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The 2003 Oberwolfach meeting “Topological and Geometric Combinatorics” was orga-
nized by Anders Bjorner (KTH Stockholm), Gil Kalai (Hebrew University, Jerusalem),
and Giinter M. Ziegler (TU Berlin).

It has shown an exciting mix of algebraic, topological and geometric methods, tools and
intuitions that interact productively on the stage of combinatorics. For example, ideas
related to positive as well as to negative curvature have growing influence and impact on
purely combinatorial questions. This was visible on this workshop for example on the
lectures by Jon McCammond, Ezra Miller, Julian Pfeifle, and John Shareshian.

Similarly, the combinatorial construction of characteristic classes as well as obstruction
classes provide both great challenges as well as effective tools. The survey lectures by Laura
Anderson and by Robin Forman presented very different approaches in this area, the first
one very “high-power,” the other one distinctly and intentionally elementary. The report
by Dmitry Kozlov on his resolution (joint with Eric Babson) of Lovész’ conjecture on Hom-
complexes is a striking instance of the obstruction classes methodology in combinatorics.

There is no way to compress the richness of the conference’s program into a one page
report. Enclosed you will find the abstracts from both the 10 one hour lectures (with a
greater survey component) as well as the 21 half-hour lectures of the conference. All the
additional smaller presentations, group discussions and blackboard meetings, some of them
until deep into the night, cannot be recorded here at all — many of them will bear fruit
in future research, publications and collaborations.

We are very grateful to the Oberwolfach institute, its director and all of its staff for
providing the facilities and an ideal environment for high-power, intensive work during
this week.

Anders Bjorner, Gil Kalai, Glinter M. Ziegler
Stockholm / Jerusalem / Berlin, May 2003



Abstracts

Monday, April 7, 2003

Topological lower bounds for the chromatic number
JIRT MATOUSEK
(joint work with Giinter M. Ziegler)

The Kneser conjecture is concerned with the chromatic numbers of certain graphs. These
graphs are quite special, but the proof methods that are known for it, starting with Lovasz’s
breakthrough from 1978, extend beyond the original examples: Each of them yields, ex-
plicitly or implicitly, a lower bound for the chromatic number of any graph (although these
bounds are rather weak for some classes of graphs). The underlying ideas of all the proofs
are topological, based on the Borsuk—Ulam theorem and its extensions. We briefly survey
the various lower bounds (based on the work of Lovész, Barany, Dol’nikov, Sarkaria, Kiiz,
and others) and we describe relations among them. It turns out that the known bounds
are almost linearly ordered by strength, the strongest one being essentially Lovasz’ original
bound in terms of a neighbourhood complex. A recent concept, the Hom-complex due to
Lovasz, may be still more powerful.

New results on combinatorial differential manifolds and matroid bundles
LAURA ANDERSON

Combinatorial differential (CD) manifolds and matroid bundles are combinatorial analogs
to differential manifolds and real vector bundles, in which the role of real vector spaces is
played by oriented matroids. They support natural combinatorial analogs to many funda-
mental tools in real vector bundle theory. Most notably, there are natural “combinatorial
Grassmannians,” called MacPhersonians, leading to a classifying space for matroid bun-
dles.

CD manifolds and matroid bundles were first developed by Gelfand and MacPherson, as
the key tool in their combinatorial formula for the rational Pontrjagin classes of differential
manifolds. Since then research has centred on clarifying the relation between real vector
bundles and matroid bundles. This question was recently settled spectacularly by Daniel
Biss, who proved that the combinatorial Grassmannians are homotopy equivalent to their
real counterparts, and thus the theory of matroid bundles is equivalent to the theory of real
vector bundles.

This talk surveyed CD manifolds, matroid bundles, and recent results in the area, in-
cluding Biss’s result and related progress on smoothing CD manifolds.



Wreath products of polytopes and spheres
FraNk LuTz
(joint work with Michael Joswig)

We define a wreath product P @ for polytopes P and ) with the property that the
wreath product AutP { Aut@ of the automorphism groups AutP and Aut@ of P and @)
acts as a (large) group of automorphisms on P Q.

An analogous construction can be carried out for (finite) simplicial complexes, in par-
ticular for simplicial spheres, respecting various properties such as vertex-decomposability,
shellability, and constructibility.

