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The meeting was organized by Eberhard Beker (Dortmund), Christian Berg (K�benhavn)

and Alexander Prestel (Konstanz). The abstrats of the talks are listed below. The list

begins with Beker's introdutory talk and ontinues in alphabetial order aording to

the speakers' last names.

The onept of the meeting

Eberhard Beker

The meeting brings together researhers from various areas in mathematis to disuss re-

ent results and future diretions in the study of positive polynomials. More preisely,

the theory of moments in funtional analysis, real algebrai geometry, optimization the-

ory, appliations in engineering as well as symboli algorithms and omplexity issues in

omputational real algebrai geometry formed the topis of this meeting. K. Shm�udgen's

solution of the moment problem for ompat semialgebrai sets in 1990 and the subsequent

re�nements by Putinar et al., the algebrai approahes by W�ormann, Prestel/Jaobi were

the topi of many talks. On the other hand, modern optimization and its appliation to

minimizing polynomials on semialgebrai sets, where the former methods are applied, took

a great part in the meeting. All was supplemented by appliations to ontrol theory and

algorithmi issues.
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Abstrats

Representation of positive funtions by analyti or smooth funtions

Franesa Aquistapae

(joint work with Carlos Andradas and Fabrizio Broglia)

For a not bounded basi losed set X = ft

1

� 0; : : : ; t

r

� 0g and a polynomial p verifying

p > 0 on X we �nd a representation

p = �

0

+ �

1

t

1

+ � � �+ �

r

t

r

where �

0

; �

1

; : : : ; �

r

are analyti funtions stritly positive on R

n

, hene squares.

This is a onsequene of a strit positivstellensatz for the ring O(R

n

) of global analyti

funtions. A similar result an be proved also for the ring C

k

(R

n

), 0 � k � 1 and for the

ring D

k

(R

n

), 0 � k <1 of de�nable funtions on a o(rder){minimal struture expanding

(R; exp).

Barrier funtions for positive matries and polynomials

Andreas Bernig

(joint work with Eberhard Beker and Antonio Diaz Cano)

After the de�nition of barrier funtions, I study a simple example (the one of positive

de�nite symmetri matries) from the di�erential{geometri viewpoint. This yields to

a very well{known symmetri Riemannian manifold of rank n. Conerning the one of

positive polynomials, I propose a good andidate for a barrier funtion, satisfying at least

3

1

2

of 4 required properties.

Algebrai Varieties Arising in Trunated Complex Moment Problems

Ra

�

ul E. Curto

Given omplex numbers

 � 

(4)

: 

00

; 

01

; 

10

; 

02

; 

11

; 

20

; 

03

; 

12

; 

21

; 

30

; 

04

; 

13

; 

22

; 

31

; 

40

;

with 

ij

= 

ji

, the quarti omplex moment problem for  entails �nding onditions for

the existene of a positive Borel measure �, supported in C , suh that



ij

=

Z

z

i

z

j

d� (0 � i + j � 4):

In joint work with Lawrene A. Fialkow we have reently obtained a omplete solution

to the quarti moment problem in the ase when the assoiated moment matrix M(2)()

is singular. Eah representing measure satis�es ard supp � � rank M(2), and we have

developed onrete neessary and suÆient onditions for the existene and uniqueness of

representing measures, partiularly minimal ones.

We show that rank M(2){atomi minimal representing measures exist in the ase the

moment problem is subordinated to an ellipse, parabola, a non{degenerate hyperbola.

If the quarti moment problem is subordinated to a pair of interseting lines, minimal

representing measures sometimes require more than rank M(2) atoms, and those problems

subordinated to a general intersetion of two onis may not have any representing measure
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at all. As an appliation, we desribe in detail the minimal quadrature rules of degree 4

for arlength on a paraboli ar.

We then extend our results to solve the so{alled paraboli MP, that is, one in whih

the olumns of the assoiated real moment matrix M

R

(n) (for arbitrary n � 1) satisfy

Y = X

2

. We do this by appealing to a ruial estimate linking the rank of M

R

(n) and the

ardinality of the assoiated algebrai variety. Many of the results extend to other general

quarti MP, assoiated to the prototypial olumn relations Y X = 1 and Y X = 0.

