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During the last years it be
ame in
reasingly apparent that there are many instan
es in the

representation theory of Lie groups where te
hniques from 
omplex analysis and geometry

play a de
isive role. On the other hand representation theoreti
 methods, su
h as Fourier

series expansions for 
ompa
t groups, are nowadays standard te
hniques in 
omplex anal-

ysis. One area of mathemati
s, where both of these �elds intera
t in a parti
ularly fruitful

way is the harmoni
 analysis on 
ausal symmetri
 spa
es. Motivated by these intera
tions

both resear
hers working either in representation theory and resear
hers working in 
om-

plex analysis were invited to this 
onferen
e by the organizers J. Faraut, A. T. Hu
kleberry

and K.{H. Neeb. By bringing these people together we tried to 
reate an atmosphere of

s
ienti�
 intera
tion resulting in a sharpening of some of the still somewhat vague ideas

at the interfa
e of representation theory and 
omplex analysis. In this sense, this meeting

with its 29 talks was aimed at a 
ross fertilization that 
ould not be a
hieved by meetings

devoted to just one of the topi
s of representation theory or 
omplex analysis alone.

Indi
ation of the subje
t and spe
i�
 goals

On a general level one of the basi
 purposes in the area where representation theory and


omplex analysis 
ow together is the analysis of the representation of a group of biholo-

morphi
 transformations on a 
omplex manifold on the spa
e of holomorphi
 fun
tions or

more generally on the 
ohomology of a ve
tor bundle. On the geometri
 side an important


lass of su
h representations 
onsists of indu
ed representations on 
ohomology spa
es of

homogeneous ve
tor bundles on orbits of real forms in 
ag manifolds. For 
ompa
t real

forms one obtains in parti
ular the 
lassi
al Bott-Borel-Weil Theorem.

On the analyti
 side the method of analyti
 extension is a 
entral tool in eu
lidean anal-

ysis, where one typi
ally en
ounters holomorphi
 fun
tions on 
ertain tube domains or

bounded domains whose boundary values display various types of regularity. The te
h-

nique of passing from spa
es of holomorphi
 fun
tions to their boundary values also shows

up in representation theory, where the boundary value maps are interesting intertwining

operators from a 
omplex analyti
 pi
ture to a \real" pi
ture. A natural question in this

spirit is how to 
onstru
t 
ohomologi
al versions of Hardy spa
es whi
h one 
ould use to

realize many important representations in a uniform way and hen
e obtain a better under-

standing of de
ompositions of representations on 
ertain natural L

2

-spa
es. This approa
h

to representation theory is 
alled the \Gelfand-Gindikin Program." Even though it has

been a guiding idea for several years it has not been 
ompleted to a satisfa
tory stage.
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In the same way as on the level of fun
tion spa
es Fourier transforms relate L

2

-spa
es and

holomorphi
 fun
tions, there exists a geometri
 version of this pi
ture. On the one hand

side one has 
ausal stru
tures on symmetri
 spa
es des
ribed by �elds of 
ones and on the

other hand 
ertain 
omplex domains obtained by 
omplexifying real domains in a 
ertain

set of \imaginary dire
tions" des
ribed by a 
onvex 
one. For symmetri
 spa
es this 
orre-

sponden
e is established by a 
ertain duality generalizing the duality between a 
one and

the tube domain over the dual 
one. This setup is well understood in the 
ontext of Jor-

dan theory where traditionally many di�erent areas of mathemati
s su
h as pure algebra,

in�nite dimensional 
omplex analysis and operator theory 
ow together. Closely related

is the theory of spheri
al fun
tions on ordered symmetri
 spa
es. Originally motivated by

the study of integral operators in s
attering theory respe
ting 
ausality it has developed

into a mature theory parallel to Harish-Chandra's treatment of Riemannian symmetri


spa
es, where in some sense the prominent role of the 
ompa
tness of the isotropy group

is repla
ed by a globally hyperboli
 
ausal stru
ture.

One main obje
tive is to fo
us the attention of 
omplex geometers working in the area of

group a
tions on problems in representation theoreti
 
ontexts. It is hoped that this will

lead to a 
omplex analyti
 basis for new holomorphi
 realizations of representations of non-


ompa
t semi-simple groups G. There has indeed been a great deal of interesting progress

in the settings of symmetri
 spa
es, Ol'shanski�� domains, and, e.g., more generally in the

Stein or K�ahlerian 
ontexts, where positive de�nite stru
tures su
h as plurisubharmoni


fun
tions or Bergman-K�ahler forms with 
ertain invarian
e properties play a role. While

it is assumed that the parti
ipants will report on these developments, it is hoped that the

non-positive-de�nite side will also re
eive its due attention.

For example, spe
ial attention should be paid to the non-Stein, 
anoni
al, G�G-invariant

domains in G

C

, i.e., the 
ohomologi
al side of the Gelfand-Gindikin program. The study of

non-Stein, in parti
ular non-measurable, open G-orbits in 
ag manifolds G

C

=P should be

intensi�ed. Properties of their Barlet 
y
le spa
es are of essential importan
e and require

understanding and development from the 
omplex analyti
 side.

Furthermore, a systemati
 study of the Levi geometry of higher 
odimensional G-orbits is

at the present time an appropriate goal.

Conversely, su
h a 
onferen
e will give the 
omplex analysts the possibility of des
ribing

results whi
h lead to representation theoreti
 problems of independent interest. These

involve a wide range of spa
es of holomorphi
 fun
tions, di�erential forms et
., on 
omplex

spa
es equipped with, e.g., proper a
tions of Lie groups of holomorphi
 transformations.

As typi
al example one 
an mention the a
tion of an isometry group of a Riemannian

manifold (M; g) on tubular neighborhoods in TM equipped with the adapted 
omplex

stru
ture or on the 
anoni
al Stein-K�ahler 
omplexi�
ation of a symple
ti
 G-spa
e. In

the former example the spe
ial 
ase of M = G=K a Riemannian symmetri
 spa
e is

parti
ularly important for the 
y
le spa
e 
onsiderations mentioned above.

On the analyti
 side the 
lose interplay between harmoni
 analysis and 
omplex geometry

is quite well visible in the theory of invariant Hilbert spa
es of holomorphi
 fun
tions. For

the 
urved tube domains in 
omplexi�
ations of 
ausal symmetri
 spa
es these Hilbert

spa
es de
ompose as dire
t integrals of highest weight representations. These results seem

to s
rat
h the surfa
e of a more general theory whi
h vastly generalizes the Fourier series

expansion te
hniques nowadays 
ommon in the study of holomorphi
 a
tions of 
ompa
t

groups. On the other hand for many invariant Hilbert spa
es of holomorphi
 fun
tions the


orresponding reprodu
ing kernel de�nes in a natural way a K�ahler stru
ture for whi
h the
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a
tion of the group G is Hamiltonian and whi
h 
orresponds to an embedding of the mani-

fold into a proje
tive spa
e of a Hilbert spa
e. This te
hnique is quite 
ommon in algebrai


geometry (the 
orresponden
e between ample line bundles and proje
tive embeddings) and

is 
losely related to Bargmann transforms in the sense that it establishes a way ba
k from

a \quantum obje
t" (a Hilbert spa
e) to a \
lassi
al obje
t" (a K�ahler manifold).
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Abstra
ts

Minimal Representations and Jordan Algebras

Dehbia A
hab

A minimal representation of a simple real Lie group is a unitary (irredu
ible) representation

whi
h is asso
iated to the minimal nilpotent 
omplex 
oadjoint orbit. The most famous

minimal representation of a simple real and Hermitian Lie group is the Segal-Shale-Weil

representation. It is known to admit a Fo
k model realization in a Hilbert spa
e of holo-

morphi
 fun
tions.

In the non Hermitian 
ase, the analogues of these Fo
k models have been re
ently 
on-

stru
ted, in a uniform manner, by the work of R.Brylinski and B.Kostant. They are

realized in spa
es of holomorphi
 se
tions of a half-form bundle over some variety Y , whi
h

is intimately related to the minimal nilpotent orbit. More pre
isely, let G

R

a real non

Hermitian and non 
ompa
t form of a 
omplex simple Lie group G and g

R

and g the


orresponding Lie algebras. Let K

R

be the 
ompa
t maximal subgroup of G

R

, k

R

its Lie

algebra, g

R

= k

R

�p

R

the Cartan de
omposition and g = k�p its 
omplexi�
ation. Denote

by O

min

the minimal nilpotent adjoint orbit in g. An irredu
ible unitary representation

(�;H) of G

R

is 
alled minimal if the variety of zeroes of the graded ideal asso
iated to the

annihilator of �, is equal to the 
losure of O

min

. If there exists a minimal representation

of G

R

, then the variety Y := O

min

\ p is nonewpty and it is the 
oni
al K-orbit in p. In

this 
ase, the non Hermitian symmetri
 pair (g; k) is 
alled O

min

-split. These pairs have

been 
lassi�ed by R.Brylinski and B.Kostant, and they found a bije
tive 
orrespondan
e

between the non Hermitian O

min

-split symmetri
 pairs (g; k) and the pairs (J; P ), where

J is a semisimple Eu
lidean Jordan algebra of rank � 4 and di�erent of 3, and P is a

L-semiinvariant homogeneous polynomial of degree 4, over J , with L being the stru
ture

group of J . The Lie algebra k is the 
onformal Lie algebra (the Kantor-Koe
her-Tits) of

the 
omplexi�ed Jordan algebra V = J

C

.

