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Organised by Michael Baake (Greifswald), Jean V. Bellissard (Toulouse) and Robert

V. Moody (Edmonton), the workshop on Aperiodic Order was the third major mathematics

meeting devoted entirely to this subject, the previous being at the Fields Institute in 1995

and a workshop at the MFO in 1998.

Aperiodic order deals with extended mathematical and physical (atomic) structures

that have long-range order but which are not (necessarily) based on periodic repetition.

The concept of order is one that grows ever more subtle with time, both because Na-

ture manifests ordered structures in an in�nitude of di�erent ways (for most of which we

still have incredibly little understanding) and because of the increasing sophistication of

symmetry, self-similarity, and invariance within mathematics itself.

The discoveries of physical quasicrystals and of aperiodic tilings served to de�ne the

new area in the early 1980's. Since then the subject has deepened considerably and the

present workshop, with its concentration on homological methods, dynamical systems,

C

�

-algebras, and statistical mechanics, brought the subject to a new level of maturity.

The newness of the subject and the extraordinary breadth and depth of the disciplines

that (unexpectedly) enter it made this an exciting workshop for everyone. There is no one

person who \knows it all", and over and over again we heard from our participants how

important this week had been in putting the diverse aspects of the subject into perspective.

We were grati�ed to �nd that for more than a third of our participants this was their �rst

time at Oberwolfach, and for many the �rst time to interact personally with people whom

they had known only through their work and reputations before. The atmosphere was one

of great mutual support and intense interest.

The days were run with two full hour lectures starting the morning and afternoon

sessions, and 45-minute lectures otherwise, with the usual deviation on Wednesday. We

also had several evening sessions for priming material or extensions of ideas developed in

the lectures. Another important aspect of the workshop was the extensive use of posters.

All attendees were asked to produce posters of their recent work and these quickly spilled

beyond the usual poster space. They became a useful focal point for people during the

breaks, and in the scheduled interaction periods.

As usual, the infrastructure and support-sta� at the MFO were exemplary. The work-

shop was a highly enjoyable and successful event.

Edited by Uwe Grimm
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Programme

Monday, 07.05.2001

9.00 Opening address

9.15 H.-O. Georgii Percolation and the number of phases in the

Ising model

10.15 Coffee break

10.45 A.C.D. van Enter Non-periodic long-range order in lattice models

11.30 Short break

11.45 R. Mosseri Entropy of random tilings

12.30 Lunch

14.00 Posters and Discussion

15.30 Afternoon tea

16.15 J.A. Propp Random tilings

17.15 Short break

17.30 J.-P. Allouche Combinatorics on words and physics

18.30 Dinner

Tuesday 08.05.2001

9.00 D. Damanik Spectral theory of one-dimensional Schr�odinger

operators with low-complexity potentials

10.00 Coffee break

10.30 D. Lenz Uniform ergodic theorems and applications

11.15 Short break

11.30 I. Krasovsky On the measure of the spectrum of quasiperiodic

operators

12.30 Lunch

14.00 Posters and Discussion

15.30 Afternoon tea

16.15 I. Guarneri Anomalous transport with quasiperiodic

Hamiltonians

17.15 Short break

17.30 H. Schulz-Baldes Transport in polymer chains

18.30 Dinner

20.00 T. Janssen Scale space groups
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Wednesday 09.05.2001

9.00 B. Solomyak Pure point spectrum for Delone sets

9.45 V. Elser Exceptionally symmetric fundamental regions for

the root lattices in 2D

10.30 Group photograph

10.35 Coffee break

10.50 P. Gummelt Concepts for random ensembles of overlapping

clusters

11.35 C. Radin On aperiodicity as optimization

12.20 Lunch

13.30 Excursion

18.30 Dinner

20.00 R.V. Moody Oberwolfach in Canada? A status report

20.15 L. Danzer When are ination species linearly repetitive?

20.45 L. Danzer Portraits of mathematicians

Thursday 10.05.2001

9.00 C. Skau Orbit equivalence and ordered K-theory

10.00 Coffee break

10.30 J. Kellendonk Topological invariants of aperiodic point sets

11.15 Short break

11.30 J. Hunton Cohomology of projection method tilings

12.30 Lunch

14.00 Posters and Discussion

15.30 Afternoon tea

16.15 E.A. Robinson Tilings corresponding to non-Pisot matrices

17.15 Short break

17.30 N.M. Priebe Substitution sequences in Z

d

with non-simple

Lebesgue spectral component

18.30 Dinner

20.00 I. Putnam An informal introduction to C

�

-algebras,

dynamical systems and K-theory
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Friday 11.05.2001

