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Recently observations have shown that the Galois theories for number theory, algebraic

geometry and di�erential equations have remarkable similarities. The idea of this con-

ference on Arithmetic and Di�erential Galois Groups was to bring together researchers

working in these di�erent areas in order to discuss the progress in these theories and to

exhibit their interactions.

More speci�cally, the conference was centered around the following topics:

- Inverse problems

- Topological and algebraic fundamental groups

- Absolute and universal Galois groups

- Rigidity for groups and local systems

- Galois action for di�erential equations

- Di�erential equations in both characteristic 0 and characteristic p

- Moduli for equations, coverings and di�erential equations

- Invariant theory and group theory connected with the above

In the following report the abstracts of the lectures presented during the meeting are

collected in chronological ordering.

D. Harbater, B. H. Matzat, and M. van der Put
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Abstracts

Intrinsic di�erential Galois groups

Daniel Bertrand

Let (K; @) be a di�erential �eld with an algebraically closed constant �eld C of character-

istic 0, and let M be a K[@]-module of �nite dimension over K. The intrinsic di�erential

Galois group G

K

(M) ofM is the stabilizer in GL(M=K) of all the K[@]-submodules in the

tensor algebra generated by M and its dual. It is an inner K-form of the usual di�eren-

tial Galois group G(M) (an algebraic group over C), but as simple computations in rank

2 already show, G

K

(M) is seldom isomorphic to the constant form G(M) 


C

K. More

generally, we have on assuming that K has cohomological dimension � 1:

Proposition 1: let G be an algebraic group over C, and let X = G=G

0

be its group of

connected components. Then G 


C

K occurs as intrinsic di�erential Galois group if and

only if the center of G maps onto X, in which case no other form may occur.

On the other hand, at least in the classical case K = C (z), we have:

Proposition 2: let g be a Lie algebra over C , and let g

K

be any K-form of g 


C

K.

Then, there exists a K[@]-module M such that g

K

' LieG

K

(M).

Non linear di�erential Galois theory

Bernard Malgrange

Let X be a complex analytic manifold, and let AutX be the groupoid of germs of auto-

morphisms of X. A "Lie groupoid" is roughly speaking, a subgroupoid of AutX de�ned by

partial di�erential equations. To any foliation F (with singularities) on X, one associates

a Lie groupoid, i.e. the smallest one whose Lie algebra contains F . Several examples are

given; for instance, if the foliation comes from a linear di�erential equation, one obtains

essentially the di�erential Galois group of the equation.

On the inverse problem in di�erential Galois theory

Julia Hartmann

Di�erential Galois theory generalizes the usual Galois theory for polynomials to di�erential

equations. There is the notion of a splitting �eld (Picard-Vessiot extension) of a di�erential

equation, and the di�erential Galois group is the group of automorphisms of this extension

which �x the base �eld and commute with the derivation. Di�erential Galois groups are

linear algebraic groups over the �eld of constants of the base �eld. In analogy to the classical

situation, one considers the following inverse problem:Which linear algebraic groups occur

as di�erential Galois groups over a given di�erential �eld?

The main result of this talk is the following

Theorem. Let G be a linear algebraic group de�ned over the algebraically closed �eld

K of characteristic zero. Then G occurs as the di�erential Galois group of some Picard-

Vessiot extension of (K(t);

d

dt

).

Previously, there had been two main approaches towards this result: When K = C , a

positive solution follows from the solution of the Riemann-Hilbert problem. In contrast

to ordinary Galois theory, this result could not be carried over to arbitrary algebraically

closed �elds without further assumptions on the group. On the other hand, there was an

algebraic solution for connected groups and solvable-by-�nite groups.

We use the technique of embedding problems to combine the two approaches.
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Galois groups and geometry of modular varieties

Alexander Goncharov

Let X

N

:= P

1

� f0;1; �

N

g = G

m

� �

N

where �

N

is the group of all N -th roots of unity.

Let v

0

be the tangent vector at zero dual to dt where t is the canonical coordinate on P

1

.

Our goal was to explain a mysterious relationship between the structure of the motivic

fundamental group

�

M

1

(X

N

; v

0

)

and geometry of the modular varieties

Y

1

(m;N) = �

1

(m;N)nGL

m

(R)=O

m

�R

�

+

when m = 1 we de�ne Y

1

(m;N) as the set of all complex points of the zero dimensional

scheme S

N

:= SpecZ[�

N

][1=N ].

