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The meeting was organized by M. Brou�e (Paris), R. Dipper (Stuttgart), B. K�ulshammer

(Jena), and G.R. Robinson (Birmingham). In eight lectures of 50 minutes length each and

26 short contributions of 30 minutes each, results and developments of the past few years

as well as challenges for the future were outlined. Representation theory of �nite groups

has grown into a huge area touching and interrelating to many other �elds in mathematics.

It was felt that the special format of organizing the talks chosen for the meeting was

particularly adequate for this meeting. For most talks 30 minutes were su�cient to present

the most important ideas. More fundamental developments were presented in long lectures,

held mostly by younger participants. Still the total number of hours of lectures was low,

so that there was plenty of free time left for discussions.

One of the neighbouring areas which has inuenced representation theory of �nite groups

and vice versa in recent years is the theory of algebraic and quantum groups. There were

several lectures demonstrating this inuence:

J.Brundan and A.Kleshchev reported in two talks on their joint work on representations of

the double covers of symmetric groups. They used and generalized ideas of Lascoux, Leclerc

and Thibon and of Grojnowski to relate these representations to those of Hecke-Cli�ord

superalgebras (introduced by them) and crystals af a certain a�ne Kac-Moody Lie algebra.

In his lecture on graded cyclotomic Hecke algebras A.Ram (on joint work with A.Shepler)

classi�ed all algebras obtained by applying Drinfeld's construction to complex reection

groups. Lusztig showed that geometric information contained in a�ne Hecke algebras can

be recovered from the corresponding graded Hecke algebra. Drinfeld's construction de�nes

an object similar to a semidirect product of a polynomial ring S(V ) and the complex group

algebra of any subgroup of GL(V ) and is a generalisation of Lustzig's construction, which

also applies to complex reection groups. G.Malle gave a lecture on his joined work with

M.Geck and L.Iancu on generic degrees associated with cyclotomic Hecke algebras. He and

his collaborators proved a formula which he had conjectured on the Oberwolfach conference

in 1996. A.Mathas presented in his talk a completely di�erent and independent proof.

There were several talks on Morita equivalences of blocks of special groups. Thus J.Chuang

gave a long and A.Hida a short lecture on Morita Theorems for blocks of symmetric and

general linear groups. These results are important for proving Broue's conjecture for these

groups.

Broue's conjecture remains a very active area. In several talks progress was reported for
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some special types of groups. In a long talk R.Rouquier presented ideas concerning block

gradings which seem to be relevant for the proof of the abelian defect group conjecture.

Another highlight of the conference were de�nitely the talks on work of C.Bonnafe and

R.Rouquier. They showed, using deep geometrical ideas, that each p-block of a �nite

reductive group for a nondescribing prime p is Morita equivalent to an isolated block.

For example for general linear groups the isolated blocks are precisely the unipotent ones.

As a consequence this reduces the questions of classifying irreducibles and calculating

decomposition numbers entirely to isolated blocks.

An interesting recent development in block theory has been the work of M. Linckelmann,

which de�nes a cohomology ring for a general block B by making use of fusion in the

category of B-subpairs and stability conditions on the usual cohomology ring of the defect

group. This opens up several possible directions of research. For example, it becomes

possible to discuss varieties for modules outside the principal block.

Another avenue of exploration, discussed by Linckelmann at this meeting, is the possibility

of de�ning an analogue of a classifying space for a general block ( that is, a topological

space with the same (localized at p) cohomology as the block). Linckelmann reported on

ongoing joint work with P.J. Webb, where, so far, an object with the desired properties

can be found in the category of spectra.

Endo-permutation modules play an important role in representation theory, in particu-

lar in the structure of nilpotent blocks and of blocks of p-solvable groups. They also

appear naturally in equivalences between module categories. The Dade group D(P) of a �-

nite p-group P parametrizes the isomorphism classes of indecomposable endo-permutation

modules. By a result of Puig, D(P) is a �nitely generated abelian group. In the 1999

Oberwolfach conference, Bouc and Th�evenaz had reported on their joint work culminating

in the computation of the torsion free part of D(P). Since then, considerable progress has

been achieved towards the calculation of the torsion subgroup of D(P).

In two lectures at this conference, Thevenaz and Carlson reported on recent joint work,

mainly on endo-trivial modules. These can be viewed as building blocks of arbitrary

endo-permutation modules. One particularly striking result is that, for the prime 2, the

subgroup T(P) of D(P) consisting of endo-trivial modules is now completely known. This

is an important step towards a complete description of D(P) in general.

One of the most intriguing problems in block theory is Dade's conjecture which uni�es

earlier conjectures such as Alperin's weight conjecture and the Alperin-McKay conjecture.

Dade's conjecture exists in several variants. Recently, Dade's projective conjecture (DPC)

has attracted most of the attention. Robinson has proved a number of reduction theorems

for DPC which include a solution for the class of p-solvable groups.

During the conference, Eaton reported on further progress, obtained in collaboration with

Robinson, on the structure of a minimal counterexample to DPC. In another talk, An gave

an overview concerning the related project aiming at the veri�cation of Dade's conjecture

for groups which are close to simple.

It seems to be widely believed that Dade's conjecture will be a consequence of the vanishing

of the Euler characteristic of a chain complex connecting certain Grothendieck groups

(whose origin is still a mystery). In his talk, Boltje explored consequences of the existence of

such a chain complex which are supported both by computer calculations and by theoretical

arguments involving (among others) Broue's abelian defect group conjecture.

Other active areas of representation theory as integral representation theory, Mackey alge-

bras, cohomological questions and derived equivalences were highlighted in further lectures
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and it was demonstrated that representation theory of �nite groups is a broad very active

area of mathematics, and progress often comes where interaction with neighbouring �elds

is vivid.

The free time allowed for many fruitful and exciting discussions between the participants.

Old cooperations could be continued, new teams emerged, and this will certainly lead to

further progress in the future.
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Abstracts

Dade's Conjectures for Some Finite Groups

J. An

In 1992, E.C. Dade generalized the Kn�orr-Robinson form of Alperin's weight conjecture

and introduced a conjecture, Dade's ordinary conjecture. In 1994 and 1995, he raised

several conjectures and announced that his �nal (= reductive) conjecture can be proved by

verifying it for all the non-abelian �nite simple groups. Two more versions of his conjecture

were introduced by Gary K. Schwartz in 2000.

Dade's �nal (or other forms of) conjecture has been veri�ed/investigated for 20 sporadic

�nite simple groups and several �nite simple groups of Lie type.

1. Current Works

Dade's conjecture has been veri�ed for the following cases:

(a) Sporadic Simple Groups

Except the groups HN , Th, Ly, J

4

, B andM , 19 sporadic simple groups have been veri�ed

for the �nal conjecture and the radical chains has been classi�ed for Fi

24

.

(b) Simple Groups of Lie type

L

2

(q) (�nal=�nal conjecture); L

3

(q) (�nal, pjq); Sz(2

2n+1

) (�nal); L

n

(q) (ordinary pjq);

G

2

(q) (�nal p 6 jq, q 6= 2; 4; and pjq, 2; 3jq);

3

D

4

(q) (�nal, p 6 jq);

2

G

2

(3

2n+1

) (�nal);

2

F

4

(2

2n+1

) (ordinary, p 6= 2);

2

F

4

(2)

0

(�nal); A

n

(ordinary, abelian defect groups);

(c). Other Groups

S

n

(ordinary); GL

�

n

(q) (ordinary, pjq); GL

�

n

(q) (invariant, p 6 jq); Sp

2n

(q) and SO

�

m

(q)

(ordinary, p 6 jq); p-soluble (projective); G=O

p

(G) TI Sylow p-subgroup (projective);

(d) General Results

Cyclic defect blocks (�nal); Tame blocks (invariant ordinary); Abelian defect unipotent

blocks (ordinary); Principal abelian defect 2-block (ordinary); Principal abelian defect

3-block (ordinary); Abelian defect blocks with special inertial quotients (ordinary).

2. Main Reductions in the Veri�cations of Dade's Conjecture for Classical

Groups in Non-de�ning Characteristics

Let G = GL

n

(q), GL

�

n

(q) = U

n

(q

2

), Sp

2n

(q), SO

2n+1

(q), SO

�

2n

(q). Suppose p is odd.

First Reduction:

Let R be a p-subgroup of G, A(R) the intersection of all maximal normal abelian subgroups

of R and

P(R) = 


a

(A(R)) = hy 2 A(R) : jyj = r

a

i;

where a is the multiplicative order of q

2

modulo p when G = Sp; SO, and while G = GL

�

,

a is the multiplicative order of �q modulo p. De�ne

CR(G) = fC 2 R(G) : P(P

i

) = P

i

8 ig;

where R(G) is the set of radical chains of G.

Then Dade's conjecture for G can be reduced to the chains of CR(G).

Second Reduction:
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Let B be a block of G, V the underlying space of G, D a defect group of B and C

V

(D)

the �xed-point subspace of D. If C 2 R(G) with �nal subgroup R, then de�ne C

V

(C) =

C

V

(R). Let

CR

�

(B) = fC 2 CR(G) : C

V

(C) = C

V

(D)g:

Then Dade's conjecture for B can be reduced to the chains of CR

�

(B).