In this work, we use the Jordan algebras 
hara
terize the Lie stru
ture of the pairs (g; k)

and to des
ribe more expli
itely the minimal representation, whi
h is realized in a Hilbert

spa
e of holomorphi
 fun
tions over C

�

� V . Moreover, an integral formula (over C

�

� V )

is also obtained for the Hilbert spa
e norm, the densities have been 
al
ulated expli
itely

using Meijer G-fun
tions.

Averaging operators on homogeneous spa
es and 
hara
ters of simple


ompa
t Lie groups

D. Akhiezer

Let M be a 
ompa
t Riemannian manifold, Q = fg

1

; : : : ; g

d

g a �nite set of isometries of

M , and T

Q

an operator in L

2

(M) a
ting by

(T

Q

f)(x) =

d

X

j=1

(f(g

j

x) + f(g

�1

j

x)):
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Following A.Lubotzky, R.Phillips and P.Sarnak (1987), we de�ne the operator dis
repan
y

of Q by

Æ

Q

= sup

jjf jj=1

�

�

�

�

�

�

�

�

1

2d

(T

Q

f)�

1

vol(M)

Z

M

fd!

�

�

�

�

�

�

�

�

;

where d! is the Riemannian measure. The operator dis
repan
y Æ

Q

is regarded as the

measure of equidistribution of the sequen
e of isometries g

1

; : : : ; g

d

; g

�1

1

; : : : ; g

�1

d

. In order

to �nd optimally distributed sequen
es, one has to make Æ

Q

as small as possible. For

M = S

2

, A.Lubotzky, R.Phillips and P.Sarnak established a lower bound for Æ

Q

. We

generalize this result in the following way.

Theorem Let K be a 
enterless 
onne
ted 
ompa
t simple Lie group and let M = K=L,

where L is any 
losed subgroup of K. Then

Æ

Q

�

p

2d� 1

d

for any subset Q = fg

1

; : : : ; g

d

g � K. The equality is possible only if the group � generated

by g

1

; : : : ; g

d

is free and g

1

; : : : ; g

d

are free generators of �. If � is amenable then Æ

Q

= 1.

For any 
onne
ted simple 
ompa
t Lie group K denote by �

�

the 
hara
ter of a simple


omplex K-module with highest weight � and let d

�

be the dimension of this K-module.

The proof of the above theorem is based on the following fa
t:

�

�

(g)

d

�

! 0 as d

�

!1 (�)

for any �xed non-
entral element g 2 K.

We sket
hed an algebrai
 proof of (*) using Kempf restri
tion formula for representations.

After the 
onferen
e, it turned out that (*) is found in the literature though the proofs are

di�erent (D.Ragozin (1972), D.Rider (1972), K.Hare (1998)). We are grateful to A.Dooley

for drawing our attention to the work of last author, whi
h also 
ontains an interesting

estimate of the ratio in question.

Small representations and generalized Bessel fun
tions

L. Bar
hini

Cal
ulating expli
it and natural realizations of unitary representations (espe
ially singular

ones) has been a very fruitful �eld of study in representation theory. Detailed knowledge

of a representation frequently 
omes through use of a good realization. We study real-

izations of small representations and present two examples. The �rst example 
omprise

the most singular (s
alar) representations in the analyti
 
ontinuation of the dis
rete se-

ries of SU(n; n). The se
ond example is a �nite family of unitarizable representations of

SO(2n; 2n). These se
ond family of unitarizable representations is studied algebrai
ally

by Sahi. The �rst example is based on joint work with Mark Sepanski. If O

p

denotes the

set of n�n hermitian matri
es of signature (p; 0), then we obtained the known result that

the spa
e of L

2

�fun
tions on O

p

is a unitary representation of SU(n; n). Our approa
h to

this result is knew and has the merit that the group a
tion and invarian
e of the Hilbert

stru
ture 
ome very naturally from the 
onstru
tion. Starting with a 
ertain degenerate

prin
ipal series of SU(n; n), a Szeg�o map is used to 
onstru
t an intertwining operator

to se
tions of a line bundle over SU(n; n)=S(U(n) � U(n)). taking boundary values then

yields an intertwin ing map, A, to the opposite degenerate prin
ipal series. On the other
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hand, we produ
e a se
ond splitting of the intertwining map A through L

2

(O

p

) by using

restri
tions of Fourier transforms. We show that all maps in both splittings of A are 
on-

tinuous. As a result the 
opy of L

2

(O

p

) in the degenerate prin
ipal series 
oin
ides with the

image of the G-map A and thus it is G-invariant. The Inner produ
t on L

2

(O

P

) 
oin
ides

with the inner standard inner produ
t indu
ed by A and thus it is G-invariant.

In the se
ond example we only do part of the program. We 
ompute the Fourier transform

in the sense of distribution of the Szeg�o kernel. The 
omputations have interest on their

own (not just in 
onne
tion with our proje
t). We express the Fourier transform in terms

of Shimura's Generalized Bessel Fun
tions. These fun
tions live on spa
e of 2n� 2n skew

symmetri
 matri
es of rank 2j. We denote that spa
e by O

2j

. We prove that the FT of

the Szeg�o kernel lies in L

2

(O

2j

).

Analysis on tube domains over symmetri
 
ones

D. B

�

ekoll

�

e

(report on joint work in progress with A. Bonami and G. Garrigos)

Let 
 be a irredu
ible symmetri
 
one in a real Eu
lidean spa
e V , whi
h we regard as a

Eu
lidean Jordan algebra. We denote n = dim(V ); r = rank(
) and �(x) = det(x) (x 2

V ). Let T




= V + i
 be the tube domain over the 
one 
. For � real and p 2 [0;1), set

L

p

�

= L

p

(T




;�(y)

��

2n

r

dxdy)

and de�ne the weighted Bergman spa
e A

p

�

to be A

p

�

= L

p

�

T

Hol(
). If � �

2n

r

, then

A

p

�

= f0g; when � >

2n

r

, the spa
e A

p

�

is a 
losed subspa
e of L

p

�

. In this 
ase, we de�ne

the weighted Bergman proje
tion to be the orthogonal proje
tion of the Hilbert spa
e L

2

�

onto its 
losed subspa
e A

2

�

. Then:

P

�

f(z) =

Z

T




B

�

(z; u+ iv)f(u+ iv)�

��

2n

r

(v)dudv (f 2 L

2

�

)

where B

�

(z; w) is the 
orresponding weighted Bergman kernel of T




. De�ne also the

operator P

+

�

by

P

+

�

f(z) =

Z

T




jB

�

(z; u+ iv)jf(w)�

��

2n

r

(v)dudv:

Theorem. There are 3 positive numbers p

1

(�); p

2

(�); p(�) satisfying 2 < p

1

(�) < p

2

(�) <

p(�), su
h that the following properties hold :

(i) P

+

�

is bounded on L

p

�

if and only if p 2 (p

0

1

(�); p

1

(�)) (in whi
h 
ase, P

�

also extends to

a bounded operator from L

p

�

to A

p

�

) ;

(ii) if P

�

also extends to a bounded operator from L

p

�

to A

p

�

, then p 2 (p

0

2

(�); p

2

(�)); (iii)

P

�

also extends to a bounded operator from L

p

�

to A

p

�

if p 2 (p

0

(�); p(�)).

As usual, q

0

denotes the 
onjugate exponent of q 2 (1;1).

Assertions (i) and (ii) have been known for some time ([D. B�ekoll�e, A. Bonami, 1995℄ and

[D. B�ekoll�e, A. Temgoua Kagou, 1995℄).

Assertion (iii) was proved in 1999 for tube domains over Lorentz 
ones

[D. B�ekoll�e, A. Bonami, M.M. Peloso, F. Ri

i℄.

6



The problem is to generalize the results of [D. B�ekoll�e, A. Bonami, M.M. Peloso, F. Ri

i℄

to general symmetri
 
ones. Four geometri
 estimates on the 
one 
 are needed for the

proof.

Referen
es

[D. B�ekoll�e, A. Bonami, 1995℄ Estimates for the Bergman and Szeg�o proje
tions in two symmetri
 domains

of C

n

, Coll. Math. 68 (1995), 81-100.

[D. B�ekoll�e, A. Temgoua Kagou, 1995℄ Reprodu
ing properties and L

p

estimates for Bergman proje
tions

in Siegel domains of type II, Studia Math. 115 (3) (1995), 219-239.

[D. B�ekoll�e, A. Bonami, M.M. Peloso, F. Ri

i℄ Boundedness of Bergman proje
tions on tube domains

over light 
ones, Math. Z., to appear.