9.00 B. K�ummerer Quantum Markov processes and coding theory

10.00 Coffee break

10.30 R.A. Rebolledo Stochastic models for open quantum systems

11.15 Short break

11.30 D. Spehner Kinetic approach to hopping transport

12.30 Lunch

14.30 P. Kramer From the dual geometry of lattices to

quasiperiodic sections and covering

15.15 Closing remarks

15.30 Afternoon tea

16.00 Posters and Discussion

18.30 Dinner
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Abstracts

Combinatorics on words and physics

Jean-Paul Allouche

The �rst part of this talk consists of a brief survey of examples of the use of combinatorics

on words in physics: Penrose's seminal paper; the paper of Mend�es-France and the author

on the one-dimensional Ising model (at imaginary temperature) and the Rudin-Shapiro

sequence; Kohmoto's and Ostlund's results on the Fibonacci masses and springs; trace

equations; discrete Schr�odinger equations with aperiodic potentials.

The second part concentrates on the discrete Schr�odinger operator, giving �rst a result

of Hof-Knill-Simon that links the existence of arbitrarily long palindromes in the sequence

of potentials to the singular continuous nature of the spectrum of the operator. We then

(joint work with M. Baake, J. Cassaigne and D. Damanik) introduce the notion of \palin-

drome complexity" of a sequence on a �nite alphabet, and study classical sequences and

families of sequences from this point of view.

Spectral theory of one-dimensional Schr�odinger operators

with low-complexity potentials

David Damanik

We discuss a combinatorial point of view in the spectral theory of discrete one-dimensional

Schr�odinger operators H = � + V in `

2

(Z). Namely, in the case where the potential V

takes �nitely many values, we consider the complexity function p : N ! N associated with

V , where p(n) is given by the number of subblocks of V having length n. The point of

view we propose is the following: the more complex the potential (i.e., the faster p grows),

the more singular the spectral type of H. This tendency has been proven to be correct for

extremal complexity behavior. That is, no growth of p implies purely absolutely continuous

spectrum, slow growth implies purely singular continuous spectrum, and maximal growth

leads to pure point spectrum (at least almost surely with respect to a canonical probability

measure). For intermediate complexity, however, only few results are known.

When are ination-species linearly repetitive (`R)?

Ludwig Danzer

Given a �nite family F := fT

1

; : : : ; T

k

g of prototiles and an ination-factor � (� > 1), such

that for each �, �T

�

is dissected into congruent copies of some F -tiles (� = 1; 2; : : : ; k). This

cluster consisting of a

1�

tiles of type T

1

, . . . , a

��

tiles of type T

�

, . . . , a

k�

tiles congruent

to T

k

, is called in(T

�

). The species S of all global tilings P, such that every cluster which

occurs in P has a congruent copy in some in

n

(T

�

), is denoted by S(F ; in).

Example:

F := fA;Bg; A :=

�

�

�

�

1

xx

2

; B := xA; � = x (=

p

� );
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in(A) := B; in(A) := �

�

�

�

�

c

c

c

A

B

; M =

�

0 1

1 1

�

:

If the (k � k)-matrix M

in

:= (a

��

) is primitive, S is weakly repetitive. That is to say: for

every cluster C from S, there is a radius P

C

such that C has a congruent copy in every

tiling P in S in every ball of radius P

C

. If the set fP

C

j C �ts into a ball of radius %g is

bounded, say by P (%), S is called repetitive (there are ination-species with primitiveM

in

,

and hence minimal F , which are not repetitive; e.g. the example above with x

4

instead of

x

2

and F = fA;B;C;Dg).

Theorem If an ination-species S is repetitive, it is even linearly repetitive. In other

words: then there are constants �

0

, �

1

depending on S only (not on %), such that P (%) �

�

0

+ �

1

%.

The proof consists of several rather trivial steps dealing with some other properties a

species of tilings can have (in particular being of locally �nite complexity (LFC)).

Exceptionally symmetric fundamental domains

for the root lattices in 2D

Veit Elser

It is possible to construct fundamental domains for the root lattices Z

2

and A

2

, whose

symmetry groups contain as proper subgroups their corresponding Weyl groups.