One can prove that �

M

1

(X

N

; v

0

) is a Lie algebra in the category of mixed Tate motives

over S

N

. The category itself is canonically equivalent (by a certain canonical �ber functor

	) to the category of �nite{dimensional modules over a graded Lie algebra L

�

(S

N

), the

motivic Lie algebra of S

N

.

Let G

�

(�

N

) be the image of the motivic Lie algebra L

�

(S

N

) acting on 	(�

M

1

(X

N

; v

0

)).

The fundamental group, and hence G

�

(�

N

) have a so called depth �ltration given by the

lower central series of the kernel of the map of the fundamental groups induced by the map

X

N

�! G

m

. Let G

�;�

(�

N

) be the associated graded for the depth �ltration.

We de�ned a complex of GL

m

(Z){modulesM

�

(m)

of lengthm and prove that the complex

(where V

m

is the standard representation of GL

m

)

M

�

(m)


 S

w�m

V

m

maps surjectively to the depth m, weight w part of the standard cochain complex of the

Lie algebra G

�;�

(�

N

). The details can be found at my preprints at xxx.lanl.gov.

Arithmetic monodromy arising from elliptic curves

and generalized Dedekind sums

Hiroaki Nakamura

Given a family of elliptic curves E over S, one can associate the outer monodromy repre-

sentation

' : �

1

(S)! Out(�); � := �

1

(E

�x

nO):

After taking the Belyi lifting and reduction modulo the double commutator subgroup �

00

of �, one obtains the meta-abelian core of this monodromy

�' : �

1

(S

1

)! Aut(�=�

00

);

where �

1

(S

1

) := ker(�

1

(S) ! GL(�

ab

)) denotes the congruence kernel of �

1

(S). In

this talk, we consider a certain function E : �

1

(S

1

) !

^

Z[[�

ab

]] which is equivalent to

considering �'. Especially, when S = M

1;1

=

�

Q (the moduli stack of elliptic curves), the

coe�cient characters of the pro-l version E

(l)

: �

1

(S

l

1

) ! Z

l

[[T

1

; T

2

]] can be described

by certain l-adic (Eichler-Shimura type) Eisenstein cocycles which involve arithmetic of

generalized Dedekind sums.
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Computing
�
etale cohomology with Galois action.

Bas Edixhoven

The aim of the talk was to explain a strategy for generalizing Schoof's algorithm (for

computing the number of rational points on elliptic curves over �nite �elds) to more general

varieties, or say motives. The explicit example of the modular form Delta was given.

The question is then: can one evaluate the Ramanujan � function at a prime p in time

polynomial in log(p)?

I believe that the answer is yes, but currently I have no proof. The strategy is to

compute, for small l, the two-dimensional Galois representation V

l

over F

l

, and use that

�(l) is the trace of Frobenius at p acting on V

l

. The representation V

l

sits in the jacobian

of the modular curve J

1

(l). One chooses random divisors D, e�ective, of degree g (genus of

X

1

(l)) onX

1

(l), of reasonably small height and de�ned over a small solvable extension of Q .

Let x be a non-zero point of V

l

(sitting in J

1

(l)). Then one approximates numerically (over

C ) the unique D

0

(e�ective, degree g) for which D

0

�D represents x, and one evaluates a

suitable function (j, for example) on D

0

(e.g., ifD

0

is the sum of points P

i

, one considers the

sum of the j(P

i

)). The remaining problem is then to bound the height of j(D

0

). Bounding

this height is a problem that one should solve using Arakelov geometry, i.e., with arithmetic

Grothendieck Riemann Roch.

Class �eld theory of arithmetic surfaces

Ivan B. Fesenko

Let B be the spectrum of the ring of integers of a global number �eld k, or a proper smooth

connected curve C over a �nite �eld with function �eld k. Let S be an arithmetic surface,

i.e. an integral normal excellent scheme of dimension two, at over B, whose generic �bre

S �

B

k is a nonsingular projective curve over k. In addition, assume that S is a regular

scheme, proper over B, and with geometrically irreducible generic �bre. Denote by K the

function �eld of S.

For y 2 S

1

denote by K

y

the �eld of fractions of the completion O

y

of the local ring

of S at y; K

y

is a complete discrete valuation �eld with residue �eld k(y). Fix its local

parameter t

y

. For every x 2 S

0

denote by K

x

the �eld of fractions of the completion O

x

of

the local ring of S at x. For x 2 S

0

, y 2 S

1

such that x 2 fyg denote by y(x) � (SpecO

x

)

1

the set of branches of fyg at x and put K

x;y

=

Q

z2y(x)

K

x;z

where K

x;z

is the z-adic

completion of K

x

, so K

x;z

a two dimensional local �eld.

