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During the last years it became increasingly apparent that there are many instances in the
representation theory of Lie groups where techniques from complex analysis and geometry
play a decisive role. On the other hand representation theoretic methods, such as Fourier
series expansions for compact groups, are nowadays standard techniques in complex anal-
ysis. One area of mathematics, where both of these fields interact in a particularly fruitful
way is the harmonic analysis on causal symmetric spaces. Motivated by these interactions
both researchers working either in representation theory and researchers working in com-
plex analysis were invited to this conference by the organizers J. Faraut, A. T. Huckleberry
and K.-H. Neeb. By bringing these people together we tried to create an atmosphere of
scientific interaction resulting in a sharpening of some of the still somewhat vague ideas
at the interface of representation theory and complex analysis. In this sense, this meeting
with its 29 talks was aimed at a cross fertilization that could not be achieved by meetings
devoted to just one of the topics of representation theory or complex analysis alone.

Indication of the subject and specific goals

On a general level one of the basic purposes in the area where representation theory and
complex analysis flow together is the analysis of the representation of a group of biholo-
morphic transformations on a complex manifold on the space of holomorphic functions or
more generally on the cohomology of a vector bundle. On the geometric side an important
class of such representations consists of induced representations on cohomology spaces of
homogeneous vector bundles on orbits of real forms in flag manifolds. For compact real
forms one obtains in particular the classical Bott-Borel-Weil Theorem.

On the analytic side the method of analytic extension is a central tool in euclidean anal-
ysis, where one typically encounters holomorphic functions on certain tube domains or
bounded domains whose boundary values display various types of regularity. The tech-
nique of passing from spaces of holomorphic functions to their boundary values also shows
up in representation theory, where the boundary value maps are interesting intertwining
operators from a complex analytic picture to a “real” picture. A natural question in this
spirit is how to construct cohomological versions of Hardy spaces which one could use to
realize many important representations in a uniform way and hence obtain a better under-
standing of decompositions of representations on certain natural L?-spaces. This approach
to representation theory is called the “Gelfand-Gindikin Program.” Even though it has
been a guiding idea for several years it has not been completed to a satisfactory stage.



In the same way as on the level of function spaces Fourier transforms relate L2-spaces and
holomorphic functions, there exists a geometric version of this picture. On the one hand
side one has causal structures on symmetric spaces described by fields of cones and on the
other hand certain complex domains obtained by complexifying real domains in a certain
set of “imaginary directions” described by a convex cone. For symmetric spaces this corre-
spondence is established by a certain duality generalizing the duality between a cone and
the tube domain over the dual cone. This setup is well understood in the context of Jor-
dan theory where traditionally many different areas of mathematics such as pure algebra,
infinite dimensional complex analysis and operator theory flow together. Closely related
is the theory of spherical functions on ordered symmetric spaces. Originally motivated by
the study of integral operators in scattering theory respecting causality it has developed
into a mature theory parallel to Harish-Chandra’s treatment of Riemannian symmetric
spaces, where in some sense the prominent role of the compactness of the isotropy group
is replaced by a globally hyperbolic causal structure.

One main objective is to focus the attention of complex geometers working in the area of
group actions on problems in representation theoretic contexts. It is hoped that this will
lead to a complex analytic basis for new holomorphic realizations of representations of non-
compact semi-simple groups GG. There has indeed been a great deal of interesting progress
in the settings of symmetric spaces, Ol’shanskii domains, and, e.g., more generally in the
Stein or Kahlerian contexts, where positive definite structures such as plurisubharmonic
functions or Bergman-Kahler forms with certain invariance properties play a role. While
it is assumed that the participants will report on these developments, it is hoped that the
non-positive-definite side will also receive its due attention.

For example, special attention should be paid to the non-Stein, canonical, G x G-invariant
domains in G©, i.e., the cohomological side of the Gelfand-Gindikin program. The study of
non-Stein, in particular non-measurable, open G-orbits in flag manifolds G¢/P should be
intensified. Properties of their Barlet cycle spaces are of essential importance and require
understanding and development from the complex analytic side.

Furthermore, a systematic study of the Levi geometry of higher codimensional G-orbits is
at the present time an appropriate goal.

Conversely, such a conference will give the complex analysts the possibility of describing
results which lead to representation theoretic problems of independent interest. These
involve a wide range of spaces of holomorphic functions, differential forms etc., on complex
spaces equipped with, e.g., proper actions of Lie groups of holomorphic transformations.

As typical example one can mention the action of an isometry group of a Riemannian
manifold (M, g) on tubular neighborhoods in TM equipped with the adapted complex
structure or on the canonical Stein-Kahler complexification of a symplectic G-space. In
the former example the special case of M = G/K a Riemannian symmetric space is
particularly important for the cycle space considerations mentioned above.

On the analytic side the close interplay between harmonic analysis and complex geometry
is quite well visible in the theory of invariant Hilbert spaces of holomorphic functions. For
the curved tube domains in complexifications of causal symmetric spaces these Hilbert
spaces decompose as direct integrals of highest weight representations. These results seem
to scratch the surface of a more general theory which vastly generalizes the Fourier series
expansion techniques nowadays common in the study of holomorphic actions of compact
groups. On the other hand for many invariant Hilbert spaces of holomorphic functions the
corresponding reproducing kernel defines in a natural way a Kahler structure for which the



action of the group G is Hamiltonian and which corresponds to an embedding of the mani-
fold into a projective space of a Hilbert space. This technique is quite common in algebraic
geometry (the correspondence between ample line bundles and projective embeddings) and
is closely related to Bargmann transforms in the sense that it establishes a way back from
a “quantum object” (a Hilbert space) to a “classical object” (a Kahler manifold).



Abstracts

Minimal Representations and Jordan Algebras
DEHBIA ACHAB

A minimal representation of a simple real Lie group is a unitary (irreducible) representation
which is associated to the minimal nilpotent complex coadjoint orbit. The most famous
minimal representation of a simple real and Hermitian Lie group is the Segal-Shale-Weil
representation. It is known to admit a Fock model realization in a Hilbert space of holo-
morphic functions.

In the non Hermitian case, the analogues of these Fock models have been recently con-
structed, in a uniform manner, by the work of R.Brylinski and B.Kostant. They are
realized in spaces of holomorphic sections of a half-form bundle over some variety Y, which
is intimately related to the minimal nilpotent orbit. More precisely, let Gr a real non
Hermitian and non compact form of a complex simple Lie group G' and gr and g the
corresponding Lie algebras. Let Ki be the compact maximal subgroup of Gg, tg its Lie
algebra, gr = g @ pr the Cartan decomposition and g = €@ p its complexification. Denote
by Onin the minimal nilpotent adjoint orbit in g. An irreducible unitary representation
(m,H) of Gy is called minimal if the variety of zeroes of the graded ideal associated to the
annihilator of 7, is equal to the closure of O,,;,. If there exists a minimal representation
of G, then the variety Y := O,;, N p is nonewpty and it is the conical K-orbit in p. In
this case, the non Hermitian symmetric pair (g, €) is called Op,;,-split. These pairs have
been classified by R.Brylinski and B.Kostant, and they found a bijective correspondance
between the non Hermitian O,,;,-split symmetric pairs (g, €) and the pairs (J, P), where
J is a semisimple Euclidean Jordan algebra of rank < 4 and different of 3, and P is a
L-semiinvariant homogeneous polynomial of degree 4, over .J, with L being the structure
group of J. The Lie algebra ¢ is the conformal Lie algebra (the Kantor-Koecher-Tits) of
the complexified Jordan algebra V' = J¢.

