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Abstracts

Flag Vectors, Toric h-Vectors and Ordinary Polytopes

Margaret Bayer

The toric h-vector h(P ) = (h0, h1, . . . , hd) of a rational polytope is the sequence of (nonzero)
middle perversity intersection homology Betti numbers of the toric variety associated to
P . The h-vector depends only on the combinatorial data known as the flag vector of the
polytope. The generalized Dehn-Sommerville equations (by Bayer and Billera) give all
linear equations on the flag vectors; they imply hi = hd−i. The hard Lefschetz theorem
on the toric variety gives the unimodality of the h-vector: 1 = h0 ≤ h1 ≤ · · · ≤ hbd/2c.
(Recently Kalle Karu extended this theorem from rational to real polytopes.)

In order even to conjecture further conditions on h-vectors or flag vectors of polytopes,
we need to know a good variety of nonsimplicial polytopes and their vectors. These have
been hard to find. I am studying ordinary polytopes, a class of nonsimplicial polytopes
introduced by Bisztriczky. They are a natural generalization of cyclic polytopes, which
played a central role in the study of face numbers of simplicial polytopes.

In even dimensions, all ordinary polytopes are cyclic. In odd dimensions, there is a
unique combinatorial type P d,k,n of ordinary polytope for each triple n, k, d, with n ≥ k ≥
d = 2m + 1 ≥ 5. The h-vector has a surprisingly simple form:

hi(P
d,k,n) =

(
k − d + i

i

)
+ (n− k)

(
k − d + i− 1

i− 1

)
for 0 ≤ i ≤ d/2. The extreme cases are when k = d, in which case P d,d,n is a multiplex and
has h-vector (1, n− d+1, n− d+1, . . . , n− d+1, 1); and when k = n, in which case P d,n,n

is a cyclic polytope and has h-vector given by hi(P
d,n,n) =

(
n−d+i

i

)
for 0 ≤ i ≤ d/2. The

ordinary polytopes thus give a nice distribution of h-vectors between h-vectors representing
the extremes of the simplicial case.

Lower Bounds for the Generalized h-Vectors of Centrally Symmetric
Polytopes

Annette A’Campo-Neuen

In 1987, R. Stanley proved tight lower bounds for the coefficients of the h-vector of a
simplicial centrally symmetric polytope that were previously conjectured by A. Björner.

In 1999, we obtained an analogous result for the generalized h-vector of a nonsimplicial
but rational centrally symmetric polytope using equivariant intersection cohomology of
the corresponding projective toric variety. Recently, we could show that the same lower
bounds are valid for the generalized h-vector of an arbitrary centrally symmetric polytope
even though we cannot associate a toric variety to it.

Our proof is based on the combinatorial intersection theory for arbitrary fans developed
by G. Barthel, J.-P. Brasselet, K.-H. Fieseler and L. Kaup, and on the hard Lefschetz
theorem in this context that was recently proved by K. Karu.
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Zariski-Riemann Spaces of Real Fans

Masanori Ishida

The theory of toric varieties says that there exists a natural one-to-one correspondence
between the set of toric varieties with the torus (C∗)r and the set of (rational) fans in the
real space Rr with the lattice Zr. A finite fan ∆ is said to be complete, if the support
|∆|=

⋃
σ∈∆ σ, i.e., the union of all cones in ∆, is equal to Rn. Then the corresponding toric

variety is a complete algebraic variety. For a given finite fan ∆, it is a non-trivial problem
to find a complete fan ∆ which contains ∆ as a subfan. It used to be done as follows.
Let Z(∆) be the corresponding toric variety. Then by applying Sumihiro’s equivariant
completion theorem, we can find a complete toric variety Z ′ which contains Z(∆) as an
open subvariety. Since Z ′ is equal to Z(∆) for a complete fan ∆, this ∆ is the required
fan. Sumihiro’s theorem based on Nagata’s compactification theorem of algebraic varieties.
Nagata proved this theorem by using the compactness of the Zariski-Riemann space, i.e.,
the set of all valuation rings of the function field.

In January 2001, G. Ewald informed me that a combinatorial proof of the existence of
∆ is possible, and his method is valid also for not necessarily rational fans.