After arguing why such regions cannot be connected, a construction in the \impasto"

style of Renaissance painting was presented. In brief: layer upon layer of \paint" involving

ever diminishing 8-gons (Z

2

) and 12-gons (A

2

) are applied to the \canvas" (R

2

). The

resulting fundamental domains are fractal and are preserved by the non-crystallographic

reection groups

t t

8

(Z

2

) and

t t

12

(A

2

). As an application, these regions de�ne

bijections of two copies of their root lattices, one rotated relative to the other: fZ

2

; R(

�

4

)Z

2

g

and fA

2

; R(

�

6

)A

2

g. The bijection for the A

2

case provides a new construction of the window

of the quasiperiodic square-triangle tiling.

Non-periodic long-range order in statistical mechanics:

Lattice model examples and concepts

Aernout C. D. van Enter

In statistical mechanics a generally used de�nition of long-range order is the occurrence

of multiple Gibbs or ground-state measures. In case a translation-invariant measure has a

non-trivial tail-decomposition into extremal elements which are non-periodic (necessarily

uncountably many), non-periodic long-range order occurs. In my talk I reviewed some

partial results on toy models in which the existence of such non-periodic long-range order

can be proven. All this is restricted to lattice models. In one dimension at positive

temperatures existence results can be obtained from the Israel-Bishop-Phelps theorem.

The interaction is long-range and is shown to exist in a rather non-constructive way. In

three dimensions, by stabilization of a one-dimensional zero-temperature construction by

adding nearest-neighbour ferromagnetic interactions in the second and third direction, an

existence result for relatively short-range interaction is obtained. The long-range order is

Thue-Morse like.
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Furthermore, I discussed the di�raction spectrum. By considering the spectrum of the

generator of translations for the Thue-Morse system one can distinguish between a singular

continuous atomic di�raction spectrum and a pure point molecular di�raction spectrum.

Non-periodic substitution systems are also a source of computable overlap distributions.

Non-trivial Purini overlap distributions occur for the Toeplitz system (discrete, based on

an ultrametric structure) and the Fibonacci system (continuous), whereas the Thue-Morse

systems results in an almost surely trivial overlap.

I reviewed joint work with Cli�ord Gardner, Bert Hof, Jacek Mi�ekisz, Charles Radin,

Milo�s Zahradn��k and Boguslaw Zegarlinski.

Percolation and the number of phases in the 2D Ising model

Hans-Otto Georgii

Gibbs measures serve as models for the equilibrium states of physical systems consisting

of many interacting compounds. Of particular interest is the non-uniqueness of Gibbs

measures which corresponds to the phenomenon of phase transitions. This phenomenon

can often been understood in terms of the formation of in�nite clusters in suitable random

graphs: such in�nite clusters serve as a link between individual and collective behavior.

After a general introduction to the fundamentals of the theory, the geometric aspects of

phase transitions are illustrated by the two-dimensional Ising model. A recent streamlined

proof of the by now classical result that in this model only two phases exist is presented.

(Joint work with Y. Higuchi, Kobe).

Anomalous transport in quasiperiodic Schr�odinger operators

Italo Guarneri

Schr�odinger operators endowed with singular continuous spectra exhibit several peculiar-

ities in the associated wave packet dynamics. These are known from extensive numerical

simulations. A short review of such empirical data is given; the possible physical implica-

tions are outlined. General results about the dynamical implications of singular continuous

spectra, which provide bounds on the exponents ruling the wave packet di�usion in terms

of various spectral dimensional, are reviewed. Finally a result is announced, which sets a

lower bound on the transport exponents of the \critical" Harper (almost-Mathieu) Hamil-

tonian, averaged over the phase, in terms of the multifractal dimensions of the density of

states. Numerical results available in the literature indicate that this rigorous bound may

be optimal.

Concepts for random ensembles of overlapping clusters

Petra Gummelt

Cluster coverings are patterns of overlapping units (so-called clusters) and hence complete

the hierarchy of packings and tilings. The question for a single aperiodic planar building

block (\einstein") which is still open for conventional tilings is solved within the more

general context of coverings. Since almost all de�nitions and concepts well-established in

tiling theory can be also used for cluster coverings, we asked for the application of the

well-known tiling model to overlapping units. Focussing on matching rules, we o�ered two

schemes of random covering ensembles which are motivated by tiling theoretical aspects and
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structure models of quasicrystals, respectively. We illustrated our approach by a detailed

analysis of the \random relative" corresponding to the aperiodic decagon.

