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Introdution

In this Arbeitsgemeinshaft mathematiians from two di�erent �elds ame together. In

the �rst half we disussed results of Marina Ratner, whih make strong assertions on the

losures of unipotent orbits on �nG, in a sense they say that suh orbits are homogeneous.

These results had strong impliations in number theory (Oppenheim onjeture). The

methods use measure and ergodi theory.

But reently Cornout and Vatsal disovered that they also an be applied to the theory

of Heegner points. These Heegner points are onstruted by a modular interpretation on

modular urves. Then we enounter a problem, namely we have to show that there are

many of them, they should be non trivial. At this point Ratner's result enter, they imply

that the losure of these point has to be of a ertain size, whih is the onjetured one.

It was of ourse rather hard for the poeple from one side to follow the talks on the other

side. Here we appreiated a lot from the help of Nimish A. Shah and G. Tomanov.

Volker Braungardt, Karlsruhe

Marina Ratner's results

Given a Lie group G, let an Ad-unipotent subgroup U at on a �nite volume quotient of

G. Starting from lassial examples (tori, PSL

2

), I state some of Ratner's theorems and

indiate how they are onneted: losures of U -orbits are homogeneous; lassi�ation of U -

ergodi Borel probability measures; uniform distribution of unipotent one-parameter ows;

the set of groups homogenizing unipotent orbit losures is ountable.

Stefan K

�

uhnlein, Karlsruhe

Appliation to Oppenheim's Conjeture

Let q : R

d

! R be a inde�nite, non-degenerate quadrati form whih is given by a matrix
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whih is not a multiple of a rational matrix. The Oppenheim onjeture states that for

d � 3 the set of values q(Z

d

) is dense in R.

This onjeture was proved by Margulis (in 1986) using an idea of Raghunathan, and I

explained a proof as follows: De�ne G := SL

d

(R� := SL

d

(Z); H := SO(q): Then Ratner's

result implies that the losure of H

0

�� in G is L �� for some losed onneted subgroup L

of G ontaining H. Hene L 2 fH

0

; Gg. The ase L = H

0

is exluded by the irrationality

assumption on q, hene L = G and H �� is dense in G. Using some vetor v 2 R

d

nf0g as the

�rst olumn of a matrix g 2 G we approximate g by produts h

n



n

with h

n

2 H; 

n

2 �.

It follows that g(v) = lim

n!1

q(h

n



n

e

1

) = lim

n!1

q(

n

e

1

) 2 q(Z

d

), hene the onjeture is true.

In order to get an S-arithmeti version of the density of values of a quadrati form, Borel

and Prasad used an S-arithmeti version of Ratner's density result. Also, for d � 5 one

gets

#fz 2 Z

d

: kzk � r; a � q(z) � bg � 

a;b

dr

d�2

:

Thilo Kuessner, T

�

ubingen

The ase SL

2

(R)

We have

Theorem (Dani). Let � be a lattie in G = SL

2

(R) and let N = f(

1 t

0 1

) : t 2 Rg at

from the right on �nG. Then points x 2 �nG are either N-periodi (xn(T ) = x, for some

T 2 R), or uniformly distributed, i.e. for any bounded uniformly ontineous f : �nG! R

holds

lim

T!1

1

T

Z

t

0

f(xn(t))dt =

1

vol(�nG)

Z

�nG)

f(y)dy:

As a orollary one gets the lassi�ation of N -invariant ergodi measures on �nG: they

are either multiples of the Haar measure or supported on a periodi N -orbit. Another im-

mediate orollary is Hedlund's theorem: N -orbits are dense or periodi.

The proof heavily relies on the interplay between geodesi ows (ation of A =

n�

e

s

2

0

0 e

�

s

2

�o

)

and horoyli ows (ation of N). From ergodiity of the N -ation and Birkho�'s theorem

one gets that almost all points are uniformly distributed. Then one has to hek that lose

to x one �nds uniformly distributed points y suh that the values

1

T

R

T

o

f(xn(t))dt and

1

T

R

T

o

f(yn(t))dt remain lose for a sequene T

n

!1: This an be done if the A-orbit of X

returns to some ompat set for a sequene of times �

1

! 1, and this is the ase always

if x is not N -periodi.