Third Reduction:

Suppose B � E

p

(G; (s)) for some semisimple p

0

-element of G

�

. If G = Sp or SO, then let

t 2 G

�

such that

m

X�1

(t) = m

X�1

(s) +m

X+1

(s)

and m

�

(t) = m

�

(s) for all � 6= X � 1. If G = GL

�

, then set t = s. Then L

�

= C

G

�

(t) is a

regular subgroup of G

�

, and R

G

L

is a perfect isometry between E

p

(L; (s)) and E

p

(G; (s)).

Then Dade's conjecture for blocks can be reduced to the principal block B

0

or isolated

blocks of G using R

G

L

.

Final Calculations:

Dade's conjecture is veri�ed for the principal block or isolated blocks of G using the results

of Fong, Srinivasan and Olsson, and direct calculations.

Representation types of Hecke algebras of type B

S. Ariki

One basic question in modular representation theory is to ask whether an algebra has

�nitely many indecomposable modules or not. Since Hecke algebras of type A and type B

appear in modular representation theory of �nite classical groups of Lie type, these algebras

deserve study. Let k be an algebraically closed �eld. We denote by H

0

n

and H

n

the Hecke

algebras of type A and type B respectively, with quadratic relations (T

i

� q)(T

i

+ 1) = 0

(1 � i < n) and (T

0

�Q)(T

0

+1) = 0 (in type B case). We assume that q =

e

p

1 with e � 3

for simplicity.

For H

0

n

, Uno has already shown that H

0

n

is representation-�nite i� its principal block is so,

and this occurs precisely when n < 2e is satis�ed. Further, Dipper and James have shown

that if �Q is not a power of q, then H

n

� mod is Morita equivalent to �

n

1

+n

2

=n

H

n

1

�

mod
H

n

2

�mod. Hence we may renormalize T

0

and assume that the quadratic relation of

T

0

is (T

0

� 1)(T

0

� q

f

) = 0 where 0 � f < e. The block which contains the representation

T

0

! 1; T

i

! q (1 � i < n) is called the principal block of H

n

.

To determine representation types, we have to know Loewy structure of some (or all) PIMs.

To do this, we use several results. First result is to know decomposition numbers.

1

Theorem 1 (A) Assume that q =

e

p

1 with e � 3 and �Q = q

f

as above. Then we have

the following isomorphism of g(A

(1)

e�1

)-modules.

�

n�0

K

0

(H

n

� proj) ' V (�

0

+ �

f

) (1)

If we further assume that the characteristic of the ground �eld k is 0, PIM's correspond to

the canonical basis under this isomorphism.

1

This theorem is the �rst theorem which shows the existence of the crystal structure (induced by the

canonical basis) on the set of simple modules.
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Recall that we have Specht module theory for H

n

(Dipper, James and Mathas), and D

�

is

non-zero if and only if � is a Kleshchev bipartiton (A).

2

Lemma 1 (A-Mathas) Let (K;R; k) be a modular system, � be a Kleshchev bipartition,

P

�

K

and P

�

k

be corresponding PIMs in characteristic 0 and positive characteristic. If P

�

K

corresponds to f

i

1

� � � f

i

n

v

�

0

+�

f

2 V (�

0

+ �

f

), then [P

�

k

] is the modular reduction of [P

�

K

].

Using this theorem and lemma, we may compute decomposition numbers in positive char-

acteristic for principal blocks.

The other results we use are

� Specht modules have simple heads,

� PIMs have Specht �ltrations,

and elementary facts about symmetric algebras.

The main theorem is the following.

Theorem 2 (A-Mathas) Assume that q =

e

p

1(e � 3);�Q = q

f

as before. Then

(1) If n � e, then H

n

has in�nite representation type.

(2) If n < e, then the principal block is representation �nite.

Unlike the case of Hecke algebras of type A and the group case, the principal block does

not determine the representation type. In fact we have

(3) If f = 1 (or f = e� 1), then H

n

is representation �nite if and only if n < min(6; e).

We also remark that f = 0 case gives an example that the crystalized Cartan matrix does

not give the Loewy structure of PIMs. This may be explained by the fact that T

0

has a

multiple root in this case, and degeneration occurs.

References

[U] K.Uno, On representations of non-semi-simple specialized Hecke algebras, J.Algebra

149 (1992), 287-312.
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2

Using this labelling of simple modules, we may speak of modular branching rule soc(res(D

�

)) =

�

A:goodnode

D

�nA

. The link between modular branching rule and the crystal graph was �rst observed by

Kleshchev, and implicit in Rouquier's remark in the LLT paper. We need recent result of Grojnowski to

prove this.
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Prime power degree representations of the symmetric groups

C. Bessenrodt

In 1998, Zalesskii proposed to classify all instances of irreducible complex characters of

prime power degree for the quasi-simple groups; in recent joint work of his with Malle the

quasi-simple groups with the exception of the alternating groups and their double covers

were dealt with.

In the talk I reported on recent joint work with Balog, Olsson and Ono resp. Olsson; we

have solved the problem of classifying the irreducible characters of prime power degree for

the symmetric and alternating groups resp. their double covers. It turned out that in each

of the families S

n

, A

n

,

~

S

n

,

~

A

n

apart from `obvious' characters of prime power degree only

a short list of accidental extra cases for small n occurred. More precisely, the `generic'

results for S

n

and

~

S

n

are:

Theorem (Balog, B., Olsson, Ono 2000). Let n � 10, p a prime. Let � be a partition

of n. Then the irreducible character [�] of S

n

is of p-power degree > 1 if and only if

n = p

r

+ 1 and � = (n� 1; 1) or (2; 1

n�2

) (in this case [�](1) = p

r

).

Theorem (B., Olsson 2000). Let n � 9, p a prime. Let � be a partition of n into

distinct parts. Then the spin character h�i of

~

S

n

is of p-power degree > 1 if and only if

p = 2, and � = (n) (i.e. the character is a basic spin character, and then hni(1) = 2

[

n�1

2

]

)

or n = 2 + 2

a

for some a 2 IN, and � = (n� 1; 1) (here hn� 1; 1i(1) = 2

a+2

a�1

).

This second result is deduced from a result that classi�es partitions � of prime power skew

degree g

�

= the number of shifted standard �-tableaux.

Apart from combinatorial techniques, the main ingredients in the proofs of these results

are the knowledge of degree formulae, information on minimal degrees and new results

on the distribution of primes in consecutive integers (as well as computer calculations for

`mid-sized' n). In the talk, an outline of the proof was presented, and it was indicated

that some of the methods developed for this proof could also be used for very di�erent

problems.

As an application of the classi�cation result for the alternating groups, a conjecture of

Huppert was proved, providing a contribution to the proof of his characterisation of the

groups PSL

2

(q) by the set of their character degrees.

(For preprints see http://fma2.math.uni-magdeburg/�bessen for downloading.)

A �rst step towards a structural version of Alperin's weight conjecture and

Dade's conjecture

R. Boltje

Alperin's weight conjecture and Dade's conjectures state that, for a �nite group G and a

p-block B of positive defect,

X

�2P=G

(�1)

j�j

f(G

�

) = 0 ;
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where P is the G-set (via conjugation) of chains � = (P

0

< � � � < P

n

) of non-trivial p-

subgroups of G (including the empty chain), j�j = n is the length of �, G

�

the stabilizer

of �, and f is a function that counts certain irreducible characters of G

�

that depend on

B. We want to revive the idea that there should exist an exact chain complex C

�

with

dimC

n

=

P

�2P

n

=G

f(G

�

), where P

n

denotes the set of chains of length n. In general, for

a sequence (c

n

)

n2Z

of nonnegative integers almost all of which are zero, an exact chain

complex with dimC

n

= c

n

exists if and only if

c

n

� c

n+1

+ c

n+2

� + � � � � 0

for all n 2 Z. Using GAP this condition is veri�ed for the numbers c

n

=

P

�2P

n

=G

f(G

�

)

in many cases, giving more evidence to the above idea. For blocks B with cyclic defect

groups such chain complexes exist and have a number of additional nice properties. More

generally, this holds if B has abelian defect groups and if Brou�e's conjecture is true for all

subgroups G

�

.

Geometric methods in representation theory of �nite reductive groups

C. Bonnaf

�

e

Let G be a connected reductive group de�ned over a �nite �eld of characteristic p and

cardinality q, and let F : G! G be the corresponding Frobenius endomorphism. We are

interested in the representation theory of the �nite group G

F

on an algebraically closed

�eld of any characteristic di�erent from p.

Representations in characteristic 0. We are particularly interested in the computation

of the character table of G

F

, at least from a theoretical point of view. One of the main

conjectures concerning this problem is Lusztig conjecture on character sheaves. More

precisely, this conjecture says that the orthogonal basis of the space Class(G

F

) of class

functions on G

F

given by almost characters, and the one given by characteristic functions

of character sheaves coincide (up to a diagonal matrix). Thanks to T. Shoji, this conjecture

received a positive answer provided that the center of G is connected (and some mild

restrictions on p). An important example of a group with non-connected center is the

special linear group. We are working on this group since 1993 and we got a series of results

which are steps in the way to Lusztig conjecture.