In this work, we use the Jordan algebras characterize the Lie structure of the pairs (g, £)
and to describe more explicitely the minimal representation, which is realized in a Hilbert
space of holomorphic functions over C* x V. Moreover, an integral formula (over C* x V)
is also obtained for the Hilbert space norm, the densities have been calculated explicitely
using Meijer G-functions.

Averaging operators on homogeneous spaces and characters of simple
compact Lie groups

D. AKHIEZER

Let M be a compact Riemannian manifold, @ = {g1,... ,gqs} a finite set of isometries of
M, and Ty an operator in L?(M) acting by

(Tof) (@) =) (flg;2) + flg;'x)).

J=1



Following A.Lubotzky, R.Phillips and P.Sarnak (1987), we define the operator discrepancy

of Q by 1 1
Q_d(TQf) - VOI(M) /]\/[ fdw

where dw is the Riemannian measure. The operator discrepancy d¢ is regarded as the
measure of equidistribution of the sequence of isometries g1,... , g4, 9; ', ... ,gd’l. In order
to find optimally distributed sequences, one has to make dgp as small as possible. For
M = S% A.Lubotzky, R.Phillips and P.Sarnak established a lower bound for dg. We
generalize this result in the following way.

Theorem Let K be a centerless connected compact simple Lie group and let M = K/L,

dg = sup

Y

[1fl=1

where L is any closed subgroup of K. Then

V2d—1

do >
°=
for any subset Q = {g1,...,94} C K. The equality is possible only if the group T' generated
by g1,..., 94 15 free and g1, ..., gq are free generators of I'. If I is amenable then dg = 1.

For any connected simple compact Lie group K denote by x, the character of a simple

complex K-module with highest weight A and let d) be the dimension of this K-module.
The proof of the above theorem is based on the following fact:

xa(9)
dy

for any fixed non-central element g € K.

—0 as dy — 00 (*)

We sketched an algebraic proof of (*) using Kempf restriction formula for representations.
After the conference, it turned out that (*) is found in the literature though the proofs are
different (D.Ragozin (1972), D.Rider (1972), K.Hare (1998)). We are grateful to A.Dooley
for drawing our attention to the work of last author, which also contains an interesting
estimate of the ratio in question.

Small representations and generalized Bessel functions
L. BARCHINI

Calculating explicit and natural realizations of unitary representations (especially singular
ones) has been a very fruitful field of study in representation theory. Detailed knowledge
of a representation frequently comes through use of a good realization. We study real-
izations of small representations and present two examples. The first example comprise
the most singular (scalar) representations in the analytic continuation of the discrete se-
ries of SU(n,n). The second example is a finite family of unitarizable representations of
SO(2n,2n). These second family of unitarizable representations is studied algebraically
by Sahi. The first example is based on joint work with Mark Sepanski. If O, denotes the
set of n X n hermitian matrices of signature (p,0), then we obtained the known result that
the space of L?—functions on O, is a unitary representation of SU(n,n). Our approach to
this result is knew and has the merit that the group action and invariance of the Hilbert
structure come very naturally from the construction. Starting with a certain degenerate
principal series of SU(n,n), a Szegd map is used to construct an intertwining operator
to sections of a line bundle over SU(n,n)/S(U(n) x U(n)). taking boundary values then
yields an intertwin ing map, A, to the opposite degenerate principal series. On the other



hand, we produce a second splitting of the intertwining map A through L?*(O,) by using
restrictions of Fourier transforms. We show that all maps in both splittings of A are con-
tinuous. As a result the copy of L?(O,) in the degenerate principal series coincides with the
image of the G-map A and thus it is G-invariant. The Inner product on L?*(Op) coincides
with the inner standard inner product induced by A and thus it is G-invariant.

In the second example we only do part of the program. We compute the Fourier transform
in the sense of distribution of the Szegé kernel. The computations have interest on their
own (not just in connection with our project). We express the Fourier transform in terms
of Shimura’s Generalized Bessel Functions. These functions live on space of 2n x 2n skew
symmetric matrices of rank 2j. We denote that space by O,;. We prove that the F'T of
the Szego kernel lies in L?(Oy;).

Analysis on tube domains over symmetric cones
D. BEKOLLE

(report on joint work in progress with A. BoNAMI and G. GARRIGOS)

Let €2 be a irreducible symmetric cone in a real Euclidean space V', which we regard as a
Euclidean Jordan algebra. We denote n = dim/(V'),r = rank(Q) and A(x) = det(z) (v €
V). Let Tq =V +iQ be the tube domain over the cone Q. For v real and p € [0, ), set

L = [7(To, A(y)"~ 7 dudy)

and define the weighted Bergman space A? to be AL = L2 Hol(Q). If v < 22, then
AP = {0}; when v > 27", the space A? is a closed subspace of L?. In this case, we define
the weighted Bergman projection to be the orthogonal projection of the Hilbert space L2
onto its closed subspace A2. Then:

P,,f(z):/T By(zu+iv) f(u+ i) A (v)dudv  (f € I2)

where B, (z,w) is the corresponding weighted Bergman kernel of Tg. Define also the
operator P} by

Prf(z)= | |B,(z,u+ iv)|f(w)A""F (v)dudv.
Ta

Theorem. There are 3 positive numbers p;(v), p2(v), p(v) satisfying 2 < pi(v) < p2(v) <
p(v), such that the following properties hold :
(i) P} is bounded on L” if and only if p € (p|(v),p1(v)) (in which case, P, also extends to
a bounded operator from L? to AP) ;
(ii) if P, also extends to a bounded operator from L to AP, then p € (p)(v), p2(v)); (iii)
P, also extends to a bounded operator from L? to AL if p € (p'(v), p(v)).

As usual, ¢’ denotes the conjugate exponent of ¢ € (1, 00).

Assertions (i) and (ii) have been known for some time ([D. Békollé, A. Bonami, 1995] and
[D. Békollé, A. Temgoua Kagou, 1995]).

Assertion (iii) was proved in 1999 for tube domains over Lorentz cones

[D. Békollé, A. Bonami, M.M. Peloso, F. Ricci].



The problem is to generalize the results of [D. Békollé, A. Bonami, M.M. Peloso, F. Ricci]
to general symmetric cones. Four geometric estimates on the cone €2 are needed for the
proof.
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Complex Analysis and representation theory
W. BERTRAM

In Lie theory one can “integrate” the bilinear Lie bracket from the Lie algebra to a global
group structure on a Lie group, and similarly one can integrate the trilinear Lie triple
bracket from a Lie triple system to a global product map on a symmetric space (theory
of O. Loos). In this talk we present a counterpart of this feature in Jordan theory: the
integrated version of the trilinear product of a Hermitian Jordan triple system is what we
call a circled space, that is, a complex manifold generalizing axiomatically the product map
7 : D x D — D on the unit disc D defined by j(z,y) := j.(y) := g(i(¢"'.z)) (z = .0,
g € SU(1,1)), and the integrated version of a general Jordan triple system is what we call
a ruled space which generalizes the family of product maps p, : M x M — M (r a real
number) defined on the real projective space M by

(1) pr(lz] [y]) = [(1 = r){z, )z + r(z, 2)y].
A closer look shows that this map arises from a natural ternary product map
(2) fr(l2], (AL [y]) = [(1 = m)A(Y)z + rA(z)y]

defined on a Zariski-dense subset of M x M’ x M (where M’ is the dual projective space).
This map satisfies certain algebraic identities which define an object we call a “generalized
projective geometry” (this, in turn, is the integrated version of a Jordan pair). Identifying
[z] and [A] via a polarity M — M’', we get (1), and letting r = —1 we get the symmetric
space structure of M in the sense of Loos. In fact, all classical and many exceptional
symmetric spaces are obtained in a similar way from generalized projective geometries —
this can be shown by classification; a conceptual explanation seems to be an open problem.