Complex Analysis and representation theory

W. Bertram

In Lie theory one 
an \integrate" the bilinear Lie bra
ket from the Lie algebra to a global

group stru
ture on a Lie group, and similarly one 
an integrate the trilinear Lie triple

bra
ket from a Lie triple system to a global produ
t map on a symmetri
 spa
e (theory

of O. Loos). In this talk we present a 
ounterpart of this feature in Jordan theory: the

integrated version of the trilinear produ
t of a Hermitian Jordan triple system is what we


all a 
ir
led spa
e, that is, a 
omplex manifold generalizing axiomati
ally the produ
t map

j : D � D ! D on the unit dis
 D de�ned by j(x; y) := j

x

(y) := g(i(g

�1

:x)) (x = g:0,

g 2 SU(1; 1)), and the integrated version of a general Jordan triple system is what we 
all

a ruled spa
e whi
h generalizes the family of produ
t maps �

r

: M �M ! M (r a real

number) de�ned on the real proje
tive spa
e M by

(1) �

r

([x℄; [y℄) = [(1� r)hx; yix+ rhx; xiy℄:

A 
loser look shows that this map arises from a natural ternary produ
t map

(2) ~�

r

([x℄; [�℄; [y℄) = [(1� r)�(y)x+ r�(x)y℄

de�ned on a Zariski-dense subset of M �M

0

�M (where M

0

is the dual proje
tive spa
e).

This map satis�es 
ertain algebrai
 identities whi
h de�ne an obje
t we 
all a \generalized

proje
tive geometry" (this, in turn, is the integrated version of a Jordan pair). Identifying

[x℄ and [�℄ via a polarity M ! M

0

, we get (1), and letting r = �1 we get the symmetri


spa
e stru
ture of M in the sense of Loos. In fa
t, all 
lassi
al and many ex
eptional

symmetri
 spa
es are obtained in a similar way from generalized proje
tive geometries {

this 
an be shown by 
lassi�
ation; a 
on
eptual explanation seems to be an open problem.

Harmoni
, pluriharmoni
 and Hua-harmoni
 fun
tions

E. Damek

Let D be a symmetri
 Siegel domain. There exists a solvable Lie group S whi
h a
ts simply

transitively as a group of biholomorphisms on D. We study the 
lass of S-invariant real

ellipti
 degenerate se
ond order operators on D whi
h annihilate holomorphi
 fun
tions

and, 
onsequently, their real and imaginary parts: the pluriharmoni
 fun
tions. Su
h

operators will be 
alled admissible.
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Theorem(E.Damek, A.Hulani
ki, D.M�uller, M.Peloso) Let D be a symmetri
 Siegel do-

main. Given an admissible ellipti
 operator L on D there are two admissible operators �

and L su
h that if a real valued fun
tion F satis�es H

2


ondition

sup

s2S

Z

N(�)

jF (us)j

2

du <1:

and LF = �F = LF = 0 then F is the real part of a holomorphi
 H

2

-fun
tion. For the

domain biholomorphi
ally equivalent to the 
omplex ball L and � are suÆ
ient.

For tube domains there is a stronger result.

Theorem(D.Bura
zewski, E.Damek, A.Hulani
ki) Let D be a symmetri
 tube domain.

Given an admissible ellipti
 operator L on D there is an admissible operator � su
h that

if a real valued fun
tion F is bounded and LF = �F = 0 then F is pluriharmoni
.

The 
lassi
al Hua system for symmetri
 tube domains 
an be generalized as follows

HF =

X

j;k

(�

j;k

F ) R(

�

Z

j

; Z

k

)j

T

1;0

; 1

where Z

1

; :::; Z

m

is an orthonormal basis of the holomorphi
 tangent boundle T

1;0

.

Theorem(A.Bonami, D.Bura
zewski, E.Damek, A.Hulani
ki, R.Penney, B.Trojan) Let F

be a real valued fun
tion satisfying H

2


ondition on a non-tube irredu
ible symmetri


domain. If HF = 0 then F is the real part of a holomorphi
 H

2

fun
tion.

Asymptoti
 spe
tral geometry

A. Deitmar

Let M  M

1

 M

2

 : : : be a tower of �nite 
overings of a Riemannian manifold


onverging to the universal 
overing M

1

and let D be an ellipti
 di�erential operator on

M . Let D

j

be its lift to M

j

.

If M is 
ompa
t the spe
tral distribution of D

j


onverges in a pre
ise sense to the spe
tral

distribution of D

1

as j tends to 1. If the M

j

are lo
ally symmetri
 spa
es of the form

�

j

nG=K then the assertion 
an be extended to the representation theoreti
 spe
trum of

the group G. The 
orresponding 
onvergen
e assertion was 
onje
tured by DeGeorge and

Walla
h and later proven by Clozel and Delorme.

If M is non
ompa
t very little 
an be said in general. In the 
ase of arithmeti
al quotients

of symmetri
 spa
es Werner Ho�mann and the author su

eeded to show an analogous

assertion. It turns out that one has as well to take the 
ontinuous spe
trum into the

pi
ture.

Orbital 
onvolutions, wrapping maps and e-fun
tions

A.H. Dooley

Let G be a 
ompa
t Lie group. Ea
h 
oadjoint orbit passes through t

�+

in a unique point

�. Let �

�

be the measure on the orbit normalised to have measure �

�2�

+

< �; � >. Then

we 
an write

�

�

? �

�

=

Z

t

�+

N(�; �; �)�

�

d�:

Here, N(�; �; �) is a 
ertain fun
tion on t

�+

, whi
h 
an be des
ribed 
ombinatorially.
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Further, one 
an link orbital 
onvolutions and 
onvolution of 
entral measures and distri-

butions on G by the wrapping map, introdu
ed by the speaker and N.J.Wildberger [2℄.

De�ne � from the Ad-invariant distributions of 
ompa
t support on g to 
entral distribu-

tions on G as follows. We de�ne < �(�); f >=< �; j:f Æ exp >, for f 2 C

1

(G). Here, j is

a suitable square root of the Ja
obian of exp, given by j(X) = �

�2�

+

sin�(H)=�(H). The

wrapping formula then says �(�) ?

G

�(�) = �(� ?

g

�):

Several appli
ations exist of this global formula in parti
ular to the Du
o isomorphism

and the Kirillov 
hara
ter formula and their generalisations. Wildberger, Lipsman and I

have found an extension of this formula to semi-dire
t produ
ts of ve
tor times 
ompa
t

Lie groups: one 
an use this formula to dedu
e the Lipsman 
hara
ter formula for the

semi-dire
t produ
ts, des
ribe the hypergroups of adjoint, 
oadjoint orbits as duals of ea
h

other, and relate this to the 
onvolution of 
onjuga
y 
lasses.

This theory goes through for 
ompa
t symmetri
 spa
es; one 
an des
ribe K-invariant 
on-

volution on G=K in terms of K-invariant 
onvolution on p, and this generalises Rouvi�ere's

Kashiwara-Vergne formula. Spe
i�
ally, if we de�ne

< � ?

e

�; f >=

Z

s�s

�(X)�(Y )e(X; Y )f(X + Y )dXdY;

then we have the formula

�(�) ?

S

�(�) = �(� ?

e;s

�):

Here, e(X; Y ) is as follows. Let X, Y and X + Y be 
ongugate to H

1

, H

2

and H

3

2 a

respe
tively. Then

e(X; Y ) = �

�2�

+

�

!

0

;!

1

2W

�


os(�(H

1

) + �

!

0

(H

2

) + �

!

1

(H

3

))

(�(H

1

) + �

!

0

(H

2

) + �

!

1

(H

3

))

�

m

�

:
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t prod-

u
ts, (in preparation)

Geometry and analysis on symmetri
 spa
es of hermitian type

J. Faraut and P. Gra
zyk

The theory of Hardy spa
es on 
omplex semigroups was generalized by Hilgert, 'Olafsson

and �rsted (1991) to a 
lass of symmetri
 spa
es 
alled symmetri
 spa
es of Hermitian

type (
ompa
tly 
ausal in the terminology of 'Olafsson and �rsted). In our work we

present another, geometri
al approa
h to Hardy spa
es on su
h symmetri
 spa
es, using

also tools of Jordan algebras and Jordan triple systems. Mol
hanov's hyperboloids are one

of the most important examples of a symmetri
 spa
e of Hermitian type.

Let D be a bounded symmetri
 
omplex domain in a 
omplex ve
tor spa
e V ' C

n

.

Equipped with the Bergman metri
, D is a Hermitian symmetri
 spa
e D ' G=K.
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Let � be a 
omplex 
onjugation of V , i.e. an antilinear involution of V . If �(D) = D we

will say that � is a 
omplex 
onjugation of D. We asso
iate to � an involution � of G

de�ned by

�(g) = � Æ g Æ �:

This involution 
ommutes with the Cartan involution � of G for whi
h K = G

�

. Let

H = G

�

= fg 2 Gj �(g) = gg:

The symmetri
 spa
e G=H is 
alled symmetri
 spa
e of Hermitian type. This de�ni-

tion is equivalent to that of 'Olafsson and �rsted. Using our approa
h one gives a 
lassi�
a-

tion of symmetri
 spa
es of Hermitian type using results of Loos and others on 
lassi�
ation

of 
omplex 
onjugations of D. Cartan subspa
es, root systems and the Harish-Chandra

homomorphism are dis
ussed from our geometri
al point of view.

