete case, the fact that
the discrete contour sums vanish seems to provide little information about the
function F . In conclusion, a function satisfying Relation (3) around every vertex
can be seen as some kind of “weakly discrete holomorphic” function, but the
relations do not allow us to do as much as the standard notion of holomorphicity
does.

Fortunately, the property of vanishing contour sums is not meaningless. A
careful analysis of contour sums along the boundary of well chosen domains D
implies that the value

√
2 +
√

2 mentioned above has to be the connective
constant of the hexagonal lattice. This part is not straightforward, and may
even appear as a miracle in the light of the previous paragraph. Again, we refer
to the original paper [4] for further details about this strategy.

3 Geometry of the SAW on the hexagonal lat t ice

Computing the connective constant should be considered as a stepping stone
towards a bigger goal: physicists and mathematicians are ultimately interested in
the geometry of large random SAWs. Let us thus depart from our combinatorial
question of counting SAWs and focus on a geometrical one:

How does a large SAW typically look like?

Let us start by mentioning a related stochastic model, called the simple ran-
dom walk (SRW), which is obtained as follows: Consider all – possibly self-
intersecting – walks on the hexagonal lattice that start at the origin and take
n steps from there. Combinatorially, there are exactly 3n such walks. The
n-step simple random walk is the uniformly random choice of a sample from
the set of n-step walks starting at the origin. 9 The probability of picking any
particular walk is 3−n. Further, we allow the meshsize δ of the lattice, that is,
the length of an edge – and hence of a step in the walk – to vary as n increases.

9 A method of taking a random sample is called uniform if all possible choices are equally
likely.
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Figure 5: A 10 000-step self-avoiding walk on a lattice δZ2. The distance
between start and end point is about 273 δ.

Thus, let Φn denote the n-step simple random walk on a rescaled hexagonal
lattice δnH. We are interested in the asymptotic behavior of Φn as n grows
large.

If δn = 1 for all n, we effectively do not rescale the lattice and therefore
obtain larger and larger walks. On the contrary, if δn decays too fast, the walks
collapse to the origin as n tends to infinity. Now, if δn is taken to be n−1/2,
then as n tends to infinity, the walk Φn converges, as a random object, to
a continuous random curve Φ called the Brownian Motion, see [9]. 10 As a
corollary, we deduce that asymptotically, a SRW of length n is typically of
“size”

√
n. 11

Physicists have studied the corresponding question for the SAW. 12 Let Γn
denote the random choice, with uniform probability c−1

n , of a SAW among all
n-step SAWs on δnH starting at the origin. Again, let n grow larger and larger.

In the paper where he introduced SAWs, Flory predicted that if we choose
δn = n−3/4, then the random object Γn, and hence a typical n-step SAW,

10 In physics, the Brownian Motion was first studied as a mathematical model for the
movement of a small particle in a fluid at the microscopic scale.
11 The size of a walk can be measured by the distance between its starting and ending points.
12 In comparison to the SAW, the SRW is simpler already from a combinatorial viewpoint:
while there are 3n simple walks of length n, the number cn of SAWs is not known exactly
for larger n. Moreover, in contrast to the SAW, it can be shown that the SRW can also
be sampled step-by-step, by choosing at each step independently and uniformly choosing a
random next step from the 3 neighbors of a given vertex.
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remains of constant size. Again, this implies that as n increases, a uniformly
chosen SAW on H should typically end up at distance n3/4 from the origin. For
n = 10 000, we would therefore expect the distance between its endpoints to be
close to 1 000 δ. An example of a 10 000-step self-avoiding walk on the square
lattice is shown in Figure 5.

While Flory’s original argument is known today to be erroneous, incredibly,
his prediction seems to be correct. We now have more compelling arguments
suggesting that δn should indeed be taken as n−3/4.

For this choice of δn, the random variables Γn should even converge to a
continuous random curve Γ, which plays a role for the random SAW similar to
the role of the Brownian Motion for the SRW. This random curve is a random
“fractal”, called Schramm–Loewner Evolution. This object appeared in recent
years in the study of two-dimensional models of statistical physics “at criticality”.
We refer to [7] for more details and references on this more advanced subject.

In conclusion, for large n, a simple random walk of length n on average ends
at a point at distance

√
n, while a self-avoiding walk of length n should on

average end at a point at distance n3/4. The first claim is very well understood
mathematically, but the second one represents one of the main conjectures in
statistical physics and remains very mysterious. While this discussion seems
to have been unrelated to the discussion of the previous section, they are in
fact intimately connected: one possible way to prove Flory’s prediction is to
show that properly “renormalized” parafermionic observables, when defined on
graphs Dδ := δH ∩ D, converge as δ tends to zero.

For the reader looking for more on the self-avoiding walk, we refer to [8]
and [1].
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Fur ther reading

For further snapshots

• related to another mathematical model of statistical mechanics, the dimer
model, see Snapshot 2/2016 Random sampling of domino and lozenge tilings
by Éric Fusy, and Snapshot 16/2015 Domino tilings of the Aztec diamond
by Juanjo Rué.

• containing a summary of basic concepts in probability theory, as well as a
discussion of the simple random walk on Z, see Snapshot 14/2015 Quantum
diffusion by Antti Knowles, especially Chapter 2.

• related to a different discretization of holomorphic functions, see Snap-
shot 1/2017 Winkeltreue zahlt sich aus (in German) by Felix Günther.

Image credi ts

Figure 5 “A self-avoiding walk of length 10 000”. Courtesy of Vincent Beffara,
http://vbeffara.perso.math.cnrs.fr/pictures.html, visited on April 3, 2019.
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