For an archimedean place � of k let k

�

be the completion of k with respect to �. Denote

S

�

= S �

B

k

�

, K

�

= k(S

�

). For a ! 2 S

�

0

let K

�

!

be the fraction �eld of the completion of

the local ring of S

�

at !; so it is a two dimensional local �eld.

De�ne certain restricted products

J

S

=

Y

y;x

K

t

2

(K

x;y

)�

Y

�;!

K

t

2

(K

�

!

);

Y

y;x

=

Y

y

Y

x2fyg

;

Y

�;!

=

Y

�

Y

!2S

�

0

:

De�ne

P

S

= �

Y

y

K

2

(K

y

) + �

Y

x

K

2

(K

x

) + �

Y

�

K

2

(K

�

)

where the restricted products are the intersection of the products with �

�1

(J

S

).
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Theorem. Continuous characters of �nite order of the Galois group of the function

�eld K of S are in one-to-one correspondence with continuous characters of �nite order of

K-delic class group C

S

= J

S

=P

S

via the reciprocity map

�

S

: J

S

=P

S

! Gal (K

ab

=K):

The reciprocity map �

S

is the product of local reciprocity maps �

x;z

, and

Q

�

x;z

(P

S

) = 1

corresponds to two dimensional reciprocity laws.

The proof uses the main results of K. Kato's and Sh. Saito's class �eld theory.

The locus of curves with prescribed automorphism group

Kay Magaard

(joint work with T. Shaska, S. Shpectorov and H. V�olklein)

Let M

g

be the moduli space of genus g curves, and H(g;G; c) be the Hurwitz space of

G-covers with signature c. For 3 � g � 48 we study the locus of curves in M

g

with large

automorphism group. Recall that for a compact Riemann surface X, Aut(X) is large if its

order is greater than 4(g� 1). We �nd the loci by analyzing the map � : H(g;G; c)!M

g

for all choices of (G; c) from T. Breuers database of groups acting on Riemann surfaces of

genus at most 48. We also determine inclusions between loci.

Iterative di�erential equations; a survey

Marius van der Put

Let K be a �eld of characteristic p > 0 and suppose that [K : K

p

] = p. Choose an

element z 2 K n K

p

. Then K is a di�erential �eld with respect to the di�erentiation

f 7! f

0

, satisfying z

0

= 0. For di�erential modules over the di�erential �eld K there is

a classi�cation. This classi�cation leads to the de�nition of the di�erential Galois group.

Further one sees by example that there does not exists a suitable Picard-Vessiot theory.

In order to obtain a richer theory, one considers instead of K above a �eld with a

higher derivation. The two �elds C(z) and C((z)) have natural higher derivations. Over

a �eld with higher derivation one considers more complicated structures, called iterative

di�erential modules. For iterative di�erential modules, Picard-Vessiot theory works well

and there is a well de�ned di�erential Galois group. The latter is a reduced linear algebraic

group over the �eld of constants C (supposed to be algebraically closed).

Examples lead to the formulation of a conjecture on the di�erential Galois groups occur-

ring for the function �eld K of a smooth projective curve X over C and with singularities in

a prescribed �nite subset S of X. This conjecture includes Abhyankar's conjecture (proved

by Raynaud and Harbater). The conjecture is also very much related with Ramis' theorem

for a similar situation for di�erential equations on a compact Riemann surface.

For connected linear algebraic groups the conjecture is proved. For the non-connected

case, the next lecture by H. Matzat provides the information. Finally, it is shown that

iterative di�erential equations arise from p-adic di�erential equations, Frobenius structures

and F -isocrystals.
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On the di�erential Abhyankar conjecture

B. Heinrich Matzat

The Di�erential Abhyankar Conjecture (DAC) is a generalization of the classical Abhyankar

conjecture to di�erential �elds. Let F = K(t) be the rational function �eld over an alge-

braically closed �eld of characteristic p > 0 with the iterative derivation on t. Then the

DAC can be formulated as follows:

A reduced linear algebraic group G(K) can be realized as di�erential Galois over F with at

most one singular point if and only if G(K) is generated by its unipotent subgroups.

