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Introduction

The conference was organised by David R. Morrison (Duke University, Durham) and by

Werner Nahm (Physikalisches Institut der Universit�at Bonn).

String theory is the �eld of mathematical physics which has created by far the most in-

tense interactions between mathematicians and theoretical physicists in the past years.

It contains a perturbative domain which is described by two{dimensional superconformal

quantum �eld theories and mathematically well de�ned. Non{perturbative string theory

(M{theory) has made much progress in recent years and promises new insights, but it is

not yet well understood from any point of view.

Perturbative string theories have a moduli space with many rational points (this may

generalise to the non{perturbative domain). Their classi�cation is very far from being

complete, but makes steady progress. The understanding of theories with continuous

parameters, most importantly of the sigma models on Calabi{Yau manifolds, is rapidly

gaining in maturity, such that decisive break{throughs seem possible in the near future.

Non{perturbative string theory involves solitonic objects (branes) of higher dimension.

Since strings can end on them, the study of boundary states in perturbative string theory

has become important. Further interesting new results concern the breaking of supersym-

metry.

A major tool in non{perturbative string theory is the study of its low mass states, which

yield conventional quantum �eld theories. The conjectured dualities of some of them have

been put into a �rm mathematical context by Seiberg and Witten. One expects these

dualities to lift to all states of the string theory. Moreover, they also involve physics in

more than ten dimensions (membranes in eleven dimensions and F{theory).

Dualities between string theories yield deep relations between so far unconnected objects

in algebraic �eld theory. In particular, the mirror symmetry between varieties should gen-

eralise to certain bundles on them. So far, this is best understood for varieties constructed

by elliptic or K3 �brations.

In many cases, the mathematical consequences of the physical conjectures can be checked

independently. This also means that some standard objects of physics like quantum �eld

theories gain in mathematical interest and credibility. We do not know yet if string theory

is a true model of nature, but it certainly contributes a lot to bridging the gap between

physics and mathematics.
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Collection of Abstracts (in chronological order)

Monday:

Peter Goddard (DAMTP, Cambridge)

Axiomatic conformal �eld theory

A rigorous approach to conformal �eld theory which, as with the historical origins of string

theory, states from a family of amplitudes; these amplitudes are meromorphic densities.

They de�ne a meromorphic conformal �eld theory (or chiral algebra), leading naturally

to the de�nition of topological vector spaces between which the vertex operators act as

continuous operators. The assumption of M�obius invariance enables the proof of the duality

relation V('; z)V( ; �) = V(V('; z � �) ; �) for vertex operators. Up to this point the

theory is extremely general but the key assumption of cluster decomposition is a substantial

restriction which implies the uniqueness of the vacuum and the spectrum of L

0

, the scaling

generator, is bounded below.

Representations of the meromorphic theory (chiral algebra) can be introduced in a way

analogous to the de�nition of the theory itself. The representation condition is equivalent

to the existence of a suitable (family of) state(s) in the meromorphic theory itself. The

conditions satis�ed by these states lead naturally to the de�nition of Zhu's algebra. Zhu's

theorem states that the representations of Zhu's algebra are in essence in correspondence

with the representations of the meromorphic theory. The �nite{dimensionality of Zhu's

algebra is a key criterion in de�ning an amenable class of conformal �eld theories.

(This is joint work with Matthias Gaberdiel.)

Anne Taormina (Durham, England)

Representations of the a�ne Lie superalgebra

\

SL(2j1) and N=2 strings

The general theory of admissible representations of a�ne Lie algebras and superalgebras

developed by Kac and Wakimoto shows the existence of a large class on noninteger level

representations sharing many important features of the integrable representations (in par-

ticular, nice transformations under the modular group) when the level k is of the form

u(k + h

_

) = k

�

+ h

_

, with h

_

the dual Coxeter number of the corresponding Lie (su-

per)algebra, and k

�

, u 2 ZZ

+

.

In this talk, the a�ne Lie superalgebra

\

sl(2j1) at fractional level k of the form k + 1 =

p

u

,

p, u 2 Z

+

, gcd(p; u) = 1 is shown to play a rôle in the description of noncritical N=2

strings when the matter coupled to supergravity is minimal, i.e. is taken in an N=2 super

Coulomb gas representation with central charge c

matter

= 3(1 � 2

p

u

. Some aspects of the

theory of its admissible representations are discussed in the more general context of the

exceptional a�ne Lie superalgebra

\

D(2j1;�)

k

. In particular, two �eld representations of

\

sl(2j1) at level k =

1

u

� 1 are discussed. The �rst is an analogue of the Wakimoto modules

which are needed in the description of the physical spectrum of the noncritical N=2 strings.