In our most recent work [1], we got a precise version of Digne, Lehrer and Michel's theorem

on Lusztig restriction of Gel'fand-Graev characters. This work relies on the deep analysis of

the endomorphism algebra of an induced cuspidal character sheaves, particularly whenever

the cuspidal character sheaf is supported by the regular unipotent class. As a consequence

of this analysis, we get that, for any reductive group G, for p good for G, and for q

large enough, then Lusztig restriction of a Gel'fand-Graev character is an explicitly de�ned

Gel'fand-Graev character. The di�erence with Digne, Lehrer and Michel's theorem is in

the \explicitly de�ned".

Despite its little di�erence with Digne, Lehrer and Michel's version, this theorem is nec-

essary for computing without ambiguity the character table of the special linear group.

Indeed, in our thesis, we have computed the Lusztig functor in the special linear group

with a little imprecision which was due to the fact that, at the time the thesis was written,
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only Digne, Lehrer and Michel's theorem was available. Now, this gap has been �lled,

and the march through Lusztig conjecture should only be a question of time, since only

technical questions must be answered (but specialists know that the technic in the special

linear group is not a recreative matter).

Along this march, we got some particular results about groups of type A. First, Mackey

formula holds in type A without restriction on p or q (cf. [2]). Also, the twisting operator

has been computed for this type [3], provided that the Frobenius endomorphism acts

trivially on the center of G.

More generally, we are interested in reductive groups with non-connected center. The

theorem on Gel'fand-Graev characters is an example of a problem occuring only for these

groups. Also, we prove Mackey formula in type C without restriction on p or q, and in

general, we are now able to show that it holds for every group certainly if q � 13. However,

the methods involved in these demonstrations are not satisfying.

Representations in characteristic ` 6= p. Let K be an algebraic closure of the `-adic �eld,

let R be its valuation ring, and let k be its residue �eld (k is an algebraic closure of

the �eld with ` elements). The theory of representations of the algebras kG

F

or RG

F

has grown surprisingly in the last two decades, starting with the work of P. Fong and B.

Srinivasan, and continued in the nineties by many people. Many fundamental questions on

modular representations of �nite abstract groups lead to beautiful conjectures involving the

geometry associated to the algebraic group G (Deligne-Lusztig varieties, braid groups...).

One of the main problems is the relation between the representation theory of a block and

its Brauer correspondent. Brou�e's famous conjecture predicts that they should be derived

equivalent whenever the defect group is abelian.

With R. Rouquier, we proved a result providing a reduction argument for all these ques-

tions. Let us describe it in a few words. Let s be a semisimple element of the dual

group G

�F

�

, which is of order prime to `. Let L be an F -stable Levi subgroup of a non-

necessarily F -stable parabolic subgroup of G, and let L

�

� G

�

be a dual of L. We assume

that s 2 L

�F

�

. To the pair (L; s) (respectively (G; s)) is associated a sum of blocs B(L; s)

(respectively B(G; s)) of RL

F

(respectively RG

F

).

Theorem [4]. If C

G

�

(s) � L

�

, then the Lusztig functor R

G

L

induces a Morita equivalence

between the algebras B(L; s) and B(G; s).

If the center of G is connected, then this theorem reduces important questions (decompo-

sition matrices, Brou�e's conjecture...) to the case of isolated blocks.

To prove this theorem, we followed the strategy imagined by M. Brou�e, relating this Morita

equivalence to a geometric question on certain local systems on the Lusztig variety de�ning

the Lusztig functor R

G

L

.
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The p-blocks of the Mackey algebra

S. Bouc

Let p be a prime number, and O be a complete discrete valuation ring of characteristic 0

with residue �eld of characteristic p. Let G be a �nite group, and denote by �

O

(G) the

Mackey algebra of G over O.

This work states explicit formulae for the block idempotents of �

O

(G), in terms of the

blocks of the group algebra OG, and the O-lifts of their images by Brauer morphisms.

The proof uses the natural ring homomorphism from the crossed Burnside ring B

c

O

(G)

to the center of the Mackey algebra, and a description of the prime spectrum and block

idempotents of B

c

O

(G).

Some consequences on Mackey functors can be deduced from these formulae. In particular,

one can show that a block b of G and the corresponding block b

�

of the Mackey algebra

have the same defect groups.

Hecke-Cli�ord superalgebras, crystals of type A

(2)

2`

and modular branching

rules for

b

S

n

J. Brundan and A. Kleshchev

One of the most exciting developments in type A representation theory in the last few years

is the discovery of an intimate connection between the representations of the symmetric

group in characteristic p and the highest weight module V (�

0

) of the a�ne Kac-Moody

algebra of type A

(1)

p�1

, where �

0

is the zeroth fundamental dominant weight of A

(1)

p�1

. For

example, the modular branching rules for the symmetric group correspond exactly to the

crystal graph of this highest weight module, see [K] and [MM] respectively. This coinci-

dence was �rst observed by Lascoux, Leclerc and Thibon [LLT], who went on to formulate

a precise conjecture, later proved (in greater generality) by Ariki [A1], relating the canon-

ical basis coe�cients of V (�

0

) to decomposition numbers, not of the symmetric group in

characteristic p but rather of the associated Hecke algebra at a pth root of unity over C .

More recently, Grojnowski [G] has revealed a purely algebraic way to relate the representa-

tion theory of the symmetric group to the highest weight module V (�

0

). For example, the

coincidence between the modular branching rules and the crystal graph structure is fully

explained in this approach. More generally, there is a family of cyclotomic Hecke algebras

or Ariki-Koike algebras for each dominant integral weight � of A

(1)

p�1

, and the representation

theory in this family is intimately related to the highest weight module V (�). To com-

plete the picture here, further work of Ariki [A2] has given a very explicit combinatorial

description of the crystal graph of V (�) in terms of certain multipartitions.

Leclerc and Thibon [LT] have also noticed similarities between the fundamental representa-

tion V (�

0

) of the twisted a�ne Kac-Moody algebra A

(2)

p�1

and the combinatorics underlying

the modular representation theory of the double covers

b

S

n

of the symmetric group in odd

characteristic p. In particular they conjectured that certain partitions that arise naturally

in the Lie theoretic construction of V (�

0

) { so-called restricted p-strict partitions { should

also label the irreducible representations of

b

S

n

in characteristic p > 2. A suitable labelling
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set before then was only known for p = 3; 5 (by work of Andrews, Bessenrodt, Morris and

Olsson [ABO, BMO]). In [BK1], we gave a construction valid for all odd p of the irre-

ducibles, ful�lling Leclerc and Thibon's hope regarding the labelling. Our approach there

involved Sergeev's superalgebra analogue of Schur-Weyl duality [S], ultimately relating

representations of

b

S

n

to the supergroup Q(n).

In new work [BK2], reported at the present meeting, we have succeeded in extending the

arguments of Grojnowski [G] to the twisted case, replacing the cyclotomic Hecke algebras

with new algebras called cyclotomic Hecke-Cli�ord superalgebras. These are certain �nite

dimensional quotients of superalgebras introduced in [JN]. Again, there is one family

of cyclotomic Hecke-Cli�ord superalgebras for each dominant integral weight � of A

(2)

p�1

.

In particular, we obtain an algebraic construction purely in terms of the representation

theory of Hecke-Cli�ord superalgebras of the plus part U

+

Z

of the enveloping algebra of

the Kac-Moody algebra A

(2)

p�1

, as well as of Kashiwara's highest weight crystals B(1) and

B(�) for each dominant weight �. The crystal B(�) gives a natural parametrization of the

irreducible representations of the corresponding family of Hecke-Cli�ord superalgebras, the

edges in the crystal graph describe the modular branching rules, etc....
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Taking the special case � = �

0

in the main results, we obtain applications for the modular

representation theory of the double covers

b

S

n

of the symmeric groups. This exploits an

explicit combinatorial description of the crystal B(�

0

) discovered recently by Kang [Kan].

In particular, the parametrization of irreducibles, classi�cation of blocks and analogues of

the modular branching rules of the symmetric group for the double covers over �elds of odd
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characteristic are deduced. For example, the crystal graph B(�

0

) of A

(2)

2

is listed above.

This underlies the representation theory of

b

S

n

in characteristic 3. The vertices of the nth

level of the graph parametrize the irreducible (spin) representations of

b

S

n

, and the edges

of the graph describe the irreducible

b

S

n�1

(resp.

b

S

n+1

) representations that appear in the

socle of the restriction (resp. induction) of the corresponding irreducible representation to

b

S

n�1

(resp. to

b

S

n+1

).

References

[ABO] G. E. Andrews, C. Bessenrodt and J. B. Olsson, Partition identities and labels for some

modular characters, Trans. Amer. Math. Soc. 344 (1994), 597{615.

[A1] S. Ariki, On the decomposition numbers of the Hecke algebra of type G(m; 1; n), J. Math.

Kyoto Univ. 36 (1996), 789{808.

[A2] S. Ariki, On the classi�cation of simple modules for cyclotomic Hecke algebras of type

G(m; 1; n) and Kleshchev multipartitions, to appear in Osaka J. Math..

[BMO] C. Bessenrodt, A. O. Morris, and J. B. Olsson, Decomposition matrices for spin charac-

ters of symmetric groups at characteristic 3, J. Algebra 164 (1994), 146{172.

[BK1] J. Brundan and A. Kleshchev, Projective representations of the symmetric group via

Sergeev duality, to appear in Math. Z..

