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Nonlinear acoustics has been a topic of research for
more than 250 years. Driven by a wide range and a
large number of highly relevant industrial and medi-
cal applications, this area has expanded enormously
in the last few decades. Here, we would like to give
a glimpse of the mathematical modeling techniques
that are commonly employed to tackle problems in
this area of research, with a selection of references
for the interested reader to further their knowledge
into this mathematically interesting field.

1 Introduction

High intensity ultrasounds, that is, sound waves with frequencies higher than
the upper audible limit of human hearing, are used in numerous applications,
ranging from lithotripsy and thermotherapy to sonochemistry. At the pressure
levels relevant for these applications, sound propagation does not follow the
standard linear acoustic wave equation

i = cAu, (1)

Lithotripsy is a medical procedure involving the physical destruction of hardened masses
like kidney stones, bezoars or gallstones. Thermotherapy is the use of heat for pain relief and
other healthcare applications. Ultrasound waves can be used to heat tissues deep inside the
body. Sonochemistry is the application of ultrasound to chemical reactions and processes.



any more, and higher-order nonlinear terms have to be taken into account.2
2
Here 4 = %u denotes the partial derivative with respect to time and A =

8%22 + aa—; + 88722 the spatial Laplace operator. The real function u(t,z,y, z)
represents the wave profile, such as a mechanical displacement or an acoustic
pressure, as a function of space and time and c is a parameter describing the
speed of wave propagation.

A central theme of this snapshot is the description of the propagation of
acoustic waves through space (as a function of time) by appropriate partial
differential equations (PDEs), that will be generalizations of the linear wave
equation (1). For a complete physical description and conditions for the unique
mathematical solvability, these PDEs would need to be equipped with initial
and boundary conditions, for example, describing what happens when they
reflect on a surface or encounter an obstacle. This issue will not be addressed
here, though.

The history of the physical investigation and mathematical description of
nonlinear sound propagation already started in the 1750s with the formulation
of Leonard Euler (1707-1783) of the fundamental underlying equations and
involved not only physicists, but a remarkable number of famous mathematicians,
such as Georg Friedrich Bernhard Riemann, Pierre-Simon Laplace, Joseph-Louis
Lagrange (born as Giuseppe Lodovico Lagrangia), Siméon Denis Poisson, Sir
George Gabriel Stokes (1st Baronet, PRS), Sir George Biddell Airy, and Guido
Fubini, to name just a few examples. For a nice historical overview we refer to
Chapter 1 in [12].

2 Models of acoustic waves

2.1 Models of acoustic waves: basic principles

Waves propagate through space as a function of time. Any quantity that
describes the waves must therefore be, in principle, a function of the spatial co-
ordinates = (x,y, z) and time ¢. The key physical quantities in the description
of acoustic wave propagation are:

e The acoustic particle velocity v(t, x);
e The acoustic pressure p(t, x);
e The mass density o(t, x).

From now on, for the sake of simplicity, we drop the explicit dependence of
these functions (or any new function) on the coordinates (¢, ) unless stated
otherwise.

For an introduction to the linear acoustic wave equation see Snapshot 006/2018 Fast
Solvers for Highly Oscillatory Problems by Alex Barnett.


https://publications.mfo.de/handle/mfo/1370

In most applications, except extreme events such as explosions, the main
variables velocity v, pressure p and density p have values that fluctuate around
a mean. This means that they can typically be decomposed into their average
values, which we denote by, for instance, vy and fluctuating components, denoted
by v Bl We have

V=vo+Ve, pP=po+D~, 0=00+0~. (2)

We note however that, in this snapshot, we will only consider applications where
the mean value v of the velocity is equal to zero. Therefore, we can replace
v with v.. Furthermore, we will consider applications where the remaining
average quantities are time independent, which means that go = 0 and p = 0.

Together with these key quantities, we need a few physical constants charac-
terizing any fundamental wave equation, namely:

e The speed of sound ¢, that is, the speed at which sound waves propagate
through a medium (for example air or water);

e The dimensionless nonlinearity coefficient 5, = 1 + %, where we anticipate
that A and B are the coefficients of the first and second order terms of the
Taylor series expansion of the equation relating the acoustic pressure p with
the mass density o, see (10). To understand this snapshot it is enough to
think of 5, as a constant;

e The viscosities pu; = 4‘;" + ¢y and pp = c%(i - é), where py is the
dynamic viscosity, (v is the bulk viscosity, and cy, ¢, are the specific
heat capacity at constant volume and constant pressure, respectively. The
viscosity is a quantity that measures the resistance of the fluid to flow or,
more precisely, its resistance to gradual deformation by shear stress or tensile
stress. The heat capacity expresses the amount of (heat) energy which is
needed to increase the temperature of a medium by 1 degree Celsius.