Harmonic, pluriharmonic and Hua-harmonic functions
E. DAMEK

Let D be a symmetric Siegel domain. There exists a solvable Lie group S which acts simply
transitively as a group of biholomorphisms on D. We study the class of S-invariant real
elliptic degenerate second order operators on D which annihilate holomorphic functions
and, consequently, their real and imaginary parts: the pluriharmonic functions. Such
operators will be called admissible.



Theorem(E.Damek, A.Hulanicki, D.Miiller, M.Peloso) Let D be a symmetric Siegel do-
main. Given an admissible elliptic operator L on D there are two admissible operators A
and £ such that if a real valued function F' satisfies H? condition

sup/ |F(us)|? du < oo.
seS JN(®)

and LF = AF = LF = 0 then F is the real part of a holomorphic H2-function. For the
domain biholomorphically equivalent to the complex ball L and A are sufficient.

For tube domains there is a stronger result.

Theorem(D.Buraczewski, E.Damek, A.Hulanicki) Let D be a symmetric tube domain.
Given an admissible elliptic operator L on D there is an admissible operator A such that
if a real valued function F' is bounded and LF = AF = 0 then F is pluriharmonic.

The classical Hua system for symmetric tube domains can be generalized as follows

HF =Y (AjuF) R(Zj, Zi) o, 1
71,k

where 71, ..., Z,, is an orthonormal basis of the holomorphic tangent boundle 7.
Theorem(A.Bonami, D.Buraczewski, E.Damek, A.Hulanicki, R.Penney, B.Trojan) Let F
be a real valued function satisfying H? condition on a non-tube irreducible symmetric
domain. If HF = 0 then F is the real part of a holomorphic H? function.

Asymptotic spectral geometry
A. DEITMAR

Let M <« M; < M, < ... be a tower of finite coverings of a Riemannian manifold
converging to the universal covering M, and let D be an elliptic differential operator on
M. Let D; be its lift to M;.

If M is compact the spectral distribution of D; converges in a precise sense to the spectral
distribution of Dy, as j tends to co. If the M; are locally symmetric spaces of the form
[';\G/K then the assertion can be extended to the representation theoretic spectrum of
the group GG. The corresponding convergence assertion was conjectured by DeGeorge and
Wallach and later proven by Clozel and Delorme.

If M is noncompact very little can be said in general. In the case of arithmetical quotients
of symmetric spaces Werner Hoffmann and the author succeeded to show an analogous
assertion. It turns out that one has as well to take the continuous spectrum into the
picture.

Orbital convolutions, wrapping maps and e-functions
A.H. DOOLEY

Let G be a compact Lie group. Each coadjoint orbit passes through t** in a unique point
A. Let py be the measure on the orbit normalised to have measure Il ¢+ < pt, @ >. Then
we can write
ke = | N &, B)ugdp.
t*
Here, N(\, &, 3) is a certain function on t**, which can be described combinatorially.



Further, one can link orbital convolutions and convolution of central measures and distri-
butions on G by the wrapping map, introduced by the speaker and N.J.Wildberger [2].
Define ® from the Ad-invariant distributions of compact support on g to central distribu-
tions on G as follows. We define < ®(v), f >=< v, j.f oexp >, for f € C*°(G). Here, j is
a suitable square root of the Jacobian of exp, given by j(X) = Iyecq+sina(H)/a(H). The
wrapping formula then says ®(u) x¢ ®(v) = ®(v x4 p).

Several applications exist of this global formula in particular to the Duflo isomorphism
and the Kirillov character formula and their generalisations. Wildberger, Lipsman and I
have found an extension of this formula to semi-direct products of vector times compact
Lie groups: one can use this formula to deduce the Lipsman character formula for the
semi-direct products, describe the hypergroups of adjoint, coadjoint orbits as duals of each
other, and relate this to the convolution of conjugacy classes.

This theory goes through for compact symmetric spaces; one can describe K-invariant con-
volution on G/K in terms of K-invariant convolution on p, and this generalises Rouviére’s
Kashiwara-Vergne formula. Specifically, if we define

< prely f >:/ p(X)v(Y)e(X,Y)f(X +Y)dXdY,

SXS
then we have the formula
D(p) x5 B(v) = (pHes V).
Here, e(X,Y) is as follows. Let X, Y and X + Y be congugate to Hy, H, and H3 € a
respectively. Then

H “o(H. “i(Hs))\™
G(X, Y) = Hae‘l>+Hw0,w1€W <COS(a( 1) ra ( 2) ra ( 3))>

(a(Hy) + @0 (Hy) + a#1(Hs3))
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Geometry and analysis on symmetric spaces of hermitian type
J. FARAUT and P. GRACZYK

The theory of Hardy spaces on complex semigroups was generalized by Hilgert, ’Olafsson
and Orsted (1991) to a class of symmetric spaces called symmetric spaces of Hermitian
type (compactly causal in the terminology of ’Olafsson and Orsted). In our work we
present another, geometrical approach to Hardy spaces on such symmetric spaces, using
also tools of Jordan algebras and Jordan triple systems. Molchanov’s hyperboloids are one
of the most important examples of a symmetric space of Hermitian type.

Let D be a bounded symmetric complex domain in a complex vector space V ~ C".
Equipped with the Bergman metric, D is a Hermitian symmetric space D ~ G /K.



Let v be a complex conjugation of V, i.e. an antilinear involution of V. If v(D) = D we
will say that v is a complex conjugation of D. We associate to v an involution ¢ of G
defined by
o(g)=vogov.
This involution commutes with the Cartan involution @ of G' for which K = G?. Let
H=G"={g€G|olg) =g}

The symmetric space G/H is called symmetric space of Hermitian type. This defini-
tion is equivalent to that of ’Olafsson and Orsted. Using our approach one gives a classifica-
tion of symmetric spaces of Hermitian type using results of Loos and others on classification
of complex conjugations of D. Cartan subspaces, root systems and the Harish-Chandra
homomorphism are discussed from our geometrical point of view.

In the analysis of Hardy spaces on symmetric spaces of Hermitian type or, equivalently, of
the holomorphic discrete series representations of these spaces, we introduce and exploit
properties of conical functions.

Let = C G/H be the domain of Hardy spaces on G/H. A conical function is a holomorphic
function on = which is semi-invariant with respect to a solvable subgroup of G. We discuss
the relation of conical functions with irreducible representations of K which are K N H-
spherical. We prove that conical functions with the same weight are proportional and that
each (non-trivial) invariant and C-negative Hilbert subspace H of O(Z) contains a non-
zero conical function. This allows us, among others, to give a new proof of the spectral
theorem on .