Moreover, wreath products of vertex-transitive triangulations of homology spheres with
simplices yield examples of vertex-transitive non-PL spheres.

Short rational generating functions for lattice point problems
ALEXANDER BARVINOK
(joint work with Kevin Woods)

We consider a hierarchy of sets of lattice points defined by formulas of the Presburger
arithmetics. Thus a formula without quantifiers defines the set of lattice points in a poly-
hedron and a formula without quantifier alternations defines a projection of such a set.
Examples include integer semigroups, Hilbert bases of rational cones, etc. For a set S of
lattice points we consider the generating function f(S;xz) =" _ca™. For a fixed dimen-
sion d, for any set S of lattice points defined by a formula with no quantifier alternations,
the function f(S;x) can be written as a “short rational function” (the motivating exam-
ple: if S = {0,1...,n} then f(S;2) =3 2™ = (1 —2"")/(1 — x)). Thus various
algorithmic questions for such sets admit polynomial time algorithms.

Discrete Morse theory on poset order complexes
PATRICIA HERSH

Discrete Morse theory was introduced by Robin Forman in the 90’s as a way of study-
ing CW complexes by collapsing them onto smaller, simpler-to-understand complexes of
critical cells with the same homotopy type. In analogy to traditional Morse theory, the
number of i-dimensional critical cells, denoted m;, gives an upper bound on the i-th Betti
number. Discrete Morse functions have proven quite useful for studying simplicial com-
plexes arising in combinatorics (e.g. various graph complexes), yielding properties such as
Cohen-Macaulayness, homotopy equivalence to a wedge of spheres of a single dimension,
connectivity lower bounds, etc.

In joint work with Eric Babson, we showed how to construct a discrete Morse function
with a relatively small number of critical cells for the order complex of any finite poset,
based on any lexicographic order on its saturated chains. Applications include:

(1) (joint with E. Babson) II,,/S) is homotopy equivalent to a wedge of spheres of top
dimension, at least for hook shapes A. It remains open whether this is true for all A.

(2) A new simple proof that all intervals in the weak order for the symmetric group
are homotopy equivalent to balls or spheres.



(3) (joint with V. Welker) A lower bound on the connectivity of intervals in monoid
posets, in terms of the degree d of a Grobner basis for a related toric ideal of syzygies
(connectivity is essentially bounded below by the rank of the interval divided by
d—1).

(4) Cohen-Macaulayness of the poset Ilg, of partitions of {1,...,n} into cycles. (This
poset was recently defined by Jeff Remmel.)

All of these applications came from lexicographic discrete Morse functions, and all but the
second one also involved optimization by gradient path reversal.

Tuesday, April 8, 2003

The role of curvature in combinatorics
JON McCAMMOND

Geometric combinatorics and geometric group theory share a common fascination with
the topological properties of polyhedral complexes, and in particular the topology of order
complexes of posets. In addition, quite a bit of recent work in geometric group theory
has focused on adding a metric structure to polyhedral complexes in order to simplify
the analysis of their structure. The resulting theory of ‘non-positively curved’ or CAT(0)
spaces is now one of the central themes in present day geometric group theory.

Unfortunately, most of the existing results rely on cubes or other polyhedra with uni-
formly large dihedral angles in order to get started with the analysis. In a series of recent
articles, my various co-authors and I (John Meier, Noel Brady, Tom Brady and Murray
Elder) have been working to extend these technical results to simplicial complexes, and in
particular to order complexes of posets. At this point there are two results that might be
of interest to geometric combinatorialists. The first is that once you decide on a method
of metrizing an order complex of a graded poset, there exists some combinatorial list of
conditions which determines whether a particular poset leads to metric order complex with
good curvature properties, and second that for order complexes of small dimension, and a
‘natural’ metric involving Coxeter shapes, we can explicitly describe these combinatorial
conditions.

Topological obstructions to graph colourings
DmiTrY KozLoVv
(joint work with Eric Babson)

For any two graphs G and H Lovész has defined a cell complex Hom(G, H), having in
mind the general program that the algebraic invariants of these complexes should provide
obstructions to graph colourings. Here we announce the proof of a conjecture of Lovasz
concerning these complexes with G' a cycle of odd length.

More specifically, we show that

If Hom(Cyy11, G) is k-connected, then x(G) > k + 4.