In my talk, I defined the Zariski-Riemann space for fans as the set of additive preorders
of the dual Z-module M ∼= Zr of the lattice. I can translate the proof of Nagata’s theorem
written in the language of algebraic varieties into that of fans. The Zariski-Riemann
space for not necessarily rational fans is also defined as the set of R-additive preorders of
MR ∼= Rr. Then the existence of the completion ∆ follows from this translation in case
of both rational and real fans. In order to translate a difficult part of Nagata’s proof, we
interpret the notion of the blowing-up of a variety at a subvariety as well as at a fractional
ideal into that of a fan by defining ideals and fractional ideals for fans.

Rational Hypergeometric Functions

Alicia Dickenstein

Multivariate A-hypergeometric functions associated with toric varieties were introduced by
Gel’fand, Kapranov and Zelevinsky. Singularities of such functions are discriminants, that
is, divisors projectively dual to torus orbit closures. In joint work with Eduardo Cattani
and Bernd Sturmfels, we show that the existence of rational hypergeometric functions with
poles along most of these potential denominators imposes strong combinatorial restrictions
on the configuration A. We conjecture that the denominator of any rational hypergeometric
function is a product of resultants, that is, a product of special discriminants arising from
Cayley configurations, and that in this case, all such functions can be described in terms
of toric residues. These results are proved for toric hypersurfaces, for toric varieties of
dimension at most three, for toric fourfolds in P6 and for Lawrence configurations.
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Combinatorial Constructions of Real Algebraic Varieties

Ilia Itenberg

Real algebraic varieties seem to be quite distant from combinatorial geometry. However,
it is possible to construct real algebraic varieties in a completely combinatorial fashion:
one can patchwork them from pieces which essentially are hyperplanes. This procedure
is called the combinatorial patchworking. It is a particular case of the Viro method and
is directly related to Maslov’s dequantization of positive real numbers. We present one
of the applications of the combinatorial patchworking: a construction of maximal (in the
sense of the Smith-Thom inequality) hypersurfaces and, more generally, maximal complete
intersections in projective spaces (joint work with O. Viro). The construction of maximal
hypersurfaces leads to a nice description of the Hodge numbers of an algebraic hypersurface
in CPn in terms of the numbers of certain simplices in a primitive triangulation of the
corresponding Newton simplex.

Combinatorial Patchworking of Pseudo-Holomorphic Curves in Toric Surfaces

Eugenii Shustin

Let ∆ be a lattice convex polygon in the positive quadrant, C∆ = ∆× (S1)
2 ⊂ C2. Define

the extended moment map Cµ∆ : (C∗)2 = R+
2× (S1)

2 (µ∆,Id)−→ C∆ with µ∆ : R+
2 → ∆ being

the usual moment map. For any curve C in the toric surface T (∆) associated with ∆, define

the chart Ch(C) as the closure Cµ∆(C ∩ (C∗)2). For a subdivision ∆ = ∆1 ∪ . . .∩∆N into
convex lattice polygons, and a set

A = {aij ∈ C | (i, j) ∈ ∆, aij 6= 0 as (i, j) is a vertex of some of ∆1, . . . , ∆N},

define fk =
∑

(i,j)∈∆k

aijx
iyj, and the C-curve

N⋃
k=1

Ch(fk = 0).

Theorem: (Itenberg, Shustin) If T (∆) is the projective plane or a Hirzebruch
surface, and all the curves (fk = 0) are real reduced and generic at infinity, then the
corresponding C-curve is equivariantly isotopic in C∆ to the chart of some real pseudo-
holomorphic curve.

Example: For any d > 5, there exist real pseudo-holomorphic plane curves with
any number of real tacnodes (i.e., of type A3) from 0 to d2/5 + O(d).

We conjecture that among these real singular pseudo-holomorphic curves there are those
which are not isotopic to any algebraic curve of the same degree.