[BK2] J. Brundan and A. Kleshchev, Hecke-Cli�ord superalgebras, crystals of type

A

(2)

2`

and modular branching rules for

b

S

n

, preprint, 2001. (Available from

http://darkwing.uoregon.edu/�brundan/research.html.)

[G] I. Grojnowski, A�ne

b

sl

p

controls the modular representation theory of the symmetric

group and related Hecke algebras, preprint, 1999.

[JN] A. Jones and M. Nazarov, A�ne Sergeev algebra and q-analogues of the Young sym-

metrizers for projective representations of the symmetric group, Proc. London Math.

Soc. 78 (1999), 481{512.

[Kan] S.-J. Kang, Crystal bases for quantum a�ne algebras and combinatorics of Young walls,

preprint, Seoul National University, 2000.

[K] A. Kleshchev, Branching rules for modular representations of symmetric groups II, J.

reine angew. Math. 459 (1995), 163{212.

[LLT] A. Lascoux, B. Leclerc and J.-Y. Thibon, Hecke algebras at roots of unity and crystal

bases of quantum a�ne algebras, Comm. Math. Phys. 181 (1996), 205{263.

[LT] B. Leclerc and J.-Y. Thibon, q-Deformed Fock spaces and modular representations of

spin symmetric groups, J. Phys. A 30 (1997), 6163{6176.

[MM] K. Misra, T. Miwa, Crystal base for the basic representation of U

q

(

b

sl

n

). Comm. Math.

Phys. 134 (1990).

[S] A. N. Sergeev, Tensor algebra of the identity representation as a module over the Lie

superalgebras GL(n;m) and Q(n), Math. USSR Sbornik 51 (1985), 419{427.

12



Endotrivial Modules in Characteristic Two

J.F. Carlson

Let G be a �nite group and k a �eld of characteristic p > 0. A �nitely generated kG-module

M is an endotrivial module if Hom

k

(M;M)

�

=

M 
M

�

is the direct sum of a trivial kG-

module and a projective kG-module. The tensor product with an endotrivial module

induces a self equivalence of the stable category of kG-modules modulo projectives. The

endotrivial modules also form the building blocks for the Dade group of endopermutation

modules. Throughout this work we assume that the group G is a p-group.

We say that two endotrivial modules M and N are equivalent if M � P

�

=

N � Q for

some projective modules P and Q. The equivalence classes of endotrivial modules form

a group under tensor product. A theorem of Dade shows that for G an abelian p-group,

the indecomposable endotrivial modules are translates 


n

(k) of the trivial module k. The

torsion free part of the group is detected on restriction to elementary abelian subgroups of

rank two. The rank of the torsion free group has been determined by the work of Alperin.

In earlier work, Thevenaz and I showed that the torsion endotrivial modules are detected

on extraspecial and almost extraspecial subgroups of the group G. In addition, we were

able to eliminate some cases when the prime p is odd. More recently we can show, in

the case that p = 2, that among extraspecial and almost extraspecial groups only the

quaternion group has nontrivial torsion endotrivial modules. With some additional work

it can be proved that the group of torsion endotrivial modules is trivial for all 2-groups G

which are not quaternion semi-dihedral or cyclic.

The proof involves a large amount of group cohomology. It is obtained by deriving a

contradiction based on the dimension of a nontrivial indecomposable torsion endotrivial

module if one exists. On the one hand, the dimension of such a module must be bounded

from above, in terms of the group cohomology. Recent work has allowed us to sharpen

the bound. On the other hand, an analysis of the support varieties of certain submodules

of such a module permits the construction of a large torsion endotrivial module whose

dimension exceeds the upper bound.

Currently we are attempting to apply the same techniques to the remaining cases for p odd.

Some new results have been obtained and there seems to be some promise of a complete

solution.

Symmetric groups, wreath products, and canonical bases

J. Chuang

Radha Kessar and I have found p-blocks of the symmetric groups which are Morita equiv-

alent to the principal p-block of the wreath product S

p

o S

w

where w < p. This can be

regarded as a �rst step in proving Brou�e's Abelian defect group conjecture for symmetric

groups. To complete a proof, one needs to show that blocks of symmetric groups with

isomorphic defect groups are derived equivalent. Jeremy Rickard has a partial solution to

this problem, which shows that Brou�e's conjecture is true, for example, for blocks with

defect groups of order less than or equal to p

5

.

In another direction Kai Meng Tan and I have used these Morita equivalences to calculate

decomposition numbers, radical �ltrations of projective modules, and radical and Jantzen
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�ltrations of Specht modules. We also make the connection with canonical bases via LLT's

philosophy. Here are the details:

Fix an integer n � 2 and a nonnegative integer w. Let � be an n-core with the following

property: � has no addable nodes with n-residue i and at least w�1 removable nodes with

n-residue i, for each i = 1; : : : ; n� 1.

Theorem 1 (with Radha Kessar) Suppose n = p is prime and w < p. Then the p-block

of the symmetric groups with core � and weight w is Morita equivalent to the principal p-

block of S

p

o S

w

.

Let � and � be partitions with n-core � and n-weight w, and suppose that � is n-regular.

Let (�

0

; : : : ; �

n�1

) be the n-quotient of � and let (;; �

1

; : : : ; �

n�1

) be the n-quotient of �

(the �rst component is ; because � is n-regular).

We de�ne a polynomial

d

��

(q) =

X

�

1

;::: ;�

n�1

�

0

;::: ;�

n�2

 

n�1

Y

i=0

c

(�1)

i

�

i

�

i

�

i

! 

n�1

Y

i=1

c

(�1)

i

�

i

�

i�1

�

i

!

q

j�j

;

where in the �rst product we put �

0

= ; and �

n�1

= ;, we use a negative sign to indicate

the conjugate of a partition, and j�j = j�

1

j+ � � �+ j�

n�1

j.

Theorem 2 (with Kai Meng Tan) 1. The d

��

(q)'s are coe�cients of canonical basis

elements of the basic representation of

c

sl

n

written in terms of the de�ning basis of

the Fock space representation. (Therefore by Ariki's Theorem the d

��

(q)'s evaluated

at q = 1 are decomposition numbers for Hecke algebras at complex n-th roots of 1.)

2. Suppose n = p and w < p. Then the d

��

(q)'s evaluated at q = 1 are decomposition

numbers for symmetric groups.

3. Suppose n = p and w < p. Then for the symmetric groups, the multiplicity of D

�

in

the j-th Jantzen layer of S

�

is equal to the coe�cient of q

j

in d

��

(q). Moreover, the

Jantzen and radical �ltrations of S

�

coincide (up to shift by j�

0

j).

Characters and Hecke algebras of type A

S. Donkin

Let H(r) be the type A Hecke algebra of degree r over a �eld k, with parameter q 2 k. This

paper was motivated by a conjecture of Andrew Mathas asserting that for q a primitive

lth root of 1, the determinant of the Cartan matrix of H(r) is a power of l. We prove here

that the determinant is a positive divisor of a power of l. The result is analogous to the

well known result that the determinant of the Cartan matrix of the group algebra kG of

a �nite group G over a �eld of characteristic p is a power of p. In fact this is much more

than an analogy. Our method is to associate to each �nite dimensional projective H(r)-

module a character of the symmetric group then study some properties of the Cartan

matrix using character theory exactly as in the general �nite group case. An amusing
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feature is that we, in e�ect, study the modular character theory of symmetric groups, but

with the characteristic of the modular �eld in Brauer's theory replaced by an arbitrary

positive integer l.

On a minimal counterexample to Dade's projective conjecture

C. Eaton

Dade's projective conjecture ( [2]) states that for any p-block B with non-normal defect

groups of a �nite group G with O

p

(G) � Z(G), and any � 2 Irr (O

p

(Z(G))) and d 2 N

0

,

we should have

X

�2C(GjO

p

(G))=G

(�1)

j�j

k

d

(G

�

; B; �) = 0:

Here C(GjO

p

(G)) is the set of chains

O

p

(G) = Q

0

< � � � < Q

n

of p-subgroups of G, and j�j = n. We let G act on the chains by term-wise conjuga-

tion, and C(GjO

p

(G))=G is a set of G-conjugacy class representatives, G

�

is the chain

stabilizer. k

d

(G

�

; B; �) is the number of irreducible characters of G

�

belonging to Brauer

correspondents of B for which �(1)

p

p

d

= jGj

p

and (�; �

G

) 6= 0.

This is a re�nement of the Kn�orr-Robinson reformulation ( [3]) of Alperin's weight conjec-

ture ( [1]), and as such implies the weight conjecture.

Robinson has demonstrated that this conjecture holds for p-solvable groups ( [4]), which

involves showing that a minimal counterexample has O

p

0

(G) � Z(G). This means that in

a minimal counterexample the generalized Fitting subgroup F

?

(G) is a central product of

Z(G) and the components (quasi-simple subnormal subgroups) of G. This suggests two

problems concerning the structure of a minimal counterexample:

(I) Show that G permutes the components transitively,

(II) Show that the components are normal.

If both these problems are solved then it follows that a minimal counterexample is a

covering group of an automorphism group of a simple group.

� The author together with Geo�rey Robinson have successfully completed problem (I).

This uses recent results of Robinson ( [5]) as well as Cli�ord-theoretic techniques analogous

to the Fong correspondences.

