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Abstra
ts

Guenter Harder, Bonn

Introdu
tion

In this Arbeitsgemeins
haft mathemati
ians from two di�erent �elds 
ame together. In

the �rst half we dis
ussed results of Marina Ratner, whi
h make strong assertions on the


losures of unipotent orbits on �nG, in a sense they say that su
h orbits are homogeneous.

These results had strong impli
ations in number theory (Oppenheim 
onje
ture). The

methods use measure and ergodi
 theory.

But re
ently Cornout and Vatsal dis
overed that they also 
an be applied to the theory

of Heegner points. These Heegner points are 
onstru
ted by a modular interpretation on

modular 
urves. Then we en
ounter a problem, namely we have to show that there are

many of them, they should be non trivial. At this point Ratner's result enter, they imply

that the 
losure of these point has to be of a 
ertain size, whi
h is the 
onje
tured one.

It was of 
ourse rather hard for the poeple from one side to follow the talks on the other

side. Here we appre
iated a lot from the help of Nimish A. Shah and G. Tomanov.

Volker Braungardt, Karlsruhe

Marina Ratner's results

Given a Lie group G, let an Ad-unipotent subgroup U a
t on a �nite volume quotient of

G. Starting from 
lassi
al examples (tori, PSL

2

), I state some of Ratner's theorems and

indi
ate how they are 
onne
ted: 
losures of U -orbits are homogeneous; 
lassi�
ation of U -

ergodi
 Borel probability measures; uniform distribution of unipotent one-parameter 
ows;

the set of groups homogenizing unipotent orbit 
losures is 
ountable.

Stefan K

�

uhnlein, Karlsruhe

Appli
ation to Oppenheim's Conje
ture

Let q : R

d

! R be a inde�nite, non-degenerate quadrati
 form whi
h is given by a matrix
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whi
h is not a multiple of a rational matrix. The Oppenheim 
onje
ture states that for

d � 3 the set of values q(Z

d

) is dense in R.

This 
onje
ture was proved by Margulis (in 1986) using an idea of Raghunathan, and I

explained a proof as follows: De�ne G := SL

d

(R� := SL

d

(Z); H := SO(q): Then Ratner's

result implies that the 
losure of H

0

�� in G is L �� for some 
losed 
onne
ted subgroup L

of G 
ontaining H. Hen
e L 2 fH

0

; Gg. The 
ase L = H

0

is ex
luded by the irrationality

assumption on q, hen
e L = G and H �� is dense in G. Using some ve
tor v 2 R

d

nf0g as the

�rst 
olumn of a matrix g 2 G we approximate g by produ
ts h

n




n

with h

n

2 H; 


n

2 �.

It follows that g(v) = lim

n!1

q(h

n




n

e

1

) = lim

n!1

q(


n

e

1

) 2 q(Z

d

), hen
e the 
onje
ture is true.

In order to get an S-arithmeti
 version of the density of values of a quadrati
 form, Borel

and Prasad used an S-arithmeti
 version of Ratner's density result. Also, for d � 5 one

gets

#fz 2 Z

d

: kzk � r; a � q(z) � bg � 


a;b

dr

d�2

:

Thilo Kuessner, T

�

ubingen

The 
ase SL

2

(R)

We have

Theorem (Dani). Let � be a latti
e in G = SL

2

(R) and let N = f(

1 t

0 1

) : t 2 Rg a
t

from the right on �nG. Then points x 2 �nG are either N-periodi
 (xn(T ) = x, for some

T 2 R), or uniformly distributed, i.e. for any bounded uniformly 
ontineous f : �nG! R

holds

lim

T!1

1

T

Z

t

0

f(xn(t))dt =

1

vol(�nG)

Z

�nG)

f(y)dy:

As a 
orollary one gets the 
lassi�
ation of N -invariant ergodi
 measures on �nG: they

are either multiples of the Haar measure or supported on a periodi
 N -orbit. Another im-

mediate 
orollary is Hedlund's theorem: N -orbits are dense or periodi
.