Bi-invariant domains in complex semisimple Lie groups

G. FELS
Our investigation is inspired by a paper of Gelfand and Gindikin [GG], wherein the
authors study certain domains ©Q in G = SL(2,C), invariant under the bi-action of
G® = SL(2,R) :

GExGR x G— G (91;92)a$'—>91x951

Some of these domains carry a natural Hilbert space structure of Hardy type H?(Q) C
O(Q) such that the regular representation of G® on H?(Q) can be decomposed into a
direct sum of irreducible unitary representations with finite multiplicities, each of them be-
longing to the holomorphic discrete series. This result has been generalized by Olshankii
[01], [02] for G* being a Hermitian real form of G. Further, there exists an Ad(G®)-
invariant closed and pointed cone C' = Crumaee in Y, the Lie algebra of G®, such that
Q =T(C) &2 G® x exp(iC°) and Q =2 G® x iC' has a semigroup structure. We refer to
these domains as Olshanskii domains. There is a hope that other bi-invariant domains in
G can also be related to some series of representations of G, see [GG]. Note that the
Olshanskii domains are Stein ([N]). Our contribution to this subject is the following. Let
G be complex semisimple and G® an arbitrary non-compact real form. For simplicity
we assume that (G,GY¥) is irreducible as a symmetric pair. We show that if D C G
is a Stein bi-invariant domain then either D is equal to G or, in the case when G® is
Hermitian, there are also proper bi-invariant Stein domains which are contained in an
Olshanskii domain I'(C) or in an appropriate translate I'(Cy)n with n € Ng(t) and
no(n)~' € Z(G@). Here, o : G — G denote the conjugation with respect to G* and tC g
is a Cartan subalgebra, such that m® = © C Y® is compactly embedded. In order to

10



prove this fact we first give a description of the natural G® x G®-equivariant stratification
of G ([BF1]). Then a quite explicit analysis of the CR-geometry of the principal orbits
([FG]) and some non-principal G¥ x G®-strata ([BF2]), i.e., computing the corresponding
Levi cones, yields the result. It shows in particular that in attempting to produce natural
representations of G® from bi-invariant domains not contained in the Olshanskii domains,
one has to consider subspaces of higher cohomology groups rather than O(Q).
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Invariant domains in the commplexification of a non-compact Riemannian
symmetric space

L. GEATTI

Let G/K be an irreducible non-compact Riemannian symmetric space. The group G acts
by left translations on the Stein manifold G¢/K®. This action determines a finite number
of invariant regions, whose union is dense in G®/K® and which roughly correspond to
the different types of closed G -orbits of maximal dimension (generic orbits). By studying
the invariant CR-structure that generic orbits inherit from the complex manifold G¢/K®,
we determine which generic orbits can lie in the boundary of an invariant Stein domain
in G®/K® or in a level set of an invariant plurisubharmonic function. As a result, only
some of the above regions may contain invariant Stein subdomains and admit non-constant
invariant plurisubharmonic functions.

One of them is the region X, introduced in [AG], which consists of all G -orbits intersect-
ing the compact dual symmetric space U/K = U -e C G®/KC. In general, X, contains
several copies of the symmetric space G/K, and each of them comes with a distinguished
invariant neighbourhood. These domains, say Dy,...,D,,, indeed contain Stein in-
variant subdomains and carry non-constant invariant plurisuharmonic functions. They are
conjectured to be Stein [AG] and to be related to the parameter space of linear cycles in
flag domains [WZ]. They also carry a canonical G -invariant Kaehler structure compatible
with the Riemannian structure of G/K (see [LS][Sz|[GS]).

11



When the group G is of Hermitian type and G®/K® contains compactly causal symmetric
spaces G/H as minimal orbits, there are other regions in G®/K® containing invariant
Stein subdomains. They are of the form Sy := G expiW, where W is a maximal Ady -
stable regular elliptic cone in the tangent space T(G/H),, p € G/H. The domains Syy
were showed to be Stein in [Ne]. Moreover, their invariant plurisubharmonic functions
and Stein subdomains were completely characterized. Our results on the CR-structure

of generic orbits imply that, with few possible exceptions, all proper G -invariant Stein
domains in G®/K© are either contained in one of the domains Dy, ..., D,, or in one
of the domains Siyw,,...,S+tw,. The same holds for domains admitting non-constant in-
variant plurisubharmonic functions. The possible exceptions are domains whose boundary
entirely consists of non-generic orbits, to which our techniques do not apply. The domains
Dy, ..., D, are among them.
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Positive-definite functions on cones and tuves in infinite-dimensional spaces
H. GLOCKNER

1) Let Q be a convex set in a real vector space V', and ¢: Q2 — C be a function. Then ¢
is the Laplace transform of a positive measure p on the algebraic dual space V*, equipped
with the initial o-algebra o(ev,: 2 € V), if and only if ¢ is positive-definite and ¢ is
continuous on line segments.

2) Let S be a convex cone with non-empty interior in a real topological vector space V',
let a: S — [0,00[ be an absolute value on S (i.e., a(s+1t) < a(s)a(t) for all s,t € S)
which is locally bounded, and ¢: S — C be a function. Then ¢ is the Laplace transform of
a Radon measure on C, := {\ € V':expol|s < a}, equipped with the weak- x-topology,
if and only if ¢ is an a-bounded positive-definite function on S which is continuous on
line segments. Here ¢ is called a-bounded if ¢(s+1t) < a(t)p(s) for all s,t € S. If S is
open, the continuity assumption can be omitted.
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Analysis of probability measures on Lie groups and Gelfand pairs
P. GrRACZYK

Different fundamental properties of probability measures, which are classical and well
known in the commutative case, are still unknown on Lie groups and Riemannian symmet-
ric spaces. This last case is an example of a Gelfand pair. It turns out that this very general
setting of a Gelfand pair is very natural to ask and answer such important questions as:

e Do the two factorization theorems of Khinchin hold?

(Khinchin’s first theorem says that any probability measure on R can be written as a
countable product of indecomposable measures (possibly infinite) and a probability mea-
sure without indecomposable factors (called anti-indecomposable).

Khinchin’s second theorem says that any anti-indecomposable measure on R is infinitely
divisible.)

e Is the central limit theorem true? (the most general one, belonging to Khinchin in the
Euclidean case)

e Do the Gaussian measures have only Gaussian factors? ( a celebrated Cramer’s theorem
gives the positive answer on the real line)

These questions were studied in a joint work with C.R. Raja(Chennai). We prove the
Khinchin’s Theorems for the following Gelfand pairs (G, K) satisfying a condition (*): (a)
G is connected; (b) G is almost connected and Ad (G/M) is almost algebraic for some
compact normal subgroup M ; (¢) G admits a compact open normal subgroup; (d) (G, K)
is symmetric and G is 2-root compact; (e) G is a Zariski-connected p-adic algebraic group;
(f) compact extension of unipotent algebraic groups; (g) compact extension of connected
nilpotent groups. The condition (*):

for every compact subgroup M of G containing K, N(M) = N(K)M .
is always verified when K is a maximal compact subgroup of GG or when G is compact.
The main tools of our work are harmonic analysis and what is called ”algebraic probability
theory”, developed by Ruzsa and Szekely in a recent book.
We also prove that Cramer’s theorem does not hold for Gaussian measures on compact
Gelfand pairs.