Our actual statement is somewhat sharper, as we find obstructions already in the non-
vanishing of powers of certain Stiefel-Whitney characteristic classes.



Symmetric products of amoebas;
Arrangements, diagrams, end spaces, commutative (m + k, m)-groups

RADE ZIVALJEVIC
(joint work with Pavle Blagojevi¢ and Vladimir Gruji¢)

We study the combinatorics and topology of general arrangements of subspaces of the
form D + SP"¢(X) in symmetric products SP"(X) where D € SP%X). Symmetric
products SP™(X) := X™/S,, appear in different areas of mathematics and mathematical
physics as orbit spaces, divisor spaces, particle spaces, Eilenberg Mac Lane spaces etc. Our
approach is based on the topological technique of diagrams of spaces. Along the lines of
Ziegler-Zivaljevi¢ 93 and Welker-Ziegler-Zivaljevié¢ 99, we calculate the homology of the
union and the complement of these arrangements. As an application we include a compu-
tation of the (co)homology of the homotopy end space of the open manifold SP"™(M,y),
where M, is a (g, k)-amoeba, i.e. a Riemann surface of genus ¢ punctured at k points.
For example if A? is the (2n — d)-dimensional end cohomology group of SP™(M, ), then

(%5, d<n-—1
(1) A = (29:’“) — (2719), d=nord=n+1
(). d>n+2.

These results allow us to discuss the following questions:

(A) To what extent is the topology of an amoeba determined by the topology of its
symmetric product SP™(M) for a given m?

(B) Are there examples of non-homeomorphic amoebas M and N such that the associ-
ated symmetric products SP™(M) and SP™(N) are homeomorphic?

(C) Which surfaces support the structure of a continuous, commutative (m + k,m)-
group?

Constructing toric flag diagrams
PAVLE BLAGOJEVIC

The toric variety Xy can be seen as a homotopy co-limit of an appropriate diagram X :
Ly, — Top. Working with the homotopy lemma allows us to modify original diagrams.
Instead of working with affine toric varieties of dual cones we work with affine toric varieties
of its co-spans. The central property, which is responsible for the good behaviour of toric
variety is the following.

For every "boolean subdiagram” of an affine toric variety X|p, : By — Top there exists a
diagram morphism

I': X|g, — J x (CH™

which is a homotopy equivalence on each level. The first consequence of this fact is that
homotopy co-limit of toric variety hocolimX can be recovered from the A-tree of the form

pt «—— S%27Lor (289 —1) «— ... S*lor §(2s, — 1)
l l
pt pt

where S(i) denotes some i-dimensional Q-sphere.



The aim of this talk is to explain how one can construct topological spaces with a torus
action for broad families of geometric objects. For example, if K is a shellable d-dimensional
polytopal complex in R?, we can construct a space Xy with the property

Z"/2 | if § even

Hi X, 2) = { 0, if i is odd

where (hg, hi, .., hi, ..) is the generalized h-vector of the first barycentric subdivision of K.

Question: Can these spaces help us in proving the generalized h-hypothesis? It appears
that they have the right homology.

Topological representations of matroids
EDWARD SWARTZ

Topological representations of matroids usually consist of realizing the geometric lattice
of the matroid as the intersection poset of an arrangement of real hyperplanes, complex
hyperplanes or pseudospheres. We examine two more recent types of representations: 1)
arrangements of homotopy spheres, 2) linear quotients of spheres by real and Z,-tori.

A S-homotopy sphere is a d-dimensional CW-complex homotopy equivalent to S¢. Sur-
prisingly, the class of intersection posets of arrangements of homotopy spheres coincides
with the class of geometric lattices. In addition, these arrangements retain many of the
combinatorial properties of hyperplane and pseudosphere arrangements.

A completely different use of matroids appears in linear quotients of spheres by real
and Z,-tori. Let I' be a subgroup of O(n) isomorphic to (Z,)" or (S*)", and consider the
quotient space S™~1/T". Tt is possible to assign a natural matroid Mx to X which carries
much of the geometric and topological properties of X. For instance, when p is 2 or 3 then
Mx determines X up to isometry. In all cases Mx determines H,(X).