In the case of �nite groups unipotently generated groups are quasi-p groups. Thus in

this case the conjecture coincides with the classical Abhyankar Conjecture proved by Ray-

naud [1]. In the case of connected groups DAC has been formulated and proved recently

in [2]. In this talk a proof for non-connected linear groups has been presented based on

the solution of di�erential embedding problems with connected kernel and �nite cokernel

(see [3]). In addition the inverse problem of di�erential Galois theory over F has also been

solved:

Every reduced linear algebraic group G(K) over K can be realized as (iterative) di�erential

Galois group over F.

Here again the connected case has already been solved in [2].

[1] M. Raynaud, Revêtements de la droite a�ne en charact�eristique p. Invent. Math.

11 (1994), 425-462.

[2] B. H. Matzat, M. van der Put, Iterative di�erential equations and the Abhyankar

conjecture. J. r. a. Math. (to appear).

[3] B. H. Matzat, Di�erential Galois theory in positive characteristic. IWR-Preprint

2001-35.

Tame class �eld theory for arithmetic surfaces

Alexander Schmidt

In the talk we explained the ingredients and methods of proof of the following theorem.

Theorem. Let X be an arithmetic surface, i.e. a two-dimensional regular connected

scheme, at and proper over Spec(Z) and let Y be the support of a divisor on X. Then

there exists a natural isomorphism of �nite abelian groups

rec

X;Y

: CH

0

(X; Y )

�

�! ~�

t

1

(X; Y )

ab

:

Here ~�

t

1

(X; Y )

ab

is the abelianized modi�ed tame fundamental group, which classi�es

�nite abelian tale coverings of U = X � Y which are at most tamely rami�ed along Y

and in which every real point splits completely. CH

0

(X; Y ) is the relative Chow group of

zero-cycles.
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Di�erential modules and skew �elds

Mark van Hoeij

Let K and k be di�erential �elds with �elds of constants C

K

and C

k

, characteristic 0, and

K=k Galois. Let M be a di�erential module over K, and suppose that M is isomorphic

to its conjugates under Gal(K=k). Does then M descend to a module de�ned over k, i.e.

is M isomorphic to N 


k

K for some di�erential module N over k? If K = C

K

((x))

and k = C

k

((x)) then the answer to this question is yes. However, if K = C

K

(x) and

k = C

k

(x), then there exists a counter example for every nontrivial element of the Brauer

group Br(C

K

=C

k

). We will show that for each skew �eld with center C

k

and splitting �eld

C

K

one can construct counter examples explicitly.

Di�erential equations for the convolution functor

Michael Dettweiler

(joint work with Stefan Reiter)

In his book \Rigid local systems" (1996), N. Katz showed that every irreducible rigid local

system can be obtained from a one-dimensional local system by succesively applying a

certain middle convolution functor and tensoring with onedimensional local systems (local

systems are interpreted as perverse l-adic sheaves on the a�ne line in characteristic p).

In a previous work (M. Dettweiler, S. Reiter: An Algorithm of Katz and its application

to the inverse Galois problem, (2000)) we gave a purely algebraic analogon of the middle

convolution functor.

In this talk it was demonstrated that one can actually write down the e�ect of the

convolution functor on the level of di�erential equations. The main tool is the theory of

Okubo sytems. Moreover, I gave a cohomological interpretation of the convolution functor.

Finally, it was shown how to construct new di�erential equations for which Grothendieck's

p-currvature conjecture holds (starting from complex representations of �nite groups and

applying the convolution functor).

Galois theory in dimension 2

David Harbater

I consider the Galois theory of surfaces, especially analogs of questions that have been

studied in dimension 1. In dimension 1, say X is an a�ne curve over an algebraically

closed �eld k. If char k = 0, then one knows �

1

(X) by topology, and therefore one knows

which �nite groups are the Galois groups of unrami�ed covers of X. In characteristic p,

�

1

(X) is unknown, but we know which �nite groups are Galois groups of unrami�ed covers

of X, by Abhyankar's Conjecture (proven by Raynaud and the speaker). In dimension 2,

we may consider the complement X in P

2

of a normal crossing divisor. The fundamental

group of X is known in characteristic 0 (Zariski, Fulton, Deligne), and therefore it is known

which �nite groups occur. In characteristic p, the tame part of �

1

can be described similarly

(Abhyankar, Fulton). But concerning the full �

1

in characteristic p, the \obvious" analog

of Abhyankar's Conjecture fails, because there is an extra necessary condition for a group

to occur (van der Put, Guralnick, and the speaker).