Another group of questions concerns properties of Gaussian measures on Lie groups and
symmetric spaces. They are motivated by an absence of a non-analytical characterization
of Gaussian measures on these spaces (the only known definition of Gaussian measures is
via Laplace-Beltrami operator as the generator). In particular the following problems have
been and still are studied:

e Do the Gaussian measures are characterized by a Bernstein type property? ( indepen-
dence of XY and XY !'). This is a joint work with J.J. Loeb (Angers).

e Are the K -invariant Gaussian measures on Riemannian symmetric spaces stable? (the
negative answer is based on recent estimates of the heat kernel on symmetric spaces by
Anker and Ji)
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e Are the K -invariant Gaussian measures on Riemannian symmetric spaces the only anti-
indecomposable ones? This is known in rank one case and may be obtained for any rank
if one knows a product formula for spherical functions:

HX)Y) = [ (D Fxy(Z)am(2)

with some information on the kernel Fxy . In a joint work with P. Sawyer (Sudbury) we
have obtained such a formula in the complex case.

Hua and Ahlfors operators associated with generalized conformal structures
W. BERTRAM, J. HILGERT, B. ORSTED, A. PASQUALE

Let M,, be the bounded symmetric domain of complex p x ¢ matrices Z for which
Z7Z* — ¥, is positive definite. 1958 Hua introduced a system of second order differential
operators on M, , having as kernel precisely the Poisson integrals over the Shilov boundary.
Analogous constructions for general bounded symmetric domains have been studied e.g.
by Johnson-Koranyi, Berline-Vergne, Lassalle, and others. Bounded symmetric domains
admit a generalized conformal structure which can be described in terms of a Jordan triple
system. We describe the Hua operators for bounded symmetric domains in terms of the
Jordan triple system and show how this generalizes to arbitrary symmetric spaces with
generalized conformal structure. This in particular gives a way to define Hua operators for
real bounded symmetric domains.

In the same framework we introduce a general Ahlfors operator which, in contrast to the
Hua system, is conformally invariant and characterizes conformal vector fields. It turns
out that Hua systems as well as Ahlfors operators are closely related to (complementary)
generalized gradients.

K -invariant differential operators for a multiplicity-free-action
R.M. HOWE and G. RATCLIFF

Let V' be a complex vector space of dimension m and let K be a compact subgroup
of U(V), the group of unitary operators on V. If P(V) is the algebra of polynomial
functions on V', then the action of K on V induces an action on P(V). Let PD(V)
denote the polynomial coefficient differential operators on V', and denote by PD(V)¥
those operators in PD(V) that commute with the action of K on P(V). Via the usual
identification of PD(V)X with P(V) ® P(V*) we can identify PD(V)X with the K-
invariant tensors in P(V) ® P(V*). Since K is compact, the space P(V) decomposes
into an algebraic direct sum of finite dimensional irreducible subspaces,

PV)=> P,

where A is a countably infinite index set that parameterizes the representation, and where
the index « is usually the highest weight of an irreducible representation. We are interested
in the case where the above decomposition is multiplicity-free.

Via this identification we have

PD(V)=P(V)@P(V)=>_> P.®P},
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and it is a classical result that the identity representation appears in P, ® P; with multi-
plicity one if and only if (P,)* = Pj. Thus, for each a there is a unique (up to a scalar)
K -invariant tensor S, € P, ® P:. The collection {S,} is a vector space basis for the
space of K -invariants PD (V)X . For multiplicity free actions, PD(V)¥ is a commutative
algebra by Schur’s lemma.

The following questions are natural:

1) What is the K -decomposition of P(V')?

2) What are the K -invariant differential operators PD(V)X ? Equivalently, what are the
K -invariant tensors in P(V) @ P(V*)?

3) What are the eigenvalues?

In particular, we seek explicit formulas for the canonical invariants S, and their eigenval-
ues. Complete results have been obtained for certain cases.

Branching laws of unitary highest weight modules with respect to
semisimmple symmetric paris

T. KOBAYASHI

Let G D H be reductive Lie groups, and 7 € @, an irreducible unitary representation of
G . The restriction 7|y decomposes uniquely into irreducibles:

®
| z/A nx(o)odu(o) (branching law).
i

An interesting setting is the case n,(c) < 1 (multiplicity free). However, for a general
7 € G, the multiplicity n.(o) can be infinite even though (G, H) is a symmetric pair (cf.
[K —2]). We give a sufficient condition on 7 and (G, H) such that n,(o) < 1 for any
o€ IZ-\I .

Theorem A Let G be a non-compact Hermitian Lie group, (G, H) a symmetric pair,
and 7 € G a scalar highest weight module. Then 7|y decomposes with multiplicity free.
Analogous results also hold for ®-product, and for finite dimensional representations.
Theorem A gives a uniform explanation of multiplicity free results in classical cases, such as
GL,, x GL, -duality, the Clebsch-Gordan formula, the Plancherel formula for line bundles
over Hermitian symmetric spaces, the Kostant-Schmid formula, and so on, together with
new multiplicity free formulae. Among other cases, we give an explicit formula, when
m|g splits discretely: We say (G, H) is holomorphic type if H is defined by 7 € Aut(G)
acting holomorphically on G/K . Take ¢ C ¢ and extend t C ¢. Let k£ = R-rankG/H
and take a maximal set of strongly orthogonal roots {vy,..., v} in A(p7",¢"). Here is a
generalization of the Kostant-Schmid formula to non-compact H :

Theorem B: If L%(u) is a holomorphic discrete series of scalar type, and (G, H) is a
symmetric pair of holomorphic type, then

52}
LW ~Car > >ap >0 L"(ple =Y ajv).

[FT] J. Faraut and E. Thomas Invariant Hilbert spaces of holomorphic functions

[K — 1] T. Kobayashi Multiplicity free branching laws for unitary highest weight mod-
ules Proceedings of the Symposium on Representation Theory held at Saga, Kyushu 1997
(editor K. Mimachi) 1997, 9-17
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[K — 2] T. Kobayashi Discrete decomposability of the restriction of A,(\) with respect to
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[K — 3] T. Kobayashi Multiplicity-free restrictions of unitary highest weight modules for
reductive symmetric pairs

Jacques Faraut, man and mathematician

A. KORANYI

On the occasion of J. Faraut’s sixtieth birthday this was a brief account of his biography
and of his mathematical accomplishments. His work starts in potential theory and goes
on to cover a wide range of subjects. His most important results belong to the large field
of analysis on semi-simple Lie groups: he is a pioneer of the study of ordered symmetric
spaces and he did important work on special functions and Jordan algebras. He is the
author of several monographs and he is known for the large number of his former students
who have beome eminent mathematicians in their own right.

Analytic continuation of holomorphic forms

B. KrROTZ

This is a report on joint work with Dehbia Achab and Frank Betten.

Let G be a hermitian linear Lie group and I' < G an arbitrary discrete subgroup. We
write (my,H,) for a unitary highest weight representation of G with highest weight \ € it*
and vy € H, for a highest weight vector.