The second can be constructed out of the representations of two

d

sl(2) a�ne Lie algebras

at dual levels k =

1

u

� 1 and k

0

= u� 1.
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Ronen Plesser (Duke University, Durham)

T{duality can fail

(joint work with Paul Aspinwall)

T{duality is the statement that string theory in a spacetime of the form M� S

1

, where S

1

has radius R, is invariant under the exchange R!

1

R

. This important, intrinsically stringy

symmetry has been used to learn much about the theory. In this work we showed that in

some circumstances nonperturbative e�ects destroy the symmetry.

To all orders in the perturbation expansion, string theory is determined by CFT. In CFT

the duality follows in a direct way from the presence of an enhanced SU(2) gauge symmetry

when R = 1. In compacti�cation on T

2

the Z

2

2

symmetry is enhanced to SL(2;Z). In

compacti�cation of the heterotic string on K3 � T

2

, we show that T{duality is \broken"

in the following sense: the classical monodromies of \
at" coordinates are modi�ed when

the heterotic coupling is non{zero. The locus corresponding to R = 1 splits much as in

Seiberg{Witten theory into two loci about which we have in�nite monodromy. This makes

it impossible to de�ne a \size" variable in a consistent manner for R�1 and smaller, so

that the statement of T{duality loses its meaning.

Computations including nonperturbative e�ects are possible by string{string duality which

relates the entire question to a problem in tree{level type IIA strings on a Calabi{Yau

threefold.

Dieter L�ust (Humboldt{Universit�at, Berlin)

Gauge theories from branes

The recent progress in the understanding of non{perturbative e�ects in string theory is

largely linked to the discovery of several kinds of duality symmetries (S{duality, T{duality)

and of D{branes as the solitons in type IIA, B superstrings. D{branes give rise to non-

abelian gauge interactions where the nonabelian gauge bosons correspond to open strings

which can move on the world volume at the D{branes. Non{trivial gauge models with mat-

ter �elds and reduced number of supersymmetries (N=2 and N=1 supersymmetry in four

dimensions) are obtained by placing the D3 branes on a transversal singularity of ADE type

(non{compact Calabi{Yau space). In particular, we discussed hyper quotient singularities

(generalised conifold singularities) in this talk. In a T{dual picture the ADE singularities

can be equivalently described by a net of NS 5{branes with the D{branes suspended in

between. This picture is quite convenient, since the con�guration of NS and D{branes can

be embedded into 11{dimensional M{theory. In this way one can obtain non{perturbative

informations about the corresponding gauge theories, and the conjecture is that (part of)

the non{perturbative moduli space of the gauge theories is described by the moduli space

of the brane embedded in M{theory. In particular, for N=2 supersymmetric models the

Seiberg{Witten curve emerges in a geometric way as the shape of the embedded M{theory

branes. We show that for N=1 supersymmetric gauge theories a supersymmetric 3{cycle

(special Lagrangian submanifold in C

3

) plays the analogous role of the Seiberg{Witten

curve and encodes many non{perturbative properties of N=1 gauge theories.
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Terry Gannon (University of Alberta, Edmonton)

Fusion rings and their symmetries

Arguably, there are few things the world needs less than another formal treatment of fusion

rings. My main justi�cation is the surprising lack of cross{fertilisation between the di�erent

areas in which this type of algebraic structure arises. In my talk I tried to sketch a general

theory, give a few examples of where fusion rings arise, and point out a few directions for

future study which seem natural.

I also alluded to the question of automorphisms of the fusion rings corresponding to a�ne

algebras, or equivalently symmetries of their fusion coe�cients. There are the permutation

� of the level k highest weights P

k

+

(g) which obey N

��

��;��

= N

�

�;�

8�; �; � 2 P

k

+

(g). This

is equivalent to �nding all pairs (�; �

0

) of permutations which obey S

�;�

= S

��;��

8�; �,

where S is the (Kac{Peterson) matrix diagonalising the fusions. These symmetries have

been classi�ed for all a�ne algebras, and most of them correspond to symmetries of the

extended Coxeter{Dynkin diagram of g.

Tuesday:

Antonella Grassi (University of Pennsylvania, Philadelphia)

On the topological Euler characteristic of CY 3{folds and the anomaly formula

(based on work with D. Morrison)

We consider an elliptic Calabi{Yau 3fold X, with sections. There is a natural way to

associate a group G to X (if dim X = 2, via Kodaira's classi�cation, one can assign to each

singular �ber the algebraic group corresponding to the Dynkin diagram of the con�guration

of the exceptional divisors). This correspondence has no intrinsic explanation (at least not

yet) within algebraic geometry; it is instead natural from the point of view of physics

(F{theory/heterotic duality and gauge theory). In particular, an \anomaly formula" must

vanish.