The polytope of non-crossing graphs on a planar point set
FRANCISCO SANTOS
(joint work with David Orden)

Theorem. Let A = {pi,...,pn} be a finite set of n points in the plane, not all contained
i a line. Let n;, ng and n, be the number of interior, semi-interior and extremal points
of A, respectively.

There is a simple polytope Y;(A) of dimension 2n; +n — 3, and a face F' of Y;(A) (of
dimension 2n; + n, — 3) such that the complement of the star of F in the face-poset of
Y;(A) equals the poset of non-crossing graphs on A that use all the convex hull edges.

We explicitly give facet equations for the polytope. It lives in R3" and is defined by the
following equations, where we represent an element of R?" as (v, ..., v t1,...,t,), v; € R?
and t; € R. The v;’s are interpreted as infinitesimal velocities of the points p;.

e Three linear equalities on the v’s ruling out any non-zero trivial motion of the whole
set. For example, set v; = 0 and require v, to be parallel to p; — p-.
e For each i, the inequality ¢; > 0, with equality if p; is in the boundary of conv(A).



e For each pair p;, p; € A, the inequality
(i = pjsvi — v3) — |pi — pjl (ti +15) > fij,
with equality if the segment p;p; lies in the boundary of conv(A). Here, the f;;’s
are real numbers which have to be chosen appropriately. One valid choice is f;; =
(det(O,pi,pj))2.
It follows from our description that the polytope has (g) + n — 2n, facets. The proof
of our statement uses some infinitesimal rigidity theory and the combinatorial properties
of pseudo-triangulations, a generalization of two-dimensional triangulations which is be-

coming a standard tool in Computational Geometry. Actually, our methods also prove
that:

Theorem. The vertex set of the polytope Yy(A) is in bijection to the set of all pseudo-
triangulations of A. The 1-skeleton of Y¢(A) is the graph of flips between them.

Projectivities in simplicial complexes
MICHAEL JOSWIG
(joint work with Ivan Izmestiev)

We start by associating a finite group to each facet of a finite-dimensional simplicial
complex, the group of projectivities. For strongly connected complexes the isomorphism
class of the group does not depend on the facet chosen. It can be shown that, e.g.,
for combinatorial manifolds, in order to determine the group of projectivities, it suffices
to have combinatorial information about the fundamental group plus local combinatorial
data. This approach generalizes results by Heawood, Edwards et al., Rybnikov, and others.
Specializing this result to the (boundary complexes) of simplicial polytopes says:

Theorem. The dual graph of simplicial d-polytope is d-colourable if and only if each face
of codimension 2 is contained in an even number of facets.

It turns out that the group of projectivities of a simplicial complex K can be interpreted
as the monodromy group of a branched covering, called the partial unfolding, with base
space K. The complete unfolding is the regularization of the partial unfolding; it can also
be defined combinatorially. It is essential that the unfoldings depend on the combinatorial
properties of K, not only on the topology.

The main result is the following:

Theorem. FEach closed oriented 3-manifold arises as the partial unfolding of some trian-
gulation of the 3-sphere.

New features in Cinderella 2.0
JURGEN RICHTER-GEBERT

Presentation of the interactive geometry software Cinderella.
See http://www.cinderella.de/



Wednesday, April 9, 2003

Using matchings to compute intersection cohomology
FRANCESCO BRENTI

The purpose of this talk has been to introduce a new kind of complete matchings of a
partially ordered set, which we have called special, and to show how these can be used
to compute the intersection cohomology of Schubert and toric varieties. More precisely, a
complete matching M of the Hasse diagram of a partially ordered set P is special if, for all
x,y € P, such that M(x) # y, we have that x <y = M(z) < M(y). We have shown how
these matchings give a completely combinatorial (poset theoretic) procedure to compute
the intersection cohomology of Schubert varieties. In particular, our result shows that the
local intersection cohomology (with complex coefficients) of a Schubert variety depends
only on the closure relations of the Schubert cells contained in it, considered as an abstract
poset. We have then shown how completely analogous results hold also for toric varieties.