Toric HyperKähler Manifolds

Hiroshi Konno

The real torus TN acts on the quaternionic vector space HN , preserving its hyperKähler
structure. This induces the action of a subtorus K ⊂ TN on HN , which admits a hy-
perKähler moment map µ : HN → k∗ ⊗ R3 ∼= k∗ × k∗C. If K acts freely on µ−1(α, β),
then we have a smooth hyperKähler quotient X(α, β) = µ−1(α, β)/K. It has the natural
hyperKähler structure (g, I1, I2, I3), which is preserved by the action of the quotient torus
T n = TN/K. Bielawski and Dancer called X(α, β) a toric hyperKähler manifold. It is not
a toric manifold in the usual sense, but a corresponding object in hyperKähler geometry.
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In the talk, we discussed the topology and geometry of toric hyperKähler manifolds.
First we computed the cohomology ring of X(α, β). Under the natural isomorphism
κ : k∗ → H2(X(α, β); R), the parameters α, β correspond to the de Rham cohomol-
ogy classes represented by the Kähler form and the holomorphic symplectic form on
(X(α, β), I1) respectively.

Next we study the variation of the complex structure of the holomorphic symplectic
manifold (X(α, β), I1) according to the parameter (α, β) as follows. If we fix an arbitrary
β ∈ k∗C, then we have a chamber structure in k∗.
(a) If α′ is in the same chamber C as α, then (X(α′, β), I1) is canonically isomorphic to
(X(α, β), I1) as a complex manifold. Moreover, the Kähler cone of this complex manifold
is κ(C) ⊂ H2(X(α, β); R).
(b) If α′ is in the next chamber to α, then (X(α′, β), I1) is obtained from (X(α, β), I1) by
applying Mukai’s elementary transformation, which is a special birational transformation
between holomorphic symplectic manifolds.

Polytopes, Algorithms and Enumeration

Maximilian Kreuzer

(joint work with Harald Skarke)

Toric Calabi–Yau varieties play an important role in mirror symmetry and other string
dualities. Their construction is based on reflexive polytopes (i.e., lattice polytopes with an
interior point whose dual vertices belong to the dual lattice). An algorithm that was used
to complete the enumeration of these polytopes in 3 and 4 dimensions was inspired by the
reflexivity of Newton polytopes for transversal polynomials of the appropriate degree in
weighted projective spaces. A constructive proof of the finiteness of the relevant weight
systems for fixed dimension and the combinatorics of minimal lattice polytopes with inte-
rior point provide us with a set of maximal reflexive polytopes that contain all others as
subpolytopes, possibly on a coarser lattice.

A crucial ingredient for an implementation of this algorithm was the definition of a nor-
mal form, whose evaluation also gives us the symmetries of the polytope as the stabilizer
of the group of vertex permutations. By keeping track of the posed structure of all reflex-
ive polytopes with respect to inclusion (up to lattice automorphisms) we established the
connectedness of the corresponding toric hypersurfaces via singular transitions. Assuming
an approximately random generation of mirror pairs we got a surprisingly good prediction
for the final result already at an early stage of the computation.

The results are available from our web page and the programs became part of a package
called PALP (math.NA/0204356]), which can be used to reconstruct all our results and to
generate large numbers of polytopes in higher dimensions. It also has tools for analyzing
lattice quotients, NEF partitions and fibration structures and it computes string theoretical
Hodge numbers of hypersurfaces and complete intersections.
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The Toric Mirror Residue Conjecture of Batyrev-Materov

András Szenes

(joint work with Michèle Vergne)

In this talk I prove the conjecture of Batyrev and Materov on the equality of two seemingly
unrelated expressions: that of a generating function of intersection numbers on moduli
spaces of maps from P1 into a toric variety and that of the corresponding toric residue on
the Batyrev dual variety. The main ingredient is the careful study of the map (pλ1 , . . . , pλn)

where λi are the generators of the Mori cone and pλ =
n∏

i=1

αi
〈αi,λ〉, where αi are the Gale

dual vectors to the edges of the fan of the original toric variety.