We show that, under certain \general" assumptions, there is a simple mathematical formu-

lation of the anomaly formula. The analysis of the anomaly formula (via the topological

Euler characteristic of CY 3folds) implies a natural correspondence between representations

of Lie groups, 3fold singularities and their resolutions.

Our results are in agreement with the predictions in the physics literature but we cover

also other cases.

Bobby Samir Acharya (Queen Mary College, London)

M{theory, Joyce orbifolds and super Yang{Mills

M{theory compacti�ed on a 7{manifold with G

2

{holonomy J (henceforth referred to as a

Joyce manifold) gives a model for physical theories in four dimensional Minkowski space-

time which at low energies (and at a smooth point in the moduli space M(J) of G

2

holonomy metrics) can be described as N=1 supergravity theories. The matter content

may be summarised as b

2

(J) U(1) vector multiplets and b

3

(J) chiral multiplets (b

i

(J) are

the Betty numbers of J). Such theories are relatively uninteresting physically due to the

fact that the gauge symmetry is abelian: U(1)

b

2

(J)

.
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By constructing a \local model" we proposed that interesting physics arises when J becomes

singular as one moves around in the moduli spaceM(J).

The \local model" is topologically a non{compact Joyce orbifold O :�

C

2

�T

3

G

, with G a

�nite subgroup of G

2

.

The singularities of O are of the form

f0g�T

3

K

, where f0g 2 C

2

is the singularity in

C

2

�(ADE)

with �(ADE) a �nite subgroup of SU(2) and K

�

=

G

�(ADE)

acts freely on T

3

.

This model gives rise at low energies to super Yang{Mills theory with ADE gauge group,

N=1 supersymmetry and no matter multiplets.

We calculated the superpotential and argued that it is generated by fractional membrane

instantons which \wrap" the singularities of O. This superpotential agrees precisely with

that which may be calculated from the �eld theory. This is the main result.

It shows that

(i) M{theory \understands" quantum Yang{Mills theories which are strongly interacting

in the infrared (low energy) regime. The real world is described by just such a Yang{

Mills theory (QCD); we just do not understand everything we would like to about

QCD.

(ii) The dynamically generated superpotential is generated by \instantonic" objects of

fractional charge which are di�cult to see in �eld theory.

The result we described is intrinsically quantum in nature since it is subtly related to

anomalies (or lack of them) in M{theory. We hope it will have some bearing on under-

standing nature.

Victor V. Batyrev (Universit�at T�ubingen)

Stringy Hodge numbers

Let X be a quasi{projective normal algebraic variety with at worst log{terminal singulari-

ties and % : Y ! X a log{resolution of singularities such that the support of the exceptional

locus of % is a normal crossing divisor D = D

1

[ : : : [ D

r

and

K

Y

= %

�

K

X

+

r

X

i=1

a

i

D

i

(all a

i

> �1):

We introduce a rational function E

st

(X; u; v) 2Q[u; v] by the following formula:

E

st

(X; u; v) =

X

J�f1;::: ;rg

E(D

0

J

; u; v)

Y

j2J

1� uv

1� (uv)

a

j

+1

where

E(Z; u; v) =

P

p;q

e

p;q

(Z)u

p

v

q

e

p;q

(Z) =

P

k�0

(�1)

k

h

p;q

(H

k

c

(Z;C)) and

D

0

J

= fy 2 Y : y 2 D

j

, j 2 Jg:
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The important fact about E

st

(X; u; v) is the following:

Theorem: E

st

(X; u; v) does not depend on the choice of the resolution of singularities

% : Y ! X.

1. The function E

st

(X; u; v) allows to de�ne stringy Hodge numbers h

p;q

st

(X) of singular

projective algebraic varieties X.

Def.: Assume that X is a projective algebraic variety with at worst Gorenstein canonical

singularities and E

st

(X; u; v) is a polynomial. Then we de�ne h

p;q

st

(X) by the formula

E

st

(X; u; v) =

X

p;q

(�1)

p+q

h

p;q

st

(X)u

p

v

q

:

2. The function E

st

(X; u; v) allows to formulate the topological mirror duality test even in

the case, when E

st

(X; u; v) is not polynomial. For a mirror pair (X;

^

X) one expects:

E

st

(X; u; v) = (�u)

d

E

st

(

^

X; u

�1

; v) d = dimX = dim

^

X:

3. The specialisation u = v = 1 gives the following formula for the stringy Euler number

of X:

e

st

=

X

J�f1;::: ;rg

e(D

0

y

)

Y

j2J

1

a

j

+ 1

;

where e(D

0

J

) is the usual Euler number of D

0

J

. In the case, when X = V=G where G is a

�nite group acting on V and the covering V! X is umrami�ed in codimension 1 one has:

Theorem:

e

st

:=

1

jGj

X

g;h

[g;h]=1

e(V

g

\ V

h

); where V

g

= fx 2 V : gx = xg:

This formula for e

st

(X) has appeared in the paper \Strings on orbifolds" by Dixon,

Harvey, Vafa and Witten in 1989.