Narayana numbers for Weyl groups
CHRISTOS ATHANASIADIS

The classical Narayana numbers N (n, k) = (7) (kil) count the number of lattice paths
in R? from (0,0) to (n,n) which stay below the diagonal y = z and have k North-East
corners. We discuss a generalization of these numbers to any irreducible crystallographic
root system ®. These numbers have at least four interesting combinatorial interpreta-
tions. They count antichains in the root poset of ® by cardinality, orbits of the action of
the Weyl group W in the finite torus by stabilizer rank, elements of the WW-noncrossing
partition lattice by rank and appear as the entries of the h-vector of the generalized asso-
ciahedron corresponding to ®. We explain a case-free proof of the equivalence of the first
two interpretations, conjectured by S. Fomin and J. Stembridge and, independently, by F.

Chapoton.

Lattice points of polyhedra for tableaux and plane partitions
JESUs A. DE LOERA
(joint work with T. B. McAllister)

It has been already observed by many authors that polyhedra play a special role in
combinatorial representation theory. In this lecture we answer two open questions about
semi-standard Young tableaux and plane partitions from the point of view of polyhedral
geometry. In particular, we show explicit counterexamples to a conjecture raised by Beren-
stein and Kirillov.

Let A be a partition and p be a composition of the same size and whose lengths do
not exceed n. Let GT'(\, ) be the convex polytope in the space R™5™ of all points
x = (j)1<i<j<n satisfying the following conditions

e v, =M\, 1 <1<nm;

® T;ij+1 Z Tij, Tij Z Tit1,5+1, for all 1 S 1 S] S n — 17

oz =, and if 2 < j <n, then Y7 x;; — 25;11 Tij_1 = 4.
The polytope GT'(A, p) is called Gelfand-Tsetlin polytope.



Theorem. Dimension dim Vy(u) of the weight p subspace Vy(p) of the irreducible highest
weight \ representation V) of the general linear algebra gl(n) is equal to the number of
integer points in the Gelfand—Tsetlin polytope GT (X, 1):

dim Vy(p) = #|GT(\, ) N ZM D2,

Conjecture: (Berenstein & Kirillov 1995) Let A and u be partitions. All vertices of the
Gelfand—Tsetlin polytope GT'(A, 1) have integer coordinates, i.e. GT(A, u) is a convex
integral polytope.

In this talk we present a counterexample for this conjecture for n > 5 and sketch the
proof for smaller values. The conjecture seemed to have been motivated by the fact that,
for an integer parameter ¢, the Kostka number Ky, 4, is a polynomial in ¢ with integer coef-
ficients, which was proved by using some fermionic formulas. Thus we get some fascinating
implication for the theory of Ehrhart functions that count lattice points in polytopes.

Lifting inequalities for polytopes
RICHARD EHRENBORG

The f-vector enumerates the number of faces of a convex polytope according to dimen-
sion. The flag f-vector is a refinement of the f-vector since it enumerates face incidences
of the polytope. To classify the set of flag f-vectors of polytopes is an open problem in
discrete geometry. This was settled for 3-dimensional polytopes by Steinitz a century ago.
However, already in dimension 4 the problem is open.

I will discuss the known linear inequalities for the flag f-vector of polytopes. These
inequalities include the non-negativity of the toric g-vector, that the simplex minimizes
the cd-index, and the Kalai convolution of inequalities.

I will introduce a method of lifting inequalities from lower-dimensional polytopes to
higher dimensions. As a result we obtain two new inequalities for 6-dimensional polytopes.

Wednesday afternoon: Excursion to St. Roman

Thursday, April 10, 2003

Recent progress on algebraic shifting
I[SABELLA NOVIK
(joint work with Eric Babson and Rekha Thomas)

Algebraic shifting introduced by Gil Kalai is an algebraic operation that given a sim-
plicial complex I' produces a shifted complex A(I"). This new complex has a simpler
combinatorial structure, yet it shares with I' several combinatorial, topological, and al-
gebraic properties such as face numbers, (topological) Betti numbers, extremal (algebraic
graded) Betti numbers, etc. In the talk I will survey existing results and will present several
new ones on algebraic shifting and their applications to combinatorics.



Abelianizing the real permutation action via blowups
EvA-MARIA FEICHTNER
(joint work with Dmitry N. Kozlov)

We present an abelianization of the permutation action of the symmetric group S,, on R”
in analogy to the Batyrev abelianization construction for finite group actions on complex
manifolds. The abelianization is provided by a particular De Concini-Procesi wonderful
model for the braid arrangement. In fact, we show a stronger result, namely that stabilizers
of points in the arrangement model are isomorphic to direct products of Z,. To prove that,
we develop a combinatorial framework for explicitly describing the stabilizers in terms of
automorphism groups of set diagrams over families of cubes.