In the analysis of Hardy spa
es on symmetri
 spa
es of Hermitian type or, equivalently, of

the holomorphi
 dis
rete series representations of these spa
es, we introdu
e and exploit

properties of 
oni
al fun
tions.

Let � � G=H be the domain of Hardy spa
es on G=H. A 
oni
al fun
tion is a holomorphi


fun
tion on � whi
h is semi-invariant with respe
t to a solvable subgroup of G. We dis
uss

the relation of 
oni
al fun
tions with irredu
ible representations of K whi
h are K \ H-

spheri
al. We prove that 
oni
al fun
tions with the same weight are proportional and that

ea
h (non-trivial) invariant and C-negative Hilbert subspa
e H of O(�) 
ontains a non-

zero 
oni
al fun
tion. This allows us, among others, to give a new proof of the spe
tral

theorem on H.

Bi-invariant domains in 
omplex semisimple Lie groups

G. Fels

Our investigation is inspired by a paper of Gelfand and Gindikin [GG℄, wherein the

authors study 
ertain domains 
 in G = SL(2; C ); invariant under the bi-a
tion of

G

R

= SL(2;R) :

G

R

�G

R

� G! G (g

1

; g

2

) ; x 7�! g

1

xg

�1

2

Some of these domains 
arry a natural Hilbert spa
e stru
ture of Hardy type H

2

(
) �

O(
) su
h that the regular representation of G

R

on H

2

(
) 
an be de
omposed into a

dire
t sum of irredu
ible unitary representations with �nite multipli
ities, ea
h of them be-

longing to the holomorphi
 dis
rete series. This result has been generalized by Olshanki��

[O1℄, [O2℄ for G

R

being a Hermitian real form of G: Further, there exists an Ad(G

R

){

invariant 
losed and pointed 
one C = C

Rmmax

in g

R

; the Lie algebra of G

R

; su
h that


 = �(C)

�

=

G

R

� exp(iC

Æ

) and 


�

=

G

R

� iC has a semigroup stru
ture. We refer to

these domains as Olshanski�� domains. There is a hope that other bi-invariant domains in

G 
an also be related to some series of representations of G

R

; see [GG℄. Note that the

Olshanski�� domains are Stein ([N℄). Our 
ontribution to this subje
t is the following. Let

G be 
omplex semisimple and G

R

an arbitrary non-
ompa
t real form. For simpli
ity

we assume that (G;G

R

) is irredu
ible as a symmetri
 pair. We show that if D � G

is a Stein bi-invariant domain then either D is equal to G or, in the 
ase when G

R

is

Hermitian, there are also proper bi-invariant Stein domains whi
h are 
ontained in an

Olshanski�� domain �(C

�

) or in an appropriate translate �(C

�

)n with n 2 N

G

(t) and

n�(n)

�1

2 Z(G): Here, � : G! G denote the 
onjugation with respe
t to G

R

and t � g

is a Cartan subalgebra, su
h that t

R

= t

�

� g

R

is 
ompa
tly embedded. In order to
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prove this fa
t we �rst give a des
ription of the natural G

R

�G

R

{equivariant strati�
ation

of G ([BF1℄). Then a quite expli
it analysis of the CR-geometry of the prin
ipal orbits

([FG℄) and some non-prin
ipal G

R

�G

R

{strata ([BF2℄), i.e., 
omputing the 
orresponding

Levi 
ones, yields the result. It shows in parti
ular that in attempting to produ
e natural

representations of G

R

from bi-invariant domains not 
ontained in the Olshanski�� domains,

one has to 
onsider subspa
es of higher 
ohomology groups rather than O(
) .
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Invariant domains in the 
ommplexi�
ation of a non-
ompa
t Riemannian

symmetri
 spa
e

L. Geatti

Let G=K be an irredu
ible non-
ompa
t Riemannian symmetri
 spa
e. The group G a
ts

by left translations on the Stein manifold G

C

=K

C

: This a
tion determines a �nite number

of invariant regions, whose union is dense in G

C

=K

C

and whi
h roughly 
orrespond to

the di�erent types of 
losed G -orbits of maximal dimension (generi
 orbits). By studying

the invariant CR-stru
ture that generi
 orbits inherit from the 
omplex manifold G

C

=K

C

;

we determine whi
h generi
 orbits 
an lie in the boundary of an invariant Stein domain

in G

C

=K

C

or in a level set of an invariant plurisubharmoni
 fun
tion. As a result, only

some of the above regions may 
ontain invariant Stein subdomains and admit non-
onstant

invariant plurisubharmoni
 fun
tions.

One of them is the region X

0

; introdu
ed in [AG℄, whi
h 
onsists of all G -orbits interse
t-

ing the 
ompa
t dual symmetri
 spa
e U=K

�

=

U � e � G

C

=K

C

: In general, X

0


ontains

several 
opies of the symmetri
 spa
e G=K; and ea
h of them 
omes with a distinguished

invariant neighbourhood. These domains, say D

0

; : : : ; D

m

; indeed 
ontain Stein in-

variant subdomains and 
arry non-
onstant invariant plurisuharmoni
 fun
tions. They are


onje
tured to be Stein [AG℄ and to be related to the parameter spa
e of linear 
y
les in


ag domains [WZ℄. They also 
arry a 
anoni
al G -invariant Kaehler stru
ture 
ompatible

with the Riemannian stru
ture of G=K (see [LS℄[Sz℄[GS℄).
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When the group G is of Hermitian type and G

C

=K

C


ontains 
ompa
tly 
ausal symmetri


spa
es G=H as minimal orbits, there are other regions in G

C

=K

C


ontaining invariant

Stein subdomains. They are of the form S

W

:= G exp iW; where W is a maximal Ad

H

-

stable regular ellipti
 
one in the tangent spa
e T (G=H)

p

; p 2 G=H: The domains S

�W

were showed to be Stein in [Ne℄. Moreover, their invariant plurisubharmoni
 fun
tions

and Stein subdomains were 
ompletely 
hara
terized. Our results on the CR-stru
ture

of generi
 orbits imply that, with few possible ex
eptions, all proper G -invariant Stein

domains in G

C

=K

C

are either 
ontained in one of the domains D

0

; : : : ; D

m

or in one

of the domains S

�W

1

; : : : ; S

�W

s

: The same holds for domains admitting non-
onstant in-

variant plurisubharmoni
 fun
tions. The possible ex
eptions are domains whose boundary

entirely 
onsists of non-generi
 orbits, to whi
h our te
hniques do not apply. The domains

D

0

; : : : ; D

m

are among them.
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Positive-de�nite fun
tions on 
ones and tuves in in�nite-dimensional spa
es

H. Gl

�

o
kner

1) Let 
 be a 
onvex set in a real ve
tor spa
e V , and � : 
! C be a fun
tion. Then �

is the Lapla
e transform of a positive measure � on the algebrai
 dual spa
e V

�

, equipped

with the initial � -algebra �(ev

x

: x 2 V ) , if and only if � is positive-de�nite and � is


ontinuous on line segments.

2) Let S be a 
onvex 
one with non-empty interior in a real topologi
al ve
tor spa
e V ,

let � : S ! [0;1[ be an absolute value on S (i.e., �(s + t) � �(s)�(t) for all s; t 2 S )

whi
h is lo
ally bounded, and � : S ! C be a fun
tion. Then � is the Lapla
e transform of

a Radon measure on C

�

:= f� 2 V

0

: exp Æ�j

S

� �g , equipped with the weak- � -topology,

if and only if � is an � -bounded positive-de�nite fun
tion on S whi
h is 
ontinuous on

line segments. Here � is 
alled � -bounded if �(s+ t) � �(t)�(s) for all s; t 2 S . If S is

open, the 
ontinuity assumption 
an be omitted.
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Analysis of probability measures on Lie groups and Gelfand pairs

P. Gra
zyk

Di�erent fundamental properties of probability measures, whi
h are 
lassi
al and well

known in the 
ommutative 
ase, are still unknown on Lie groups and Riemannian symmet-

ri
 spa
es. This last 
ase is an example of a Gelfand pair. It turns out that this very general

setting of a Gelfand pair is very natural to ask and answer su
h important questions as:

� Do the two fa
torization theorems of Khin
hin hold?

(Khin
hin's �rst theorem says that any probability measure on R 
an be written as a


ountable produ
t of inde
omposable measures (possibly in�nite) and a probability mea-

sure without inde
omposable fa
tors (
alled anti-inde
omposable).

Khin
hin's se
ond theorem says that any anti-inde
omposable measure on R is in�nitely

divisible.)

� Is the 
entral limit theorem true? (the most general one, belonging to Khin
hin in the

Eu
lidean 
ase)

� Do the Gaussian measures have only Gaussian fa
tors? ( a 
elebrated Cramer's theorem

gives the positive answer on the real line)

These questions were studied in a joint work with C.R. Raja(Chennai). We prove the

Khin
hin's Theorems for the following Gelfand pairs (G;K) satisfying a 
ondition (*): (a)

G is 
onne
ted; (b) G is almost 
onne
ted and Ad (G=M) is almost algebrai
 for some


ompa
t normal subgroup M ; (
) G admits a 
ompa
t open normal subgroup; (d) (G;K)

is symmetri
 and G is 2-root 
ompa
t; (e) G is a Zariski-
onne
ted p -adi
 algebrai
 group;

(f) 
ompa
t extension of unipotent algebrai
 groups; (g) 
ompa
t extension of 
onne
ted

nilpotent groups. The 
ondition (*):

for every 
ompa
t subgroup M of G 
ontaining K , N(M) = N(K)M .

is always veri�ed when K is a maximal 
ompa
t subgroup of G or when G is 
ompa
t.