Viacheslav V. Nikulin (Steklov Mathematical Institute)

Algebraic surfaces with �nite polyhedral K�ahler cone

We consider non{singular projective algebraic surfaces X over C with �nite polyhedral

K�ahler cone (X 2 fpkc).

Classi�cation of 3{folds (e.g. Calabi{Yau) with fpkc would be of great interest, and one

can consider the 2{dimensional case as a model. We expect that surfaces X 2 fpkc have

very interesting quantum cohomology related with automorphic forms (e.g. Borcherds type

automorphic products).

A surface X 2 fpkc has natural invariants % = rkNS(X), �

E

= max

D2Exc(X)

f�D

2

g, p

E

=

max

D2Exc(X)

p

a

(D). Here Exc(X) is the set of all exceptional curves on X. We prove
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Theorem:

X 2 fpkc has an ample e�ective divisor h such that h

2

� N(%; �

R

), and has a very ample

divisor h

0

such that h

0

2

� N(%; �

E

; %

E

). Here we suppose that % � 3. In this sense the set

X 2 fpkc is bounded for �xed % � 3, �

E

, p

E

.

We give examples which show that the theorem is not valid if one does not �x one of the

invariants %, �

E

, p

E

.

Because of the theorem, it is interesting to classify X 2 fpkc for small %, �

E

, p

E

.

For �

E

= 1, p

E

= 0 we get non{singular Del Pezzo surfaces. We give a classi�cation of

X 2 fpkc with �

E

= 2, p

E

= 0. It contains K3, Enriques, minimal resolutions of Del Pezzo

with Du V�al singularities, rational surfaces and nef({K).

Ralph Blumenhagen (Humboldt{Universit�at, Berlin)

Non{tachyonic orientifolds of type 0B in various dimensions

Type 0B string theory is a non{supersymmetric string theory in ten space{time dimensions.

It is plagued with an inconsistency namely the appearance of a tachyon in the spectrum.

It was shown, that one can de�ne an orbifold of this model, in which the tachyonic mode is

projected out. One can cancel all RR{tadpoles by introducing two kinds of D9{branes in

the background. However, a dilaton tadpole survives which can be cured by the Fischler{

Susskind mechanism. Equipped with this ten{dimensional string theory, compacti�cations

to six and four dimensions were investigated. After cancelling all RR{tadpoles by in-

troducing suitable D{branes, we arrived at non{supersymmetric anomaly free low energy

e�ective �eld theories. Phenomenologically, these models have some interesting features,

as a purely bosonic gauge group and fermionic matter in non{singlet representations of the

gauge group.

Wednesday:

Mic~ael Flohr (King's College, London)

Logarithmic conformal �eld theory on Riemann surfaces and applications to

strings, branes and Seiberg{Witten models

Logarithmic conformal �eld theory (LCFT) is a generalisation of conformal �eld theory

where correlation functions may exhibit logarithmic divergencies.

A prominent example is the simple b{c ghost system of two anticommuting �elds of spin 1

and 0, which has central charge c = �2. Following old ideas of Knizhnik, b{c systems on

Riemann surfaces � can be considered as b{c systems on IP

1

, where � is represented as a

branched covering of IP

1

and the e�ect of branch points is simulated by appropriate vertex

operators V

q

(z) = : exp(iq'(z)) : (' being a free �eld) which are added to the spectrum

of the CFT. We concentrate on the simplest case, � being hyperelliptic. It is shown that

including the branch point vertex operator V

1

2

necessarily leads to a LCFT. This can al-

ready be seen in the case � = torus, represented as a double covering of IP

1

which 4 branch

points. The b{c system represents 1{ and 0{di�erentials. Periods of such di�erentials are

expressed as correlation functions, e.g. �




=

H




! = hhV

1

2

(e

1

)V

1

2

(e

2

)V

1

2

(e

3

)V

1

2

(e

4

)ii

(
)

,

7



where e

1

; : : : ; e

4

are the branch points of the torus and hh: : : ii means that the correlation

function is divided by its free part. The curve 
 de�nes the contour of the screening charge

integration, yielding a basis of conformal blocks. In the above case, two linearly indepen-

dent blocks exist, one of them exhibiting a logarithmic singularity. Such logarithms occur

precisely, when screening charge integration contours get pinched due to insertions of op-

erator product expansions. As a consequence, the theory must be enlarged by logarithmic

partners of vertex operators, �

q

(z) =

@

@z

V

q

(z). In the case of the c = �2 b{c system, one

still can construct a consistent theory, but there exist many more consistent LCFTs.