Counting Curves Tropically

Grigory Mikhalkin

The talk presented a new formula for the Gromov-Witten invariants of arbitrary genus in
the projective plane as well as for the related enumerative invariants in other toric surfaces.
The answer is given in terms of certain lattice paths in the relevant Newton polygon. The
length of the paths is responsible for the genus of the holomorphic curves in the count. The
formula is obtained by working in terms of the so-called tropical algebraic geometry. This
version of algebraic geometry is simpler than its classical counterpart in many aspects. In
particular, complex algebraic varieties themselves become piecewise-linear objects in the
real space. The transition from the classical geometry is provided by consideration of the
”large complex limit” (which is also known as ”dequantization” or ”patchworking” in some
other areas of mathematics).

Toric Hilbert Schemes

Diane Maclagan

(joint work with Rekha R. Thomas)

The toric Hilbert scheme of a lattice L ⊆ Zn parameterizes all ideals with the same Zn/L-
graded Hilbert series as the lattice ideal IL. It is a multigraded Hilbert scheme in the sense
of Haiman and Sturmfels. In the case where L = ker(A) for A a d× n integer matrix, this
was first developed by Peeva and Stillman, based on work by Sturmfels. When dimL = n,
the toric Hilbert scheme is Namakamura’s G-Hilbert scheme, which arose in the study of
the McKay correspondence.

The first result of this talk was that the toric Hilbert scheme is smooth and irreducible
when dimL = 2. This generalizes previous versions of this result for the two special cases
L = ker(A) and Zn/L finite. We then discussed the connectedness of the scheme, relating
this to the connectedness of an associated graph of bistellar flips of triangulations. This
leads to Santos’ example of a disconnected toric Hilbert scheme.
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Rings of Differential Operators on Affine Toric Varieties

Mutsumi Saito

(joint work with William N. Traves)

Let A := { a1, a2, . . . , an } be a finite set of integral vectors. We denote by NA, ZA, and
R≥0A the monoid, the abelian group, and the cone generated by A, respectively.

Let RA := C[NA] denote the semigroup algebra of NA. We consider two rings: the ring
D(RA) of differential operators on the affine toric variety Spec(RA) and its graded ring
Gr(D(RA)) with respect to the order filtration.

As a starting point for the study of D(RA), we consider the finite generations of D(RA)
and Gr(D(RA)). While studying the finite generation of Gr(D(RA)), we defined the notion
of a scored semigroup; a semigroup NA is scored if the difference (R≥0A∩ZA)\NA consists
of a finite union of hyperplane sections of R≥0A ∩ ZA parallel to facets of the cone R≥0A.

We have proved the following:

Theorem:

(1) Gr(D(RA)) is finitely generated if and only if RA is a scored semigroup algebra.
(2) D(RA) is finitely generated for all semigroup algebras RA.

Scoredness is somehow mysterious to us. We can easily check that scoredness implies
Serre’s condition (S2). However there exist a non-scored Cohen-Macaulay example and a
non-Cohen-Macaulay scored example.

Flag Invariants of Polytopes

Louis J. Billera

We consider the flag f -vector of a convex polytope P , which counts all flags of faces of
P according to the sets of dimensions involved. We discuss what is known about the
behaviour of this and two related invariants, the flag h-vector and the cd-index.

In particular,

(1) the flag h-vector of a polytope is the flag f -vector of a coloured (balanced) simplicial
complex,

(2) the cd-index is minimized (termwise) over all n-dimensional polytopes by the n-
simplex,

(3) the cd-index is minimized over all n-dimensional zonotopes by the n-cube (equiv-
alently, over all essential central hyperplane arrangements in Rn by the coordinate
arrangement),

(4) for n-dimensional polytopes with v vertices, the cd-index is maximized by the cyclic
n-polytope with v vertices.

In addition, there are known relations between various cd-coefficients for any polytope.
Finally, we discuss the state of knowledge about flag f -vectors of graded posets, Eulerian

posets and coloured simplicial complexes.

7



Incidence Combinatorics of Resolutions

Eva Maria Feichtner

We provide a combinatorial framework that is designed to describe the incidence change in
stratifications throughout a resolution process, moreover even to prescribe the resolution
by intrinsic combinatorial data of the space we are starting with.

