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GUENTER HARDER, BONN

Introduction

In this Arbeitsgemeinschaft mathematicians from two different fields came together. In
the first half we discussed results of Marina Ratner, which make strong assertions on the
closures of unipotent orbits on I'\G, in a sense they say that such orbits are homogeneous.
These results had strong implications in number theory (Oppenheim conjecture). The
methods use measure and ergodic theory.

But recently Cornout and Vatsal discovered that they also can be applied to the theory
of Heegner points. These Heegner points are constructed by a modular interpretation on
modular curves. Then we encounter a problem, namely we have to show that there are
many of them, they should be non trivial. At this point Ratner’s result enter, they imply
that the closure of these point has to be of a certain size, which is the conjectured one.

It was of course rather hard for the poeple from one side to follow the talks on the other
side. Here we appreciated a lot from the help of Nimish A. Shah and G. Tomanov.

VOLKER BRAUNGARDT, KARLSRUHE

Marina Ratner’s results

Given a Lie group G, let an Ad-unipotent subgroup U act on a finite volume quotient of
G. Starting from classical examples (tori, PSLy), I state some of Ratner’s theorems and
indicate how they are connected: closures of U-orbits are homogeneous; classification of U-
ergodic Borel probability measures; uniform distribution of unipotent one-parameter flows;
the set of groups homogenizing unipotent orbit closures is countable.

STEFAN KUHNLEIN, KARLSRUHE

Application to Oppenheim’s Conjecture

Let ¢ : R?” — R be a indefinite, non-degenerate quadratic form which is given by a matrix



which is not a multiple of a rational matrix. The Oppenheim conjecture states that for
d > 3 the set of values ¢(Z?) is dense in R.

This conjecture was proved by Margulis (in 1986) using an idea of Raghunathan, and T
explained a proof as follows: Define G := SLy4(RI" := SL4(Z), H := SO(q). Then Ratner’s
result implies that the closure of H°-T in G is L - T for some closed connected subgroup L
of G containing H. Hence L € {H°,G}. The case L = HY is excluded by the irrationality
assumption on ¢, hence L = G and H T is dense in G. Using some vector v € R¢\{0} as the
first column of a matrix g € G we approximate g by products h,vy, with h, € H,~, € T.
It follows that g(v) = ILm q(hpyner) = ILm q(1me1) € q(Z%), hence the conjecture is true.

In order to get an S-arithmetic version of the density of values of a quadratic form, Borel
and Prasad used an S-arithmetic version of Ratner’s density result. Also, for d > 5 one
gets

#{2€Z%: 2| <ra < g(2) b} ~ cupdr®™?.

THILO KUESSNER, TUBINGEN
The case SLy(R)

We have

Theorem (Dani). Let ' be a lattice in G = SLy(R) and let N = {({!):t € R} act
from the right on T\G. Then points x € T\G are either N-periodic (xn(T) = x, for some
T € R), or uniformly distributed, i.e. for any bounded uniformly contineous f : T\G — R
holds
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As a corollary one gets the classification of N-invariant ergodic measures on I'\G: they
are either multiples of the Haar measure or supported on a periodic N-orbit. Another im-
mediate corollary is Hedlund’s theorem: N-orbits are dense or periodic.

The proof heavily relies on the interplay between geodesic flows (action of A = { ( S ) })
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and horocyclic flows (action of N). From ergodicity of the N-action and Birkhoff’s theorem
one gets that almost all points are uniformly distributed. Then one has to check that close
to x one finds uniformly distributed points y such that the values % f f(zn(t))dt and
T f f(yn(t))dt remain close for a sequence T,, — oc. This can be done if the A- 0rb1t of X
returns to some compact set for a sequence of times 7, — oo, and this is the case always
if x is not N-periodic.

BrunO KLINGLER, THES - ETH ZURICH
Measure Rigidity

Two talks in a series of four presenting the proof of the following generalization of Ratner’s
measure rigidity for real Lie groups, due to Margulis and Tomanov ('94):

Theorem . Let V' be a finite set. For every v € V, let K, be a local field of characteristic
zero, G, be a K,-algebraic group and G = HUGV J(Ky). Let T C G be a discrete subgroup
and H = [[,ev H,(K,), where H, C G, is generated by unipotent subgroups. Then any
H-invariant, H-ergodic Borel probability measure p on G /T is algebraic (i.e. there exists



a closed subgroup ¥ C G and a point x € GJT such that the orbit Yx is closed and
p(Er) =1).

We introduce basic notions on algebraic actions, horospherical subgroups and dynamics
of class A elements. We prove that p can be assumed “Zariski-dense”, construct quasi-
regular mpas and prove the Basic Lemma, of the proof.