One particular application is Seiberg{Witten theory of N=2 supersymmetric Yang{Mills

theory. The scalar modes are given by the periods of a certain meromorphic 1{form �

SW

associated to a Riemann surface � which encodes the moduli space of the Seiberg{Witten

theory. Representing � and this 1{form as above with vertex operators allows to compute

these periods as correlation functions, which can be expressed in terms of Lauricella F

D

{

functions. Asymptotic regions of the moduli space, where certain BPS states become light,

are particularly simple, since they correspond to branch points 
owing together (shrinking

cycles), i.e. insertions of OPEs.

Other applications include the computation of periods of Calabi{Yau string compacti�ca-

tions.

A physical interpretation is yet incomplete, but might be related to a description of Seiberg{

Witten theory in terms of intersecting branes, the latter forming an interacting \gas"

described by our LCFT.

Phillipe Ruelle (Universit�e Louvain{la{Neuve)

Symmetries in boundary conformal �eld theories

Boundary conditions in a boundary conformal �eld theory can be examined in the light

of an internal symmetry, of any. This talk has focussed more speci�cally on the Virasoro

minimal models on a cylinder (or an annulus). A minimal model is speci�ed, from its

modular invariant partition function, by a pair of simple Lie algebras (A,G) where G is of

ADE type, and has a symmetry group equal to the group of automorphisms of the Dynkin

diagram of G (with one exception). That symmetry can be thought of as a generalisation

of the spin 
ips of the Ising model.

The torus twisted partition functions can be explicitly computed and give information

about the �elds that arise in the di�erent monodromy sectors. Similarly on the cylinder,

the partition functions can be determined once the boundary conditions are known. For

the minimal models, all this can be made very explicit. It turns out that the most essential

features are encoded in the product Dynkin graph A�G.

The boundary conditions are indeed labelled by the nodes of A � G, and using the torus

data, one can see that the symmetry group acts on them by automorphisms of the Dynkin

graph of G. Restricting to the invariant boundary conditions, one can then compute the

twisted cylinder partition function and determine the charges of the various �elds. In turn,

these provide non{trivial selection rules on the re
ection coe�cients and on the boundary

operator product coe�cients.
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Christoph Schweigert (ETH H�onggerberg, Z�urich)

D{brane conformal �eld theory and traces on bundles of conformal blocks

It is explained that conformally invariant boundary conditions can be associated to the

irreducible representations of a �nite{dimensional semi simple algebra, the classifying al-

gebra.

The classifying algebra generalises the fusion algebra: its structure constants are the traces

of the action of certain automorphisms on spaces of conformal blocks (Such traces also

appear in the Verlinde formula for non{simply connected groups.). Various conjectures for

such formulae have been discussed.

Thursday:

Katrin Wendland (Physikalisches Institut der Universit�at Bonn)

Aspects of conformal �eld theory on K3

(joint work with Werner Nahm)

Any supersymmetric conformal �eld theory with central charge c = 6 and N = (4; 4)

supersymmetry corresponds to string propagation on a K3 surface or a four dimensional

torus. Given that the moduli space of Einstein metrics on a K3 surface is understood to

quite some extent, a precise comprehension of the correspondence between conformal �eld

theory and geometrical data might therefore provide a key to the classi�cation problem of

N = (4; 4), c = 6 superconformal �eld theories on K3.

Here { as a �rst step { we concentrate on \point by point" matches. One example of

this is the K3 obtained as blown up Z

4

{orbifold of a four{torus, allowing a very detailed

matching of conformal �eld theory and geometrical data. This model was conjectured

to coincide with Gepner's (2)

4

and with the Z

2

{orbifold of a torus with SO(8){lattice

but vanishing B{�eld by Eguchi/Ooguri/Taormina/Yang, who showed that their partition

functions agree. By studying the (1,0) current algebra and deformations of the theory, we

give further evidence for the �rst correspondence but rule out the second. Adding simple

currents to the (2)

4

and devoting the appropriate B{�eld for the Z

2

{orbifold we construct

models with enhanced symmetry which we conjecture to agree. Partition function, current

algebra and state by state matching support this strongly, as well as an agreement with

the SU(2)

4

1

torus model. Here we consider the pure conformal �eld theory picture (leaving

aside extended degrees of freedom), in which we seem to have found a crossing point of

torus and K3 moduli spaces.

A next step to be taken would be the precise localisation of our examples within the

\moduli space of K3 surfaces with B{�eld".