The main tools of our work are harmoni
 analysis and what is 
alled "algebrai
 probability

theory", developed by Ruzsa and Szekely in a re
ent book.

We also prove that Cramer's theorem does not hold for Gaussian measures on 
ompa
t

Gelfand pairs.

Another group of questions 
on
erns properties of Gaussian measures on Lie groups and

symmetri
 spa
es. They are motivated by an absen
e of a non-analyti
al 
hara
terization

of Gaussian measures on these spa
es (the only known de�nition of Gaussian measures is

via Lapla
e-Beltrami operator as the generator). In parti
ular the following problems have

been and still are studied:

� Do the Gaussian measures are 
hara
terized by a Bernstein type property? ( indepen-

den
e of XY and XY

�1

). This is a joint work with J.J. Loeb (Angers).

� Are the K -invariant Gaussian measures on Riemannian symmetri
 spa
es stable? (the

negative answer is based on re
ent estimates of the heat kernel on symmetri
 spa
es by

Anker and Ji)
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� Are the K -invariant Gaussian measures on Riemannian symmetri
 spa
es the only anti-

inde
omposable ones? This is known in rank one 
ase and may be obtained for any rank

if one knows a produ
t formula for spheri
al fun
tions:

�

�

(X)�

�

(Y ) =

Z

a

�

�

(Z)F

X;Y

(Z)dm(Z)

with some information on the kernel F

X;Y

. In a joint work with P. Sawyer (Sudbury) we

have obtained su
h a formula in the 
omplex 
ase.

Hua and Ahlfors operators asso
iated with generalized 
onformal stru
tures

W. Bertram, J. Hilgert, B. Orsted, A. Pasquale

Let M

p;q

be the bounded symmetri
 domain of 
omplex p � q matri
es Z for whi
h

ZZ

�

� 1

p

is positive de�nite. 1958 Hua introdu
ed a system of se
ond order di�erential

operators on M

p;q

having as kernel pre
isely the Poisson integrals over the Shilov boundary.

Analogous 
onstru
tions for general bounded symmetri
 domains have been studied e.g.

by Johnson-Koranyi, Berline-Vergne, Lassalle, and others. Bounded symmetri
 domains

admit a generalized 
onformal stru
ture whi
h 
an be des
ribed in terms of a Jordan triple

system. We des
ribe the Hua operators for bounded symmetri
 domains in terms of the

Jordan triple system and show how this generalizes to arbitrary symmetri
 spa
es with

generalized 
onformal stru
ture. This in parti
ular gives a way to de�ne Hua operators for

real bounded symmetri
 domains.

In the same framework we introdu
e a general Ahlfors operator whi
h, in 
ontrast to the

Hua system, is 
onformally invariant and 
hara
terizes 
onformal ve
tor �elds. It turns

out that Hua systems as well as Ahlfors operators are 
losely related to (
omplementary)

generalized gradients.

K -invariant di�erential operators for a multipli
ity-free-a
tion

R.M. Howe and G. Rat
liff

Let V be a 
omplex ve
tor spa
e of dimension m and let K be a 
ompa
t subgroup

of U(V ) , the group of unitary operators on V . If P(V ) is the algebra of polynomial

fun
tions on V , then the a
tion of K on V indu
es an a
tion on P(V ) . Let PD(V )

denote the polynomial 
oeÆ
ient di�erential operators on V , and denote by PD(V )

K

those operators in PD(V ) that 
ommute with the a
tion of K on P(V ) . Via the usual

identi�
ation of PD(V )

K

with P(V ) 
 P(V

�

) we 
an identify PD(V )

K

with the K -

invariant tensors in P(V ) 
 P(V

�

) . Sin
e K is 
ompa
t, the spa
e P(V ) de
omposes

into an algebrai
 dire
t sum of �nite dimensional irredu
ible subspa
es,

P(V ) =

X

�2�

P

�

where � is a 
ountably in�nite index set that parameterizes the representation, and where

the index � is usually the highest weight of an irredu
ible representation. We are interested

in the 
ase where the above de
omposition is multipli
ity-free.

Via this identi�
ation we have

PD(V ) = P(V )
 P(V

�

) =

XX

P

�


 P

�

�

;
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and it is a 
lassi
al result that the identity representation appears in P

�


P

�

�

with multi-

pli
ity one if and only if (P

�

)

�

= P

�

�

. Thus, for ea
h � there is a unique (up to a s
alar)

K -invariant tensor S

�

2 P

�


 P

�

�

. The 
olle
tion fS

�

g is a ve
tor spa
e basis for the

spa
e of K -invariants PD(V )

K

. For multipli
ity free a
tions, PD(V )

K

is a 
ommutative

algebra by S
hur's lemma.

The following questions are natural:

1) What is the K -de
omposition of P(V ) ?

2) What are the K -invariant di�erential operators PD(V )

K

? Equivalently, what are the

K -invariant tensors in P(V )
 P(V

�

) ?

3) What are the eigenvalues?

In parti
ular, we seek expli
it formulas for the 
anoni
al invariants S

�

and their eigenval-

ues. Complete results have been obtained for 
ertain 
ases.

Bran
hing laws of unitary highest weight modules with respe
t to

semisimmple symmetri
 paris

T. Kobayashi

Let G � H be redu
tive Lie groups, and � 2

b

G , an irredu
ible unitary representation of

G . The restri
tion �j

H

de
omposes uniquely into irredu
ibles:

�j

H

'

Z

�

b

H

n

�

(�)�d�(�) (bran
hing law):

An interesting setting is the 
ase n

�

(�) � 1 (multipli
ity free). However, for a general

� 2

b

G , the multipli
ity n

�

(�) 
an be in�nite even though (G;H) is a symmetri
 pair (
f.

[K � 2℄ ). We give a suÆ
ient 
ondition on � and (G;H) su
h that n

�

(�) � 1 for any

� 2

b

H .

Theorem A Let G be a non-
ompa
t Hermitian Lie group, (G;H) a symmetri
 pair,

and � 2

b

G a s
alar highest weight module. Then �j

H

de
omposes with multipli
ity free.

Analogous results also hold for 
 -produ
t, and for �nite dimensional representations.

Theorem A gives a uniform explanation of multipli
ity free results in 
lassi
al 
ases, su
h as

GL

m

�GL

n

-duality, the Clebs
h-Gordan formula, the Plan
herel formula for line bundles

over Hermitian symmetri
 spa
es, the Kostant-S
hmid formula, and so on, together with

new multipli
ity free formulae. Among other 
ases, we give an expli
it formula, when

�j

H

splits dis
retely: We say (G;H) is holomorphi
 type if H is de�ned by � 2 Aut(G)

a
ting holomorphi
ally on G=K . Take t

�

� k

�

and extend t � k . Let k = R-rankG=H

and take a maximal set of strongly orthogonal roots f�

1

; : : : ; �

k

g in �(p

��

+

; t

�

) . Here is a

generalization of the Kostant-S
hmid formula to non-
ompa
t H :

Theorem B: If L

G

(�) is a holomorphi
 dis
rete series of s
alar type, and (G;H) is a

symmetri
 pair of holomorphi
 type, then

L

G

(�)j

H

'� a

1

� � � � � a

k

� 0!

X

�

L

H

(�j

t

�

�

X

a

j

�

j

):

[FT ℄ J. Faraut and E. Thomas Invariant Hilbert spa
es of holomorphi
 fun
tions

[K � 1℄ T. Kobayashi Multipli
ity free bran
hing laws for unitary highest weight mod-

ules Pro
eedings of the Symposium on Representation Theory held at Saga, Kyushu 1997

(editor K. Mima
hi) 1997, 9{17
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[K � 2℄ T. Kobayashi Dis
rete de
omposability of the restri
tion of A

q

(�) with respe
t to

redu
tive subgroups and its appli
ations Part I, Invent. Math. 117, (1994), 181{205; Part

II, Annals of Math. 147, (1998), 1{21; Part III, Invent. Math. 131, (1998), 229{256

[K � 3℄ T. Kobayashi Multipli
ity-free restri
tions of unitary highest weight modules for

redu
tive symmetri
 pairs

Ja
ques Faraut, man and mathemati
ian

A. Koranyi

On the o

asion of J. Faraut's sixtieth birthday this was a brief a

ount of his biography

and of his mathemati
al a

omplishments. His work starts in potential theory and goes

on to 
over a wide range of subje
ts. His most important results belong to the large �eld

of analysis on semi-simple Lie groups: he is a pioneer of the study of ordered symmetri


spa
es and he did important work on spe
ial fun
tions and Jordan algebras. He is the

author of several monographs and he is known for the large number of his former students

who have beome eminent mathemati
ians in their own right.

Analyti
 
ontinuation of holomorphi
 forms

B. Kr

�

otz

This is a report on joint work with Dehbia A
hab and Frank Betten.