Theorem A. There exists a parameter X (in fact almost all subject to the condition of
being sufficientlty far away from the walls) such that the Poincaré-series

P(vy) = Z A (7y).vx

yer
converges in the module of hyperfunction vectors H,“ to a non-zero element in (H,“)" .m
If ne (Hy“)" and v € HY, then we can form the matrix coefficient
Opy: T\G — C, T — (m\(g).v,m).

If v is K -finite, then 0,, is called a holomorphic automorphic form. The functions
0,, have the remarkable property that they extend to holomorphic functions on a very
interesting G -biinvariant open Stein domain S C G, namely S is the open compression
semigroup of the bounded symmetric domain G/K C G¢/Ppax. One calls S a complex
Ol’shanskit semigroup. Note that T' acts on S properly discontinuously so that we can
form the quotient T'\S in the category of complex manifolds.
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Theorem B. 1.The quotient T\S is Stein, provided the analytically continued auto-
morphic forms vanish at infinity,
(VAI) lim _6,,(s) =0.

s—oo(in )
SES

2. If T < G is a uniform lattice, then (VAI) holds true. n

Jordan Compression Semigroups and Triple Decompositions
J. LAWSON

G. I. OU’sHANSKI introduced a remarkable class of subsemigroups of Lie groups which
have come to be called Ol’'shanski semigroups. A typical example of such a semigroup
arises in the complexification G¢ of a semisimple hermitian Lie group G by taking an
AdG -invariant convex cone C in the Lie algebra g of G and forming the semigroup
S = Gexp(iC) in Gg¢.

The existence of these (infinitesimally generated) semigroups at the group level manifests
itself in the existence of causal structures and causal partial orders at the homogeneous
space level. In the harmonic analysis carried out at the homogeneous space level (e.g.
in the analysis of kernels in Volterra algebras [1]), it is frequently crucial to know that
the partial order is “globally hyperbolic,” i.e., that the order intervals are compact. The
property of being globally hyperbolic has also played an important role in other contexts,
e.g. in the study of partial differential equations and in the causal orders that arise in
Lorentzian geometry. MITTENHUBER and NEEB have exploited this condition in their
study of the exponential function on ordered manifolds with affine connections [6].

We use recent results of B. KrROTZ and K.-H. NEEB [2] on hyperbolic cones to prove
that the homogeneous causal order arising from an Ol’shanski semigroup is always glob-
ally hyperbolic; this general result extends earlier work of J. FARAUT [1], followed by J.
HILGERT and G. OLAFSSON [3], who proved it for special cases.

Let G be a Lie group equipped with an involution 7. Then 7 induces an involution on
the Lie algebra g (making it a symmetric Lie algebra), and g is the direct sum of the +1-
eigenspace h and the —1-eigenspace q. Let H be a 7-fixed subgroup with Lie algebra
h. If g contains an AdH -invariant hyperbolic cone C, then H(expC) is an Ol’shanski
semigroup. One extremely useful structural property of such semigroups is the existence
and uniqueness of the “Ol’shanski polar decomposition”: each element s factors uniquely
as s = hexp(X), h € H, X € C. We consider the important special case that the
symmetric algebra g is of Cayley type (this means that g can be written as AdH -invariant
summands ¢t + q7, each of which is an abelian subalgebra). In this case we establish
that the Ol’'shanski semigroup has a unique triple decomposition S = exp(C~)H exp(C"),
which may be viewed as a semigroup variant of the Harish-Chandra decomposition. In [5]
necessary and sufficient conditions are given for the existence of the Ol’shanski semigroup,
given an Ad(H)-invariant hyperbolic cone in q. A very pleasant feature of the theory
established in this paper is that under the mild restriction that the cone is pointed, then for
cones of Cayley type the triple decomposition obtains whenever the Ol’shanski semigroup
exists.

Semigroups for which the triple decomposition holds include sympletic semigroups, or more
generally the conformal compression semigroup of a symmetric cone in an Euclidean Jordan
algebra. Such semigroups have been studied in detail by K. KOUFANY in [4]. Relying
heavily on Jordan algebra theoretic methods, he established the triple decomposition for
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this class of semigroups. We revisit this class of examples and show how these semigroups
fit within our framework and how the triple decomposition follows from our general results.
We also develop order-theoretic aspects of the structure of these semigroups, which we
call Jordan compression semigroups. In particular, we show that there is a unique closed
partial order in the compactification of a symmetric cone in the conformal compactification
of the real Jordan algebra in which it sits that extends the natural order of the cone. With
respect to this order the Jordan compression semigroup acts in an order preserving way.
Furthermore, there is a natural Finsler structure that can be defined from the order so the
members of the Jordan compression semigroup are actually contractions with respect to
the Finsler metric and members of the interior of the semigroup are strict contractions.
The preceding work represents joint work with Yongdo Lim.
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Coherent state representations and highest weight representations
W. LISIECKI

A coherent state (CS) representation of a connected Lie group G is an irreducible unitary
representation for which there is a complex G'-orbit on the projective space of all rays in
the representation space. The group G is called a CS group if it admits a CS representation
with discrete kernel. It is well known that any irreducible representation of a compact Lie
group is a CS representation (the complex orbit being the orbit through a highest weight
line). Some time ago I showed that noncompact reductive CS groups are precisely the
Hermitian groups and that their CS representations coincide with highest weight (HW)
representations. This was generalized by K.-H. Neeb who extended the theory of highest
weight representations to the class of connected Lie groups with admissible Lie algebra
and showed that any CS representation of such a group is a HW representation. An
admissible Lie algebra is necessarily unimodular. Here I present a complete classification
of unimodular CS groups. My approach is based on the structure theory of homogeneous
Kéhler manifolds due to Vinberg and Gindikin and Dorfmeister and Nakajima. On the
Lie algebra level, the classification theorem asserts that a unimodular Lie algebra is a CS
Lie algebra (i.e. is the Lie algebra of a CS Lie group) iff both its radical and Levi part are
CS Lie algebras. Moreover, unimodular solvable CS Lie algebras can also be classified. It
turns out that they need not be admissible. Thus even for unimodular groups the class of
CS representations is larger than that of HW representations.
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Invariant complex structures on the punctured cotangent bundle of compact
symmetric spaces

I.V. MYKYTYUK

Let G be a compact connected Lie group and K C G it’s closed subgroup. The natural
action of G on G/K extends to the (left) action of G on T*(G/K). This G-action
on T*(G/K) preserves the canonical symplectic 2-form 2. We denote by g the Lie
algebra of G and by ® a negative definite bilinear form on g associated with a faithful
representation of g. This form defines the G -invariant Riemannian metric ¢ on G/K .
Using g we can identify the cotangent bundle 7*(G/K) and the tangent bundle T'(G/K) .
The Hamiltonian function H which is associated with the given metric ¢ on G/K defines
the geodesic flow on T*(G/K): H(gK,§) = gyx(§,€),§ € T,x(G/K) ~ T,k (G/K) .
Different kind of geometric constructions which comes from geometric quantization natu-
rally lead to G'-invariant complex structures defined on the punctured cotangent bundle
T;(G/K) =T*(G/K) — {zero section} . Such structure .Jg for the spheres were found by
Souriau [So]. Later it was observed by Rawnsley [Ral], that the length function v/H is
strictly plurisubharmonic with respect to the above complex structure .Js and thus defines
a Kahler metric on T;S™ with the Kahler form (2. He also observed that Jg is invariant
with respect to the Hamiltonian flow of the length function /H (the normalized geodesic
flow) and used the Kéhler structure Jg to quantize the geodesic flow on the spheres [Ra2].
Subsequently Furutani and Tanaka [FT] defined a K&hler structure .Js with the analo-
gous properties on the punctured cotangent bundle of complex and quaternionic projective
spaces CP™, HP™ and used it for quantization.