The proof heavily relies on the interplay between geodesi
 
ows (a
tion of A =

n�

e

s

2

0

0 e

�

s

2

�o

)

and horo
y
li
 
ows (a
tion of N). From ergodi
ity of the N -a
tion and Birkho�'s theorem

one gets that almost all points are uniformly distributed. Then one has to 
he
k that 
lose

to x one �nds uniformly distributed points y su
h that the values

1

T

R

T

o

f(xn(t))dt and

1

T

R

T

o

f(yn(t))dt remain 
lose for a sequen
e T

n

!1: This 
an be done if the A-orbit of X

returns to some 
ompa
t set for a sequen
e of times �

1

! 1, and this is the 
ase always

if x is not N -periodi
.

Bruno Klingler, IHES - ETH Z

�

uri
h

Measure Rigidity

Two talks in a series of four presenting the proof of the following generalization of Ratner's

measure rigidity for real Lie groups, due to Margulis and Tomanov ('94):

Theorem . Let V be a �nite set. For every v 2 V , let K

v

be a lo
al �eld of 
hara
teristi


zero, G

v

be a K

v

-algebrai
 group and G =

Q

v2V

G

v

(K

v

). Let � � G be a dis
rete subgroup

and H =

Q

v2V

H

v

(K

v

), where H

v

� G

v

is generated by unipotent subgroups. Then any

H-invariant, H-ergodi
 Borel probability measure � on G=� is algebrai
 (i.e. there exists
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a 
losed subgroup � � G and a point x 2 G=� su
h that the orbit �x is 
losed and

�(�x) = 1).

We introdu
e basi
 notions on algebrai
 a
tions, horospheri
al subgroups and dynami
s

of 
lass A elements. We prove that � 
an be assumed \Zariski-dense", 
onstru
t quasi-

regular mpas and prove the Basi
 Lemma of the proof.

Dan Fulea, Heidelberg

Consequen
es of the Basi
 Lemma

In this third talk in a series of four, taking advantage on the te
hni
al result, the Basi


Lemma, of the last talk, one 
an formulate ([MT℄:=[Margulis, Tomanov: Inv. Math., 1994℄)

intermediate results of algebrai
 nature, whi
h will be exploited in the next talk using

stru
tures and results of ergodi
 (measure theoreti
al) nature to prove the Main Theorem

(measure rigidity): \ Ea
h U{ergodi
, U{invariant measure on G=� is algebrai
 ".

These intermediate results are:

(1) [MT, Prop. 8.2℄ Let G be an algebrai
 group, U < G an unipotent algebrai
 subgroup,

� a probability measure on G=�. Suppose N < G := G(K

V

) is a subgroup, maximal with

the following properties:

� is N{invariant and N is unipotently generated in G.

Assume U 6� N . Then (using te
hniques related to the Basi
 Lemma):

There exists a quasiregular map � : U ! N

G

(U) with the properties:

(i) �(U) invariates the measure �, and

(ii) The group F := hU; �(U)i 
ontains an element s of A{
lass,

with the folowing properties:

(a) U

+

(s) :=[ maximal algebrai
 subgroup of W

+

(s) preserving � ℄

is not trivial,

(b) �(s;F(U

+

(s))) � 1,

(
) N(s) := Auslander normal subgroup hW

+

(s);W

�

(s)i / G satis�es:

N(s)=N(s) \N is in�nite.

(2) [MT, Prop. 8.3℄ Given � > 0, there exists a 
ompa
t M

�

� G=�, whi
h is a set of

uniform 
onvergen
e with respe
t to U

+

(s), �(M

�

) > 1� �, su
h that for all sequen
es (g

i

),

g

i

62 N

G

(U), g

i

! e, g

i

M

�

\M

�

6= ; (as in the Basi
 Lemma), in the de
omposition

g

i

= u

�

(g

i

) v

�

(g

i

) z(g

i

) u

+

(g

i

) v

+

(g

i

)

the fa
tor u

�

(g

i

) \dominates" the fa
tor v

�

(g

i

).