� The author and Burkhard H�oing have studied the special case of problem (II) where

G = H o S

n

for some H and n. A stronger result is proved that if Dade's projective

conjecture holds for H then it also holds for G. It may be hoped that this will indicate

how a solution to problem (II) may proceed.
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Modular Representations of the A�ne Hecke Algebra

J. Graham

(joint work with G. Lusztig, A. Cox and P. Martin)

Let k be an algebraically closed �eld and q 2 k

�

. Let

^

H

n

denote the a�ne Hecke algebra

associated to the general linear group GL

n

. Bernstein and Zelevinski and others have

de�ned \standard modules" for

^

H

n

. Given semisimple S 2 GL

n

(k) and nilpotent matrix

N 2 M

n

(k) such that N

S

= q

2

N , one may construct

^

H

n

-module V

S;N

. An important

problem is to determine the multiplicity of irreducibles in V

S;N

. When k is the complex

numbers this is well understood. If q is a root of unity the question reduces to determining

the decomposition matrix of the Ariki-Koike Hecke algebra for the parameters which Ariki

treats in [On the decomposition numbers of the Hecke algebra of G(m; 1; n), 1996]. We

determine the decomposition numbers in arbitrary characteristic and arbitrary q for V

S;N

when N has (at most) two blocks.

Units of p-power order in principal blocks of p-constrained groups

M. Hertweck

The result presented in my talk is related to work of Roggenkamp and Scott (on automor-

phisms of the principal p-block of a p-constrained group), and depends again on Weiss'

results on p-permutation modules.

Let G be a �nite group which has a normal p-subgroup N with C

G

(N) � N , and let R be

a p-adic ring. The group of units in RG of augmentation 1 is denoted by V(RG).

Theorem A. Any �nite p-group in V(RG) which normalizes N is conjugate to a subgroup

of G in the units of RG.

Theorem B. Any �nite p-group in V(RG) which centralizes N is contained in N .

Corollary. If G is p-constrained with O

p

0

(G) = 1, then any central unit of �nite p-power
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order in V(RG) is trivial, i.e. contained in Z(G).

Some special arguments are needed in the p = 2 case. The following result is used,

which holds for any �nite group G and a 2-adic ring R. If u 2 V(RG) with u

2

= 1 and

u 2 1+2(2RG+R[T

2

]+R), where R[T

2

] denotes the R-linear span of the set of involutions

of G, then u = 1.

Morita Equivalent Blocks of Finite General Linear Groups in Non-de�ning

Characteristic

A. Hida

(joint work with H. Miyachi)

Let kG be the group algebra of a �nite group G over an algebraically closed �eld k of

characteristic l > 0. Let S

n

be the symmetric group of degree n. Chuang and Kessar

de�ned a certain l-core � and proved the following.

Theorem 1 ([2]) Suppose that w < l. Let B

�;w

be the block of kS

n

with l-core � and

weight w, where n = j�j + lw. Then B

�;w

and the principal block of k(S

l

o S

w

) are Morita

equivalent.

Corollary 2 ([1]) Suppose that 2 < l. Brou�e's conjecture is true for blocks of symmetric

groups of weight 2. Namely, let B be a block of symmtric group with weight 2, then B and

the Brauer correspondent of B are derived equivalent.

We will show that similar results hold for unipotent blocks of a general linear group GL

n

(q)

where l - q. Let e = e(q) be the multiplicative order of q in k. Let B

�;w

(q) be the unipotent

block of kGL

n

(q) with e-core � and weight w. Let H(q) = GL

e(q)

(q) o S

w

.

Theorem 3 Suppose that w < l. Then B

�;w

(q) and the principal block B

0

(kH(q)) of

kH(q) are Morita equivalent.

Corollary 4 Brou�e's conjecture is true for unipotent blocks of �nite general linear groups

of weight 2 in non-de�ning characteristic.

Let r(q) be the largest integer r such that l

r

jq

e(q)

� 1. Let q

0

be a power of a prime. If

e = e(q) = e(q

0

) and r(q) = r(q

0

), then B

0

(kH(q)) and B

0

(kH(q

0

)) are Morita equivalent.

Let � be an arbitrary e-core. Then we have the following result.

Theorem 5 If e(q) = e(q

0

), r(q) = r(q

0

), w � 5 and w < l, then B

�;w

(q) and B

�;w

(q

0

) are

Morita equivalent.

Remark. In [3], W.Turner proved similar results.
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Imprimitive irreducible representations of �nite quasi-simple groups

G. Hi�

(joint work with W. Husen and K. Magaard)

An irreducible representation of a �nite group G on a vector space V is imprimitive, if it

is induced from a proper subgroup of G. This is equivalent to the statement that there is

a direct decomposition

V =

m

M

i=1

V

i

of V with m > 1 such that the summands V

i

are permuted by the action of G.

In joint work with William Husen and Kay Magaard we have determined the ordinary

irreducible imprimitive representations of the �nite quasi-simple groups. Somewhat sur-

prisingly, the proportion of imprimitive representations is rather large. For example, if

G = SL

n

(q), the number of ordinary irreducible representation of G is of the form

q

n�1

+ lower terms in q:

Among these,

�

1�

1

n

�

q

n�1

+ lower terms in q

are imprimitive.

Our work is motivated by the program of describing the maximal subgroups of linear

groups such as GL(V ). Aschbacher's approach divides the general problem into various

partial problems, one of which is the following: When is the normalizer of an absolutely

irreducible quasi-simple subgroup G of GL(V ) maximal? In general this is not the case

when the embedding of G into GL(V ) is imprimitive.

Hochschild Cohomology of Tame Blocks

T. Holm

To any associative algebra � one can associate the Hochschild cohomology ringHH

�

(�) :=

�

i�0

Ext

i

�
�

op

(�;�) (multiplication given by Yoneda product). For group algebras or

blocks a complete description of the ring structure seems to be known only in few cases

(e.g. abelian groups, blocks with cyclic defect groups).

In the talk we discuss Hochschild cohomology groups for blocks of tame representation

type (i.e., with defect groups dihedral, semidihedral or generalized quaternion). Such
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blocks have at most three simple modules. For blocks with one or three simple modules

we present a complete answer for the additive structure of Hochschild cohomology. This

relies on our classi�cation of algebras of dihedral, semidihedral and quaternion type up to

derived equivalence. Since Hochschild cohomology is invariant under derived equivalence

it su�ces for the general case to consider one particular block in each derived equivalence

class. Standard examples are provided by blocks of linear groups like GL, SL, PSL and

extensions of these, for which then explicit calculations are carried out.

On blocks with symmetric stable center

R. Kessar

Let G be a �nite group, k an algebraically closed �eld of prime characteristic p, and b

a block of kG. The stable center,

�

Z(kGb) =: Tr

G

1

(kGb) of kGb is an invariant of the

Morita-stable category of kGb., i.e. a stable equivalence of Morita type between two block

algebras induces an isomorphism between the corresponding stable centers. We study

�

Z(kGb) under the assumption that it is a symmetric algebra and we show that when b is

the principal block of kG, then

�

Z(kGb) is symmetric if and only if the Sylow p-subgroups

of G are abelian and the centralisers of non-identity p-elements of G are p-nilpotent. We

also obtain necessary and su�cient conditions in the general case. These results extend

earlier work of Okuyama and Tsushima who showed that the center Z(kGb) of kGb is a

symmetric algebra if and only if b is a nilpotent block with abelian defect groups.

This is joint work with Markus Linckelmann.

Blocks of the Cyclotomic Hecke Algebras of G(d; 1; r) and G(d; d; r)

S. Kim

(joint work with M. Brou�e)

In the work of G. Lusztig on the irreducible characters of the reductive groups over the �nite

�elds, the notion of \family of characters" of the corresponding Weyl groups, plays a fun-

damental role. Lusztig de�nes the partition into families of the set of irreducible characters

of a Weyl group W by using the asymptotic based ring associated to the Kazhdan{Lusztig

basis of the Hecke Algebra of W .

Recently, we have interest in generalizing the notion of family of characters to the complex

reection groups , or more precisely to various types of Hecke algebras associated to the

complex reection groups.

The principal obstacle for this generalisation is that we don't have (or not yet ?) the

Kazhdan{Lusztig basis for the complex reection groups (not of Coxeter). However, the

results of Gyoja , completed by a recent work of R. Rouquier , gives a substitute for the

de�nition of families.

Rouquier shows in fact that the families of Irr(W ), W a Weyl group, are just the blocks of

Irr(H(W )), H(W ) the classical Hecke algebra, over an appropriate ring. This de�nition

can be generated easily to all the cyclotomic algebras of complex reection groups and this

de�nition is the one we refer and use in our work.
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For the \Ariki{Koike" cyclotomic Hecke algebras, we obtain in particular, thanks to a

conjecture of Graham and Lehrer which is proven by Grojnowski , the generalization of

the Lustig families of the spetsial algebras.

More generally, we treat here the case of arbitrary \cyclotomic algebra" { which covers in

particular the known cases (for the Weyl groups) under the name of \Hecke algebra with

unequal parameters".

Theorem for G(d; 1; r): Two irreducible characters �

�

; �

�

are in the same family if and

only if the corresponding symbols, �; � have the same contents (that is, same entries with

the same multiplicities, possibly arranged in di�erent rows). Here, the shape of the symbols

correponds to the chosen variables for the Hecke algebra of the group G(d; 1; r).