Bruce Hunt (MPI f�ur Mathematik in den Naturwissenschaften, Leipzig)

CY{�bered Calabi{Yau manifolds

A specially interesting class of Calabi{Yau varieties are given by those which possess a

�bration, X ! B. In this case the �ber must also be Calabi{Yau and there are strong

restrictions on the base B. In general the complex modulus of the �ber does change, but
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there are cases where one gets �brations of constant modulus. One construction of these

was discussed in this talk.

Let V

1

, V

2

be the weighted hypersurfaces de�ned by

V

1

= fx

2

0

+ p(x

1

; : : : ; x

n

) = 0g � IP

(w

0

;::: ;w

n

)

=: IP

w

V

2

= fy

2

0

+ q(y

1

; : : : ; y

m

) = 0g � IP

(v

0

;::: ;v

m

)

=: IP

v

X = fp(t

1

; : : : ; t

n

)� q(z

1

; : : : ; z

m

) = 0g � IP

(v

0

w

1

;::: ;v

0

w

n

;w

0

v

1

;::: ;w

0

v

m

)

= IP

v;w

Theorem:

The map

� : IP

w

� IP

v

! IP

v;w

((x

0

; : : : ; x

n

); (y

1

; : : : ; y

m

)) 7! (y

w

1

w

0

0

x

1

; : : : ; y

w

1

w

0

0

x

n

; x

v

1

v

0

0

y

1

; : : : ; x

v

1

v

0

0

y

m

)

restricts to V

1

� V

2

to a generically �nite to one map. If gcd(v

0

;w

0

; `) = 1, then X '

V

1

� V

2

=�

`

(� = `

th

roots of unity) is the quotient of V

1

� V

2

by a group of order `. If

w

0

> 1, then if X has a Calabi{Yau resolution

~

X,

~

X has a �bration onto a desingularisation

B of V

1

=�

`

, V

2

has a Calabi{Yau resolution.

An interesting consequence of this is in the case of usual projective space, i,e., unit weights.

Corollary:

Let X = fx

d

1

+ : : : + x

d

n

= 0g � IP

n�1

be a Fermat hypersurface of degree d, fn

1

; : : : ; n

�

g

a partition of n with n

i

� 2 8i, x

ik

, i = 1; : : : ; �, k = 1; : : : ; n

i

corresponding coordinates.

Then X is birational to the quotient of �(� Fermat hypersurfaces)

X

1

� : : :� X

�

; X

i

= fx

d

i0

+ : : :+ x

d

in

�

= 0g

by a group Z=dZ acting on the x

i0

, i = 1; : : : ; �.

Claudio Bartocci (Universit�a di Genova)

Mirror symmetry for K3 surfaces In his talk delivered at the '94 International Congress

of Mathematicians M. Kontsevich conjectured that mirror symmetry could be interpreted

as an equivalence of triangulated categories over mirror pairs of Calabi{Yau manifolds

X and

^

X. This conjecture �ts convincingly into the setting of Strominger{Yau{Zastow

interpretation of mirror symmetry. According to their approach { very roughly speaking,

both X and

^

X are Calabi{Yau manifolds admitting a �bration whose �bers are special

Lagrangian tori; the mirror dual should be regarded as the moduli space of deformations of

a special Lagrangian torus equipped with a 
at U(1){bundle. In order to state Kontsevich's

conjecture, we have to de�ne a suitable modi�cation of the so{called Fukarya category on

X, that we will denote by SF(X). Objects of SF(X) are pairs U = (M; E), where M is a

special Lagrangian submanifold of X and E is a 
at vector bundle on M. Morphisms turn

out to be rather complicated. Since two special Lagrangian cycles intersect (generically)

in a �nite number of points, we set Hom(U

1

;U

2

) =

L

p2M

1

\M

2

Hom

C

(E

1

j

p

; E

2

j

p

).
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The vector space Hom(U

1

;U

2

) has a Z{graduation induced by the Maslov index de�ned

at each point p. Moreover an A

00

{category structure is de�ned, by introducing suitably

de�ned linear maps:

m

k

: Hom(U

1

;U

2

)
 : : :
 Hom(U

k

;U

k+1

) �! Hom(U

1

;U

k+1

):

Kontsevich's conjecture claims the existence of an equivalence of triangulated categories be-

tween the derived category of SF(X) and DCoh(

^

X) (a, more precisely, as recently suggested

by Polishchuk, a re�ned version of this category endowed of an A

00

{category structure).

The conjecture was proven by Polishchuk and Zastow in the case of elliptic curves.