Cohomology of projection method tilings

John Hunton

We consider cut-and-project point patterns/tilings obtained on R

d

from a rank N lattice

�, and restrict for now to acceptance domains which are the projection of the unit cell

(so polyhedral) for �. As discussed in Kellendonk's talk (this workshop; see Kellendonk's

abstract), to such a situation we attach a Cantor dynamical system (X;Z

d

), or a locally

Cantor system (V

c

;Z

n+d

), where V

c

is a \Cantorised" n-dimensional Euclidean space, Can-

torised by a family of cutting hyperplanes, and X =

V

c

=

Z

n

.

To such a set-up a variety of topological invariants can be associated: H

�

(Z

d

;C(X;Z)),

K

�

(C(X) o R

d

), K

�

top

(
),

�

H

�

(
), etc., where 
 is the associated tiling space (hull). By

work of Forrest-Hunton [FH], these are all isomorphic as Abelian groups. Recent work of

Sadun and Williams shows that a similar situation of equivalent invariants exists for a very

wide class of tilings.

Tools of algebraic topology are used to produce a number of results, both theoretical

and computational. In particular, writing L

0

for the number of Z

n+d

-orbits of cut points

in V

c

, we prove

Theorem L

0

is �nite if and only if H

�

(Z

d

;C(X;Z))
 Q is of �nite rank/Q .

Almost all such cut-and-project tilings display in�nite L

0

. As work of Kellendonk and

of Anderson-Putnam shows that substitution tilings have �nite rational rank invariants we

obtain

Corollary \Generically", projection tilings are not representable as substitution tilings.

We also see that when H

�

(Z

d

;C(X;Z))
 Q is �nite-dimensional, H

�

(Z

d

;C(X;Z)) is

free Abelian, providing an obstruction to substitution tilings being described as projections:

�

H

�

(
) for substitutions will often contain divisibility.

Formulae describing the invariants for codimensions 1, 2 and 3 are given, as is a formula

for the Euler characteristic, i.e., rk(K

0

)� rk(K

1

), for arbitrary codimension patterns.

Scale-space groups

Ted Janssen

Aperiodic crystals are characterized by the fact that the sharp Bragg spots belong to an

n-dimensional vector module (rank n > 3). They can be considered as intersection of an

n-dimensional reciprocal lattice with 3D physical space. Since the relation between the

3D and nD Fourier transforms is 1{1, the space group symmetry of the embedded nD

structure is relevant for the 3D crystal.

However, in physical sense there is a di�erence between the physical and the additional

(n� 3) dimensions. This consideration has to be taken into account for the choice of the

de�nition of equivalence of space groups. Usually, in 3D, space groups can be calculated

as extensions of a point group K by the 3D lattice Z

3

. Equivalence classes are orbits of

the normalizer of K on the second cohomology group H

2

�

(K). For nD space groups for

quasiperiodic crystals, one has to limit oneself to the action of a subgroup of the normalizer.

It is discussed what the options are.

Quasicrystals show often, in addition to the Euclidean point group, scale symmetry.

The scale operators can be lifted to nD basis transformations of the lattice. Together with
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K, these transformations generate an in�nite non-Euclidean point group. These groups can

be extended again by Z

n

, and, in general, these are non-trivial extensions. The calculation

can again be based in H

2

�

, but also in H

1

�

(for �nite groups these are isomorphic). The

(nontrivial) extensions are called scale-space groups and maybe used to construct a new

type of tilings.

Topological invariants for aperiodic point sets

Johannes Kellendonk

In the cut and projection scheme one constructs point sets by projecting, from a higher-

dimensional periodic lattice �, the points in a strip which is a thickening of an irrationally

placed lower-dimensional linear space onto that linear space E. The thickening is de-

termined by a so-called acceptance domain K. This gives rise to a dynamical system

consisting of a space V

c

which is obtained from the complementary subspace V (in which

K lies) by disconnecting it along the points which are obtained from the boundary of K

by translation with a vector of �, the projection of � onto V along E. The group acting

is � and we investigated the dynamical invariants of that system. Such invariants are the

cohomology of the group � with coe�cients in C

c

(V

c

;Z) (integer valued continuous func-

tions over X), the K-theory of the C

�

-algebra C(x)oZ

d

where � = Z

d

�Z

n

, Z

n

spans V ,

and X =

V

c

=

Z

d

. We obtain results for n � 3.