Similarly, one can consider the corresponding question for the Galois extensions of the

function �eld K of the curve or surface X. For curves, all �nite groups are Galois groups,

and the absolute Galois group G

K

is free (Douady in characteristic 0; Pop and the speaker
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in characteristic p). This is shown by using that G

K

is projective (cohomological dimension

= 1), and proving that every �nite split embedding problem has many proper solutions.

(Here \many" means of the same cardinality as k.) In dimension 2, consider the �eld

k(x; y) and its more local analog k((x; y)). Then every �nite group is a Galois group over

these �elds K; but the absolute Galois group is not free (since the cohomological dimension

is 2). Still, it turns out that every �nite split embedding problem for K has many proper

solutions; so G

K

is \as free as possible given that it is not projective".

Some of these results are known to have analogs in di�erential Galois theory. It would

be interesting to know whether the others (particularly in dimension 2) do as well.

Birational anabelian geometry {REVISITED{

Florian Pop

The main tools consists of de�ning/introducing so called abstract abstract Galois structures

and studying properties of such objects. The aim of this talk was to show that there are

birational anabelian phenomena over the algebraic closure of �nite/global �elds. More

precisely, we have indicated how one can prove the following result: Let k be the algebraic

closure of a �nite/global �eld. For a �eld extension Kjk, we denote by K

0

jK the maximal

pro-` extension of K, and set G

0

K

= Gal(K

0

jK).

Theorem. In the above context, suppose that Kjk is a function �eld with td(Kjk) > 1

having simply connected smooth models X ! k. Then there exists a group theoretic recipe

by which we can recover the isomorphy type of Kjk from G

0

K

. This recipe is invariant

under pro-�nite group isomorphisms. In particular, if G

0

K

�

=

G

0

L

, then K

�

=

L up to pure

inseparable covers in a functorial way.

The main tools consists in de�ning/introducing so called abstract Galois structures and

studying properties of such objects. Along the same lines one obtains further birational

anabelian results, in particular a sharpening of the result of Mochizuki, that the category

of all geometrically connected varieties over some given sub-p-adic �eld k is equivalent via

the absolute Galois group functor to a full sub-category of the pro-�nite G

k

-groups.

Logarithmic good reduction of curves

Jakob Stix

Let S be the spectrum of an excellent henselian (e.g. complete) discrete valuation ring

R with perfect (e.g. algebraically closed, �nite) residue �eld k = R=(�) of exponential

characteristic p � 0 and �eld of fractions K. Let � (resp. s) denote its generic (resp.

closed) point. We �x a geometric point � = Spec(K) (resp. s = Spec(k)) over � (resp.

s). The absolute Galois group G

K

of K comes equipped with the (wild) inertia subgroups

P < I < G

K

. Let ` be a prime number di�erent from p.

The theory of good reduction asks for a criterion that decides whether smooth objects

over � extend to smooth objects over S. For example, an abelian variety A=K has good

reduction if and only if I acts trivial on the `-adic Tate module T

`

(A). Secondly, a smooth

hyperbolic curve X=K has good reduction if and only if the restriction to I of its outer

Galois representation �

`

X

: G

K

! Out

�

�

1

(X

�

)

`

�

on the pro-` quotient of �

1

is trivial.

Question: What are the geometric implications of trivial action of the wild inertia

group? For the case of smooth projective curves we obtain the following theorem that

improves a theorem of T. Saito in connecting it with logarithmic geometry.
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Theorem. Let X

K

be a smooth projective curve over Spec(K) of genus g � 2. Then

the following are equivalent:

(a) P acts trivially on �

1

(X

K

)

`

for some prime number ` 6= p.

(b) P acts trivially on �

1

(X

K

)

ab;`

for some prime number ` 6= p.

(c) The minimal regular model of X

K

over S such that the reduced special �bre is a divisor

with normal crossings satis�es the following: any component of the special �bre with

multiplicity divisible by p is isomorphic to P

1

k

and meets the rest of the special �bre in

exactly two points lying on components of multiplicity prime to p.

(d) X

K

has log-smooth reduction over S, i.e., there is a model X=S such that M(logX

s

)

is a fs-log structure on X that renders it a log-smooth fs-log scheme over S with its

standard fs-log structure induced by N ! R, 1 7! �.

The implications (d) =) (a) () (b) () (c) follow from results of Vidal,

Kisin/Asada et al., and T. Saito. For the remaining purely geometric step we use M. Artin's

contributions to the theory of rational singularities of surfaces.