Bruno Klingler, IHES - ETH Z

�

urih

Measure Rigidity

Two talks in a series of four presenting the proof of the following generalization of Ratner's

measure rigidity for real Lie groups, due to Margulis and Tomanov ('94):

Theorem . Let V be a �nite set. For every v 2 V , let K

v

be a loal �eld of harateristi

zero, G

v

be a K

v

-algebrai group and G =

Q

v2V

G

v

(K

v

). Let � � G be a disrete subgroup

and H =

Q

v2V

H

v

(K

v

), where H

v

� G

v

is generated by unipotent subgroups. Then any

H-invariant, H-ergodi Borel probability measure � on G=� is algebrai (i.e. there exists
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a losed subgroup � � G and a point x 2 G=� suh that the orbit �x is losed and

�(�x) = 1).

We introdue basi notions on algebrai ations, horospherial subgroups and dynamis

of lass A elements. We prove that � an be assumed \Zariski-dense", onstrut quasi-

regular mpas and prove the Basi Lemma of the proof.

Dan Fulea, Heidelberg

Consequenes of the Basi Lemma

In this third talk in a series of four, taking advantage on the tehnial result, the Basi

Lemma, of the last talk, one an formulate ([MT℄:=[Margulis, Tomanov: Inv. Math., 1994℄)

intermediate results of algebrai nature, whih will be exploited in the next talk using

strutures and results of ergodi (measure theoretial) nature to prove the Main Theorem

(measure rigidity): \ Eah U{ergodi, U{invariant measure on G=� is algebrai ".

These intermediate results are:

(1) [MT, Prop. 8.2℄ Let G be an algebrai group, U < G an unipotent algebrai subgroup,

� a probability measure on G=�. Suppose N < G := G(K

V

) is a subgroup, maximal with

the following properties:

� is N{invariant and N is unipotently generated in G.

Assume U 6� N . Then (using tehniques related to the Basi Lemma):

There exists a quasiregular map � : U ! N

G

(U) with the properties:

(i) �(U) invariates the measure �, and

(ii) The group F := hU; �(U)i ontains an element s of A{lass,

with the folowing properties:

(a) U

+

(s) :=[ maximal algebrai subgroup of W

+

(s) preserving � ℄

is not trivial,

(b) �(s;F(U

+

(s))) � 1,

() N(s) := Auslander normal subgroup hW

+

(s);W

�

(s)i / G satis�es:

N(s)=N(s) \N is in�nite.

(2) [MT, Prop. 8.3℄ Given � > 0, there exists a ompat M

�

� G=�, whih is a set of

uniform onvergene with respet to U

+

(s), �(M

�

) > 1� �, suh that for all sequenes (g

i

),

g

i

62 N

G

(U), g

i

! e, g

i

M

�

\M

�

6= ; (as in the Basi Lemma), in the deomposition

g

i

= u

�

(g

i

) v

�

(g

i

) z(g

i

) u

+

(g

i

) v

+

(g

i

)

the fator u

�

(g

i

) \dominates" the fator v

�

(g

i

).

(3) [MT, Cor. 8.4℄ There exists a onull setM � G=�, suh that the following \algebrai

ondition" is satis�ed: M \W

�

(s)x � U

�

(s)x, all x 2M .

In the given time limit, the basi strategy, some intermediate steps for (1) and the avour

of the involved proof tehniques were given. A main use of the quasiregularity of � and the

strategy of the repeated use of the Basi Lemma were explained \expliitly".

George Tomanov, Lyon

Entropy and Measure Rigidity

The goal of the talk is to omplete the proof of the measure rigidity theorem in the S-adi

ase due to G.A. Margulis and the speaker (Inv. Math. vol 116, pp.347-392, 1994). (See

also M. Ratner's paper in Duke Math. J. vol. 77, pp. 275-382, 1995 for an independent
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proof of the same result.)

We use the notions G;�; �; s;W

�

(s) as introdued in the talk of Bruno Klingler. Additio-

nally denote by V a losed subgroup of W

�

(s) normalized by s and by � the module of

the automorphisms of V obtained by restriting Int(s) to V .

First we prove the following

Theorem (Entropy Theorem). Assume that � is hsi-invariant and ergodi.