(3) [MT, Cor. 8.4℄ There exists a 
onull setM � G=�, su
h that the following \algebrai



ondition" is satis�ed: M \W

�

(s)x � U

�

(s)x, all x 2M .

In the given time limit, the basi
 strategy, some intermediate steps for (1) and the 
avour

of the involved proof te
hniques were given. A main use of the quasiregularity of � and the

strategy of the repeated use of the Basi
 Lemma were explained \expli
itly".

George Tomanov, Lyon

Entropy and Measure Rigidity

The goal of the talk is to 
omplete the proof of the measure rigidity theorem in the S-adi



ase due to G.A. Margulis and the speaker (Inv. Math. vol 116, pp.347-392, 1994). (See

also M. Ratner's paper in Duke Math. J. vol. 77, pp. 275-382, 1995 for an independent
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proof of the same result.)

We use the notions G;�; �; s;W

�

(s) as introdu
ed in the talk of Bruno Klingler. Additio-

nally denote by V a 
losed subgroup of W

�

(s) normalized by s and by � the module of

the automorphisms of V obtained by restri
ting Int(s) to V .

First we prove the following

Theorem (Entropy Theorem). Assume that � is hsi-invariant and ergodi
.

(1) If � is V -invariant then h(s; �) � log�; where h(s; �) is the entropy of Int(s)j

V

;

(2) Assume that there exists a measurable subset  � G=� su
h that �( ) = 1 and

 \W

�

(s)x � V x for every x 2  : Then h(s; �) � log� and the equality implies

that � is V -invariant.

Next we dedu
e the measure rigidity from the Entropy Theorem and from the results

exposed in the previous talks by Bruno Klingler and Dan Fulea.

Nimish A. Shah, Tata Inst. Mumbai

Uniform distribution of orbits of unipotent 
ows, (two talks)

Using the 
lassi�
ation of �nite ergodi
 invariant measures for a
tions of unipotent sub-

groups on homogeneous spa
es of \Lie groups" (whi
h are produ
ts of real Lie groups and

linear p-adi
 Lie groups), it was shown that in �nite volume homogeneous spa
es of these

Lie groups, any traje
tory of an one-parameter unipotent subgroup is equidistributed (see

works of M. Ratner, G.A. Margulis, S.G. Dani, G. Tomanov).

The aim of the talks was to give a proof of the result in a very spe
ial 
ase whi
h is quite

relevant to the theme of the 
onferen
e:

Let G = SL

2

(Q

p

)� SL

2

(Q

p

), � a 
o
ompa
t dis
rete subgroup of G and

U = fu(t) = ((

1 t

0 1

) ; (

1 t

0 1

)) : t 2 Q

p

g :

Then for any x 2 G=� there exists a 
losed subgroup F of G 
ontaining U su
h that the

orbit Fx is 
ompa
t, there exists a F -invariant probability measure �

F

on Fx and the

traje
tory fu(t)x : t 2 Q

p

g is uniformly distributed with respe
t to �

F

; more pre
isely:

for any 
ontinuous f on G=�,

lim

r!1

1

�(I(r))

Z

I(r)

f(u(t)x)d�(t) =

Z

Fx

fd�

F

;

where � is a Haar measure on Q

p

and for r > 0 de�ne I(r) = ft 2 Q

p

: jtj

p

� rg:

In fa
t, if F 6= G then vFv

�1

is the diagonal embedding of SL

2

(Q

p

) in G for some

v = ((

1 s

0 1

) ; (

1 �s

0 1

)) ; s 2 Q

p

:

Vi
tor Rotger, Bar
elona

The Arithmeti
 of de�nite quaternion algebras and Gross 
urves

In this talk we introdu
e some of the key ingredients that are 
ru
ial in the proofs of

Mazur's 
onje
ture by Cornut and Vatsal.