The K-theory is relevant for the gap-labelling of operators describing electron motion

in such an aperiodic set. For generic positions of E and polytopal acceptance domain K,

the K-theory is in�nitely generated, but, as a result of a conversation on this workshop

with Moody and Schulte, we now know that the K

0

-group modulo in�nitesimals is always

�nitely generated.

From the dual geometry of lattices to

quasiperiodic sections and coverings

Peter Kramer

The Voronoi and the dual Delone complexes of a lattice � in E

n

provide a hierarchy of dual

pairs of boundariesX

j

, X

�

j

of complementary dimension. Lattice points are dual to Voronoi

polytopes and Delone polytopes dual to holes, i.e., vertices of the Voronoi polytopes. Dual

tiling theory takes advantage of this richer geometry. Tilings (T ;�) are projected to E

k

�

E

n

from Voronoi boundaries, tilings (T

�

;�) from Delone boundaries. Here E

n

= E

k

+E

?

where E

k

, E

?

are invariant under a point subgroup of the holohedry of �. Since 1990

we analyze clusters and coverings in tilings in terms of dual tiling theory. As clusters

in the dual tilings we propose parallel projections of Delone and of Voronoi polytopes to

the tiling space E

k

. A general construction theorem yields the unique asymmetric �lling

and the windows of these clusters. The well-known decagon clusters in the 2D Penrose

tiling can be identi�ed as Voronoi projections. The dual triangle tiling, projected from the

same root lattice A

4

, is covered by pentagonal Delone clusters. We explore the tilings of

icosahedral point symmetry projected from the 6D root lattice D

6

and study their Delone

and Voronoi coverings. We expect that the analysis can yield insight into the structure of

quasicrystals.
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On the measure of the spectrum of discrete quasiperiodic operators

Igor Krasovsky

We consider the discrete Schr�odinger operator

(H

�;�

 )(n) =  (n� 1) +  (n + 1) + f(�n+ �) (n)

on l

2

(Z), where f(x) is a real periodic analytic function of period 1. For any irrational �

and real �, we show that, if the corresponding Lyapunov exponent is a.e. positive, then

jS(�; �)j = lim

n!1

j [

�2R

S(p

n

=q

n

; �)j, where S(�; �) is the spectrum of H

�;�

, jS(�; �)j its

Lebesgue measure, and p

n

=q

n

is the sequence of canonical rational approximants to �.

For the almost Mathieu operator (f(x) = 2� cos 2�x) it follows that the measure is

equal to 4j1 � j�jj for all real �, � 6= �1, and all irrational �. (Joint work with S. Ya.

Jitomirskaya, Irvine).

Quantum Markov processes and coding theory

Burkhard K

�

ummerer

In symbolic dynamics, Markov processes are constructed from road-coloured graphs. If the

road-colouring has a synchronizing word, then this can be used to represent the Markov

process as a factor of a Bernoulli process.

In quantum probability, given a �-homomorphism J : A ! A 
 C for some (C

�

-)

algebras A and C (called \random variable"), a quantum Markov process is obtained from

it as follows. De�ne a �-homomorphism

A 
 C 
 C 
 C 
 : : :

T :

J

&

Id

&

Id

&

Id

&

z }| {

A 
 C 
 C 
 C 
 : : :

and random variables J

0

: A 3 x 7! x 
 I
 I
 : : : 2 A 
 C 
 C 
 : : : and J

n

:= T

n

� J

0

,

then for any state of the form '
 
 
 : : :, for ' and  states on A and C, respectively,

(J

n

)

n

is a Markov process.

For commutativeA and C, the random variable J can be identi�ed with a road-colouring

and the above Markov process as the corresponding Markov process obtained from this

road-colouring.

Motivated from an interpretation of such a Markov process in terms of open quantum

systems we (K�ummerer-Maassen) initiated a systematic study of asymptotic completeness

of such a Markov process. It roughly means that for large n, J

n

(x) (x 2 A) tends to be

an element in I
 C 
 C 
 : : :. (The precise formulation uses the strong operator topology

with respect to the above mentioned product state).

Theorem (Gohm/K�ummerer/Lang, 2001): For A, C commutative and �nite-dimens-

ional, asymptotic completeness is equivalent to the existence of a synchronizing word.