(1) If � is V -invariant then h(s; �) � log�; where h(s; �) is the entropy of Int(s)j

V

;

(2) Assume that there exists a measurable subset  � G=� suh that �( ) = 1 and

 \W

�

(s)x � V x for every x 2  : Then h(s; �) � log� and the equality implies

that � is V -invariant.

Next we dedue the measure rigidity from the Entropy Theorem and from the results

exposed in the previous talks by Bruno Klingler and Dan Fulea.

Nimish A. Shah, Tata Inst. Mumbai

Uniform distribution of orbits of unipotent ows, (two talks)

Using the lassi�ation of �nite ergodi invariant measures for ations of unipotent sub-

groups on homogeneous spaes of \Lie groups" (whih are produts of real Lie groups and

linear p-adi Lie groups), it was shown that in �nite volume homogeneous spaes of these

Lie groups, any trajetory of an one-parameter unipotent subgroup is equidistributed (see

works of M. Ratner, G.A. Margulis, S.G. Dani, G. Tomanov).

The aim of the talks was to give a proof of the result in a very speial ase whih is quite

relevant to the theme of the onferene:

Let G = SL

2

(Q

p

)� SL

2

(Q

p

), � a oompat disrete subgroup of G and

U = fu(t) = ((

1 t

0 1

) ; (

1 t

0 1

)) : t 2 Q

p

g :

Then for any x 2 G=� there exists a losed subgroup F of G ontaining U suh that the

orbit Fx is ompat, there exists a F -invariant probability measure �

F

on Fx and the

trajetory fu(t)x : t 2 Q

p

g is uniformly distributed with respet to �

F

; more preisely:

for any ontinuous f on G=�,

lim

r!1

1

�(I(r))

Z

I(r)

f(u(t)x)d�(t) =

Z

Fx

fd�

F

;

where � is a Haar measure on Q

p

and for r > 0 de�ne I(r) = ft 2 Q

p

: jtj

p

� rg:

In fat, if F 6= G then vFv

�1

is the diagonal embedding of SL

2

(Q

p

) in G for some

v = ((

1 s

0 1

) ; (

1 �s

0 1

)) ; s 2 Q

p

:

Vitor Rotger, Barelona

The Arithmeti of de�nite quaternion algebras and Gross urves

In this talk we introdue some of the key ingredients that are ruial in the proofs of

Mazur's onjeture by Cornut and Vatsal.

Namely, we introdue �rst of all ring lass �elds H of an imaginary quadrati �eld K and

we will be interested on the Mordell-Weil group E(H) of H-rational points of an ellipti

urve E=Q . In order to study E(H) and their assoiated L-funtion we introdue de�nite

quaternion algebras B and we onstrut a Gross urve X

B

=Q attahed to it. The urve
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X

B

is a disjoint union of spheres and we desribe a family of speial points X

p

n

� X

B

(K)

(where p any prime, n � 1) that are rational over K on X

B

. The main result of this talk

is Vatsal's desription of a Galois ation of Pi(O

p

n

), where O

p

n

� K has ondutor p

n

, on

the family of Gross points X

p

n

: this desribtion is given in terms of a related tree T

p

, the

Bruhat-Tits building of PSL

2

(Q

p

):

Ignazio Longhi, M

�

unster

Gross' formula

Goal of the talk was to explain Gross' formula relating speial values of L-funtions to

Gross points on the urve X = X

B

whih in the previous talk was assoiated to a de�nite

quaternion algebra B with disriminant N

�

(reall that N = N

�

N

+

).

Preliminaries. We started by de�ning the ation of a Heke algebra T as a ring of

orrespondenes on X and hene an ation of T on Pi(X) = �Ze

i

(reall that X is the

disjoint union of urves of genus 0, indexed by Cl(B), the set of lasses of oriented Eihler

orders of level N

+

).

Then, following [2℄, we introdued a positive de�nite height pairing on Pi(X), <

e

i

; e

j

>:= w

i

Æ

ij

, with the property that the Heke ation is self-adjoint, i.e. < T

m

e; e

0

>=<

e; T

m

e

0

> for all T

m

2 T.

LetM denote the lattie of weight 2 modular forms for �

0

(N) with integral oeÆients;

by the multipliity one theorem,M is a free module of rank 1 over T
Q . De�ne a T-module

homomorphism � : Pi(X)


T

Pi(X)

_

!M by

e
 e

_

7!