Namely, we introdu
e �rst of all ring 
lass �elds H of an imaginary quadrati
 �eld K and

we will be interested on the Mordell-Weil group E(H) of H-rational points of an ellipti



urve E=Q . In order to study E(H) and their asso
iated L-fun
tion we introdu
e de�nite

quaternion algebras B and we 
onstru
t a Gross 
urve X

B

=Q atta
hed to it. The 
urve

4



X

B

is a disjoint union of spheres and we des
ribe a family of spe
ial points X

p

n

� X

B

(K)

(where p any prime, n � 1) that are rational over K on X

B

. The main result of this talk

is Vatsal's des
ription of a Galois a
tion of Pi
(O

p

n

), where O

p

n

� K has 
ondu
tor p

n

, on

the family of Gross points X

p

n

: this des
ribtion is given in terms of a related tree T

p

, the

Bruhat-Tits building of PSL

2

(Q

p

):

Ignazio Longhi, M

�

unster

Gross' formula

Goal of the talk was to explain Gross' formula relating spe
ial values of L-fun
tions to

Gross points on the 
urve X = X

B

whi
h in the previous talk was asso
iated to a de�nite

quaternion algebra B with dis
riminant N

�

(re
all that N = N

�

N

+

).

Preliminaries. We started by de�ning the a
tion of a He
ke algebra T as a ring of


orresponden
es on X and hen
e an a
tion of T on Pi
(X) = �Ze

i

(re
all that X is the

disjoint union of 
urves of genus 0, indexed by Cl(B), the set of 
lasses of oriented Ei
hler

orders of level N

+

).

Then, following [2℄, we introdu
ed a positive de�nite height pairing on Pi
(X), <

e

i

; e

j

>:= w

i

Æ

ij

, with the property that the He
ke a
tion is self-adjoint, i.e. < T

m

e; e

0

>=<

e; T

m

e

0

> for all T

m

2 T.

LetM denote the latti
e of weight 2 modular forms for �

0

(N) with integral 
oeÆ
ients;

by the multipli
ity one theorem,M is a free module of rank 1 over T
Q . De�ne a T-module

homomorphism � : Pi
(X)


T

Pi
(X)

_

!M by

e
 e

_

7!

1

2

deg e deg e

_

+

X

m�1

< T

m

e; e

_

> q

m

:

� be
omes an isomorphism over T 
 Q .

The map  . Let g =

P

a

n

q

n

2 S

2

(N) be a newform: one knows that the 
oeÆ
ients a

n

are all real. We use g to de�ne a homomorphism  

g

: T ! R, T

m

7! a

m

(this is an instan
e

of the Ja
quet-Langlands 
orresponden
e). Thanks to the multipli
ity one theorem, one

has Pi
(X)


T

R ' R; �x su
h an identi�
ation to get a map  : Cl(B)! R. We extend

 to a map on Gross points by putting  (P ) :=  ([R℄) for P = (f; R).

The formula. Let � be a primitive 
hara
ter for Pi
(O

n

) and P any Gross point of


ondu
tor n on the 
urve X. Gross' formula then says:

(1) j

X

�2Pi
(O

n

)

�(�) (P

�

)j

2

= �(g; g)L(g; �; 1)

where (g; g) denotes the Petersson inner produ
t and � is an expli
it, non-zero fudge fa
tor.

Gross' proof (in [2℄, under the assumptions that N = N

�

is prime and � is a 
hara
ter

of Pi
(O)) works in four steps:

� de
ompose L(g; �; s) =

P

�2Pi
(O)

�(�)L(g; �; s);

� use Rankin's method to obtain L(g; �; 1) = �(g; F

�

), for a 
ertain modular form F

�

;

� 
ompute the 
oeÆ
ients of F

�

and show that they are equal to

P

�

< P

�

; T

m

P

��

>,

so that F

�

=

P

�

�(P

�


 P

��

);

� put everything together to get (1).
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Gross' result was later extended by Daghigh to the generality above ([1℄).

