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Graphs are simple mathematical structures used to
model a wide variety of real-life objects. With the
rise of computers, the size of the graphs used for
these models has grown enormously. The need to ef-
ficiently represent and study properties of extremely
large graphs led to the development of the theory of
graph limits.

1 Graphs

A graph is one of the simplest mathematical structures. It consists of a set of
vertices (which we depict as points) and edges between the pairs of vertices
(depicted as line segments); several examples are shown in Figure 1. Many
real-life settings can be modeled using graphs: for example, social and computer
networks, road and other transport network maps, and the structure of molecules
(see Figure 2a and 2b). These models are widely used in computer science,
for instance for route planning algorithms or by Google’s PageRank algorithm,
which generates search results. What these models all have in common is
the representation of a set of several objects (the vertices) and relations or
connections between pairs of those objects (the edges).

In recent years, with the increasing use of computers in all areas of life, it
has become necessary to handle large volumes of data. To represent such data
(for example, connections between internet servers) in turn requires graphs with
very many vertices and an even larger number of edges. In such situations,
traditional algorithms for processing graphs are often impractical, or even
impossible, because the computations take too much time and/or computational
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Figure 1: Examples of graphs.

power. This has led to the development of new concepts and methods based
on the idea of describing approximate, rather than exact, properties of large
graphs. One of these approaches uses the notion of graph limits.

(a) Testosterone molecule. (b) Metro in Madrid.

Figure 2: Graphs can model molecules or transport networks.

2 Graph l imits

Imagine that we have a sequence of graphs, with the property that the number
of vertices in each graph of the sequence grows without bound. We want to
describe properties of such sequences, and in particular, we want to define what
it means for such a sequence of graphs to “converge” to some limit, and describe
the limiting object.
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a1 a2 b1 b2
a1 0 0 1 1
a2 0 0 1 1
b1 1 1 0 0
b2 1 1 0 0

Figure 3: A complete bipartite graph K2,2 and its adjacency matrix.

Let us first consider what it means for a sequence of real numbers to converge
to a limit. The limit of a convergent sequence of real numbers is itself a real
number. Properties of the limit of a sequence often tell us about the sequence
itself; for example consider a sequence of numbers that converges to 0. While
we cannot say anything about every number in the sequence, we do know that
from some moment onwards all elements of the sequence will be “close to 0”.
The sequence might contain some numbers greater than 1 (or even greater than
1000); however, there can only be a finite number of such terms at the beginning
of the sequence.

Our aim now is to define a notion of graph convergence so that we will
similarly be able to describe some “limit properties” of a convergent sequence,
knowing that all but finitely many graphs in the sequence will be close to having
these properties. Unlike in case of convergence of sequence of real numbers,
where the limit is again a real number, the limit of a convergent sequence of
graphs turns out not to be a graph, but rather an object called a graphon,
which is a contraction of “graph function”.

Graphons are a relatively young, but intensively studied concept. The notion
was first introduced by Lovász and Szegedy in 2006 [4]. They were awarded the
2012 Fulkerson Prize 1 for this innovation. The theory was later extended in a
series of papers by Borgs, Chayes, Lovász, Sós and Vesztergombi [1, 2].

3 Graphons

What should the “limit” of a graph look like? To any graph, we can associate
an adjacency matrix, a matrix consisting of 0s and 1s, with a row and a column
for each vertex of the graph. The matrix entry in row v and column w is 1 if
there is an edge connecting v to w, and 0 otherwise, see Figure 3 for an example.
Note that an adjacency matrix is always symmetric (that is, the entry in i-th
row and j-th column is the same as the entry in j-th row and i-th column). A

1 The Delbert Ray Fulkerson Prize is awarded every three years by the Mathematical
Optimization Society and the American Mathematical Society for outstanding papers in the
area of discrete mathematics.
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Figure 4: Convergence of adjacency matrices.

graphon is defined to be a symmetric function W (x, y) of two variables, where
x and y are in the interval [0, 1], and the output value is also in [0, 1].

Informally speaking, the variables x and y represent vertices and the value
W (x, y) determines whether they are connected by an edge. Figure 4 shows a
sequence of adjacency matrices and a graphon it converges to: black denotes 1;
white denotes 0.