DaAN FULEA, HEIDELBERG

Consequences of the Basic Lemma

In this third talk in a series of four, taking advantage on the technical result, the BAsIC
LEMMA, of the last talk, one can formulate ([MT]:=[Margulis, Tomanov: Inv. Math., 1994])
intermediate results of algebraic nature, which will be exploited in the next talk using
structures and results of ergodic (measure theoretical) nature to prove the Main Theorem
(measure rigidity): “ Each U—ergodic, U-invariant measure on G/T" is algebraic ”.
These intermediate results are:
(1) [MT, Prop. 8.2] Let G be an algebraic group, U < G an unipotent algebraic subgroup,
p a probability measure on G/T'. Suppose N < G := G(Ky) is a subgroup, maximal with
the following properties:
i is N—-invariant and N is unipotently generated in G.
Assume U ¢ N. Then (using techniques related to the Basic Lemma):
There exists a quasiregular map ¢ : U — Ng(U) with the properties:
(i) ¢(U) invariates the measure yu, and
(ii) The group F := (U, (U)) contains an element s of A—class,
with the folowing properties:
(a) U*(s) :=[ maximal algebraic subgroup of W™ (s) preserving y ]
is not trivial,
(b) afs, F(U"(s))) = 1,
(c) N(s) := Auslander normal subgroup (W™ (s), W~(s)) < G satisfies:
N(s)/N(s) N N is infinite.

(2) [MT, Prop. 8.3] Given € > 0, there exists a compact M, C G/I', which is a set of
uniform convergence with respect to U™ (s), u(M,) > 1 —e¢, such that for all sequences (g;),
gi € Na(U), g; = e, ;M. N M, # () (as in the Basic Lemma), in the decomposition

gi = (g:) v~ (g:) 2(g:) u™ (93) v"(9:)
the factor u~(g;) “dominates” the factor v=(g;).

(3) [MT, Cor. 8.4] There exists a conull set M C G/T', such that the following “algebraic
condition” is satisfied: M N W~ (s)x C U~ (s)z, all z € M.

In the given time limit, the basic strategy, some intermediate steps for (1) and the flavour
of the involved proof techniques were given. A main use of the quasiregularity of ¢ and the
strategy of the repeated use of the Basic Lemma were explained “explicitly”.

GEORGE TomANOV, LyoN
Entropy and Measure Rigidity
The goal of the talk is to complete the proof of the measure rigidity theorem in the S-adic

case due to G.A. Margulis and the speaker (Inv. Math. vol 116, pp.347-392, 1994). (See
also M. Ratner’s paper in Duke Math. J. vol. 77, pp. 275-382, 1995 for an independent



proof of the same result.)

We use the notions G, I, i1, s, W*(s) as introduced in the talk of Bruno Klingler. Additio-
nally denote by V" a closed subgroup of W~ (s) normalized by s and by « the module of
the automorphisms of V' obtained by restricting Int(s) to V.

First we prove the following

Theorem (Entropy Theorem). Assume that p is (s)-invariant and ergodic.
(1) If p is V-invariant then h(s, p) > loga, where h(s, u) is the entropy of Int(s)|v;
(2) Assume that there exists a measurable subset v C G/U such that u(v) = 1 and
YNW(s)x C Vx for every x € 1. Then h(s,pn) < loga and the equality implies
that p is V-invariant.
Next we deduce the measure rigidity from the Entropy Theorem and from the results
exposed in the previous talks by Bruno Klingler and Dan Fulea.

NiMmisH A. SHAH, TATA INST. MUMBAI

Uniform distribution of orbits of unipotent flows, (two talks)

Using the classification of finite ergodic invariant measures for actions of unipotent sub-
groups on homogeneous spaces of “Lie groups” (which are products of real Lie groups and
linear p-adic Lie groups), it was shown that in finite volume homogeneous spaces of these
Lie groups, any trajectory of an one-parameter unipotent subgroup is equidistributed (see
works of M. Ratner, G.A. Margulis, S.G. Dani, G. Tomanov).

The aim of the talks was to give a proof of the result in a very special case which is quite
relevant to the theme of the conference:

Let G = SLy(Q,) x SLy(Q,), I' a cocompact discrete subgroup of G and

U={ut)=(01),(61{):t€Q}.
Then for any z € G/T there exists a closed subgroup F' of G containing U such that the
orbit F'xz is compact, there exists a F-invariant probability measure A\r on Fx and the
trajectory {u(t)x : t € Q,} is uniformly distributed with respect to Ap; more precisely:
for any continuous f on G/T,

1
limi/ fu(t)x)dO(t) = fdAp,
BB iy TN = f, T
where © is a Haar measure on Q, and for r > 0 define I(r) = {t € Q, : |t|, < r}.
In fact, if F'# G then vFv~" is the diagonal embedding of SLy(Q,) in G for some

v="((61).(7)),s € Q.