In my talk I show that Kontsevich's conjecture holds for K3 surfaces. We consider an

elliptic, M{polarised K3, X, equipped with a �bration whose �bers are special Lagrangian

tori. It is then possible { generically on the moduli space of M{polarised K3 surfaces { to �x

a hyper{K�ahler metric on X such that the K3 surfaced

^

X obtained by a

�

2

rotation of the

complex structure of X is

�

M{polarised (we are using Nikulin{Dolgachev's terminology).

Thus, X and

^

X are a mirror pair. The category SF(X) is essentially trivial due to the

following facts: 1. special Lagrangian cycles on X always intersect transversally, since they

are algebraic cycles on

^

X; 2. the Maslov index is trivial; 3. generically, m

k

= 0 for all

k 6= 2, and m

2

is then an associative composition. It should be noticed that the triviality

of SF(X) is related to the triviality of the quantum cohomology of K3 surfaces. Thus, it is

possible to identify SF(X) with an additive subcategory C(

^

X) of the category of coherent

O

^

X

{modules: C(

^

X) is the category of coherent sheaves supported on a divisor of

^

X.

In order to obtain a mirror map satisfying physical requirements, we have to compose the

equivalence D(SF(X))

�

�! D(C(

^

X)) with the equivalence of the derived category given

by the relative Fourier{Mukai transform S : D(

^

X) ! D(Jac(

^

X)), where Jac(

^

X) is the

compacti�ed Jacobian of the elliptically �bered K3

^

X.

Matthias R. Gaberdiel (DAMTP, Cambridge)

Non{BPS Dirichlet branes

It is explained how Dirichlet branes can be constructed and analysed without reference

to their space{time supersymmetry properties. In this approach they are described by

coherent boundary states of the closed string theory that satisfy a number of conditions

(i) the boundary states are physical states, i.e. are GSO{invariant and invariant under the

appropriate orbifold (or orientifold) projections, and (ii) the open strings that are induced

by the boundary state have consistent interactions with the original closed string theory.

For the case of the familiar Type II theories these conditions reproduce the known D{brane

spectrum, but these techniques can also be used for theories that break supersymmetry

completely (such as Type 0B or its orientifold) or for Dirichlet branes that break super-

symmetry completely in an otherwise supersymmetric theory. Non{BPS Dirichlet branes

of the latter kind play an important role in understanding string{string duality beyond the

11



BPS spectrum, in particular for the string theories

IIB T

4

=I

4

(�1)

F

L

T

IIA T

4

=I

4

f= K3 at orbifold pointg

S

�

�

�

�

�

�

�

�

�

�

S

IIBT

4

=
I

4

HeteroticT

4

where perturbative stable non{BPS states of the theories in the lower line correspond to

non{BPS D{branes in the theories in the top line.

(joint work with Oren Bergman)

Tony Pantev (University of Pennsylvania, Philadelphia)

Mirror symmetry and vector bundles

We consider several features of the quantum mirror symmetry duality as manifested in the

moduli spaces of Euclidean D{branes of type II string compacti�cation.

For the type I sector of the compacti�cation the moduli space of the Euclidean D{branes

is identi�ed with a component of the moduli space of semistable sheaves on a Calabi{Yau

3{fold X. We use secondary Abel{Jacobi maps and Fourier{Mukai transforms along the

�bers of elliptic �brations to construct special coordinates in this moduli space.

Concretely if S

�

! B is an elliptic K3 surface with an involution � : S ! S acting along

the �bers of � and such that � acts as �1 on the holomorphic (2,0) form on S consider the

Borcea{Voisin CY 3{fold X obtained from resolving (S � E)=(�;�1) for an elliptic curve

E.

If p : X ! Q is the elliptic �bration on X induced by � : S! B and if N is a component

of the moduli space of rank n sheaves on X that are of degree 0 along the �bers of p, then

one builds natural coordinates on N in two steps. First identify N with a moduli space

of spectral data (C;L) where C � X is a surface covering Q n:1 and L ! C is a line

bundle. This is achieved via a standard relative Fourier{Mukai transform along the �bers

of p : X ! Q. The next step is to consider Green's secondary AJ map for C � X: The

extension class e

C�X

of the extension of MHS

0 �!

H

2

(C)

H

2

(X)

�! H

3

(X;C) �! Ker(H

3

(X)! H

3

(C)) �! 0

can be interpreted as a homomorphism

e

C�X

: Ker

�

H

3

(X)! H

3

(C)

�

Z

�!

H

2

(C)

Z

H

2

(X)

Z


 S

1

:

Evaluating on the holomorphic 3{form of X and projecting on H

2;0

(C) we obtain a map

(moduli of C

0

s) �! H

0

(


2

C

)

.

�

H

2

(C)

Z

H

2

(X)

Z

�
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which can serve as coordinates.

This map matches Vafa's coordinates in the A{model and provides a basis for comparing

the appropriate correlators.