We have been able to generalize this to the non-commutative and in�nite-dimensional

context. This involves a suitable formulation/generalization of the notion of a synchroniz-

ing word in this general context, as well as proving an analogous result.

Finally, we show that the micro-maser is a \literal" physical realization of such a Markov

process. It is asymptotically complete, and this allows to prepare quantum states of the

�eld mode by sending in suitably prepared atoms. Numerical computations show that this
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can be done in a way which seems to be experimentally realizable. It opens the prospective

of using the micro-maser as a quantum coding machine.

Uniform ergodic theorems and applications

Daniel Lenz

We consider minimal subshifts over a �nite alphabet and the associated Schr�odinger oper-

ators. A necessary and su�cient condition for validity of a uniform subadditive theorem is

discussed. This condition is given by uniform positivity of weights. Thus, it is in particular

satis�ed for all linearly repetitive subshifts (e.g. those arising from primitive substitutions).

Furthermore, we study the question whether the spectrum of the associated Schr�odinger

operators coincides with the set of energies with vanishing Lyapunov exponent.

This can be shown to hold if and only if the Lyapunov exponent exists uniformly. In

this case the Lyapunov exponent is continuous.

Based on these results we infer zero Lebesgue measure spectrum for a large class of

Schr�odinger operators related to one-dimensional quasicrystals, including all aperiodic

Schr�odinger operators associated to primitive substitutions.

Random tilings and partitions

Remy Mosseri

Interesting sets of random tilings with rhombi, rhombohedra (and their higher dimensional

analogues), and with given �xed boundary conditions, can be put in 1-to-1 correspondence

with partitions: well known cases are lozenge tilings inside a hexagon, and planar partitions.

We discuss here other cases which belong to two di�erent families:

| n-dim. tilings (with n-dim. rhombohedra) corresponding to standard (hyper)solid

partitions. They allow for a representation as an n-dim. facetted membrane in an

(n+ 1){dim. hypercubic lattice (so-called codim.-one case).

| 2d rhombus tilings which can be lifted as a 2-dim. facetted membrane in a (2+d)-dim.

hypercubic lattice (codim.-d case), corresponding to \generalized" partitions.

The tiling con�guration space C is a (very) high-dimensional polytope (convex in the

codim.-1 case) whose integral volume leads to the \entropy" of the tiling set. We describe

a decomposition of C into \normal simplices", which greatly reduce the complexity in

computing the integral volume (the main di�culty here being not to overcount points on

\face" sharing simplices). Exact and approximate enumeration formulas are given, as well

as some numerical estimates. In particular, an exact (new) formula enumerates the total

number of simplices in the 2d case (of general codimension). The question of \dynamical"

properties (path count) on C is also addressed.

Substitution sequences in Z

d

with non-simple

Lebesgue spectral component

Natalie M. Priebe

We present a construction of d-dimensional substitution sequences for which the continuous

part of the spectrum is generated by measures equal to Lebesgue measure. A special case

is the Rudin-Shapiro substitution sequence. All substitution sequences of this type are

shown to factor onto Z

d

sequences of f+1;�1g which have Lebesgue di�raction measure.

A point of interest in the construction is the essential use of Hadamard matrices.
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Random tilings

Jim Propp

I give a survey of recent work on random tilings that focusses on very simple two-dimens-

ional tiling models (namely, tiling models such as domino- or lozenge-tiling models that

are dual to dimer models on regular grids) in the presence of general boundary conditions,

where \random" means \chosen from the uniform distribution". The precise shape of

the boundary of a region can have a profound impact on the behavior of a random tiling

of the region, not just near the boundary but far inside it as well, leading to situations

in which coarse-grained quantities (such as the density of tiles of a particular shape and

orientation) are locally constant but vary over macroscopic distances. Typically, the region

being tiled splits into macroscopic sub-regions, each of which is one of three types: frozen

regions where the boundary e�ects are so strong that the tiling is periodic; tropical regions

throughout which the tiling is non-periodic and all coarse-grained quantities are constant;

and temperate regions throughout which coarse-grained quantities vary continuously as one

travels a macroscopic distance. The occurrence of these domains, and the shapes of the

boundaries that separate them, are related to phase transitions of the model in the presence

of a suitable external �eld, which in turn arise from the existence of a height-representation

for the tiling model.

Informal introduction to C

�

-algebras, dynamics and K-theory

Ian Putnam

Assuming no prior background in C

�

-algebras or K-theory, I will present some basic fea-

tures of both, and how they may be applied in dynamics. This highlights A. Connes'

program of non-commutative geometry.