Trunated Multivariable Moment Problems

Lawrene Fialkow

For omplex numbers  � 

(2n)

= f

ij

g

0�i+j�2n

and K � C (losed), the moment problem

entails �nding a positive Borel measure �, supp � � K so that 

ij

=

R

z

i

z

j

d� (0 �

i + j � 2n). In ollaboration with R. E. Curto, we study onditions for the existene

of (�nitely atomi) representing measures in terms of positivity and extension properties

of the moment matrix M(n)() assoiated to . Neessary onditions are that M(n) is

positive, reursively generated, and that ard V () � rank M(n), where V () is the variety

assoiated to . We study polynomials p(z; z), deg p � n, suh that 

(2n)

has a measure

whenever the above onditions are satis�ed and there is a dependene relation p(z; z) = 0

in the olumn spae of M(n). Exatly whih polynomials have this property is an open

question; examples inlude: any analyti polynomial p(z); y = x

2

; zz = a+ bz + z+dz

2

+

ezz.

Hyperboli Polynomials: theory and appliations

Osman G

�

uler

These polynomials originated in partial di�erential equations. Suh a polynomial p(x) has

a onvex one assoiated with it, alled the hyperboliity one. We show that � log p(x) is

a self{onordant barrier, with striking properties whih are useful for designing long{step

interior point methods. Many pratial problem lasses in onvex programming an be

looked at from this point of view, suh as linear programming, semi{de�nite programming,

et. There are also potentially useful problem lasses that need future development suh

as programming over some symmetri funtions. Also, we disuss the roots of suh poly-

nomials: they satisfy many inequalities similar to the ones satis�ed by the eigenvalues of

symmetri matries. We end the talk with a speulation that something like the Horn

onjeture (reently solved) might be true for the roots of hyperboli polynomials.

Barrier Funtions for Symmetri Cones

Raphael Hauser

Self{saled barrier funtions are fundamental objets in the theory of interior{point meth-

ods for linear optimization over symmetri ones, a speial lass of ones of positive poly-

nomials.

Symmetri ones an be lassi�ed in terms of a deomposition into irreduible ompo-

nents. We show that self{saled barriers allow a similar lassi�ation: Any self{saled

barrier on a symmetri one K an be deomposed into irreduible omponents that are

aÆne transformations of the universal barrier on the irreduible omponents of K.
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Solving some global optimization problems via positive polynomials

Jean B. Lassere

We onsider the global minimization problem P of minimizing a polynomial f over the set

K := fx 2 R

n

j g

i

(x) � 0; i = 1; : : : ; mg where the g

i

's are all real{valued polynomials.

We de�ne a sequene fQ

i

g of positive semi{de�nite relaxations of P. Then under the

ondition that the Jaobi{Prestel{Putinar \linear" representation holds for polynomials f

stritly positive on K, we prove that inf Q

i

" inf P as i ! 1. In many ases, the global

optimal value is obtained at a partiular relaxation (when the representation holds for

f � inf P). Several other issues are disussed.

Optimization of polynomials using partial moment sequenes

Murray Marshall

Let R[x℄ denote the polynomial ring R[x

1

; : : : ; x

n

℄. Fix a �nite set S = fg

1

; : : : ; g

s

g in R[x℄,

let K

S

= fp 2 R

n

j g

i

(p) � 0; i = 1; : : : ; sg and let M

S

denote the quadrati module in R[x℄

generated by S. Fix f =

P



f()x



2 R[x℄ and assume f attains a �nite minimum value

f

?

on K

S

. Let �(d) denote the set of n{tuples � = (�

1

; : : : ; �

n

), �

i

integers,

P

�

i

� d and

let M

2d

= fy 2 R

�(2d)

j y

0

= 1g. De�ne f

d

to be the minimum value of � =

P



f()y



, y

running through M

2d

(with 2d � deg(f)) subjet to the onstraints:

(1) For eah i = 0; : : : ; s the symmetri matrix ((g

i

� y)

�+�

), �; � 2 �(d�

v

i

2

) is PSD where

v

i

= deg(g

i

) and g

0

:= 1.