We observe that the natural nested set stratification on the arrangement model is not
stabilizer distinguishing with respect to the S,-action, that is, stabilizers of points are not
in general isomorphic on open strata. Motivated by this structural deficiency, we furnish
a new stratification of the De Concini-Procesi arrangement that distinguishes stabilizers.

Unfolding convex polyhedra in many dimensions
EzZrA MILLER

Let S be the d-dimensional boundary of a convex polyhedron P of dimension d + 1.
There exists a polyhedral complex K inside of S such that S\K is isometric to an open
topological ball in R” (K might not consist of ridges.) In particular, K can be chosen
as the cut locus of a point in S. Such complexes K can be constructed algorithmically.
The complexity is polynomial in the number of facets (but exponential in d), assuming
our conjecture that the number of combinatorial types of shortest paths in S is polynomial
in the number of facets. There results a canonical subdivision of .S into regions: points v
and v lie in the same region if their cut loci have isomorphic combinatorial structures.

Equipartition of measures by hyperplanes
SINISA VRECICA
(joint work with Peter Mani and Rade T. Zivaljevi¢)

This is a report on work started some time ago and especially on some more recent
results. The problem we deal with is the following:

Problem. Determine triples (d, j, k) (we call them admissible) such that for every collec-
tion of j continuous measures in R?, there exist k hyperplanes so that 2% orthants deter-
maned by them form an equipartition of each of the given measures.

The problem could be rephrased as to determine A(j, k) = min{d | (d, j, k) admissible}
for given j and k.

Of course, the case k = 1 gives A(j,1) = j, which is exactly the ham-sandwich theorem.
It is well known (and easy) that any measure in R? admits an equipartition by two lines
and that any measure in R® admits an equipartition by three planes. Also, it is known that
in general a measure in R? could not be equipartitioned by d hyperplanes for d > 5. The
question whether any measure in R* could be equipartitioned by 4 hyperplanes is open and
serves as one of motivations for this work.

10



The known facts are mostly due to Edgar Ramos and could be described (except for
some special cases) by the inequalities:

2k_1 . cak—1
i < A(j, k) <27

We reduce the question to the topological one and then deal with it using the obstruction
theory and the cohomological index theory. We reduce the gap between the lower and upper
bound for A(j, k) by showing:

AT + 7, k) < 2Ma7t g

This upper bound is for r # 0 strictly better then the previous one and in the case
r = 29— 1 it equals the lower bound. We also obtain some special cases.

On combinatorial formulas for characteristic numbers
RoOBIN FORMAN

This talk is primarily a historical survey of mathematics developed by Euler, Gauf3, Bon-
net, Allendoerfer, Fenchel, Weil, Chern, Stiefel, Whitney, Pontrjagin, Thom, Hirzebruch,
Rohlin, Svari¢, Lievitt, Rourke, Cheeger, Gabrielov, Gelfand and Losik leading up to:

Problem. Find explicit locally-defined combinatorial formulas for the rational Pontrjagin
classes of a combinatorial manifold.

We will briefly discuss previous work on this question, particularly that by Gelfand and
MacPherson. We will then present the following theorem:

Theorem. Any real-valued locally defined combinatorial invariant of combinatorial mani-
folds is a sum of a multiple of the Fuler characteristic and a Pontrjagin number.

(This is related to some unpublished work of E. Y. Miller.)
Finally, we will present some partial results towards explicit formulas for such invariants.

Generalized triangulations of the n-gon
JAKOB JONSSON

Let k£ > 1 and n > 2k + 1, and let €, be the set of two-sets (edges) {i,j} such that
0<i<j<n—landk+1<j—1 <n—k—1. Two edges intersect if their representations as
open line segments in the (convex) n-gon intersect; the vertices in the n-gon are denoted as
0,1,...,n—11n (say) clockwise direction. For j > 1, a j-intersection is a set of j mutually
intersecting edges in €, ;. Let A, be the simplicial complex of edge sets o C €, not
containing any (k+ 1)-intersection. For example, A, ; is the boundary complex of the dual
polytope of the associahedron with one maximal face for each triangulation of the n-gon.
We show that A, ; is a piece-wise linear sphere; this has also been proved (at least for
k < 3) by A. Dress, V. Moulton, and S. Grunewald. Moreover, we demonstrate that the
number of maximal faces in A, is counted by a k X k determinant of Catalan numbers.