Notice that if we relabel the vertices of a graph, we obtain a different
adjacency matrix. In other words, these matrices are not unique. This leads
to the question of whether a given sequence of graphs might converge to two
different graphon limits. This may actually happen. However, one can define
a notion of equivalence between graphons that, roughly speaking, accounts
for changes in ordering of the vertices. Equivalent graphons are considered to
be “the same”. Taking this into account, every convergent sequence of graphs
converges to a unique graphon.

However, note that unlike in the example in Figure 4, graphons are not
restricted to have only values zero and one, but any number between 0 and
1. The value W (x, y) of a graphon W at the point (x, y), rather than being a
definite 0 or 1 depending on whether or not there is an edge between vertex x
and vertex y, should be thought of as the probability that there is such an edge.

To illustrate the idea of the probabilistic presence of an edge, we introduce
the notion of a random graph. An example of a random graph is a graph with a
certain fixed set of vertices where we flip a coin for each pair of vertices, putting
an edge between them if we get heads and not putting in an edge if we get tails.
Then each edge is present in this random graph with probability 1/2. If we
have a sequence of such random graphs with the number of vertices tending
to infinity, we expect that the limit should be a graphon whose value is the
constant 1/2.

How do we know whether a sequence of graphs converges to some graphon?
The key to answering this question is the notion of subgraph density in a graph.
The simplest example of this property is edge density. Edge density is the
probability that two vertices picked at random are connected by an edge. For
instance, the edge density of K2,2 (the graph in Figure 3) is 4/6, because of
the 6 possible edges, 4 are actually present in the graph. We can measure edge
density in a graphon in a similar way; for instance, the edge density of the
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graphon in Figure 4 is 1/2, because if we pick two points at random, the value
of the graphon on the corresponding coordinates is either 0 or 1, each with
probability 1/2.

More generally, we can define the density of a subgraph in a larger graph or
in a graphon. This is the probability that, if we choose some number of vertices
at random, the edges between the vertices we picked form a given pattern, for
example a triangle or K2,2. See Figure 5 for some examples.

(a) Triangle subgraph in
a larger graph.

(0, 0)

(1, 1)(0, 1)

(1, 0)
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(b) Probability of a triangle in a graphon: vertices a, b and
c form a triangle in the graphon W (where light grey
denotes value 1/4 and dark grey 1/2 in the graphon) with
probability W (a, b) ·W (b, c) ·W (c, a) = 1/2 ·1/4 ·1 = 1/8

Figure 5: Triangle in a graph and a graphon.

Now we are ready to define what we mean by convergence of a sequence
of graphs. A sequence of graphs converges to a graphon if the density of any
particular subgraph in the graphs of the sequence converges to the density
of this same subgraph in the graphon. This gives us an answer not only to
what makes a sequence of graphs convergent, but also to what properties of a
sequence are reflected in the properties of the graphon to which it converges.

4 Research on graph l imits

The theory of graph limits is still relatively young, yet it has already attracted
a lot of research attention and has been used in many areas of mathematics and
computer science. In particular, this theory has found many uses in the area of
extremal combinatorics, which studies questions of minimizing or maximizing
certain quantitative properties of graphs. For instance, the question: “What
is the minimum number of triangles a graph with a given edge density can
have?”, after being studied for many years, was finally answered by Razborov
in 2008 [5], using tools closely related to graph limits.
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The theory of graph limits has also been used in the area of parameter
testing, to characterize which parameters of graphs can be estimated by a
randomized algorithm that processes only a very small part of the graph [3]. In
particular, a parameter f is testable if and only if for every convergent graph
sequence (Gn), the sequence of numbers (f(Gn)) is convergent. For instance,
the aforementioned subgraph density is a testable graph parameter for any
given subgraph. So, if we want to estimate the density of triangles in a huge
graph with a given precision, say 0.01, there is an algorithm which looks only at
a small part of our graph (thus saving computational time and space compared
to any algorithm which would work with the whole input graph) and returns an
estimate of triangle density which, with high probability, say 99%, differs from
the actual triangle density in the input graph by less than 0.01. Graphons have
found many other applications in probability, statistics and machine learning,
where they are used to model large random networks.

As a final remark, let us mention that the theory of graph limits has been so
successful for studying graphs that it has inspired the development of theories of
limits for other combinatorial structures, including permutations and partially
ordered sets.
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