Counting Galois extensions

J

�

urgen Kl

�

uners

Let k be a number �eld and G � S

n

. We de�ne:

Z(k;G; x) := jfK=k j Gal(K=k) = G;N

k=Q

(d

K=k

) � xgj:

We present the Malle-conjecture which predicts the asymptotic behaviour of this function

for x ! 1: Z(k;G; x) � c(k;G)x

a(G)

log(x)

b(k;G)

, where a is a constant depending on G

and b is a constant depending on k and G, which can be explicitly given. The conjecture

is known to be true for abelian groups and some small groups. In this talk we prove this

conjecture for nilpotent groups in a weak form and give improved results for 2-groups.

Images of modular and geometric 3 and 4-dimensional

Galois representations

Nuria Vila, Luis V. Dieulefait

We consider compatible families of non-selfdual three-dimensional Galois representations

with coe�cients in an imaginary quadratic �eld K, either those coming from geometry

(in particular a family of examples constructed by van Geemen and Top) and those con-

jecturally attached to certain automorphic representations of GL(3) via the Langlands

correspondence (as formulated by Clozel). We give conditions on the representations to

ensure that the images of the residual representations be "as large as possible" for almost

every prime (all but �nitely many), namely:

SL(3; `) if ` splits in K, and SU(3; `) if it is inert.

The conditions for the validity of the theorem are verifyed in one geometric example. We

also verify the same for some examples (conjecturally) coming from automorphic forms.

In the second part of the talk, the case is considered of compatible families of sym-

plectic four-dimensional Galois representations attached by Taylor-Laumon-Weissauer to

a cuspidal genus 2 Siegel modular form with multiplicity one; only the case of level 1,

and weight k > 3 is considered. Here it is proved that for such a cusp form f , if f is

not of Saito-Kurokawa type and veri�es other two conditions (easy to verify in any given

example) then the images of the attached Galois representations are "as large as possible"

(the maximal possible symplectic group given the �eld of coe�cients and the restrictions

9



on the determinant) for every prime outside certain density 0 set, and also that assuming

Serre's conjecture (for residual 2-dimensional irred. odd representations) the same holds

for almost every prime.

Examples are given of Siegel forms f verifying all the conditions of the previous result,

of weight 20 and 28. Considering the projectivisation of the residual representations, new

groups PGSp(4; F

�

) and PSp(4; F

�

) are realized as Galois groups over Q .

Descent for di�erential operators over C(x)[

d

dx

]

Jacques-Arthur Weil

(joint work with Elie Compoint)

Let C denotes the �eld of complex numbers, k = C(x) with derivation

d

dx

; let k

0

denote a

�nite Galois extension of k.

Let L

1

2 k

0

[

d

dx

]. We say that L descends to k if there exists M 2 k[

d

dx

] such that L

1

and

M are isomorphic over k.

If k

1

is a �nite Galois extension of k

0

such that L

1

is isomorphic over k

1

to M , we say that

k

1

is a descent �eld and that L

1

descends to M over k

1

.

In this lecture, we study how to caracterize descent data, descent �eld, and how to e�ec-

tively achieve the descent (i.e construct M). Applications of this to absolute factorization

and its impact on the di�erential Galois group are developped. We also discuss the similar-

ity and di�erences between this approach and the arithmetic situation of the same problem

for a non-algebraically closed �eld studied by van Hoeij and van der Put.

Pullbacks of second order di�erential equations

Maint Berkenbosch

Consider a normalised second order di�erential operator L = d

2

� r over k(x), with �nite

primitive Galois group. We can give a nice proof of Klein's theorem, which states that L

is the normalised pullback of the standard equation, under some F 2

�

k. In particular this

gives a description of all possibilities for F . Moreover we can actually calculate F using

some semi-invariants of L.

Di�erential Galois realization of double covers

Zbigniew Hajto

(joint work with Teresa Crespo Vicente)

In the talk we present an e�ective construction of homogeneous linear di�erential equations

of order 2 with Galois group a double cover 2G of a group G equal to one of the alternating

groups A

4

; A

5

or the symmetric group S

4

over a di�erential �eld k of characteristic 0 with

algebraically closed �eld of constants C. It is known that, if Kjk is an algebraic extension

of the di�erential �eld k, then the derivation of k can be extended to K in a unique way

and every k-automorphism of K is a di�erential one. Thus a realization of a �nite group G

as an algebraic Galois group over k is also a realization of G as a di�erential Galois group.