1

2

deg e deg e

_

+

X

m�1

< T

m

e; e

_

> q

m

:

� beomes an isomorphism over T 
 Q .

The map  . Let g =

P

a

n

q

n

2 S

2

(N) be a newform: one knows that the oeÆients a

n

are all real. We use g to de�ne a homomorphism  

g

: T ! R, T

m

7! a

m

(this is an instane

of the Jaquet-Langlands orrespondene). Thanks to the multipliity one theorem, one

has Pi(X)


T

R ' R; �x suh an identi�ation to get a map  : Cl(B)! R. We extend

 to a map on Gross points by putting  (P ) :=  ([R℄) for P = (f; R).

The formula. Let � be a primitive harater for Pi(O

n

) and P any Gross point of

ondutor n on the urve X. Gross' formula then says:

(1) j

X

�2Pi(O

n

)

�(�) (P

�

)j

2

= �(g; g)L(g; �; 1)

where (g; g) denotes the Petersson inner produt and � is an expliit, non-zero fudge fator.

Gross' proof (in [2℄, under the assumptions that N = N

�

is prime and � is a harater

of Pi(O)) works in four steps:

� deompose L(g; �; s) =

P

�2Pi(O)

�(�)L(g; �; s);

� use Rankin's method to obtain L(g; �; 1) = �(g; F

�

), for a ertain modular form F

�

;

� ompute the oeÆients of F

�

and show that they are equal to

P

�

< P

�

; T

m

P

��

>,

so that F

�

=

P

�

�(P

�


 P

��

);

� put everything together to get (1).
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Gross' result was later extended by Daghigh to the generality above ([1℄).

The �nal part part of the talk (skipped for lak of time) should have explained how

Gross' formula is applied in [3℄, [4℄.

Literatur

[1℄ H. Daghigh: Modular forms, quaternion algebras and speial values of L-funtions. MGill University

Ph.D. thesis, 1997.

[2℄ B. H. Gross: Heights and the speial values of L-series. In: Number theory (H. Kisilevski and J.

Labute, eds.) Can. Math. So. Conf. Pro. 7, AMS 1987, 115-187.

[3℄ V. Vatsal: Uniform distribution of Heegner points. Preprint, 2000.

[4℄ V. Vatsal: Speial values of antiylotomi L-funtions. Preprint, 2001.

Nike Vatsal, UBC

Speial Values of Antiylotomi L-funtions

In this talk we state Gross' speial value formula for antiylotomi L-funtions and show

how the distribution of Gross points of ondutor p

n

(with n ! 1) is related to the

resolution of Mazur's onjeture in the de�nite ase. Using a result of Shimura, we show how

to redue Mazur's onjeture to studying the distribution of the vetors (P

�

n

)

�2G

0

, where

P

n

is a Gross point of ondutor p

n

, G

0

is the so-alled \tame" subgroup of Gal(K(p

1

)=K)

and n!1. Roughly speaking, one needs to show that the distribution is uniform in the

omponents of the Gross urve; this will follow from Ratner's theorems.

Hilmar Hauer, Nottingham

Heegner Points on Modular Curves

We reviewed some fats about ellipti urves over �elds. I.e. the struture of endomorphism

rings, lassial theory of omplex multipliation in harateristi zero and supersingular el-

lipti urves. Then we introdued the modular urve X

0

(N) over C and gave its interpreta-

tion as moduli sheme over Spe(Z[

1

N

℄): As a tehnial tool, we de�ned a sheme-theoreti

version of a-transforms.

In the �rst main part of the leture, we determine the �elds of de�nition of CM points on

X

0

(N)(C ): Furthermore we gave a formula for the Galois ation on these CM points in

terms of a-transforms.

Finally we found a desribtion of the supersingular lous X

ss

0

(N)(F

l

) as the oset spae

Cl(R;N) of (N;N)-inlusions of left R-ideals. Here R is a maximal order in a suitable

de�nite quaternion algebra B. We also formulated an adeli version:

\

O

r

(J

0

=I

0

)

�

b

Q

�

n

b

B

�

=B

�

�

=

X

ss

0

(N)(F

l

):

Sigrid Wortmann, Heidelberg

Mazur's Conjeture for lassial Heegner points

The aim of this talk was to present Cornut's proof of the following onjeture by Mazur