Let G be a hermitian linear Lie group and � < G an arbitrary dis
rete subgroup. We

write (�

�

;H

�

) for a unitary highest weight representation of G with highest weight � 2 it

�

and v

�

2 H

�

for a highest weight ve
tor.

Theorem A. There exists a parameter � (in fa
t almost all subje
t to the 
ondition of

being suÆ
ientlty far away from the walls) su
h that the Poin
ar�e-series

P (v

�

) =

X


2�

�

�

(
):v

�


onverges in the module of hyperfun
tion ve
tors H

�!

�

to a non-zero element in (H

�!

�

)

�

.

If � 2 (H

�!

�

)

�

and v 2 H

!

�

, then we 
an form the matrix 
oeÆ
ient

�

v;�

: �nG! C ; � 7! h�

�

(g):v; �i:

If v is K -�nite, then �

�;v

is 
alled a holomorphi
 automorphi
 form. The fun
tions

�

v;�

have the remarkable property that they extend to holomorphi
 fun
tions on a very

interesting G -biinvariant open Stein domain S � G

C

, namely S is the open 
ompression

semigroup of the bounded symmetri
 domain G=K � G

C

=P

max

. One 
alls S a 
omplex

Ol'shanski�� semigroup. Note that � a
ts on S properly dis
ontinuously so that we 
an

form the quotient �nS in the 
ategory of 
omplex manifolds.
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Theorem B. 1.The quotient �nS is Stein, provided the analyti
ally 
ontinued auto-

morphi
 forms vanish at in�nity,

(V AI) lim

s!1(in S)

s2S

�

v;�

(s) = 0:

2. If � < G is a uniform latti
e, then (VAI) holds true.

Jordan Compression Semigroups and Triple De
ompositions

J. Lawson

G. I. Ol'shanski introdu
ed a remarkable 
lass of subsemigroups of Lie groups whi
h

have 
ome to be 
alled Ol'shanski semigroups. A typi
al example of su
h a semigroup

arises in the 
omplexi�
ation G

C

of a semisimple hermitian Lie group G by taking an

AdG -invariant 
onvex 
one C in the Lie algebra g of G and forming the semigroup

S = G exp(iC ) in G

C

.

The existen
e of these (in�nitesimally generated) semigroups at the group level manifests

itself in the existen
e of 
ausal stru
tures and 
ausal partial orders at the homogeneous

spa
e level. In the harmoni
 analysis 
arried out at the homogeneous spa
e level (e.g.

in the analysis of kernels in Volterra algebras [1℄), it is frequently 
ru
ial to know that

the partial order is \globally hyperboli
," i.e., that the order intervals are 
ompa
t. The

property of being globally hyperboli
 has also played an important role in other 
ontexts,

e.g. in the study of partial di�erential equations and in the 
ausal orders that arise in

Lorentzian geometry. Mittenhuber and Neeb have exploited this 
ondition in their

study of the exponential fun
tion on ordered manifolds with aÆne 
onne
tions [6℄.

We use re
ent results of B. Kr

�

otz and K.-H. Neeb [2℄ on hyperboli
 
ones to prove

that the homogeneous 
ausal order arising from an Ol'shanski semigroup is always glob-

ally hyperboli
; this general result extends earlier work of J. Faraut [1℄, followed by J.

Hilgert and G.

�

Olafsson [3℄, who proved it for spe
ial 
ases.

Let G be a Lie group equipped with an involution � . Then � indu
es an involution on

the Lie algebra g (making it a symmetri
 Lie algebra), and g is the dire
t sum of the +1 -

eigenspa
e h and the �1 -eigenspa
e q . Let H be a � -�xed subgroup with Lie algebra

h . If q 
ontains an AdH -invariant hyperboli
 
one C , then H(exp C ) is an Ol'shanski

semigroup. One extremely useful stru
tural property of su
h semigroups is the existen
e

and uniqueness of the \Ol'shanski polar de
omposition": ea
h element s fa
tors uniquely

as s = h exp(X) , h 2 H , X 2 C . We 
onsider the important spe
ial 
ase that the

symmetri
 algebra g is of Cayley type (this means that q 
an be written as AdH -invariant

summands q

+

+ q

�

, ea
h of whi
h is an abelian subalgebra). In this 
ase we establish

that the Ol'shanski semigroup has a unique triple de
omposition S = exp(C

�

)H exp(C

+

) ,

whi
h may be viewed as a semigroup variant of the Harish-Chandra de
omposition. In [5℄

ne
essary and suÆ
ient 
onditions are given for the existen
e of the Ol'shanski semigroup,

given an Ad(H) -invariant hyperboli
 
one in q . A very pleasant feature of the theory

established in this paper is that under the mild restri
tion that the 
one is pointed, then for


ones of Cayley type the triple de
omposition obtains whenever the Ol'shanski semigroup

exists.

Semigroups for whi
h the triple de
omposition holds in
lude sympleti
 semigroups, or more

generally the 
onformal 
ompression semigroup of a symmetri
 
one in an Eu
lidean Jordan

algebra. Su
h semigroups have been studied in detail by K. Koufany in [4℄. Relying

heavily on Jordan algebra theoreti
 methods, he established the triple de
omposition for
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this 
lass of semigroups. We revisit this 
lass of examples and show how these semigroups

�t within our framework and how the triple de
omposition follows from our general results.

We also develop order-theoreti
 aspe
ts of the stru
ture of these semigroups, whi
h we


all Jordan 
ompression semigroups. In parti
ular, we show that there is a unique 
losed

partial order in the 
ompa
ti�
ation of a symmetri
 
one in the 
onformal 
ompa
ti�
ation

of the real Jordan algebra in whi
h it sits that extends the natural order of the 
one. With

respe
t to this order the Jordan 
ompression semigroup a
ts in an order preserving way.

Furthermore, there is a natural Finsler stru
ture that 
an be de�ned from the order so the

members of the Jordan 
ompression semigroup are a
tually 
ontra
tions with respe
t to

the Finsler metri
 and members of the interior of the semigroup are stri
t 
ontra
tions.

The pre
eding work represents joint work with Yongdo Lim.
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Coherent state representations and highest weight representations

W. Lisie
ki

A 
oherent state (CS) representation of a 
onne
ted Lie group G is an irredu
ible unitary

representation for whi
h there is a 
omplex G -orbit on the proje
tive spa
e of all rays in

the representation spa
e. The group G is 
alled a CS group if it admits a CS representation

with dis
rete kernel. It is well known that any irredu
ible representation of a 
ompa
t Lie

group is a CS representation (the 
omplex orbit being the orbit through a highest weight

line). Some time ago I showed that non
ompa
t redu
tive CS groups are pre
isely the

Hermitian groups and that their CS representations 
oin
ide with highest weight (HW)

representations. This was generalized by K.-H. Neeb who extended the theory of highest

weight representations to the 
lass of 
onne
ted Lie groups with admissible Lie algebra

and showed that any CS representation of su
h a group is a HW representation. An

admissible Lie algebra is ne
essarily unimodular. Here I present a 
omplete 
lassi�
ation

of unimodular CS groups. My approa
h is based on the stru
ture theory of homogeneous

K�ahler manifolds due to Vinberg and Gindikin and Dorfmeister and Nakajima. On the

Lie algebra level, the 
lassi�
ation theorem asserts that a unimodular Lie algebra is a CS

Lie algebra (i.e. is the Lie algebra of a CS Lie group) i� both its radi
al and Levi part are

CS Lie algebras. Moreover, unimodular solvable CS Lie algebras 
an also be 
lassi�ed. It

turns out that they need not be admissible. Thus even for unimodular groups the 
lass of

CS representations is larger than that of HW representations.
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Invariant 
omplex stru
tures on the pun
tured 
otangent bundle of 
ompa
t

symmetri
 spa
es

I. V. Mykytyuk

Let G be a 
ompa
t 
onne
ted Lie group and K � G it's 
losed subgroup. The natural

a
tion of G on G=K extends to the (left) a
tion of G on T

�

(G=K) . This G -a
tion

on T

�

(G=K) preserves the 
anoni
al symple
ti
 2-form 
 . We denote by g the Lie

algebra of G and by � a negative de�nite bilinear form on g asso
iated with a faithful

representation of g . This form de�nes the G -invariant Riemannian metri
 g on G=K .

Using g we 
an identify the 
otangent bundle T

�

(G=K) and the tangent bundle T (G=K) .

The Hamiltonian fun
tion H whi
h is asso
iated with the given metri
 g on G=K de�nes

the geodesi
 
ow on T

�

(G=K) : H(gK; �) = g

gK

(�; �); � 2 T

�

gK

(G=K) ' T

gK

(G=K) .

Di�erent kind of geometri
 
onstru
tions whi
h 
omes from geometri
 quantization natu-

rally lead to G -invariant 
omplex stru
tures de�ned on the pun
tured 
otangent bundle

T

�

0

(G=K) = T

�

(G=K)� fzero se
tiong . Su
h stru
ture J

S

for the spheres were found by

Souriau [ So ℄ . Later it was observed by Rawnsley [ Ra1 ℄ , that the length fun
tion

p

H is

stri
tly plurisubharmoni
 with respe
t to the above 
omplex stru
ture J

S

and thus de�nes

a K�ahler metri
 on T

�

0

S

n

with the K�ahler form 
 . He also observed that J

S

is invariant

with respe
t to the Hamiltonian 
ow of the length fun
tion

p

H (the normalized geodesi



ow) and used the K�ahler stru
ture J

S

to quantize the geodesi
 
ow on the spheres [ Ra2 ℄ .