The �nal part part of the talk (skipped for la
k of time) should have explained how

Gross' formula is applied in [3℄, [4℄.

Literatur

[1℄ H. Daghigh: Modular forms, quaternion algebras and spe
ial values of L-fun
tions. M
Gill University

Ph.D. thesis, 1997.

[2℄ B. H. Gross: Heights and the spe
ial values of L-series. In: Number theory (H. Kisilevski and J.

Labute, eds.) Can. Math. So
. Conf. Pro
. 7, AMS 1987, 115-187.

[3℄ V. Vatsal: Uniform distribution of Heegner points. Preprint, 2000.

[4℄ V. Vatsal: Spe
ial values of anti
y
lotomi
 L-fun
tions. Preprint, 2001.

Nike Vatsal, UBC

Spe
ial Values of Anti
y
lotomi
 L-fun
tions

In this talk we state Gross' spe
ial value formula for anti
y
lotomi
 L-fun
tions and show

how the distribution of Gross points of 
ondu
tor p

n

(with n ! 1) is related to the

resolution of Mazur's 
onje
ture in the de�nite 
ase. Using a result of Shimura, we show how

to redu
e Mazur's 
onje
ture to studying the distribution of the ve
tors (P

�

n

)

�2G

0

, where

P

n

is a Gross point of 
ondu
tor p

n

, G

0

is the so-
alled \tame" subgroup of Gal(K(p

1

)=K)

and n!1. Roughly speaking, one needs to show that the distribution is uniform in the


omponents of the Gross 
urve; this will follow from Ratner's theorems.

Hilmar Hauer, Nottingham

Heegner Points on Modular Curves

We reviewed some fa
ts about ellipti
 
urves over �elds. I.e. the stru
ture of endomorphism

rings, 
lassi
al theory of 
omplex multipli
ation in 
hara
teristi
 zero and supersingular el-

lipti
 
urves. Then we introdu
ed the modular 
urve X

0

(N) over C and gave its interpreta-

tion as moduli s
heme over Spe
(Z[

1

N

℄): As a te
hni
al tool, we de�ned a s
heme-theoreti


version of a-transforms.

In the �rst main part of the le
ture, we determine the �elds of de�nition of CM points on

X

0

(N)(C ): Furthermore we gave a formula for the Galois a
tion on these CM points in

terms of a-transforms.

Finally we found a des
ribtion of the supersingular lo
us X

ss

0

(N)(F

l

) as the 
oset spa
e

Cl(R;N) of (N;N)-in
lusions of left R-ideals. Here R is a maximal order in a suitable

de�nite quaternion algebra B. We also formulated an adeli
 version:

\

O

r

(J

0

=I

0

)

�

b

Q

�

n

b

B

�

=B

�

�

=

X

ss

0

(N)(F

l

):

Sigrid Wortmann, Heidelberg

Mazur's Conje
ture for 
lassi
al Heegner points

The aim of this talk was to present Cornut's proof of the following 
onje
ture by Mazur

(1983): Let E=Q be a (modular) ellipti
 
urve, K an imaginary quadrati
 �eld. Then for

some n � 0 the tra
e Tr

K[p

1

℄=H

1

(y

p

n

) =2 E(H

1

)

tors

, where K[p

1

℄ =

S

n�0

K[p

n

℄, K[p

n

℄ the

6



ring 
lass �eld of 
ondu
tor p

n

,H

1

the anti
y
lotomi
 Z

p

-extension ofK and y

p

n

a Heegner

point of 
ondu
tor p

n

on E. As E(H

1

)

tors

itself is a �nite group it suÆ
es to produ
e

\many" points in the image of the tra
e, i.e. more than #E(H

1

)

tors

. This in turn is shown

by 
onstru
ting \many" points in the redu
tion E(F

l

) for some inert prime l. For this one

writes Tr

G

0

(y

p

n

) = Tr

G

0

=G

1

(Tr

G

1

(y

p

n

)) for the genus subgroup G

1

� G

0

= Gal(K[p

1

℄=H

1

):

The \geometri
" part Tr

G

1

(y

p

n

) 
an be des
ribed by using CM points 
oming from the

modular 
urve X

0

(NM); with M =

Q

qjd

k

q: Now one uses the redu
tion map

RED : L

p

!