VicTOR ROTGER, BARCELONA

The Arithmetic of definite quaternion algebras and Gross curves

In this talk we introduce some of the key ingredients that are crucial in the proofs of
Mazur’s conjecture by Cornut and Vatsal.

Namely, we introduce first of all ring class fields H of an imaginary quadratic field K and
we will be interested on the Mordell-Weil group F(H) of H-rational points of an elliptic
curve £/Q. In order to study E(H) and their associated L-function we introduce definite
quaternion algebras B and we construct a Gross curve Xp/Q attached to it. The curve



Xp is a disjoint union of spheres and we describe a family of special points X,» C Xp(K)
(where p any prime, n > 1) that are rational over K on Xpg. The main result of this talk
is Vatsal’s description of a Galois action of Pic(Opn), where Op,n C K has conductor p”, on
the family of Gross points X, this describtion is given in terms of a related tree 7, the
Bruhat-Tits building of PSLy(Q,).

IGNAZIO LONGHI, MUNSTER

Gross’ formula

Goal of the talk was to explain Gross’ formula relating special values of L-functions to
Gross points on the curve X = Xpg which in the previous talk was associated to a definite
quaternion algebra B with discriminant N~ (recall that N = N™NT).

Preliminaries. We started by defining the action of a Hecke algebra T as a ring of
correspondences on X and hence an action of T on Pic(X) = ®Ze; (recall that X is the
disjoint union of curves of genus 0, indexed by CI(B), the set of classes of oriented Eichler
orders of level N*).

Then, following [2], we introduced a positive definite height pairing on Pic(
ej, ej >:= w;0;j, with the property that the Hecke action is self-adjoint, i.e. < T},e, e
e, T,,e' > for all T,, € T.

Let M denote the lattice of weight 2 modular forms for I'y(/V) with integral coefficients;
by the multiplicity one theorem, M is a free module of rank 1 over T®Q. Define a T-module
homomorphism @ : Pic(X) @1 Pic(X)Y — M by

), <
'>=<

1
\ \Y \ m
e®e |—>§degedege +mE>1<Tme,e > q™".

® becomes an isomorphism over T ® Q.

The map . Let g = > a,q" € So(N) be a newform: one knows that the coefficients a,
are all real. We use g to define a homomorphism ¢, : T — R, T}, — a,, (this is an instance
of the Jacquet-Langlands correspondence). Thanks to the multiplicity one theorem, one
has Pic(X) ®r R ~ R; fix such an identification to get a map ¢ : Cl(B) — R. We extend
Y to a map on Gross points by putting ¢ (P) := ¢([R]) for P = (f, R).

The formula. Let x be a primitive character for Pic(O,) and P any Gross point of
conductor n on the curve X. Gross’ formula then says:

(1) Y X(@)e(P)P = x(9,9)L(g, x, 1)

oEPic(On)

where (g, g) denotes the Petersson inner product and x* is an explicit, non-zero fudge factor.
Gross’ proof (in [2], under the assumptions that N = N~ is prime and x is a character
of Pic(O)) works in four steps:

e decompose L(g, X, $) = D, cpico) X(0)L(g, 0, 5);

e use Rankin’s method to obtain L(g,0,1) = *(g, F;), for a certain modular form F,;

e compute the coefficients of F,, and show that they are equal to < P?,T,,P°" >,
so that F,, =Y ®(P’ ® P77);

e put everything together to get (1).



Gross’ result was later extended by Daghigh to the generality above ([1]).

The final part part of the talk (skipped for lack of time) should have explained how
Gross’ formula is applied in [3], [4].
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NIKE VATsAL, UBC

Special Values of Anticyclotomic L-functions

In this talk we state Gross’ special value formula for anticyclotomic L-functions and show
how the distribution of Gross points of conductor p™ (with n — o0) is related to the
resolution of Mazur’s conjecture in the definite case. Using a result of Shimura, we show how
to reduce Mazur’s conjecture to studying the distribution of the vectors (P7),cq,, Where
P, is a Gross point of conductor p”, Gy is the so-called “tame” subgroup of Gal(K (p>°)/K)
and n — oo. Roughly speaking, one needs to show that the distribution is uniform in the
components of the Gross curve; this will follow from Ratner’s theorems.

HiLMAR HAUER, NOTTINGHAM

Heegner Points on Modular Curves

We reviewed some facts about elliptic curves over fields. I.e. the structure of endomorphism
rings, classical theory of complex multiplication in characteristic zero and supersingular el-
liptic curves. Then we introduced the modular curve Xy(NN) over C and gave its interpreta-
tion as moduli scheme over Spec(Z[+]). As a technical tool, we defined a scheme-theoretic
version of a-transforms.