2.2 Models of acoustic waves: balance and material laws

The equations that govern the changes of v, p and g, and their relationship,
consist of balance and material laws, which can be summarized as follows:

e Continuity equation. This equation encodes the conservation of mass.

0+V-(ev) =0. 3)

An example of this is the pressure inside of a hot sealed pot. The air inside has a certain
temperature and a certain pressure on average, but if we had a thermometer and barometer
that were sensitive enough, we would see that the pressure and temperature oscillate around
a mean value.



Here the dot on top of a quantity means its derivative with respect to time
and « - y is the standard vector product between two vectors & and y.
Also, we recall that the gradient V is a vector defined by V := (%, 8%’ %),
and the divergence V - v of a vector v = (v, vy, v,) is defined to be V- v :=
O Uy + Oyvy + 0,v,), and the Laplacian A of a function u is defined to be
Au:= (82 + 82 + 92) u.

e Euler equation. This equation encodes the conservation of momentum.

Q(V+ %V(V'V)> + Vp = mAv. (4)

e Equation of state. This equation encodes the relation between pressure
and density.
o —1 :
0~ = o — Bipl — L (5)
e Conservation of energy. In case one is interested in the derivation of
higher order models, such as those described by the Blackstock-Crighton
equation (16) which we present later on, one needs to employ an equation
expressing conservation of energy. We will elaborate on this later on.

2.3 Models of acoustic waves: an example

Models of linear and nonlinear acoustics are obtained by appropriately combining
the equations presented above and by dropping “unnecessary” higher order
terms from the equations obtained. We demonstrate this procedure for the
basic case of the standard linear acoustic wave equation, which results from
retaining only linear and non-dissipative terms. This means that we will drop
terms like V- (0~v), 0V, 30V (v - V), 1 Av.

We start by inserting the decomposition (2) into the conservation of mass
equation (3), and we obtain

00+ 0~ + V- (00v) + V- (0v) =0.

Here, recall that we are assuming that the (time) derivative gg of the constant
mean mass density go vanishes. The term V- (9~ v), which contains the product
of two fluctuating parts, is an example of a nonlinear term and will therefore
be dropped. Proceeding similarly for the conservation of momentum and the
pressure-density relation, we end up with the following linearized versions of
the equations (3), (4), (5):

o~ + QOV V= Oa (63“)
00V + Vp. =0, (6b)
QN = cisz_ (GC)



We now take the second derivative of (6¢) with respect to time, which gives
us oo = C%]ﬁN, the time derivative of (6a), obtaining g~ + 9oV - v = 0. This
allows us to eliminate g~ from the first equation, obtaining Cizp‘N + 00V -v=0.
Now we take the divergence of (6b), which gives 9oV - v = —Ap.. and insert
this into the result of our previous manipulations, which allows us to eliminate
v. These algebraic manipulations yield as a result the linear wave equation

P — * Ap. = 0. (7)

We emphasize here that this equation is linear because all terms that appear
contain the fluctuating quantities v, p.. and p~, at most to first order. All other
combinations, such as p? or v p.. are nonlinear terms.

2.4 Models of acoustic waves: Blackstock’s scheme

The derivation of models for nonlinear acoustics follows the same guidelines,
but requires some additional “sophistication” when choosing to neglect a term.
Here, Blackstock’s scheme, which was first introduced by Sir Michael James
Lighthill (1924-1998) [18] and subsequently described in more detail by Black-
stock [2], plays an essential role. This scheme distinguishes between the following
categories:

e First order. First order terms are linear with respect to the fluctuating
quantities and are not related to any dissipative effect;

e Second order. Terms of this order are obtained as the union of quadratic
and dissipative linear terms (that is, those terms that contain the viscosities
11, pe as prefactors);

e Higher order. All remaining terms.

Blackstock’s scheme prescribes that one should retain only first and second
order terms. Additionally, a result called the substitution corollary allows us
to replace any quantity in a second or higher order term by its first order
approximation, that is, for the term p.Ap., we can employ the (linear) wave
equation (7) to replace Ap., by Ci?]aN to obtain Ciszp'N. This step is needed for
the derivation of, for example, the Kuznetsov and Westervelt equations, which
we discuss below. These equations have important implications for real-life
applications.