(1983): Let E=Q be a (modular) ellipti urve, K an imaginary quadrati �eld. Then for

some n � 0 the trae Tr

K[p

1

℄=H

1

(y

p

n

) =2 E(H

1

)

tors

, where K[p

1

℄ =

S

n�0

K[p

n

℄, K[p

n

℄ the

6



ring lass �eld of ondutor p

n

,H

1

the antiylotomi Z

p

-extension ofK and y

p

n

a Heegner

point of ondutor p

n

on E. As E(H

1

)

tors

itself is a �nite group it suÆes to produe

\many" points in the image of the trae, i.e. more than #E(H

1

)

tors

. This in turn is shown

by onstruting \many" points in the redution E(F

l

) for some inert prime l. For this one

writes Tr

G

0

(y

p

n

) = Tr

G

0

=G

1

(Tr

G

1

(y

p

n

)) for the genus subgroup G

1

� G

0

= Gal(K[p

1

℄=H

1

):

The \geometri" part Tr

G

1

(y

p

n

) an be desribed by using CM points oming from the

modular urve X

0

(NM); with M =

Q

qjd

k

q: Now one uses the redution map

RED : L

p

!

�

X

ss

0

(NM)(F

l

�

(G

0

=G

1

)

;

whih assoiates a tuple (red

l

(x

�

))

�2G

0

=G

1

of supersingular points over F

l

2

to an CM point

x on X

0

(NM)(K[p

1

℄). Using Ratner's theorem (resp. a onsequene of it shown in Vatsal's

talk) it was shown that this map is surjetive. But the number of supersingular urves in

harateristi l grows �

�

l

12

�

: So hoosing a suÆiently big inert prime l in K gives the

result.

Christophe Cornut, Strasbourg

Mihael Spiess, Nottingham

On the parity of ranks of Selmer groups

The aim of these talks is to present Jan Nekov�a�r's proof of the parity onjeture for Selmer

groups of ellipti urves over Q , to the e�et that: the orank of Sel

p

1

(E=Q) has the

same parity as the order of vanishing at s = 1 of L(E=Q ; s). This follows from the analog

statement for E=K, where K = Q(

p

D); (D < 0) is an imaginary quadrati �eld, in whih

all prime fators of ondutor(E) are split. The parity onjeture in this ase orresponds to

the statement that orank(Sel

p

1

(E=K)) is odd. Let H

1

be the antiylotomi Z

p

-extension

of K. The Pontryagin dual of Sel

p

1

(E=H

1

) = S

1

is a �-module of �nite type. By Mazur's

ontrol theorem the parity onjeture for E=K follows from:

(1) rank

�

(S

_

1

) = 1

(2) (S

_

1

)

tors

= Y

2

� Z (up to �nite modules), where Y is free over Z

p

and Z is killed

by p

n

; n� 0.

The �rst statement was already known to be a onsequene of Mazur's onjeture on higher

Heegner points.

The seond statement is proved by onstruting a sympleti pairing on (S

_

1

)

tors

(with

values in Fra(�)=�). This is done by using the theory of Selmer omplexes and a very

general duality theorem for these omplexes.

Andrei Yafaev, Rennes

The Andr�e-Oort onjeture and its appliations to Mazur's onjeture (with

an appendix by Christophe Cornut)

The aim of this talk is to introdue the the Andr�e-Oort onjeture on the Zariski losure

of sets of speial points on Shimura varieties. This onjeture predits that irreduible

omponents of suh a losure are subvarieties of Hodge type. Partial results on this on-

jeture have been obtained by Andr�e, Edixhoven, Moonen and Yafaev. The statements

of the results and appropriate explanations have been given in this talk. Eventually we

stated a ase of this onjeture that omes up in the proof of Mazur's onjeture by Cor-

nut and Vatsal. Namely, this is the ase of varieties of the form X

0

(N)� :::�X

0

(N): Suh

a varity is a moduli spae for n-tuples of ellipti urves over C (with appropriate level

7



struture). One onsiders a set � of CM points suh that for any (E

1

; :::; E

n

) 2 � with

End(E

i

) = Z+ p

m

O

K

, where K is some �xed CM �eld and m is an integer that tends to

in�nity as (E

1

; :::; E

n

) ranges through �. The fat that irreduible omponents of � are of

Hodge type follows from the result by Moonen or Edixhoven.

8
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