Friday:

Antoine Coste (Universit�e Paris{Sud)

Questions about SL

2

(Z=NZ) representations occurring in RCFT's

(In Memoriam C. Itzykson) SL

2

(Z) representations carried by characters of rational con-

formal �eld theories have many interesting properties:

We have checked W. Nahm's \working hypothesis" formulated at the birth of this �eld:

For sl(N)

k

, �(m) is in the kernel if m is the order of T. A proof uses classical O series

results.

Another point of view is that there are additional relations satis�ed by S, T together with

T

m

= 1 in order to make the quotient a �nite quotient of SL

2

(Z=mZ).

One can explicitly enumerate the q

3

(1 �

1

p

) elements SL

2

(Z=mZ) when q is p primary.

However, presentation of SL

2

(Z=mZ) by generators including Cartan{torus elements and

relations still fascinates me.

Galois properties of these representations are also striking: �(S

ab

) = "

�

(a)S

�(a) b)

= � � � .

Let me point to attention of reader that Altschuler, Ruelle and Thiran pointing out its

cocycle nature, recently simpli�ed the study of

^

G sign in terms of sl(2) factors.

What properties characterise these representations?

Another such property is that Pasquier Verlinde formula gives structure constants of a

based Z

sing

.

Factoring it by Q we get an algebra and it has been explained that it contains divisions

of 0 because the absence of nilpotents since Kawai makes it Q isomorphic to a product of

number �elds.

For

[

sl(2)

n�2

this corresponds to factorisation of Tchebiche� polynomials into irreducibles.

We know in general how to build up idempotents.

It is possible to formulate various axiomatics for these mathematical objects in order to

include various situations such as centers of group algebras, representation rings, algebraic

integer rings.

So many and so various relationships with smart mathematics.

Andreas Wi�kirchen (Physikalisches Institut der Universit�at Bonn)

Landau{Ginzburg vacua of string, M{ and F{theory at c=12

(joint work with Monika Lynker and Rolf Schimmrigk)

Theories in more than ten dimensions play an important role in understanding nonpertur-

bative aspects of string theory. Four dimensional compacti�cations of such theories can

be constructed via Calabi{Yau (CY) fourfolds. These models will be analysed particularly

e�ciently in the Landau{Ginzburg (LG) phase of the linear ��model, when available. We

focus on those ��models which have both a LG phase and a geometric CY phase de-

scribed by a hypersurface in weighted projective �ve{space. Assuming the hypersurface to

13



be transverse, one can construct an algorithm to �nd all possible weight systems. Some of

the pertinent properties of these 1,100,055 models, such as cohomology, mirror symmetry

and �bration structure, are presented. Using this data we plan to construct many dual

pairs

F(CY

4

) ! Het(V! CY

3

)

where V is a vector bundle of rank � 3 (or a sheaf) over the CY threefold.

Dra�zen Adamovi�c (University of Zagreb)

Representation theory of some irrational vertex algebras In

this talk we consider vertex algebras associated to highest weight representations of a�ne

Lie algebras and superconformal algebras. Vertex algebras associated to a�ne Lie algebras

at an integer level are rational and their irreducible representations are WZWN{models.

On a rational admissible level the representation is much complicated. We present the

decomposition result for

b

sl

2

vertex algebras (obtained in joint work with A. Miles). In

the second part of the talk we apply the representation theory of

b

sl

2

vertex algebras to

vertex algebras associated to the N=2 superconformal algebra and describe its irreducible

modules.

Markus Rosellen (MPI f�ur Mathematik, Bonn)

Mirror symmetry of Frobenius manifolds In the

�rst part of my talk I gave an introduction to Frobenius manifolds (FM). I motivated this

structure as \topological special geometry" on the deformation space of a topological CFT,

gave the de�nition and the A{ and B{model of a CY{manifold (Quantum cohomology,

Barannikov{Kontsevich construction, respectively) as two very important examples of it.

In the second part I discussed in detail the FM structure of Dubrovin on Hurwitz spaces

H which is the 1{dimensional (global) case of Landau{Ginzburg models/Saits frameworks

which constitute the third large class of FMs. I introduced the hierarchy of primitive forms

which pull back the Grothendieck residue pairing to 
at metrics on H having all the same

rotation coe�cients. In the third part I stated the theorem that on any semisimple FM

the space of 
at metrics with �xed rotation coe�cients (i.e. a solution of the Darboux{

Egoro� equations) form such a hierarchy. I compared this hierarchy of metrics (where the

multiplication of the FM is �xed) with the deformations of the multiplication at tree{level

by gravitational descendant (where the metric on the FM is �xed).

Berichterstatter: Andreas Wi�kirchen, Bonn
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