In [Sz]| Szoke explored the relationship of Jg and so-called adapted complex structure
Ja on the respective cotangent bundle 7*(G/K) (associated with Riemannian metric ¢ ).
He showed that for all compact, rank-1 symmetric spaces (also for Cayley projective plane
CaP?) the family of complex structures obtained by pushing forward the adapted complex
structure with respect to an appropriate family of diffeomorphisms has a limit and this
limit complex structure coincides with Jg .

Let m be the orthogonal complement to Lie algebra ¢ of K in g relative & and m§ =
m* \ {0}. We have the natural Ad*-action of K on the dual space m*.

Theorem. Let G/K be a symmetric space and J a Kéhler structure on 7;(G/K)
with the Kéahler form €2. Suppose that .J is G -invariant and invariant with respect to
the normalized geodesic flow X ;. Then rank of the symmetric space G/K is equal
1. For every symmetric space G/K C {S™,CP",HP"(n > 2),CaP?} there is one-to-
one correspondence between the space of G -invariant and invariant with respect to the
normalized geodesic flow Kéahler structure on T3 (G/K) with the Kahler form © and the
space of Ad*K -invariant smooth function A : m§ — (mj)© with positive real part. In
particular, Jg = Jy, where A(§) = ay/—P(&, ), £ €m* ~¥m, and a € R" is a constant.
It is well known that the symmetric spaces G/K CP"™ = U(n+1)/U(1)xU(n) and HP™ =
Sp(m +1)/Sp(1) x Sp(m) are the quotient of the spheres S*, k = 2n + 1,4m + 1 with
respect to the action of the subgroup K; C K isomorphic to U(1) and Sp(1) respectively.
This action of K; on S* defines natural Hamiltonian action of K; on TjS* and the
moment mapping P : T;S* — ¢ . The reduced space P~1(0)/K; is isomorphic to the
punctured cotangent bundle T;(CP™) and T (HP™) respectively. By ([GS],Th.3.5) for
the Kihler structure Jg on Ty S* there is canonically associated reduced Kihler structure
J% on the quotient space P~'(0)/K; .

Theorem. The reduced Kahler structure Jg on the punctured cotangent bundle complex
and quaternionic projective spaces CP"™, HP™ coincides with Kahler structure .Js.
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This theorem allow us to quantize the normalized geodesic flow on CP", HP™ using
the simple quantization procedure on S* and general reduction theorems for Kihler and
vertical polarizations [GS,Go].
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Plancherel formula for Berezin deformation of L? on Riemannian symmetric
space
Yu. A. NERETIN

For instance, we consider Riemannian noncompact symmetric space B, , = O(p,q)/O(p) X
O(q) (we assume p < ¢). We realize this space as the space of real p x ¢ matrices with
norm less than 1. Let a« = 0,1,...,p—1 or p > 1. We consider the Hilbert space H,
defined by the positive definite kernel K,(z,u) = det(1 —zu*)® on B,,. We also consider
the natural representation of the group O(p,q) in the space H, .

1. There obtained the complete Plancherel formula for this representation.
For o > (p+ q)/2 — 1 the Plancherel measure is supported on principal nondegenerate
series and its density is
C- QWWX [ {TGla—(+a)/2+1+s)T(5(a— (p+q)/2+1—sp))} x
Hz—l F((Q*p)/§+sk)F((Q*p)/2*5k) x TI P(5(1si+s))D(5 (s =sx))T (5 (L=s1+5x))T (5 (1=s1—5))

= (sk)(=s%) ISE<I<p T(3(si+s6))T(5 (s1—58))T (5 (—s1+56))T (5 (—s1—58))
For o < (p+ q)/2 — 1 support of the Plancherel measure contain many components and
the density on each component is a long explicit product of I'-functions.

2. A natural limit of the spaces H, as o — oo is L? on the Riemannian noncompact
symmetric space O(p,q)/O(p)xO(q). Hilbert spaces H, are also well-defined for negative
integer . A natural limit of the spaces H,, as n — oo is the space L? on the Riemannian
compact symmetric space O(p + ¢q)/O(p) x O(q).
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Harmonic analysis on big groups and determinantal point processes
G. OLSHANSKI

The aim of the talk is to describe new phenomena arising in harmonic analysis on groups
with infinite-dimensional dual space. For certain such groups, irredicible representations
are naturally parametrized by infinite point confugurations on the line, and then spectral
measures on the dual space give rise to random point configurations (or point processes),
which can be described in terms of the correlation functions. I would like to give an un-
derstandable introduction to the subject, with emphasis on main ideas and new promising
connections.

Representations associated infinite-dimensional cones
B. ORSTED

This is a report on joint work with Karl-Hermann Neeb. Consider the automorphism
group of a classical infinite-dimensional tube domain corresponding to a Jordan algebra
U ; an example would be the unit ball of Hilbert-Schmidt operators on a complex Hilbert
space. One would like to give L? - realizations of the unitary highest weight representa-
tions of these groups, including the so-called vector-valued case, where the corresponding
reproducing kernel is operator-valued rather than just scalar-valued. For this we use the
"Bochner principle”, which under suitable conditions gives the existence of an operator-
valued measure 4 on a cone in the algebraic dual U* of the Jordan algebra U with Laplace
transform equal to the reproducing kernel. For a natural Hilbert-Schmidt completion L,
of the structure group L of U, and a similar completion U, of U, we construct an infinite
family of irreducible unitary representations of a natural extention of the semi-direct prod-
uct Us X Ly on L*(Uj, us), where po is a positive operator-valued measure with Laplace
transform equal to the reproducing kernel. This kernel has been renormalized in order to
allow taking determinants of operators of the form I+ X, X a Hilbert-Schmidt operator.

On the meromorphic extension of spherical functions on NCC symmetric
spaces

A. PASQUALE
Joint research with G. OLAFssON (Louisiana State University)

Let G/H be a noncompactly causal (NCC) symmetric space. We determine the mero-
morphic extension in the A-parameter of the spherical functions ¢,(z) on G/H as an
application of Bernstein’s Theorem on the complex powers of polynomials. It is known that
for all X is a certain subset £ of the complexification ag of a Cartan subspace a of the Lie
algebra of G, the spherical functions are given by Poisson integrals. For a suitably fixed
translation parameter ¢ € o* and all m € N, the meromorphic extension to ag satisfies
on £+ md the functional equation b, (N)pa(a) = (N, a), a € S°NA. Here S° is the
interior of the maximal semigroup for G/H , the function I,,(A,a) is given in the form of
an integral, and b,,(\) is a product of m § -translates of the Bernstein polynomial. The
regularity properties of ¢, are deduced. In particular, it follows that the possible poles of
@, are contained in the ¢ -translates of the zero set of the Bernstein polynomial. Applica-
tion of the functional equations are the asymptotic estimates for y(a) as a — oo. The
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expression of the Bernstein polynomial is conjectured. The relation between the proposed
conjecture and the product formula of the function cq is analyzed.