2.4.1 Kuznetsov’s equation

The prescriptions given in Blackstock’s scheme lead to Kuznetsov’s equation,
see [17, 16], which consists of the two parts

2

) 2,
B = G Ap = bAP. = =5 (i‘;hﬁ - 90|V|2> (8)




and

ooV = —VDo, 9)
that is, a coupled system of differential equations for the acoustic particle
velocity v and the acoustic pressure p, where b = % is the diffusivity of

sound.® This system can be rewritten as a single equation for the acoustic
velocity potential in the following way. First, we know that V x v = 0 and
hence

v=-VyY
where we have introduced an acoustic velocity potential 1 that satisfies
00Vt =P~ s (10)

due to the equation (9). We can then rewrite (8) and (9) as a single differential
equation for the potential ¢, which reads

. . d :
b— Ay —bad = = (B (D) + V). (11)

2.4.2 Westervelt’s equation

If we now use the approximation

oplvI* = Zp?,

which is equivalent to neglecting nonlinear effects in (8), we arrive at Westervelt’s
equation [26], which reads

P — PAp. — AP = Q%p’i. (12)

It can be written in terms of the velocity potential ¢ by plugging equation (10)
and its first and second derivatives into (12), leaving us with

P — AP — bAY = B 2. (13)

2.4.3 Khokhlov-Zabolotskaya-Kuznetsov’s equation

If we assume further that there exists a preferred direction of propagation, say
the z direction, then we obtain the Khokhlov-Zabolotskaya-Kuznetsov (KZK)
equation [27], which reads

a . 2 b ﬁa -2
20%]%—0 Ayzpw—c—zpwzwpw, (14)

where Ay, = 88722 + g—; is the Laplace operator with respect to the coordinates
orthogonal to the propagation direction.

Diffusion or diffusivity, in acoustics and architectural engineering, is the efficacy by which
sound energy is spread evenly in a given environment.



2.4.4 Burgers’ equation

Reduction of the setting to one space dimension yields the well-known Burgers
equation, which has the expression

0 , 0 5 0

8acpN - ﬁﬁlk = 03P~ ﬁpw, (15)

where 7 = t — £ is the retarded time, which measures the position of the

propagation of a perturbation (or value of p..). More concretely, the perturbation
at t — £ = 79 is the same for any values of ¢ and x that satisfy 7 = 79. For
example, it has propagated from x = —c7y at time t = 0 to x = ¢(t — 79) at
time .15

To give a visual impression of nonlinear acoustic wave propagation, in Figure 1
we plot the approximate solutions of the 1-dimensional Burgers equation at
different distances = from a source that excites the system in a sinusoidal
manner — that is, it excites the system periodically in time. The corresponding
explicit (in the form of inifinite series) solution formulas for the cases of low
and high distance from the sound source have been found by Fubini [11] and
Fay [10], respectively, see also [3].
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Figure 1: Left to right and top to bottom: Fubini (with o = 0.2, 0.5, 0.9)
and Fay (with o = 3) solutions. Here o is the so-called “shock
formation distance”, a parameter describing the spatial distance from
the source.

Some material about retarded time can be found in [5, 9, 21].



3 Models of acoustic waves: modern extensions

We emphasize that modeling nonlinear acoustic wave propagation is still an
active area of research. Let us just mention two examples of extensions of
the most general of the equations above, in particular of (11), namely the
Blackstock-Crighton equation

¥ — AAY — (b+a) A + Baa (b— (Ba — 1)a) A% + aA?yp

= (227 + Vo) (16)

)
see [4, 2, 8], where a is the thermal conductivity, and the Jordan-Moore-Gibson-
Thompson equation

- Ay — b = L (B () 1 v?) (17)
where the relaxation time 7, expresses the characteristic time which a fluid
needs to reach its equilibrium after excitation, see [6, 13, 25]. These equations
reduce to Kuznetsov’s equation (11) for a = 0 and 7. = 0, respectively.

Further interesting models can be found, e.g., in [1, 7, 14, 15, 19, 20, 22, 23, 24]
and the references therein.

3.1 Final considerations

Due to the numerous applications of high intensity ultrasound, which is used,
for example, for cancer treatment, nonlinear acoustics is a highly active area
of applied mathematics. In particular, a mathematical analysis of the mod-
eling equations is a crucial prerequisite for reliable numerical simulation and
optimization. Although some of the mentioned models have been analyzed
with respect to their well-posedness and asymptotic behaviour,@ there are still
many open problems to be solved. This makes the area of nonlinear acoustics
very attractive for mathematicians working, for example, in the areas of partial
differential equations, numerics or optimization.
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