If such a group G has a faithful irreducible representation of dimension n over C, then

G is the Galois group of a homogenous di�erential equation of order n over k. Given a

polynomial P (X) 2 k[X] with Galois group G and splitting �eld K, we give an equivalent

condition in terms of a quadratic form over k for the existence of a homogeneous linear

di�erential equation with Galois group 2G such that its Picard-Vessiot extension

e

K is a

10



solution to the Galois embedding problem associated to the �eld extension Kjk and the

double cover 2G of G. When this condition is ful�led, we determine explicitly all such

di�erential equations. Our result has been anounced in:

T. Crespo, Z. Hajto, Recouvrements doubles comme groupes de Galois di��erentiels,

C.R. Acad. Sci. Paris, S�erie I, 333 (2001) 271-274.

Di�erential Galois realization of covers

Teresa Crespo Vicente

(joint work with Zbigniew Hajto)

In this talk we consider the Galois embedding problem

(GEP ) : 3A

6

! A

6

' Gal(Kjk)

over a �eld k of characteristic 0 and containing the roots of unity of order 15. Here A

6

denotes the alternating group on 6 letters and 3A

6

the Valentiner group, which is a non

trivial central cover of A

6

. We prove that (GEP ) is solvable if and only if a certain

quadratic cone Q de�ned over k, which can be made explicit, has a non-trivial k-rational

point. To this end, we use a unimodular irreducible faithful representation e� of the group

3A

6

of dimension 3 and its third symmetric power � = e�

(3)

, which factorizes through

A

6

. Our method is based on the explicit determination of all possible copies of � inside

K. Whenever (GEP ) is solvable, we obtain explicitly all possible solutions to it from

the non-trivial k-rational points of Q. If k is a di�erential �eld of characteristic 0, we

obtain all possible di�erential equations with di�erential Galois group 3A

6

such that its

Picard-Vessiot extension

e

K is a solution to (GEP ).

Torsion on Abelian varieties over large algebraic �elds

Moshe Jarden

Theorem.Let A be an abelian variety over a number �eld K. Then K has a �nite Galois

extension L such that for almost all � 2 Gal(L) there are in�nitely many prime numbers

l with A

l

(

~

K(�)) 6= 0.

Here

~

K denotes the algebraic closure of K and

~

K(�) the �xed �eld in

~

K of �. The

expression \almost all �" means \all but a set of � of Haar measure 0". This theorem,

proved jointly with Wulf-Dieter Geyer weakly settles part of a conjecture we made in 1978.

To prove the theorem we construct a �nite Galois extension L of K, a number �eld N ,

a set � of prime numbers, a connected reductive algebraic subgroup H of GL

2d

over N

(with d = dim(A)), a connected linear algebraic group

^

H, and an isogeny � :

^

H ! H over

N which satis�es the following conditions:

1. � is contained in the set Splt(N) of all l that split completely in N .

2.

P

l2�

0

1

l

=1 for each �

0

= � \ Splt(N

0

) with N

0

a �nite extension of N .

3. For each l 2 �, �(

^

H(F

l

)) � G

L

(l) � H(F

l

) and (H(F

l

) : �(

^

H(F

l

))) � jkernel(�)j.

Here G

L

(l) is the image in GL

2d

(F

l

) of Gal(L) under the l-ic representation arising

from the action on A

l

(

~

K).

4. The �elds L(A

l

), l 2 �, are linearly disjoint over L.

In proving these conditions we use results of Serre proved during his course at the Coll�ege de

France in 1985-1986 and classi�cation theorems of connected semisimple algebraic groups.
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Arithmetic on Hurwitz towers

Pierre Debes

Given a projective system of �nite groups G

n

(n > 0), the aim of the proposed talk is to

construct a tower (H

n

)

n>0

of varieties with the following properties:

- H

n

is geometrically irreducible and de�ned over k

o

(depending on the situation),

- k-rational points on H

n

yield k-regular realizations of G

n

, n > 0, (for any �eld k � k

o

),

- for k = k

o

Q

p

, k = k

o

((x)) and k = R, there exists projective systems of k-rational

points (which yield k-regular realizations of lim

 �

G

n

).

The construction conjoins patching techniques for algebraic covers (including recent de-

velopments for in�nite covers) and the Hurwitz space theory (including Fried's modular

towers and related work on the so-called Harbater-Mumford components and their bound-

ary).