Hua harmonicity on Non-symmetric Domains
R. PENNEY

Let X be a Kéhler manifold. The Hua-Johnson-Kordnyi operator (HJK) is the Hom(T%"(M))
valued differential operator defined by

HIK (F) = 3. R(Z, Z,)0%(F)(Z:, 2;)| T
irj

where R is the curvature operator and Z; is a local orthonormal basis for T%!(M).
(It is easily seen that it is independent of the basis.) A function F' is Hua-harmonic if
HIK (F)=0.
If X isasymmetric tube domain, then results of Johnson-Koranyi, which generalize earlier
results of Hua, together with a result of Oshima-Sekiguchi, show that a Hua harmonic
function of exponential growth is the Poisson integral of a distribution over the Shilov
boundary. In this talk we presented generalizations of these results to the case of bounded,
homogeneous, but not necessarily symmetric, domains X = G/K in C". Our main
results are:
a) If F' is Hua-harmonic with exponential growth, then F' has a Van den Ban-Schlichtkrull
type asymptotic expansion where the coefficients are distributions on the unipotent radical
of G'. This expansion is explicitly computable from its “leading” terms, which are, by
definition, the boundary distributions for F'. They uniquely determine the solution F'.
b) The Poisson transform is explicitly computable.
c) If F satisfies an H? like growth condition and X is “sufficiently non-tube like,” then
F' is the sum of a holomorphic and anti-holomorphic function. In the symmetric case
“sufficiently non-tube like” means that X is a Siegel IT domain.
Property (c) was recently proved in the symmetric case by the author together with
Bonami, Buraczewski, Damek, Hulanicki, and Trojan. Our result above generalizes it
to the non-symmetric case. It represents a partial solution to a problem proposed in 1980
by Berline and Vergne.

Choquet theory applied to harmonic analysis
E.G.F. THOMAS

Choquet theory, following the work of G. Choquet, concerns the representation of elements
in a closed convex proper cone Gamma by sums or integrals over extremal generators
of the cone. One has precise results on the existence and uniqueness of such integral
representations.

A particular case is where Gamma is a cone of distributions of positive type on a Lie group
G. These distributions are reproducing kernels of G-invariant Hilbert spaces of distribu-
tions. The theory then predicts the existence of extremal generators which are characters
of irreducible representations or spherical distributions as the case may be. This gives rise
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to Plancherel formulas for homogeneous spaces in a general framework. The decompo-
sitions are unique iff the situation is multiplicity free. This is the case if there exists an
antilinear automorphism of the surrounding space leaving invariant the G-invariant Hilbert
subspaces.

Another particular case is the one where Gamma is a cone of positive definite kernels,
reproducing kernels of Hilbert spaces of holomorphic functions on complex manifold, invari-
ant under the action of a complex group. One then similarly obtains Plancherel formulas
within the framework of holomorphic analysis. In joint work with J. Faraut (J. Lie theory 9
(1999) 381-400) we obtain a simple criterion implying that the situation is multiplicity free.
The method has been extended to the case of holomorphic line bundles by T. Kobayashi.

Non-commutative Hardy spaces and Toeplitz-Berezin quantization
H. UPMEIER

The Gelfand-Gindikin program for a semi-simple Lie group S gives a decomposition
L?(S) = S “H?(S) into ”"non-commutative” Hardy spaces H?(S) described in terms
i

of complex geometry of certain domains in S€. For S = SL(2,R), the Hardy space
H2(S) = 2;2 “n (S),®(S), for the holomorphic discrete series representations (S), is as-

sociated with the pseudo-convex domain S€ = {(Z s) € SL(2,C): Im (‘25 d5b> > 0} .

In joint work with Alexander Alldridge, University of Marburg, we study the C*-algebra
T, (S) generated by all Toeplitz operators

T.(f)h = Py(fh) on HZ(S), where f € Cy(S). Here P, denotes the orthogonal
projection onto H?(S). The main result gives a geometric realization of (all) irreducible
representations of 7, (S) in terms of boundary faces of S€. The most interesting ones
belong to 1-dimensional upper half-planes NS associated with the nilpotent component
N ~ R of the Iwasawa decomposition S = KAN .

Commutative homogeneous spaces
E.B. VINBERG

A Riemannian homogeneous space X = G/K is called commutative (or (G, K) is called
a Gelfand pair) if it satisfies the following equivalent conditions:

(1) the convolution algebra of K -invariant measures with compact support on X is com-
mutative;

(2) the algebra of G -invariant differential operators on X is commutative.

Any symmetric and, more generally, any weakly symmetric space is commutative.
For reductive G, there are known some extra conditions equivalent to (1) and (2), namely:
(3) the representation G : C[X] is multiplicity free;

(4) X is weakly symmetric, i.e. there is a diffeomorphism s of X normalizing G such
that sG can permute any two points of X ;

(5) the Poisson algebra of G -invariant functions on T*X is commutative.

The classification of such homogeneous spaces is known.

In general, (2) implies (5). We call a homogeneous space satisfying (5) weakly commu-
tative. There are two main types of such spaces, namely, homogeneous spaces of reductive
groups and homogeneous spaces of the form (NhK)/K where N is a nilpotent Lie group.
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For both types, weak commutativity implies commutativity, and it is likelyhood that this
implication is true in general.

In the case X = (N hK)/K the group N must be at most 2-step nilpotent. If it is 2-step
nilpotent, we call X a homogeneous space of Heisenberg type and set 7 = (N, N), V =
N/Z. We call X irreducible if the representation K :V is irreducible. A classification
of all irreducible commutative homogeneous spaces of Heisenberg type was presented in
the talk.

Holomorphic Convexity for Cycle Spaces of Flag Domains
J.A. WoOLF

Let G be a connected complex semisimple Lie group, () a parabolic subgroup, and Z =
G/@Q the corresponding complex flag manifold. Fix a real form Gy of G and an open
Gy —orbit D = Gy(z) C Z. Choose a maximal compact subgroup K, C G, such that Yj
is a complex submanifold of D . For reasons of representation theory of G, and algebraic
geometry in Z we look at the cycle space

Mp = component of Yj in {¢gY; | ¢ € G and gY;, C D}
If D has a Gy—invariant measure then D is known to be Stein. The situation is unsettled
if there is no invariant measure.
Here I describe a new method for constructing holomorphic functions on Mp which seems
to be independent of that measurability.
The method itself is a method recently developed by Barlet and Koziarz. Let Z' C Z be
a subvariety that meets every element of Mp and such that Z” = Z' N D is Stein. Let f
be a holomorphic function on Z” then Barlet and Koziarz show that

F:Y = Zermzf f(y)

is a well defined holomoprhic function on Mp, , and if Y7 € cl(Mp) meets D at a boundary
point contained in Z’ then f can be chosen so that F' blows up at Y; . Thus, to prove
that Mp is Stein, it suffices to find enough subvarieties Z’ so that every boundary point
of D is contained in at least one of them. I do that in the case where G/K, is a bounded
symmetric domain, Z is the compact dual hermitian symmetric space, and D is any open
Gy -orbit on 7.
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