The complex reection groups G(d; d; r) may be viewed as generalizing the Weyl group of

type D

r

(which are the groups G(2; 2; r)), and the dihedral groups (G(d; d; 2) is the dihedral

group of order 2d). We determine the \families" (Rouquier blocks) of the cyclotomic

algebras of the groups G(d; d; r).

We also obtain, in particular by considering the case of algebras called \spetsial", the

generalization of the classi�cation of Lusztig of the families of the Weyl group of type D

r

(which appears here as a simple application of the Cli�ord theory of blocks), as well as a new

proof of the classi�cation of the families of the dihedral groups obtained \experimentally"

by Lusztig , and then by Malle and Rouquier by direct approach on the \Rouquier blocks".

Theorem for G(d; d; r): Two irreducible characters �

�

; �

�

are in the same family if and

only if the corresponding symbols, in rectangular shape, �; � have the same contents (that

is, same entries with the same multiplicities, possibly arranged in di�erent rows).

Brou�e's conjecture for the 3-dimensional special unitary groups

N. Kunugi

Let G be a �nite group. Let (K;O; k) be a splitting p-modular system for G. We denote

by B

0

(G) the principal block of OG. We consider the following well-known conjecture.

Conjecture (Brou�e) Let G be a �nite group with abelian Sylow p-subgroup P . Then the

principal blocks B

0

(G) and B

0

(N

G

(P )) are splendid derived equivalent.

Let H = N

G

(P ). The following is an important approach to show existence of derived

equivalence between B

0

(G) and B

0

(H).

(I) Construct a stable equivalence between B

0

(G) and B

0

(H) from splendid equivalences

between B

0

(C

G

(Q)) and B

0

(C

H

(Q)) for all non-trivial subgroups Q of P .

(II) Lift it to a splendid derived equivalence between B

0

(G) and B

0

(H).

Let M be the Green correspondent of B

0

(G) with respect to (G�G;�(P ); G�H). The

bimodule M does not induce a stable equivalence in general. However known examples

of derived equivalent blocks which are constructed from a stable equivalence are almost

constructed from a stable equivalence by M .

We show the following as an example of derived equivalences constructed from a stable

equivalence not coincides the Green correspondence.
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Theorem (Kunugi-Waki) Let G = SU(3; q

2

) and let (K;O; k) be a splitting r-modular

system for G where r � 5. We assume that r divides q + 1. Let P be a Sylow r-subgroup

of G (Then P

�

=

C

r

a

� C

r

a

where r

a

is the r-part of q + 1). Then the principal blocks

B

0

(G) and B

0

(N

G

(P )) are splendidly derived equivalent.

On spaces and spectra associated with p-blocks

M. Linckelmann

It seems to be a general intuition that there should be associated with a p-block b of a

�nite group G a topological space, whose meaning for the block should be analogous to

what is the classifying space for a group.

In common work with Peter Webb, inspired by results and methods due to Benson-Feshbach

and Martino-Priddy (who determine the decomposition of classifying spaces of �nite groups

in the category of p-complete spectra), we associate with any such p-block a canonical p-

complete spectrum

^

B(G; b), which appears as a summand of the classifying space BP

+

of a defect group P (viewed as p-complete spectrum). If b is the principal p-block of G

then

^

B(G; b) coincides with BG

+

. It is an open question, whether there is in general a

topological space B(G; b) whose p-completion is

^

B(G; b). The answer is positive, if N

G

(P )

controls fusion in b (which is the case whenever P is abelian), and in that case, B(G; b) is

just the space B(P o E), where E is the inertial quotient of b.

Some very recent work of Broto-Levi-Oliver (2000, 2001) indicates the direction, where

one might �nd such spaces: their work considers certain extensions of the local category

of b by the functor sending a b-centric subgroup Q of P to its center Z(Q). Under some

strong technical hypotheses, we construct such categories. Even though at this point their

existence for an arbitrary block is still open, this seems to be an encourageing perspective.

Markov traces and generic degrees

G. Malle

We report on joint work with Meinolf Geck and Lacrimioara Iancu. Let H

n

be the cyclo-

tomic Hecke algebra of the imprimitive complex reection group G(r; 1; n) over the ring

A = Z[q

�1

; u

�1

1

; : : : ; u

�1

r

]. In joint work with Kirsten Bremke and Andrew Mathas it was

shown that H

n

is a symmetric algebra over A. Moreover, the symmetrizing trace �

0

is

uniquely determined once an additional symmetry property is assumed, by a result ob-

tained jointly with Brou�e and Michel. Being a trace form, �

0

can be decomposed as a

linear combination of irreducible characters of H

n

over a splitting �eld, and the coe�cients

in this decomposition are called the generic degrees of H

n

.

Conjecturally, the generic degrees play an important role in the representation theory of

groups of Lie type, for example they should specialize to degrees of unipotent characters

of classical groups. Moreover, they should have extensions to sets of so-called unipotent

degrees. An explicit knowledge of the generic degrees seems desirable for various appli-

cations, for example the determination of "families" (blocks of H

n

) for complex reection

groups, as described in the talk by Sungsoon Kim at this conference.
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A conjecture on the values of the generic degrees was presented at the Oberwolfach con-

ference in April 1996. This conjecture has now been proved by us, and independently by

Andrew Mathas (see his talk). In our approach, we are able to link the generic degrees to

weights of Markov traces on H

n

. Our proof consists of the following three steps. First, we

determine the weights of Markov traces on H

n

for a rather restricted set of parameters.

This step follows an idea of Orellana from the case r = 2, using a family of homomorphisms

from the braid group of type B

n

to braid groups of type A

n+f

. Secondly, by a density ar-

gument and explicit computation, we are able to deduce the weights for arbitrary Markov

traces. In the case r = 2, this had previously been achieved by Iancu. Finally, we verify

that �

0

is a Markov trace on H

n

with respect to explicitly known values of the parameters.

Thus, the generic degrees are obtained as specializations of the weights determined before.

By previous work of mine, this completes the determination of generic degrees of cyclotomic

Hecke algebras for all �nite complex reection groups. The explicit results exhibit some

striking and yet unexplained properties of suitable specializations. For example, for given

group W , all generic degrees are integral if and only if they all lie in the �eld of fractions

of A. Reection groups for which this happens are called spetsial.

Graded Derived Equivalences

A. Marcus

Let K be a normal subgroup of the �nite group H, and regard the group algebra OH as

a G-graded algebra, where (K;O; k) is a splitting p-modular system and G = H=K. Let b

be a G-invariant block of OK with defect group D, and let b

0

be the Brauer correspondent

of b in K

0

= N

K

(D). The Brauer correspondence induces a bijection c $ c

0

, called the

Harris-Kn�orr correspondence, between blocks of H lying over b and blocks of H

0

lying over

b

0

.

An interesting question is whether the existence of a Rickard equivalence between bOK

and bOK

0

implies that cOH and c

0

OH

0

are Rickard equivalent.

We approach this problem by means of graded derived equivalences. We prove the following

graded version of Rickard's theorem:

If R and S are two G-graded algebras, then the following statements are equivalent.

(i) There is a G-graded tilting complex T 2 D(R-Gr) and an isomorphism of G-graded

algebras S ! End

D(R)

(T )

op

.

(ii) There is a complex X of G-graded (R; S)-bimodules such that X

L




S

� : D(S)! D(R)

is an equivalence.

(iii) There is a triangle equivalence between D(S) and D(R) preserving graded objects,

which is compatible with grade-forgetting and conjugation.

An extension of Brou�e's conjecture states that if D is abelian and G is a p

0

-group, then

bOH and b

0

OH

0

are graded derived equivalent. Relying on constructions due to Rouquier

and Okuyama, we show that this conjecture holds in the following cases: D is cyclic;

D ' C

3

� C

3

and K is simple; K = SL

2

(p

n

).

Finally, there are implications towards Dade's inductive conjecture, since a graded equiv-

alence preserves the relevant Cli�ord theoretical invariants.
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Generic degrees for Ariki-Koike algebras

A. Mathas

The Ariki-Koike algebra H

r;n

is a deformation of the group algebra of W

r;n

:= (Z=rZ) oS

n

,

the wreath product of a cyclic group of order r with a symmetric group of order n. If

r = 1 or r = 2 then W

r;n

is a Weyl group and H

r;n

is an Iwahori{Hecke algebras. The

Iwahori{Hecke algebras are intimately connected with the representation theory of the

�nite groups of Lie type. When r > 2 then W

r;n

is a complex reection group and H

r;n

is a cyclotomic Hecke algebra (in the sense of Brou�e and Malle) and conjecturally the

representation theory of H

r;n

still plays an important role in the representation theory

of the �nite groups of Lie type. In particular, when H

r;n

is semisimple then there is a

polynomial D

�

associated to each irreducible character of H

r;n

and certain specializations

of this polynomial should compute the dimensions of irreducible representations of certain

�nite groups of Lie type. The polynomials D

�

are called the generic degrees of H

r;n

and

formulae for these polynomials were conjectured by Malle.

In my talk I showed one way to compute the generic degrees. The idea is to �rst write

down a Wedderburn basis of H

r;n

; this can be done explicitly (in principle) by a cunning

use of the Murphy operators in H

r;n

. In particular, this gives a description of the primitive

idempotents in H

r;n

; the generic degrees are given by the values of a trace form on these

idempotents.