Subsequently Furutani and Tanaka [ FT ℄ de�ned a K�ahler stru
ture J

S

with the analo-

gous properties on the pun
tured 
otangent bundle of 
omplex and quaternioni
 proje
tive

spa
es CP

n

, HP

n

and used it for quantization.

In [ Sz ℄ Szoke explored the relationship of J

S

and so-
alled adapted 
omplex stru
ture

J

A

on the respe
tive 
otangent bundle T

�

(G=K) (asso
iated with Riemannian metri
 g ).

He showed that for all 
ompa
t, rank-1 symmetri
 spa
es (also for Cayley proje
tive plane

CaP

2

) the family of 
omplex stru
tures obtained by pushing forward the adapted 
omplex

stru
ture with respe
t to an appropriate family of di�eomorphisms has a limit and this

limit 
omplex stru
ture 
oin
ides with J

S

.

Let m be the orthogonal 
omplement to Lie algebra k of K in g relative � and m

�

0

=

m

�

n f0g . We have the natural Ad

�

-a
tion of K on the dual spa
e m

�

.

Theorem. Let G=K be a symmetri
 spa
e and J a K�ahler stru
ture on T

�

0

(G=K)

with the K�ahler form 
 . Suppose that J is G -invariant and invariant with respe
t to

the normalized geodesi
 
ow X

p

H

. Then rank of the symmetri
 spa
e G=K is equal

1. For every symmetri
 spa
e G=K � fS

n

; CP

n

; HP

n

(n � 2); CaP

2

g there is one-to-

one 
orresponden
e between the spa
e of G -invariant and invariant with respe
t to the

normalized geodesi
 
ow K�ahler stru
ture on T

�

0

(G=K) with the K�ahler form 
 and the

spa
e of Ad

�

K -invariant smooth fun
tion � : m

�

0

! (m

�

0

)

C

with positive real part. In

parti
ular, J

S

= J

�

, where �(�) = �

p

��(�; �) , � 2 m

�

' m , and � 2 R

+

is a 
onstant.

It is well known that the symmetri
 spa
es G=K CP

n

= U(n+1)=U(1)�U(n) and HP

m

=

Sp(m + 1)=Sp(1)� Sp(m) are the quotient of the spheres S

k

, k = 2n + 1; 4m + 1 with

respe
t to the a
tion of the subgroup K

1

� K isomorphi
 to U(1) and Sp(1) respe
tively.

This a
tion of K

1

on S

k

de�nes natural Hamiltonian a
tion of K

1

on T

�

0

S

k

and the

moment mapping P : T

�

0

S

k

! k

�

1

. The redu
ed spa
e P

�1

(0)=K

1

is isomorphi
 to the

pun
tured 
otangent bundle T

�

0

(CP

n

) and T

�

0

(HP

m

) respe
tively. By ( [GS ℄ ,Th.3.5) for

the K�ahler stru
ture J

S

on T

�

0

S

k

there is 
anoni
ally asso
iated redu
ed K�ahler stru
ture

J

r

S

on the quotient spa
e P

�1

(0)=K

1

.

Theorem. The redu
ed K�ahler stru
ture J

r

S

on the pun
tured 
otangent bundle 
omplex

and quaternioni
 proje
tive spa
es CP

n

, HP

m


oin
ides with K�ahler stru
ture J

S

.

19



This theorem allow us to quantize the normalized geodesi
 
ow on CP

n

, HP

m

using

the simple quantization pro
edure on S

k

and general redu
tion theorems for K�ahler and

verti
al polarizations [ GS,Go ℄ .
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Plan
herel formula for Berezin deformation of L

2

on Riemannian symmetri


spa
e

Yu.A. Neretin

For instan
e, we 
onsider Riemannian non
ompa
t symmetri
 spa
e B

p;q

= O(p; q)=O(p)�

O(q) (we assume p � q ). We realize this spa
e as the spa
e of real p � q matri
es with

norm less than 1. Let � = 0; 1; : : : ; p � 1 or p > 1 . We 
onsider the Hilbert spa
e H

�

de�ned by the positive de�nite kernel K

�

(z; u) = det(1� zu

�

)

�

on B

p;q

. We also 
onsider

the natural representation of the group O(p; q) in the spa
e H

�

.

1. There obtained the 
omplete Plan
herel formula for this representation.

For � > (p + q)=2 � 1 the Plan
herel measure is supported on prin
ipal nondegenerate

series and its density is

C � 2

p�

1

Q

p

j=1

�(��j+1)

�

Q

p

k=1

�

�(

1

2

(�� (p+ q)=2 + 1 + s

k

))�(

1

2

(�� (p+ q)=2 + 1� s

k

))

	

�

Q

p

k=1

�((q�p)=2+s

k

)�((q�p)=2�s

k

)

�(s

k

)�(�s

k

)

�

Q

1�k<l�p

�(

1

2

(1+s

l

+s

k

))�(

1

2

(1+s

l

�s

k

))�(

1

2

(1�s

l

+s

k

))�(

1

2

(1�s

l

�s

k

))

�(

1

2

(s

l

+s

k

))�(

1

2

(s

l

�s

k

))�(

1

2

(�s

l

+s

k

))�(

1

2

(�s

l

�s

k

))

:

For � < (p + q)=2� 1 support of the Plan
herel measure 
ontain many 
omponents and

the density on ea
h 
omponent is a long expli
it produ
t of � -fun
tions.

2. A natural limit of the spa
es H

�

as � ! 1 is L

2

on the Riemannian non
ompa
t

symmetri
 spa
e O(p; q)=O(p)�O(q) . Hilbert spa
es H

�

are also well-de�ned for negative

integer � . A natural limit of the spa
es H

n

as n!1 is the spa
e L

2

on the Riemannian


ompa
t symmetri
 spa
e O(p+ q)=O(p)� O(q) .

Referen
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Harmoni
 analysis on big groups and determinantal point pro
esses

G. Olshanski

The aim of the talk is to des
ribe new phenomena arising in harmoni
 analysis on groups

with in�nite-dimensional dual spa
e. For 
ertain su
h groups, irredi
ible representations

are naturally parametrized by in�nite point 
onfugurations on the line, and then spe
tral

measures on the dual spa
e give rise to random point 
on�gurations (or point pro
esses),

whi
h 
an be des
ribed in terms of the 
orrelation fun
tions. I would like to give an un-

derstandable introdu
tion to the subje
t, with emphasis on main ideas and new promising


onne
tions.

Representations asso
iated in�nite-dimensional 
ones

B. Orsted

This is a report on joint work with Karl-Hermann Neeb. Consider the automorphism

group of a 
lassi
al in�nite-dimensional tube domain 
orresponding to a Jordan algebra

U ; an example would be the unit ball of Hilbert-S
hmidt operators on a 
omplex Hilbert

spa
e. One would like to give L

2

- realizations of the unitary highest weight representa-

tions of these groups, in
luding the so-
alled ve
tor-valued 
ase, where the 
orresponding

reprodu
ing kernel is operator-valued rather than just s
alar-valued. For this we use the

"Bo
hner prin
iple", whi
h under suitable 
onditions gives the existen
e of an operator-

valued measure � on a 
one in the algebrai
 dual U

�

of the Jordan algebra U with Lapla
e

transform equal to the reprodu
ing kernel. For a natural Hilbert-S
hmidt 
ompletion L

2

of the stru
ture group L of U , and a similar 
ompletion U

2

of U , we 
onstru
t an in�nite

family of irredu
ible unitary representations of a natural extention of the semi-dire
t prod-

u
t U

2

� L

2

on L

2

(U

�

2

; �

2

) , where �

2

is a positive operator-valued measure with Lapla
e

transform equal to the reprodu
ing kernel. This kernel has been renormalized in order to

allow taking determinants of operators of the form I+X , X a Hilbert-S
hmidt operator.

On the meromorphi
 extension of spheri
al fun
tions on NCC symmetri


spa
es

A. Pasquale

Joint resear
h with G.

�

Olafsson (Louisiana State University)

Let G=H be a non
ompa
tly 
ausal (NCC) symmetri
 spa
e. We determine the mero-

morphi
 extension in the � -parameter of the spheri
al fun
tions '

�

(x) on G=H as an

appli
ation of Bernstein's Theorem on the 
omplex powers of polynomials. It is known that

for all � is a 
ertain subset E of the 
omplexi�
ation a

�

C

of a Cartan subspa
e a of the Lie

algebra of G , the spheri
al fun
tions are given by Poisson integrals. For a suitably �xed

translation parameter Æ 2 a

�

and all m 2 N , the meromorphi
 extension to a

�

C

satis�es

on E +mÆ the fun
tional equation b

m

(�)'

�

(a) = I

m

(�; a) , a 2 S

0

\ A . Here S

0

is the

interior of the maximal semigroup for G=H , the fun
tion I

m

(�; a) is given in the form of

an integral, and b

m

(�) is a produ
t of m Æ -translates of the Bernstein polynomial. The

regularity properties of '

�

are dedu
ed. In parti
ular, it follows that the possible poles of

'

�

are 
ontained in the Æ -translates of the zero set of the Bernstein polynomial. Appli
a-

tion of the fun
tional equations are the asymptoti
 estimates for '

�

(a) as a ! 1 . The

21



expression of the Bernstein polynomial is 
onje
tured. The relation between the proposed


onje
ture and the produ
t formula of the fun
tion 





is analyzed.