�

X

ss

0

(NM)(F

l

�

(G

0

=G

1

)

;

whi
h asso
iates a tuple (red

l

(x

�

))

�2G

0

=G

1

of supersingular points over F

l

2

to an CM point

x on X

0

(NM)(K[p

1

℄). Using Ratner's theorem (resp. a 
onsequen
e of it shown in Vatsal's

talk) it was shown that this map is surje
tive. But the number of supersingular 
urves in


hara
teristi
 l grows �

�

l

12

�

: So 
hoosing a suÆ
iently big inert prime l in K gives the

result.

Christophe Cornut, Strasbourg

Mi
hael Spiess, Nottingham

On the parity of ranks of Selmer groups

The aim of these talks is to present Jan Nekov�a�r's proof of the parity 
onje
ture for Selmer

groups of ellipti
 
urves over Q , to the e�e
t that: the 
orank of Sel

p

1

(E=Q) has the

same parity as the order of vanishing at s = 1 of L(E=Q ; s). This follows from the analog

statement for E=K, where K = Q(

p

D); (D < 0) is an imaginary quadrati
 �eld, in whi
h

all prime fa
tors of 
ondu
tor(E) are split. The parity 
onje
ture in this 
ase 
orresponds to

the statement that 
orank(Sel

p

1

(E=K)) is odd. Let H

1

be the anti
y
lotomi
 Z

p

-extension

of K. The Pontryagin dual of Sel

p

1

(E=H

1

) = S

1

is a �-module of �nite type. By Mazur's


ontrol theorem the parity 
onje
ture for E=K follows from:

(1) rank

�

(S

_

1

) = 1

(2) (S

_

1

)

tors

= Y

2

� Z (up to �nite modules), where Y is free over Z

p

and Z is killed

by p

n

; n� 0.

The �rst statement was already known to be a 
onsequen
e of Mazur's 
onje
ture on higher

Heegner points.

The se
ond statement is proved by 
onstru
ting a symple
ti
 pairing on (S

_

1

)

tors

(with

values in Fra
(�)=�). This is done by using the theory of Selmer 
omplexes and a very

general duality theorem for these 
omplexes.

Andrei Yafaev, Rennes

The Andr�e-Oort 
onje
ture and its appli
ations to Mazur's 
onje
ture (with

an appendix by Christophe Cornut)

The aim of this talk is to introdu
e the the Andr�e-Oort 
onje
ture on the Zariski 
losure

of sets of spe
ial points on Shimura varieties. This 
onje
ture predi
ts that irredu
ible


omponents of su
h a 
losure are subvarieties of Hodge type. Partial results on this 
on-

je
ture have been obtained by Andr�e, Edixhoven, Moonen and Yafaev. The statements

of the results and appropriate explanations have been given in this talk. Eventually we

stated a 
ase of this 
onje
ture that 
omes up in the proof of Mazur's 
onje
ture by Cor-

nut and Vatsal. Namely, this is the 
ase of varieties of the form X

0

(N)� :::�X

0

(N): Su
h

a varity is a moduli spa
e for n-tuples of ellipti
 
urves over C (with appropriate level

7



stru
ture). One 
onsiders a set � of CM points su
h that for any (E

1

; :::; E

n

) 2 � with

End(E

i

) = Z+ p

m

O

K

, where K is some �xed CM �eld and m is an integer that tends to

in�nity as (E

1

; :::; E

n

) ranges through �. The fa
t that irredu
ible 
omponents of � are of

Hodge type follows from the result by Moonen or Edixhoven.
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