On aperiodicity as optimization

Charles Radin

We consider the problem of optimally dense packings of the hyperbolic plane H

2

with disks

of �xed radius R. We use the metrizable topology on the space 
 of packings of H

2

in

which convergence means uniform convergence on compact subsets of H

2

; 
 is compact

in this topology. For �xed origin O 2 H

2

we de�ne A = f! 2 
: O is inside a disk in !g.

For a (Borel) probability measure �, invariant under rigid motion, we de�ne the \density"

D(�) as �(A). We prove there exists ergodic �

R

such that D(�

R

) = sup

�

D(�), and de�ne

\optimally dense" ! as those whose orbit closure is the support of some �

R

. Also we

prove that, with the exception of countably many R, no optimally dense packing can have

symmetry group with compact fundamental domain, i.e., the packings are \aperiodic". We

emphasize that, as in statistical mechanics, the natural object which solves our problem is

a probability measure on packings. Although this seems necessary in H

2

, this approach is

also fruitful for packings in Euclidean spaces.
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Quantum noises, particles and master equation

Rolando Rebolledo

The basic tools of quantum stochastic calculus, as developed by Hudson and Parthasarathy,

are explained in view of its application to quantum transport.

The �rst part of the lecture introduces quantum noises and explores their connection

with Wiener and Poisson processes.

A system of quantum particles is then analyzed through a quantum stochastic di�er-

ential equation which leads to the quantum ow of electronic transport. The associated

quantum dynamical semigroup is obtained by projecting the quantum ow on the initial

space of the dynamics.

In the last part of the lecture, the analysis of equilibrium is performed. Namely, it

is shown that a stationary Gibbs density matrix exists if and only if the transport rates

satisfy a system of balance equations.

Tilings corresponding to non-Pisot matrices

and explicit construction of Markov partitions

E. Arthur (Robbie) Robinson

Let A be a d � d integer matrix with 2-dimensional expanding subspace W

+

. Consider

substitutions � on d symbols having \structure matrix" A (symbols like 2

�1

are allowed).

These are free group endomorphisms. We think of A as an Abelianization of � and � as

a \non-Abelianization" of A. Let P

1

; : : : ; P

d

be projections of the standard basis to W

+

.

In a natural way, each substitution � de�nes a piecewise linear boundary curve made from

these vectors. The goal is to tile the inside of each curve using the (

d

2

) rhombic prototiles

with P

1

; : : : ; P

d

as edges (using only positive tiles!). If this is possible we can get a tiling

substitution � and iterate it to get a family of self-a�ne tilings of R

2

.

In the case d = 4, when this works for both A & A

�1

, we can get an explicit Markov

partition for A. Here dim(W

+

) = dim(W

�

) = 2 and we call A a \non-Pisot" matrix.

A necessary condition for success is A

�

� 0 where A

�

is essentially the second compound

of A with sign changes. Su�cient conditions for A

�

> 0 include A symmetric.

This is joint work with Maki Furukado & Shunji Ito.

Transport in ergodic polymer chains

Hermann Schulz-Baldes

By ergodic polymer chain is meant a covariant family of one-dimensional discrete Schr�o-

dinger operators the potential of which consists of two �nite building blocks aligned ac-

cording to a code. The probability measure on code space is supposed to be ergodic with

respect to the translations. If the transfer matrices across the two polymers commute at a

so-called critical energy, the Lyapunov exponent vanishes. It is then possible to show that

the dynamical spread of any localized state has to be faster than di�usively. This even

holds if the distribution on code space is of Bernoulli type in which case the spectrum is

known to be pure-point for almost every code. The main technical tools for the proof of

the above are action-angle or Pr�ufer variables.
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Orbit equivalence and ordered K-theory

Christian Skau

H. Dye proved around 1960 the remarkable result that all ergodic measure preserving

dynamical systems (X;B; �; T ) are orbit equivalent. (Here � is a probability measure.)