Reduction of Hurwitz spaces

Irene Bouw

In this talk, I compute the stable reduction of some Galois covers of the projective line

branched at three points. These covers are constructed using Hurwitz spaces parame-

terizing metacyclic covers. The reduction is determined by a hypergeometric di�erential

equation. This generalizes the result of Deligne{Rapoport on the reduction of the modular

curve X(p).

Induction and restriction in formal deformation of coverings

Ariane Mezard

Let X=S be a semistable curve with an action of a �nite group G and let H be a normal

subgroup of G. We present a new condition under which for any base change T ! S,

(X=G)�

S

T is isomorphic to (X�

S

T )=G. This allows us to de�ne induction and restriction

morphisms between the G-equivariant deformation functor of X and the G=H-equivariant

(resp. H-equivariant) deformation functor of X=H (resp. X).

On the existence of �nite Galois stable subgroups of GL

n

Dmitry Malinin

Let E be a �nite extension of a number �eld F with Galois group �; and let O

E

and O

F

be the maximal orders of E and F . Let F (G) be a �eld obtained via adjoining to F all

matrix coe�cients of all matrices g 2 G � GL

n

(E).

Theorem 1. 1) For a given number �eld F and integers n and t, there is only a �nite

number of normal extensions E=F such that E = F (G) and G is a �nite abelian �-stable

subgroup of GL

n

(O

E

) of exponent t.

2) For a given number �eld F and integers n and d = [E : F ], there is only a �nite

number of �elds E = F (G) for some �nite �-stable subgroup G of GL

n

(O

E

).

Theorem 2. Let d > 1; t > 1 and n � [E(�

t

) : E]d be given integers where �

t

is

a primitive t-root of 1, and let E=F be a given extensionof degree d. Then there is an

abelian �- stable subgroup G � GL

n

(E) of exponent t such that E = F (G).
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The following theorem was proved jointly by H.-J. Bartels and the author using the

classi�cation of �nite at group schemes over Z annihilated by a prime p obtained by

V. A. Abrashkin and J.- M. Fontaine:

Theorem 3. Let K=Q be a normal extension with Galois group �; and let G �

GL

n

(O

K

) be a �nite �-stable subgroup. Then G � GL

n

(O

K

ab

) where K

ab

is the maximal

abelian over Q sub�eld of K.

Non-classical parabolic cohomology

and the Manin{Drinfeld principle

Stefan Wewers

Let � be a subgroup of �nite index of SL

2

(Z), l a prime and k � 0. Let U := H =�,

X := H

�

=� and j : X ! P

1

�

=

H =SL

2

(Z) the natural map to the j-line. Let � : E ! U

be the `universal' elliptic curve over U (with j-invariant j) and set F := Sym

k

(R

1

�

�

Q

l

).

If K is a �eld of de�nition of j : X ! P

1

and E, we obtain a short exact sequence of

Gal(

�

Q =K){modules

0! H

1

(U;F)

cusp

! H

1

(U;F)!

M

cusps

Q

l

(�k � 1)(0)! 0

The Manin{Drinfeld principle asserts that this sequence splits if � is a congruence sub-

group.

Generalizing a criterion of T. Scholl (Inv. Math. 124, 1996) and using results of myself

on the stable reduction of Galois covers (Three point covers with bad reduction, Preprint

2002), I gave an in�nite family of counterexamples to the Manin{Drinfeld principle for

non-congruence subgroups and all k > 0.

Finite monodromy for p-adic Galois covers

Claus Lehr

(joint work with Michel Matignon)

In this talk we report on the reduction of covers of curves over p-adic �elds. Let (R;K; k)

be a complete mixed characteristic (0; p) DVR and X a smooth, complete K-curve that

is a p-cyclic cover of the projective K-line. Denote by B the branch locus of the cover

and assume B has equidistant geometry. By this we mean that there is a smooth R-model

for P

1

K

such that the points of B specialize to distinct points on the closed �ber. Set

m = jBj � 1 and assume that m is not of the form p

k

+ 1. Under these assumptions we

obtain an explicit criterion to test if X has potentially good reduction. In this case we

determine the �nite monodromy, i.e. the minimal extension R

0

=R necessary to obtain a

smooth model X

R

0

for X. This extension is known to be Galois and there is an injection

from Gal(R

0

=R) into the group of k-automorphisms of the special �ber X

k

of the stable

model. In this context we are lead to study automorphism groups of certain curves in

characteristic p, with the goal to bound the �nite monodromy. We obtain such bounds

improving those known previously.

Edited by Thomas Oberlies
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