In the first main part of the lecture, we determine the fields of definition of CM points on
Xo(N)(C). Furthermore we gave a formula for the Galois action on these CM points in
terms of a-transforms.

Finally we found a describtion of the supersingular locus X3*(N)(If;) as the coset space
CI(R,N) of (N, N)-inclusions of left R-ideals. Here R is a maximal order in a suitable
definite quaternion algebra B. We also formulated an adelic version:

O, (Jo/1o)*@"\B*/B* = X§* (N)(F,).

SIGRID WORTMANN, HEIDELBERG
Mazur’s Conjecture for classical Heegner points
The aim of this talk was to present Cornut’s proof of the following conjecture by Mazur

(1983): Let E/Q be a (modular) elliptic curve, K an imaginary quadratic field. Then for
some 1 > 0 the trace Trx o)/, (Ypn) & E(Hoo)tors, Where K[p™] =, 5, K[p"], K[p"] the



ring class field of conductor p”, H,, the anticyclotomic Z,-extension of K and y,» a Heegner
point of conductor p” on E. As E(Hu)torg itself is a finite group it suffices to produce
“many” points in the image of the trace, i.e. more than #E(Hw )tors. This in turn is shown
by constructing “many” points in the reduction F(F;) for some inert prime [. For this one
writes Treg, (ypn) = Trag/a, (Tra, (ypn)) for the genus subgroup Gy C Gy = Gal(K[p™]/Ho).
The “geometric” part Trq, (y,n) can be described by using CM points coming from the
modular curve Xo(NM), with M =[], ¢. Now one uses the reduction map

RED : £, — (Xg*(NM)(®)

which associates a tuple (red;(27)),cq,/c, of supersingular points over F2 to an CM point
xz on Xo(NM)(K[p>]). Using Ratner’s theorem (resp. a consequence of it shown in Vatsal’s
talk) it was shown that this map is surjective. But the number of supersingular curves in
characteristic [ grows ~ [L] . So choosing a sufficiently big inert prime [ in K gives the

12
result.

CHRISTOPHE CORNUT, STRASBOURG
MICHAEL SPIESS, NOTTINGHAM

On the parity of ranks of Selmer groups

The aim of these talks is to present Jan Nekovai’s proof of the parity conjecture for Selmer
groups of elliptic curves over Q, to the effect that: the corank of Sel,~(E/Q) has the
same parity as the order of vanishing at s = 1 of L(E/Q, s). This follows from the analog
statement for F/K, where K = Q(v/D), (D < 0) is an imaginary quadratic field, in which
all prime factors of conductor(E) are split. The parity conjecture in this case corresponds to
the statement that corank(Sel,~(E/K)) is odd. Let Hy, be the anticyclotomic Z,-extension
of K. The Pontryagin dual of Sel,«(E/Hy) = S is a A-module of finite type. By Mazur’s
control theorem the parity conjecture for E/K follows from:

(1) rank,(SY) =1

(2) (SL)tors = Y2 @ Z (up to finite modules), where Y is free over Z, and Z is killed

by p",n > 0.
The first statement was already known to be a consequence of Mazur’s conjecture on higher
Heegner points.
The second statement is proved by constructing a symplectic pairing on (S )torg (With

values in Frac(A)/A). This is done by using the theory of Selmer complexes and a very
general duality theorem for these complexes.

ANDREI YAFAEV, RENNES

The André-Oort conjecture and its applications to Mazur’s conjecture (with
an appendix by Christophe Cornut)

The aim of this talk is to introduce the the André-Oort conjecture on the Zariski closure
of sets of special points on Shimura varieties. This conjecture predicts that irreducible
components of such a closure are subvarieties of Hodge type. Partial results on this con-
jecture have been obtained by André, Edixhoven, Moonen and Yafaev. The statements
of the results and appropriate explanations have been given in this talk. Eventually we
stated a case of this conjecture that comes up in the proof of Mazur’s conjecture by Cor-
nut and Vatsal. Namely, this is the case of varieties of the form Xy(N) x ... x X(N). Such
a varity is a moduli space for n-tuples of elliptic curves over C (with appropriate level



structure). One considers a set ¥ of CM points such that for any (F4,..., E,) € ¥ with
End(E;) = Z + p™ Ok, where K is some fixed CM field and m is an integer that tends to
infinity as (F1, ..., Ey,) ranges through 3. The fact that irreducible components of 3 are of
Hodge type follows from the result by Moonen or Edixhoven.
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