Then ff

d

g % and f

sos

� lim

d!1

f

d

� f

_

� f

�

where f

sos

= supf� j f � � 2 M

S

g,

f

_

= supf� j f � � 2 M

S

g, where M

S

is the losure of M

S

. The exat relationship

between f

sos

, lim

d!1

f

d

, and f

_

is not well{understood. In the speial ase where K

S

is

ompat and 9r 2 R suh that r�kxk

2

2 M

S

, Lasserre used a result of Jaobi{Putinar to

prove that f

sos

= lim

d!1

f

d

= f

_

= f

�

. If the moment problem fails for M

S

then f

_

< f

�

in general.

Now de�ne

�

f

d

to be the minimum value of � suh that 9y 2 M

2d

satisfying:

(2) For eah e 2 f0; 1g

s

, the symmetri matrix ((g

e

� y)

�+�

), �; � 2 �(d�

v

e

2

) is PSD and

(3) For eah e 2 f0; 1g

s

, the symmetri matrix ((g

e

(�� f) � y)

�+�

), �; � 2 �(d�

v

e

2

�

deg f

2

)

is PSD.

Here, g

e

:= g

e

1

1

� � � g

e

s

s

, v

e

:= deg(g

e

). The sequene f

�

f

d

g is inreasing. Using the Posi-

tivstellensatz,

�

f

d

= f

�

holds for any d suÆiently large (but depending only on the degrees

of f and the g

i

).

Positive Polynomials and Optimization

Yurii Nesterov

We onsider some questions related to onvex representation of positive polynomials of

one and two variables. We show that in one dimension the ondition number of Hankel

matrix grows exponentially with dimension. For polynomials of two variables we show that

some simple tehniques (passing to polar oordinates, �xing the signs of variables) stritly

inrease the set of positive polynomials representable as a sum of squares.
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The Positivstellensatz and Semide�nite Programming

Pablo A. Parrilo

We disuss the appliation of semide�nite programming tehniques to problems in semial-

gebrai geometry. In partiular, we presented a methodology for �nding a priori bounded

erti�ates to the Positivstellensatz equation to prove emptiness of semialgebrai sets. A

partial omparison with alternative representations of non-negativity is made. Addition-

ally, a simple onstrutive solution to the problem of �nding linear representations of

nonnegative polynomials over �nite varieties was presented.

Representations of Real Rings and Positive Polynomials

Alexander Prestel

Let A be a ommutative ring with 1. A subset P of A is alled a preordering of A if

P +P � P , P �P � P , PA

2

� P , �1 =2 P . P is alled arhimedean if to every a 2 A there

exists n 2 N s.t. n � a 2 P . If P is a maximal preordering, it also satis�es P [ �P = A

and P \ �P is a prime ideal of A. Denote by X

max

T

the set of maximal preorderings of A

ontaining a given arhimedean preordering T of A. For P 2 X

max

T

, the homomorphism

'

P

: A ! A := A=(P \ �P ) maps into R with '

P

(P ) � R

+

. '

P

is ontinuous in the

anonial topology of X

max

T

.

Real Representation Theorem: The map de�ned by �

T

(a) = â with â(P ) = '

P

(a)

is a homomorphism �

T

: A! C(X

max

T

;R) suh that �

T

(A) is dense in C(X

max

T

;R) and

â � 0 on X

max

T

() na + 1 2 T for all n 2 N :

We explained the history of the theorem, its proof, and appliations to the representa-

tion of positive polynomials, stritly positive on a ompat semi{algebrai subset of R

n

(Shm�udgen's Theorem).

Quadrature domains and some of their appliations

Mihai Putinar

The L{problem of moments studied by A. A. Markov leads, when extended to several

variables, to extremal solutions of the form

d� = �

fp<0g

dx;

where p is a polynomial and dx is Lebesgue measure. It was shown by M. Krein that these

solutions, i.e. semi{algebrai sets, are haraterized by �nitely many moments.

It remains an open question to understand the algebrai/di�erential mehanism whih

explains this �nite determination.

In the ase of 2 real variables an exponential transform of the generating funtion of

moments \linearizes" and explains via some positive de�nite kernel, this �nite determina-

tion phenomenon. The resulting planar domains are the quadrature domains introdued

by D. Aharonov and H. S. Shapiro in 1971 in onnetion with some onformal mapping

problems.