The generic degrees were also computed by Geck, Iancu and Malle.

The centre of the group algebra of a Symmetric group

J. Murray

Suppose that n is a positive integer and that k is a perfect �eld of characteristic p > 0.

Let Z denote the centre of the group algebra of the symmetric group S

n

over k. So Z has

as k-basis the class sums of the conjugacy classes of S

n

. As is well known, the conjugacy

classes of S

n

are in bijection with the partitions of n.

Suppose that g is an element of S

n

, and D is a p-defect group of g. We show that

C

S

n

(D) =< g

p

> �N , for some group N , where g

p

is the p-part of g. This has a number

of consequences for the structure of the k-algebra Z, and the centres of the p-blocks of S

n

.

Let Z

r

denote the span of the p-regular class sums of S

n

, a k-subspace of Z. Then one

consequence is that Z

r

forms a subalgebra of Z. Let � : Z ! Z be the Frobenius map

�(z) = z

p

, for each z 2 Z. So � is a semi-linear transformation on Z, with respect to the

Frobenius automorphism of k. Another consequence is that the image of � is contained

in Z

r

. Let 


+

=

P

fg 2 S

n

j g

p

= 1g in kS

n

. Then it follows that if z 2 Z, then

z

p

= 0() z


+

= 0. This last equality may in fact hold in the centre of the group algebra

of an arbitrary �nite group.

Using the fact that Z is the ring of symmetric polynomials over k in the Jucys-Murphy

elements, we show that the image of � coincides with Z

r

if p = 2. This means that, when k

has characteristic 2, the squares of the elements of Z are precisely the k-linear combinations

of the 2-regular class sums. Let B be a 2-block of S

n

, of weight w. M. Enguehard has

shown that the isomorphism type of the centre Z(B) of B is determined by w. We show
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that the subspace of squares in Z(B) has dimension equal to the number of partitions of

w.

Finally we give some lower bounds for the nilpotency of the radical J(ZB) of Z(B), when

B is a p-block of S

n

. A result of B. K�ulshammer shows that z

p

t

= 1 for each z 2 J(ZB),

where p

t

is the exponent of a defect group of B. We show that there exists z 2 J(ZB) for

which z

p

t�1

6= 0.

Cli�ord groups

G. Nebe

The Cli�ord group C

m

is de�ned as the full normalizer of the extraspecial group E(m)

�

=

2

1+2m

+

�

=

D

8

Y: : :YD

8

in O(2

m

;R). This group comes up in connection with many di�erent

topics in discrete mathematics. Its ring of invariants is spanned by the complete weight

enumerators of (scalar extensions) of binary selfdual codes. There are similar results for

p > 2 and more general rings. In the talk I will give a numbertheoretic proof of the fact

that C

m

(for m � 2) is a maximal �nite subgroup of GL(2

m

;R).

On the Brauer-Glauberman correspondence

L. Puig

Let R be a Dedekind ring with a �eld of quotients K of characterisitic zero and G a

�nite group; recall that the R-module of central R-linear forms Z

�

(RG) over RG is a

free Z(RG)-module of rang 1 ; consider the subalgebra Z

id

(RG) generated by all the

idempotents of Z(RG) . Let � be a set of primes such that pR 6= R for any p 2 � ;

following Brauer, consider the graded R-module structure of Z

�

(RG) determined by the

�-elements of G (i.e. the central R-valued functions de�ned over the �-sections in Brauer's

terms)

Z

�

(RG) =

M

u2U

Z

�

u

(RG)

where U is a set of representatives for the G-conjugacy classes of �-elements of G , and,

for any u 2 U , respectively denote by

d

�

u

: Z

�

(RG)! Z

�

u

(RG) and m

�

u

: Z

�

u

(RG)

�

=

Z

�

u

�

RC

G

(u)

�

the canonical map and the R-module isomorphism determined by the restriction. Brou�e's

reformulation of the Brauer Second Main Theorem �nally leads to the following result.

Proposition. For any �-element u of G , Z

�

u

(RG) is a Z

id

(RG)-submodule of Z

�

(RG) ,

and there is a unique R-algebra homomorphism

Br

G

u

: Z

id

(RG) �! Z

id

�

RC

G

(u)

�

such that m

�

u

: Z

�

u

(RG)

�

=

Res

Br

G

u

�

Z

�

u

�

RC

G

(u)

�

�

becomes a Z

id

(RG)-module isomor-

phism. Moreover, if u = vw = wv where the orders of v and w are relatively prime, we

have

Br

G

u

= Br

C

G

(v)

w

�Br

G

v

:
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With this result, we are ready to state the existence and uniqueness of the Brauer-

Glauberman correspondence. LetH be a �nite �-group and consider the category formed by

the �nite groups endowed with an H-action, called H-groups, and by the group homomor-

phisms ' : G! G

0

compatible with the action of H and inducing a bijection G

�

0

! G

0

�

0

,

where G

�

0

and G

0

�

0

denote the corresponding sets of �

0

-elements; moreover, denote by

G

H

and G

0

H

the corresponding subgroups of H-�xed elements and by '

H

: G

H

! G

0

H

the induced group homomorphism, which still induces a bijection (G

H

)

�

0

! (G

0

H

)

�

0

.

Now, we have two functors from this category to the category of commutative R-algebras,

respectively mapping G on Z

id

(RG) and Z

id

�

RG

H

�

, and ' on the obvious R-algebra

homomorphisms

Z

id

(') : Z

id

(RG

0

)! Z

id

(RG) and Z

id

('

H

) : Z

id

(RG

0

H

)! Z

id

(RG

H

) ;

and we will exhibit a natural map Gl

H

between them . Note that if K is a normal subgroup

of H then G is also a K-group and G

K

becomes a H=K-group.

Theorem. There is a unique correspondence mapping any �nite �-solvable group H and

any H-group G on a G-natural map

Gl

G

H

: Z

id

(RG) �! Z

id

(RG

H

)

such that Gl

G

<u>

= Br

G

u

for any �-element u of G and Gl

G

K

L

� Gl

G

K

= Gl

G

H

for any exact

sequence 1! K ! H ! L! 1 of �nite �-solvable groups. Moreover, Gl

G

H

(b) = 0 for any

primitive idempotent b in Z

id

(RG) not �xed by H .

Corollary. Let H be a �nite group and G an H-group . There is a unique correspondence

mapping any solvable �-subgroup K of H and any subnormal subgroup L of K on an

R-algebra homomorphism

Ro

K

L

: Z

id

(RG

L

) �! Z

id

(RG

K

)

such that Ro

K

L

= Gl

K=L

G

L

whenever L / K and that, for any subnormal subgroup M of L ,

we have Ro

K

L

�Ro

L

M

= Ro

K

M

.

Remark. Geo�rey Robinson has already proved the existence of this R-algebra homo-

morphism whenever K is nilpotent. As in his case, this existence allows to consider a

subnormal inclusion between the Brauer �-pairs over RG which extends the ordinary

inclusion between Brauer p-pairs.

Classi�cation of graded Hecke algebras for complex reection groups

A. Ram

(joint work with A. Shepler)

The graded Hecke algebra for a �nite Weyl group is intimately related to the geometry

of the Springer correspondence. A construction of Drinfeld produces an analogue of a

graded Hecke algebra for any �nite subgroup of GL(V ). This paper classi�es all the

algebras obtained by applying Drinfeld's construction to complex reection groups. By
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giving explicit (though nontrivial) isomorphisms we show that the graded Hecke algebras

for �nite real reection groups constructed in a di�erent way by Lusztig are all isomorphic

to algebras obtained by Drinfeld's construction. The classi�cation shows that, even for

real reection groups, there are algebras obtained from Drinfeld's construction which are

not graded Hecke algebras as de�ned by Lusztig.

Some examples of derived equivalence (work of Miles Holloway)

J. Rickard

I want to talk about some applications by my Ph.D. student, Miles Holloway, of the follow-

ing theorem of mine to verifying some cases of Brou�e's Abelian Defect Group Conjecture.

Theorem 1 Let A be a symmetric algebra over a �eld k (e.g., a block algebra), and suppose

that X

1

; : : : ; X

n

are objects of the derived category D

b

(mod(A)) such that

(i) Hom(X

i

; X

j

[t]) = 0 for t < 0,

(ii) Hom(X

i

; X

j

) =

�

k if i = j

0 otherwise,

and

(iii) X

1

; : : : ; X

n

generate D

b

(mod(A)) as a triangulated category.

Then there is a symmetric k-algebra C and an equivalence

D

b

(mod(A)) �! D

b

(mod(C))

taking X

1

; : : : ; X

n

to the simple C-modules.

Linckelmann's theorem (stating that a stable equivalence of Morita type between two blocks

that takes simple modules to simple modules is essentially a Morita equivalence) has been

much exploited recently by Okuyama and others to lift stable equivalences of Morita type

to equivalences of derived categories. The theorem above gives the following new method

of exploiting Linckelmann's theorem.

� Start with a stable equivalence mod(B) � mod(A) of Morita type, sending the simple

B-modules to Y

1

; : : : ; Y

n

.

� Find objects X

1

; : : : ; X

n

of D

b

(A), satisfying conditions (i), (ii) and (iii) of the theo-

rem, such that X

i

is isomorphic in mod(A) to Y

i

for i = 1; : : : ; n.