11



Many triangulated 3-spheres
JULIAN PFEIFLE
(joint work with Giinter M. Ziegler)

We construct 22" combinatorial types of triangulated 3-spheres on n vertices. Since
by a result of Goodman and Pollack (1986) there are no more than 29°&™) combinatorial
types of simplicial 4-polytopes, this proves that asymptotically, there are far more combi-
natorial types of triangulated 3-spheres than of simplicial 4-polytopes on n vertices. This
complements results of Kalai (1988), who had proved a similar statement about d-spheres
and (d + 1)-polytopes for fixed d > 4.

polymake software presentation
MICHAEL JOSWIG

Presentation of the software system polymake for the construction, analysis and visual-
ization of convex polytopes. See http://www.math.tu-berlin.de/polymake/

Friday, April 11, 2003

g- and h-polynomials of non-rational polytopes — recent progress
ToM BRADEN

The “toric” g and h-polynomials, defined and first studied by Stanley, generalize the
definition for simplicial complexes. In case the polytope has rational coefficients, it defines
a toric variety, and the coefficients of h (respectively g) are intersection cohomology (resp.
primitive intersection cohomology) Betti numbers of these varieties.

Karu has recently shown that a purely combinatorial construction of equivariant inter-
section cohomology defined by Barthel-Brasselet-Fieseler-Kaup and Bressler-Lunts satisfies
the Hard Lefschetz theorem. This is the key result in the computation of IH* for toric
varieties that resulted in the original definition of Stanley, and we can now show purely
combinatorially a number of results which were previously only known with the artificial
assumption of rationality. In particular, g and h have nonnegative coefficients, and we
have a lower bound gp > gp - gp/r coeflicient by coefficient (this was a conjecture of Kalai,
previously known for rational polytopes by our work with MacPherson).

Other applications of Karu’s result include a “polytopal Morse theory” which, given
a shelling of P, expresses hp as a sum of nonegative polynomials attached to each face,
and Koszul duality, which relates intersection cohomology and perverse sheaves between a
polytope P and its polar P*.

Partially ordered sets with Zs-action
MARK DE LONGUEVILLE

In the spirit of the recent combinatorial proof of the Kneser-Lovasz theorem by J. Ma-
tousek we discuss the notion of a Zs-index for partially ordered sets with a Zs-action.

12



Lower bounds for simplicial covers and triangulations of cubes
FrANCIS EDWARD SU
(joint work with Adam Bliss)

A simplicial cover of a convex polytope P is a collection of simplices such that (i) the
vertices of the simplices are chosen from vertices of P and (ii) the union of the simplices is
P. The simplices may overlap; if they do not the simplicial cover is a triangulation of P.

What is covering number of P, i.e., the minimal number of simplices needed for a
simplicial cover? While it is of interest in its own right, the covering number also gives
a lower bound for the size of the minimal triangulation of P (even triangulations with
extra vertices). This can in turn be bounded from below the pebble sets of the “polytopal
Sperner lemma” of De Loera, Peterson and Su (2002).

Our work establishes new lower bounds for the covering number of d-cubes, which im-
prove the bounds of Smith in all dimensions that we could calculate, up through d = 12.
We avoid the use of hyperbolic volume techniques and instead focus on examining the

Dimension Smith (2000) Bliss-Su (2003)
3 5 5
4 15 16
5 48 60
6 174 250
7 681 1,117
8 2,863 4,680
9 12,811 21,384

10 60,574 88,172
11 300,956 494,547
12 1,564,340 2,681,790
asymptotic bound
i ?)
d+1
2(d+1) 2

TABLE 1. Lower bounds for the covering number of the cube.

relationship between exterior faces of simplices in the cube and exterior faces of the cube.
This yields a linear program which is much smaller than that of Hughes and Anderson
(1996), and our results compare favourably with their bounds for vertex triangulations of
the cube. Continuing work includes the development of an asymptotic bound for our linear
program for large d.
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On Sylvester’s four point problem
EMo WELZL
(joint work with Laszl6 Lovasz, Katalin Vesztergombi, and Uli Wagner )