These domains naturally appear in uid mehanis, potential theory and operator the-

ory.
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A View of Interior{Point Methods for Convex Optimization

James Renegar

The prinipal mathematial ideas underlying interior{point methods for general onvex

optimization problems are presented. The ideas are developed from the perspetive of

Riemannian geometry, the loal inner produt being indued by the Hessians of a barrier

funtional whose domain is the feasible region of the optimization problem to be solved.

Cones of positive semide�nite and sums of squares of forms and duality

Brue Reznik

Let P

n;m

and �

n;m

denote the ones of forms of degree m in n variables whih are positive

semide�nite and a sum of squares respetively. A great unsolved mystery is why P

n;m

)�

n;m

for suÆiently large (n;m), while a psd form is a sum of squares of rational funtions. To

understand the di�erenes between these ones, we use the venerable inner produt familiar

from 19th . apolarity and 20th . harmoni analysis. Under this inner produt, P

�

n;m

is the

one of sums of mth powers of linear forms and �

�

n;m

is the one of forms whose assoiated

generalized Hankel matrix is psd. The inner produt has many algebrai properties, and

these should be exploited too.

Computational problems related to positive polynomials

Fabrie Rouillier

Deiding if a semi-algebrai set is empty or not is ritial for the study of problems related

to positive polynomials. Only few implemented algorithms exist for this purpose : the

Cylindrial Algebrai Deomposition (CAD) is the main one. Unfortunately, only small

problems (with few variables and low degrees) an be solved using suh methods.

On the other hand, many algorithms with a good asymptoti omplexity are proposed

in the literature. Most of them are based on the so alled Critial Points Method, for

omputing at least one point on eah semi-algebraially onneted omponent of a real

algebrai set, used as a blak box for deiding if a semi-algebrai set is empty or not.

Unfortunately, due to the use of various triks for keeping a good theoretial omplexity

(sum of squares, in�nitesimal deformations, et.), straightforward implementations of these

algorithms are ineÆient.

We propose a new version of the Critial Points Method using the distane funtion to

one (well hosen) point. Given any algebrai set V , we de�ne an algebrai set C(V;A) that

ontains these ritial points and a sub-algebrai variety of V . Our main result onsists in

proving that a good point A may be hosen so that C(V;A) is the disjoint union of a �nite

set of points and a sub-algebrai variety W of V with smaller dimension than V , without

any restrition neither on the variety (does not need to be smooth or ompat) nor on

the set of polynomials used in the omputations for the de�nition of V (for example, the

generated ideal does not need to be prime).

We are thus led to ompute the isolated points of C(V;A) and to study, in the same way,

the sub-variety W . We therefore obtain an algorithm without any in�nitesimal deformation

whose proof is simply based on the fat that the dimension of the studied varieties stritly

dereases at eah step.

The limitations of suh an algorithm are pointed out and solved (number of determi-

nants) : we show how to use the theory of polynomial triangular sets to optimize the
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omputations. We �nally present some pratial experiments whih illustrate the pratial

behavior of our algorithm. It shows the interest of our approah and justi�es our hoies.

Degree bounds for Positivstellensatz

Marie-Fran�oise Roy

Stengle's positivstellensatz (1976) is the following statement:

Let F , G, H be 3 families of polynomials. Let M(F ) be the monoid generated by F ,

C(F [G) the one generated by F [G, I(H) the ideal generated by H. Then

fx 2 R

n

j 8f 2 F f(x) > 0; 8g 2 G g(x) � 0; 8h 2 H h(x) = 0g = ;

() 9m 2 M 9 2 C 9i 2 I m +  + i = 0

It an be seen as a way of providing algebrai erti�ates for emptiness.

The �rst proof is based on Zorn's lemma.

Expliit bounds were given by H. Lombardi in 1993, they are not elementary reursive.

Elementary reursive bounds for the degree (a tower of 3 exponents) an be obtained by

a method for onstruting identities through ase by ase reasoning using

� algebrai identities for Hankel matries (1 level of exponents)

� ylindrial deomposition method (2 levels of exponents).