All such systems give rise, via the so-called crossed product construction, to the unique

hyper�nite II

1

factor of Murray and von Neumann. This was generalized in the early

1970's by Krieger and Connes, resulting in the celebrated theorem that two ergodic non-

singular measurable systems are orbit equivalent if and only if the associated von Neumann

algebras are isomorphic. Is there an analogous result in the topological/C

�

-algebra set-

ting? Giordano, Putnam and Skau were able to show that for Cantor minimal systems

(X; T ). Here X is a Cantor set (i.e., X is compact, metrizable, totally disconnected

without isolated points | all such sets are homeomorphic) and T is a minimal homeomor-

phism of X, i.e., every T -orbit is dense in X. The theorem states that Cantor minimal

systems (X; T ) and (Y; S) are strong orbit equivalent (i.e., the orbit cocycles have each

at most one discontinuity point) if and only if the associated C

�

algebras C

�

(X; T ) and

C

�

(Y; S) are isomorphic. Furthermore, this is equivalent to K

0

(X; T )

�

=

K

0

(Y; S) as or-

dered groups with distinguished order units. Here K

0

(X; T ) =

C(X;Z)

=

@

T

C(X;Z)

, where

@

T

: C(X;Z) ! C(X;Z) is the coboundary map @

T

(f) = f � f � T

�1

, and K

0

(X; T ) is

endowed with the induced ordering of C(X;Z). The K

0

-group is e�ectively computable for

many families of interesting Cantor minimal systems, e.g. primitive substitution minimal

systems. The K

0

-invariant is independent of spectral and entropy invariants. A complete

invariant for orbit equivalent is

^

K

0

(X; T ) =

K

0

(X; T )

=

Inf(K

0

(X; T ))

, which again is or-

der isomorphic to

C(X;Z)

=

I(C(X;Z))

, where I(C(X;Z)) = ff 2 C(X;Z) j

R

x

fd� =

0 for every T -invariant measure �g. Both K

0

(X; T ) and

^

K

0

(X; T ) are simple dimension

groups. A new result by Giordano, Putnam and Skau gives an example of a free, minimal

Z

2

-action of a Cantor set which is orbit equivalent to a Cantor minimal systems (X; T ),

i.e., to a Z-action. We hope to extend this result to general free, minimal Z

n

-actions.

Pure point spectrum for Delone sets

Boris Solomyak

Delone sets are uniformly discrete relatively dense sets in Euclidean space. Such a set

can be used as a model for an atomic con�guration of a solid. We make some additional

assumptions, such as �nite local complexity and existence of uniform patch frequencies.

There are two kinds of spectra that can be associated to the Delone set. The �rst is

the di�raction spectrum measure obtained as the Fourier transform of the autocorrelation

of the sum of delta functions on the Delone set. The second is the dynamical spectrum

obtained by considering the \hull" (or the \orbit closure" or the \local isomorphism class")

of the Delone set, with the action of R

d

by translations. This system is uniquely ergodic,

so there is a unique invariant measure on the space. The associated unitary representation

on L

2

has a certain spectral measure, which we refer to as the \dynamical spectrum". In

joint work with J.-Y. Lee and R. V. Moody, we show that the di�raction spectrum is pure

point if and only if the dynamical spectrum is pure point (the direction from dynamical

spectrum to di�raction spectrum was earlier established by S. Dworkin). Then I gave a

brief survey of results related to the question: how to check if a given Delone set has pure
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point spectrum. There are conditions in terms of almost periodicity, but they are not

always easy to verify. For substitution Delone sets more precise and \practical" criteria

can be given. Finally I addressed the question: is it true that for a substitution Delone

set, pure point spectrum implies that it is a regular model set? The latter means that the

set can be obtained by a cut and project scheme with a \nice" window. Together with

J.-Y. Lee and R. V. Moody we show that the answer is \yes" if the substitution Delone

set \lives" on a lattice. Many interesting questions still remain open.

Kinetic approach to hopping transport in strongly disordered solids

Dominique Spehner

Electronic transport in disordered solids in the strong localization regime is studied by

means of kinetic models involving quantum or classical noises, which mimic the inuence

of electron-phonon interactions on the electronic dynamics. The quantum dynamical semi-

group describing these dynamics is obtained by averaging over the noise. The stochastic

dynamics are given by a stochastic Schr�odinger equation involving some jump operators

from one localized one-electron state into another. Exchanges of electrons with two baths

are also modeled by quantum noises, multiplying creation or annihilation operators in the

stochastic Schr�odinger equation. We develop a linear response theory to compute the cur-

rent density when an external uniform electric �eld is applied in this model. A Kubo-like

formula for the conductivity is obtained, valid provided the one-electron eigenfunctions are

localized and the eigenenergies of the one-electron Hamiltonian are non-degenerate.
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