Hua harmoni
ity on Non-symmetri
 Domains

R. Penney

Let X be a K�ahler manifold. The Hua-Johnson-Kor�anyi operator (HJK) is the Hom(T

0;1

(M))

valued di�erential operator de�ned by

HJK (F ) =

X

i;j

R(Z

i

; Z

j

)O

2

(F )(Z

i

; Z

j

)

�

�

T

0;1

where R is the 
urvature operator and Z

i

is a lo
al orthonormal basis for T

0;1

(M) .

(It is easily seen that it is independent of the basis.) A fun
tion F is Hua-harmoni
 if

HJK (F ) = 0 .

If X is a symmetri
 tube domain, then results of Johnson-Kor�anyi, whi
h generalize earlier

results of Hua, together with a result of Oshima-Sekigu
hi, show that a Hua harmoni


fun
tion of exponential growth is the Poisson integral of a distribution over the Shilov

boundary. In this talk we presented generalizations of these results to the 
ase of bounded,

homogeneous, but not ne
essarily symmetri
, domains X = G=K in C

n

. Our main

results are:

a) If F is Hua-harmoni
 with exponential growth, then F has a Van den Ban-S
hli
htkrull

type asymptoti
 expansion where the 
oeÆ
ients are distributions on the unipotent radi
al

of G . This expansion is expli
itly 
omputable from its \leading" terms, whi
h are, by

de�nition, the boundary distributions for F . They uniquely determine the solution F .

b) The Poisson transform is expli
itly 
omputable.


) If F satis�es an H

2

like growth 
ondition and X is \suÆ
iently non-tube like," then

F is the sum of a holomorphi
 and anti-holomorphi
 fun
tion. In the symmetri
 
ase

\suÆ
iently non-tube like" means that X is a Siegel II domain.

Property (
) was re
ently proved in the symmetri
 
ase by the author together with

Bonami, Bura
zewski, Damek, Hulani
ki, and Trojan. Our result above generalizes it

to the non-symmetri
 
ase. It represents a partial solution to a problem proposed in 1980

by Berline and Vergne.

Choquet theory applied to harmoni
 analysis

E.G.F. Thomas

Choquet theory, following the work of G. Choquet, 
on
erns the representation of elements

in a 
losed 
onvex proper 
one Gamma by sums or integrals over extremal generators

of the 
one. One has pre
ise results on the existen
e and uniqueness of su
h integral

representations.

A parti
ular 
ase is where Gamma is a 
one of distributions of positive type on a Lie group

G. These distributions are reprodu
ing kernels of G-invariant Hilbert spa
es of distribu-

tions. The theory then predi
ts the existen
e of extremal generators whi
h are 
hara
ters

of irredu
ible representations or spheri
al distributions as the 
ase may be. This gives rise
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to Plan
herel formulas for homogeneous spa
es in a general framework. The de
ompo-

sitions are unique i� the situation is multipli
ity free. This is the 
ase if there exists an

antilinear automorphism of the surrounding spa
e leaving invariant the G-invariant Hilbert

subspa
es.

Another parti
ular 
ase is the one where Gamma is a 
one of positive de�nite kernels,

reprodu
ing kernels of Hilbert spa
es of holomorphi
 fun
tions on 
omplex manifold, invari-

ant under the a
tion of a 
omplex group. One then similarly obtains Plan
herel formulas

within the framework of holomorphi
 analysis. In joint work with J. Faraut (J. Lie theory 9

(1999) 381-400) we obtain a simple 
riterion implying that the situation is multipli
ity free.

The method has been extended to the 
ase of holomorphi
 line bundles by T. Kobayashi.

Non-
ommutative Hardy spa
es and Toeplitz-Berezin quantization

H. Upmeier

The Gelfand-Gindikin program for a semi-simple Lie group S gives a de
omposition

L

2

(S) =

P

i

�

H

2

i

(S) into "non-
ommutative" Hardy spa
es H

2

i

(S) des
ribed in terms

of 
omplex geometry of 
ertain domains in S

C

. For S = SL(2;R) , the Hardy spa
e

H

2

+

(S) =

P

n�2

�

n hSi

n


hSi

n

for the holomorphi
 dis
rete series representations hSi

n

is as-

so
iated with the pseudo-
onvex domain S

C

+

=

n

�

a b


 d

�

2 SL(2;C) : Im

�

a b b

b d b

�

> 0

o

:

In joint work with Alexander Alldridge, University of Marburg, we study the C

�

-algebra

T

+

(S) generated by all Toeplitz operators

T

+

(f) h := P

+

(fh) on H

2

+

(S) , where f 2 C

0

(S) . Here P

+

denotes the orthogonal

proje
tion onto H

2

+

(S) . The main result gives a geometri
 realization of (all) irredu
ible

representations of T

+

(S) in terms of boundary fa
es of S

C

+

. The most interesting ones

belong to 1-dimensional upper half-planes N

C

+

asso
iated with the nilpotent 
omponent

N � R of the Iwasawa de
omposition S = KAN .

Commutative homogeneous spa
es

E.B. Vinberg

A Riemannian homogeneous spa
e X = G=K is 
alled 
ommutative (or (G;K) is 
alled

a Gelfand pair) if it satis�es the following equivalent 
onditions:

(1) the 
onvolution algebra of K -invariant measures with 
ompa
t support on X is 
om-

mutative;

(2) the algebra of G -invariant di�erential operators on X is 
ommutative.

Any symmetri
 and, more generally, any weakly symmetri
 spa
e is 
ommutative.

For redu
tive G , there are known some extra 
onditions equivalent to (1) and (2), namely:

(3) the representation G : C[X℄ is multipli
ity free;

(4) X is weakly symmetri
, i.e. there is a di�eomorphism s of X normalizing G su
h

that sG 
an permute any two points of X ;

(5) the Poisson algebra of G -invariant fun
tions on T

�

X is 
ommutative.

The 
lassi�
ation of su
h homogeneous spa
es is known.

In general, (2) implies (5). We 
all a homogeneous spa
e satisfying (5) weakly 
ommu-

tative. There are two main types of su
h spa
es, namely, homogeneous spa
es of redu
tive

groups and homogeneous spa
es of the form (N hK)=K where N is a nilpotent Lie group.
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For both types, weak 
ommutativity implies 
ommutativity, and it is likelyhood that this

impli
ation is true in general.

In the 
ase X = (N hK)=K the group N must be at most 2-step nilpotent. If it is 2-step

nilpotent, we 
all X a homogeneous spa
e ofHeisenberg type and set Z = (N;N) , V =

N=Z . We 
all X irredu
ible if the representation K : V is irredu
ible. A 
lassi�
ation

of all irredu
ible 
ommutative homogeneous spa
es of Heisenberg type was presented in

the talk.

Holomorphi
 Convexity for Cy
le Spa
es of Flag Domains

J. A. Wolf

Let G be a 
onne
ted 
omplex semisimple Lie group, Q a paraboli
 subgroup, and Z =

G=Q the 
orresponding 
omplex 
ag manifold. Fix a real form G

0

of G and an open

G

0

{orbit D = G

0

(z) � Z . Choose a maximal 
ompa
t subgroup K

0

� G

0

su
h that Y

0

is a 
omplex submanifold of D . For reasons of representation theory of G

0

and algebrai


geometry in Z we look at the 
y
le spa
e

M

D

= 
omponent of Y

0

in fgY

0

j g 2 G and gY

0

� Dg

If D has a G

0

{invariant measure then D is known to be Stein. The situation is unsettled

if there is no invariant measure.

Here I des
ribe a new method for 
onstru
ting holomorphi
 fun
tions on M

D

whi
h seems

to be independent of that measurability.

The method itself is a method re
ently developed by Barlet and Koziarz. Let Z

0

� Z be

a subvariety that meets every element of M

D

and su
h that Z

00

= Z

0

\D is Stein. Let f

be a holomorphi
 fun
tion on Z

00

then Barlet and Koziarz show that

F : Y 7!

P

y2Y \Z

0

f(y)

is a well de�ned holomoprhi
 fun
tion on M

D

, and if Y

1

2 
l(M

D

) meets D at a boundary

point 
ontained in Z

0

then f 
an be 
hosen so that F blows up at Y

1

. Thus, to prove

that M

D

is Stein, it suÆ
es to �nd enough subvarieties Z

0

so that every boundary point

of D is 
ontained in at least one of them. I do that in the 
ase where G

0

=K

0

is a bounded

symmetri
 domain, Z is the 
ompa
t dual hermitian symmetri
 spa
e, and D is any open

G

0

{orbit on Z .
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