Stable preorders and the non{ompat moment problem

Claus Sheiderer

A preorder P � R[x

1

; : : : ; x

n

℄, generated by g

1

; : : : ; g

r

, is said to be stable if for every d 2 N

there is N = N(d) 2 N suh that every f 2 P with deg(f) � d has a representation

f =

X

�2f0;1g

r

s

�

� g

�

1

1

� � � g

�

r

r

with sums of squares s

�

of degree � N . A theorem obtained in joint work with V. Powers

says that under ertain natural algebro{geometri onditions on the set

K = fg

1

� 0; : : : ; g

r

� 0g;

the preorder is stable and losed. This implies a large lass of non{ompat sets K for

whih the K{moment problem is not �nitely solvable. On the other hand, we disuss

ompat sets K. If dimK � 3, P is never stable. The question is onsidered in dimensions

� 2. We illustrate it by applying the following loal{global priniple: If K is ompat (of

any dimension) and f � 0 on K, with only �nitely many zeros M

1

; : : : ;M

m

on K, then

f 2 P i� f 2

d

P

M

i

for i = 1; : : : ; m, where

d

P

M

i

is the preorder generated by P in the

ompleted loal ring

d

O

M

i

=

\

R[x℄

m

M

i

. A variety of onrete examples is disussed, and the

question is raised whether P is stable in these ases. After the talk was given, Prestel gave

an argument whih shows that the answer to this question is negative in many ases.

Positive Polynomials and Moment Problems

Konrad Shm

�

udgen

In the last deade a lose interation between semi{algebrai geometry and the moment

problem emerged. In the �rst part of the talk the operator{theoreti approah to the

moment problem is developed. Let A be the omplex unital �{algebra generated by k real
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funtions h

1

; : : : ; h

k

on a set. Let L be a linear funtional on A suh that L(ff) � 0 for

all f 2 A. The generators h

1

; : : : ; h

k

at as pairwise ommuting symmetri operators on

the Hilbert spae H obtained from L by the GNS{onstrution. If the operators h

1

; : : : ; h

k

are bounded, then

L(p(h)) =

Z

�(h)

p(�)dhE(�)1; 1i;

p 2 C [x℄ � C [x

1

; : : : ; x

k

℄, where E(�) is the joint spetral resolution and �(h) is the joint

spetrum of the tuple h = (h

1

; : : : ; h

k

). In the general ase there exists a positive Borel

measure � on R

k

suh that

L(p(h)) =

Z

p(�)d�(�);

p 2 C [x℄, if and only if there is a tuple H = (H

1

; : : : ; H

k

) of strongly ommuting self{

adjoint operators on a Hilbert spae

e

H � H suh that H

1

� h

1

; : : : ; H

k

� h

k

. It is shown

that the latter is true if the operators h

2

; : : : ; h

k

are bounded.

In the seond part of the talk the moment problem and a possible generalization of

the strit positivstellensatz for non{ompat semi{algebrai sets are disussed. Among

others we obtain the following result: Let C be a ompat semi{algebrai subset of R

d

and let K be a semi{algebrai set in R

d+1

with preorder P . Let L be a linear funtional

on C [x

1

; : : : ; x

d+1

℄ suh that L(P ) � 0. If K � C � R, then there exists a positive Borel

measure � on R

d+1

suh that

L(p(x)) =

Z

p(�)d�(�) for all p 2 C [x

1

; : : : ; x

d+1

℄:

If K = C � R, then the measure � an be hosen suh that supp � � K.

Some interesting reent results by S. Kuhlmann / M. Marshall and by V. Powers / C.

Sheiderer are also disussed.

A new approah to Shm�udgen's theorem and omplexity

Markus Shweighofer

We prove the following bound for Shm�udgen's Positivstellensatz: Suppose g

1

; : : : ; g

m

2

R[X

1

; : : : ; X

n

℄ are polynomials de�ning a non{empty semialgebrai set

S := fx 2 R

n

j g

1

(x) � 0; : : : ; g

m

(x) � 0g

ontained in the open ball around 0 of radius r. Suppose " > 0. Then there exists  2 N

suh that all f 2 R[X

1

; : : : ; X

n

℄ of degree d 2 N stritly positive on S an be written

f =

X

Æ2f0;1g

m

q

Æ

g

Æ

1

1

� � � g

Æ

m

m

where, for all Æ 2 f0; 1g

m

, q

Æ

is a sum of squares of polynomials suh that the degree of

q

Æ

g

Æ

1

1

� � � g

Æ

m

m

does not exeed

d

2

��

d

2

(n + ")

d

r

d

kfk

minff(x) j x 2 Sg

�



+ 1

�

:

Here kfk the maximum of the absolute values of the oeÆients of f . The proof om-

bines a \tame" version version of the speaker's \algorithmi approah to Shm�udgen's

Positivstellensatz" (Journal of Pure and Applied Algebra 166 (2002) 307{319) based on

P�olya's theorem on positive forms with a omplexity bound for P�olya's theorem as given
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by Loera and Santos and improved by Powers and Reznik, and a  Lojasiewiz inequal-

ity. The result an be used to make statements about the duality gap in optimization of

polynomials using partial moment sequenes and Positivstellens�atze.

Appliations of Positive Polynomials in Control Theory

Bernd Tibken

In the design of ontrol systems the main issue is to ensure asymptoti stability of the losed

loop system, i.e. the state x(t) of the system has to be bounded and lim

t!1

x(t) = 0 has

to hold for all x(t) with initial ondition x(0) near the origin 0 of the state spae. The

basi tool to investigate asymptoti stability and to estimate the region of attration


 = fx

0

j lim

t!1

x(t) = 0; x(0) = x

0

g

are Lyapunov funtions. These funtions are assumed to be positive de�nite near 0 and

the time derivative along the ow of the ontrol system has to be negative de�nite near 0

in order to ensure asymptoti stability. An estimate of the region of attration is given by

S = fx j V (x) < g with  = minfV (x) j

_

V (x) = 0; x 6= 0g

where V (x) is the Lyapunov funtion used and

_

V (x) is the time derivative. For polynomial

dynamial systems and polynomial Lyapunov funtions this is a polynomial optimization

problem. In order to solve the problem globally optimal the representation of positive poly-

nomials on ompat semialgebrai sets introdued by Jaobi and Prestel is used. Namely,

we have

�

_

V (x) = q

0

(x) + q

1

(x)(~� V (x))

with q

0

and q

1

sums of squares and ~ � , respetively. This ondition is reformulated

as an LMI{problem using a simple ansatz of bounded degree for q

1

and solving for q

0

by

omparison of oeÆients. The gramian matries of q

0

and q

1

de�ne the LMI onstraints

and ~ (whih has to be optimized) enters as generalized eigenvalue. Thus,  is omputed by

a LMI onstrained generalized eigenvalue problem. Some examples show the e�etiveness

of this approah. In priniple only lower bounds for  are omputed but these lower bounds

inrease stritly with the degree of the ansatz for q

1

. In most of the pratial ases degree

two or four are suÆient. The method has been tested for several benhmark examples

from literature and performed very well.

Funtional Analysis Methods in the Study of Positive Polynomials

Florian-Horia Vasilesu

The desription of positive polynomials is a subjet of interest in both algebrai geometry

and funtional analysis, involving these two domains in a rather intriate manner. In

spite of various diÆulties related to the struture of positive polynomials, in some ases

one an solve moment problems using results of algebrai geometry. Conversely, solving

appropriate moment problems turns out to be an eÆient method leading to desription

of some lasses of positive polynomials.

Using funtional analysis methods, more preisely methods related to the theory of

ommuting self{adjoint operators, M. Putinar and myself proved the following result:

Theorem: Let p; p

1

; : : : ; p

m

be polynomials in n variables, having real oeÆients and

even degrees. Let also

�(t) = (1 + t

2

1

+ � � �+ t

2

n

)

�1

; t = (t

1

; : : : ; t

n

) 2 R

n

:
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We denote by P; P

1

; : : : ; P

m

the homogenizations of p; p

1

; : : : ; p

m

respetively, and assume

that P (x) > 0 whenever x 2

T

m

k=1

P

�1

k

(R

+

), x 6= 0. Then there exists an integer � � 0

and a �nite olletion of real polynomials fq

l

; q

kl

g, l 2 L, k = 1; : : : ; m, suh that

p(t) = �(t)

2�

 

X

l2L

q

l

(t)

2

+

m

X

k=1

X

l2L

p

k

(t)q

kl

(t)

2

!

; t 2 R

n

:

The proof is based on an integral representation formula as well as a separation lemma.

Edited by Markus Shweighofer
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