Inspired by the combinatorics that is involved in the construction of DeConcini-Procesi
”wonderful” models for arrangement complements, we propose notions of combinatorial
building sets, nested sets and blowups on a purely order-theoretic level. Our notions
describe the incidence combinatorics of stratifications through every step of the DeConcini-
Procesi model construction, but also serve in other contexts, e.g., resolutions of toric
varieties (joint work with D. Kozlov).

Our framework provides the outset to go even beyond the geometric context of resolutions
and yet return to geometry in a somewhat unexpected way: starting with an arbitrary
lattice and a combinatorial building set we define an algebra which, in particular cases, is
known to be the cohomology algebra of DeConcini-Procesi compactifications of hyperplane
arrangements. There is yet another geometric interpretation: for an arbitrary atomic
lattice and a combinatorial building set, we construct a toric variety whose Chow ring is
isomorphic to the proposed algebra (joint work with S. Yuzvinsky).

The Nash Problem on Arc Families of Singularities

Shihoko Ishii

(joint work with János Kollár)

In 1968 John F. Nash introduced the arc spaces and the jet schemes for algebraic and ana-
lytic varieties in his preprint which is published as ”Arc structures of singularities” in Duke
Math. J. in 1995. The idea of these spaces led to many works by Hickel, Lejeune-Jalabert,
Reguera-López, Gonzalez-Sprinberg and so on. The study of these spaces has been devel-
oped by M. Kontsevich, J. Denef and F. Loeser as the theory of motivic integration.

However the main subject of Nash’s paper is the map from the set of the families of arcs at
singular points to the set of essential components of the resolutions of the singularities. He
proved that this map is injective and posed a question if this is always bijective. Reguera-
López prove it for a minimal singularity of dimension 2.

In this talk we show the affirmative answer to this problem for a toric singularity and
the negative answer in general by giving a counterexample.

The affirmative answer for a toric singularity is proved by showing that the following
diagram for X = Uσ (σ ⊂ NR) gives just the identity map:

{minimal element of (
⋃

τ<σ
singular

τ ◦) ∩N} ↪→ {good component of Π−1(Sing X)}
Nash map

↪→

{essential component} = {essential divisor over X} ↪→ {divisorially essential divisor} ↪→
{toric divisorially essential divisor} ↪→ {minimal element of (

⋃
τ<σ

singular

τ ◦) ∩N}.

Counterexample: {x1
3 + x2

3 + x3
3 + x4

3 + x5
6 = 0} ⊂ k5, char k 6= 2, 3, has two

essential components, but only one good component (= family of arcs passing through the
singularity).
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Multidegrees and Positive Combinatorial Formulae

Allen Knutson

(joint work with Ezra Miller)

We defined the multidegree, i.e., a multigraded generalization of the degree of a projective
variety, and proved the coefficients of this polynomial are positive. We show that Schubert
polynomials are the multidegrees of matrix Schubert varieties, and thus can use a Gröbner
degeneration to compute them in a positive way. Our degeneration is reduced and Cohen-
Macaulay, and the components are easily enumerated.

What is the Right ”Polytopal” Generalization of Toric Varieties to the
Noncommutative Case?

Valery Alexeev

(joint work with Michel Brion)

Suppose Q is a lattice polytope, symmetric with respect to a reflection group W , or, more
generally, ∆ = {Qi} is a W -invariant complex of polytopes. To this combinatorial data, we
associate a projective variety which we call reductive - it is irreducible, normal, and comes
with a double action of a reductive group G, whose dimension is generally higher than
dim ∆. These are remarkably simple varieties whose properties generalize those of toric
varieties in a very intuitively clear way. We illustrate this by describing their structure,
degenerations, moment map and the moduli.

Fibre Tilings

Peter McMullen

Generalizing the earlier idea of secondary polytopes, Billera and Sturmfels introduced fibre
polytopes, and showed how they were related to certain kinds of subdivision induced by
projections of polytopes onto other polytopes. Here, this concept is extended to possibly
unbounded polyhedra, by making the definition a combinatorial one. Applying the notion
to the epigraphs of convex functions which lift finite tilings having strong (orthogonal)
duals then permits a definition of fibre tilings. Various useful properties of such tilings
under sections and projection are consequences.

Edited by Benjamin Nill
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