If these steps can be carried out, then the derived categories of A and B are equivalent as

triangulated categories.

Since, apart from �nding the images Y

1

; : : : ; Y

n

of the simple B-modules under the stable

equivalence, all the calculation involved in this procedure involves only A-modules, the

computation involved in carrying it out is likely to be manageable when one of the algebras

involved (namely A) is relatively small, even if the other algebra is large. This tends to be

the case in examples of Brou�e's Conjecture, where A is a block of a local subgroup.

Using the computer algebra system Magma, Holloway has carried out this procedure for

various cases of Brou�e's Conjecture larger than any of the previously known cases that did

not �t into in�nite families.

For example,
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Theorem 2 (Holloway) Brou�e's Abelian Defect Group Conjecture is true in character-

istic 5 for

� the principal block of the Hall-Janko sporadic group J

2

,

� the non-principal block of full defect of the double cover 2:J

2

of J

2

,

� the principal block of the symplectic group Sp

4

(4).

In other words, these blocks all have derived categories equivalent to those of their Brauer

correspondents.

In all of these cases the defect group of the block is elementary abelian of order 25. The

fact that there is a stable equivalence of Morita type for such blocks is a special case of a

theorem of Rouquier.

In fact, the method of proof makes it clear that in all of these cases the equivalence of

derived categories is actually a `splendid' equivalence, which implies in particular that it

lifts from k to a complete discrete valuation ring O of characteristic zero, with residue �eld

k.

On Integral Representations for SL(2; q)

U. Riese

Let G be a �nite group of exponent exp(G) = g. By Brauer's celebrated theorem every

(irreducible) complex character of G can be written in the gth cyclotomic �eld Q (�

g

). It

has been conjectured that there should be even a matrix representation with entries in its

ring Z[�

g

] of integers. Indeed Cli�, Ritter and Weiss [2] settled this in the case where G

is solvable. Knapp and Schmid [4] showed that it (essentially) would su�ce to prove this

when G is quasisimple.

There is a weaker conjecture dealing with the order of the group in place of the exponent.

This has been veri�ed so far for all sporadic groups (and their proper central extensions),

some few alternating groups, and some few groups of Lie type of small order [4]. It is

natural to begin a systematic investigation by studying the �nite groups of Lie type A

1

(following a suggestion by W. Feit).

Theorem. Let G = SL(2; q) for some prime power q = p

f

. Every irreducible complex

character � of G can be written in R = Z[�

n

] with n = n(�) being a proper divisor of

exp(G), except possibly when � is a (cuspidal) character of degree q� 1. In the exceptional

case � can be realized over R[

1

p

] with n =

1

p

exp(G).

It is not clear whether (some) characters of degree q � 1 are really exceptional (according

to the conjectures). Our methods do not give a better result (even replacing n by jGj).

For large powers q = p

f

it seems not unlikely that the characteristic p cannot be avoided

as \denominator" (for small rings of realization). However, in the case q = p we get what

we wanted:

Corollary. Every character of G = SL(2; p) can be realized over the ring of integers of

the exp(G)th cyclotomic �eld.

The representations can be always chosen to be stable under any group automorphism

leaving the character invariant (which is of relevance when attacking the conjecture(s) for
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arbitrary �nite groups by induction). We mention that \denominators" can be avoided

when enlarging the rings. Iwasawa theory yields that the characters (of any �nite group)

can be written in the ring of integers of some abelian number �eld [4]. Quantitative results

would require detailed informations on class groups, however.

The character table of SL(2; q) has been computed already by Schur [5]. The Schur indices

are all known (see for instance Feit [3]). Matrix representations over certain splitting �elds

have been constructed by Tanaka [6], but this was not be of use here. We learnt a lot from

the construction of the Gelfand representations (as described in [1]), and we do appeal to

the work by Ward [7] on the Weil representations of the symplectic group.

Our method goes back to Schur (essentially): Let K be an algebraic number �eld, R

K

its ring of integers and V an absolutely irreducible KG-module a�ording the character

�. We choose an R

K

G-lattice M in V and alter M by multiplication with some nonzero

ideal J of R

K

in such a way, that the Steinitz class [JM ] of JM gets trivial in the class

group of R

F

where F is a suitable extension �eld of K. Then JM 


R

K

R

F

is a free R

F

-

lattice. The main problem is that the class groups of the rings involved are unknown.

This di�culty disappears when working with groups having only small prime divisors (e.g.

sporadic groups).
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Endo-Trivial Modules

J. Th

�

evenaz

(joint work with J. F. Carlson)

Let P be a p-group, let k be a �eld of characteristic p, and let T (P ) be the group of all

indecomposable endo-trivial kP -modules, with multiplication induced by tensor product.

It is known that T (P ) is a �nitely generated abelian group (L. Puig), its structure is known

when P is abelian (E.C. Dade), and the torsion-free rank of T (P ) was recently determined

by J.L. Alperin. Assuming that G is not cyclic, we conjecture that the torsion subgroup of

T (P ) is trivial when p is odd. This turns out to be equivalent to the conjecture that the

restriction map T (P ) �!

Q

E

T (E) is injective, where E runs over all elementary abelian

subgroups of G of rank 2. When p = 2, one certainly needs to add the quaternion group

of order 8 to the detecting family. As a main step towards the conjecture, we prove that if

P is a non-cyclic p-group, then the restriction map T (P ) �!

Q

Q

T (Q) is injective, where

Q runs over all subgroups of P which are either elementary abelian p-groups of rank 2, or

extraspecial p-groups, or almost extraspecial p-groups. When p is odd, almost extra-special

p-groups can be eliminated from the detecting family. When p = 2, recent work allows

for a de�nitive result (see Jon Carlson's talk). For the whole Dade group D(P ) of endo-

permutation kP -modules, the result implies the injectivity of the restriction{deation map

to all sections of P belonging to the same family of groups as above. Moreover, a complete

description of D(P ) can also be given when P is dihedral, semi-dihedral, quaternion, or

metacyclic.

On simple modules of symmetric groups in characteristic 2

K. Uno

Let S

n

be the symmetric group on n letters, and k an algebraically closed �eld of character-

istic 2. For a 2-regular partition � of n, letD

�

denote the simple kS

n

-module corresponding

to �. Note that, however, even dim

k

D

�

is not known in general. Suppose that � has two

parts. We determine periodic modules among those D

�

.

Theorem 1 Let � = (m+ s;m) be a 2-regular partition of n. Then, D

�

is non-projective

periodic if and only if � is one of the following: (3; 2); (4; 3); (4; 1):

First we compute dim

k

D

(m+s;m)

for small s, s � 3, using the method given by Erdmann.

For example, we have the following. Similar formulae hold for other small s's.

Lemma 1 Let n be an odd positive integer. Then the following holds.

�

2

(dim

k

D

(m+3;m)

) =

(

(n� 5)=4 + �

2

(n� 1) if n � 1 mod 4;

(n� 3)=4 if n � 3 mod 4:

Here �

2

(t) denotes the exponent of the 2-part of t. It gives an upper bound for n, since

the dimensions of periodic modules must be divisible by 2

[n=2]�1

. Then small number of
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modules remain and we can compute their rank varieties to determine whether or not they

are periodic.

Next, considerD

(m+1;m)

. Let E be the subgroup of S

2m+1

generated by them transpositions

(2i� 1; 2i), 1 � i � m. Then E is an elementary abelian 2-subgroup.

Lemma 2 The restriction of D

(m+1;m)

to E is isomorphic to the regular kE-module.

Taking E as a basis of D

(m+1;m)

, we can compute its rank variety with respect to a direct

product of some S

4

's. This shows that D

(m+1;m)

is periodic if and only if n � 7.

Actions on Ext-algebras coming from equivalences between derived categories

A. Zimmermann

Let A be an R-algebra which is projective as module over the commutative ring R, and let

M be an A-module. Let HD

M

(A) be the group of self-equivalences of standard type of the

derived category which map M to an isomorphic copy. If every A-linear automorphism of

M is induced by multiplication by an invertible element of the centre of A, then we show

that HD

M

(A) acts on the Ext-algebra Ext

�

A

(M;M) as group of algebra automorphisms.

This action is functorial with respect to base change.

ForA being the group ringRG for a �nite group, we getExt

�

RG

(M;M) ' H

�

(G;End

R

(M)).

Evidently, the trivial module R satis�es these hypotheses. Moreover, the group of auto-

morphisms of RG preserving the augmentation modulo inner automorphisms is a subgroup

of HD

M

(A). Even the case G = C

n

� C

n

gives interesting phenomenons. In joint work

with Eric Jespers we show that the universal coe�cient sequence

0 �! H

2m

(C

2

n

;Z)


Z

R �! H

2m

(C

2

n

; R) �! Tor

Z

1

(R;H

2m+1

(C

2

n

;Z)) �! 0

is split exact as sequence of SL

2

(Z)-modules if and only if

�

n

2

�

�

n

R � n � R for

n

R being

the ideal of n-torsion elements in R.

We mention that for R being a �eld of characteristic p the action of the group of splendid

self-equivalences �xing the trivial module commute with restriction and transfer from and

to centralizers of p-subgroups.

Edited by Richard Dipper and Marco Brandt
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