In 1864 J.J. Sylvester posed the problem of determining the probability of a random
4-gon to be convex; shortly after that, he noted that “This problem does not admit of a
determinate solution,” since the answer depends on the underlying distribution. So let u
be some (sufficiently generic) probability distribution in the plane, let Py, P, P, and P,
be i.i.d. points from p, and consider

s, = Prob(P;’s are in convex position).
W. Blaschke (1917) showed that if 4 is uniform in some convex domain, then
2/3 =sa <s,<so=1-35/(12r%) < 0.705,

where A and () stand for the uniform distribution in a triangle and circular disk, respec-
tively.
We are interested in s := inf, s, (over general sufficiently generic p) and show that

s>3/8+107°

(improving on a sequence of previous bounds, s > 0.328 by U. Wagner being the latest;
the best upper bound is s < 0.3807 by O. Aichholzer, F. Aurenhammer, and F. Krasser).
The problem relates to the minimum number ¢r(K,) of crossings in a generic straight line
embedding of the complete graph K, on n vertices via

lim ﬁ(K@/(Z) =s.
It is interesting to note that if we are not restricted to straight line edges, then K, can be
drawn with (3/8)(’}) + O(n®) crossings.

The result is derived via a relation on k-sets of an n-point set in the plane. We show
(and then use) that for any set S of n points in general position in the plane, there are at
least 3(’“'51) subsets of size at most k which can be separated from their complements in S
by a straight line (for k& < n/2).

A bound of s > 3/8 has been shown independently by S. Fernandez and B. M. Abrego.

Hyperbolic 3-manifolds with no Reebless foliation
JOHN SHARESHIAN
(joint work with Rachel Roberts and Melanie Stein)

A foliation of a 3-manifold M is a decomposition of M into surfaces (called “leaves”)
which is locally modelled on R? x R. A foliation is Reebless if it contains no torus leaf
T such that M\T has two connected components, at least one of which is decomposed
into planes by the foliation. The presence of a Reebless foliation in M provides significant
information about its topological structure and fundamental group.

We prove that infinitely many hyperbolic 3-manifolds admit no Reebless foliation, thereby
disproving a conjecture of W. Thurston. Our result is provided by showing that infinitely
many hyperbolic 3-manifolds have fundamental group which cannot act without a global
fixed point on any simply connected (not necessarily Hausdorff) 1-manifold.
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Bruhat intervals of length 4 in Weyl groups
AXEL HULTMAN

Combining theoretical arguments and computer calculations, we obtain all isomorphism
classes of intervals of length 4 in the Bruhat order on the Weyl groups Ay, By, Dy and F}.
It turns out that there are 24 of them (some of which are dual to each other). Work of
Dyer allows us to conclude that these are the only intervals of length 4 that can occur in
the Bruhat order on any Weyl group. We also determine the intervals that arise already
in the smaller classes of simply-laced Weyl groups and symmetric groups.

Torsion in the matching complex and chessboard complex
MICHELLE WACHS
(joint work with John Shareshian)

To every finite collection of graphs that is closed under removal of edges, one can as-
sociate an abstract simplicial complex whose faces are the edge sets of the graphs in the
collection. Graph complexes have provided an important link between combinatorics and
algebra, topology and geometry. Here we consider the simplicial complex associated with
the collection of subgraphs of a graph G that are partial matchings on the vertices of G. In
particular, we deal with the matching complex (G is a complete graph) and the chessboard
complex (G is a complete bipartite graph).

Topological properties of the matching complex were first examined by Bouc in connec-
tion with Quillen complexes, and topological properties of the chessboard complex were
first examined by Garst in connection with Tits coset complexes. Bjorner, Lovasz, Vrécica
and Zivaljevié established bounds on the connectivity of the matching complex and chess-
board complex and conjectured that these bounds are sharp. Computer data indicated that
the bottom nonvanishing integral homology (i.e., in the degree given by these bounds) has
the form Zj for some r > 0. In this paper we show that the conjecture is true, and moreover
that integral homology is indeed Zj.

Mixed fibre polytopes
PETER MCMULLEN

With a slight modification of the original definition by Billera and Sturmfels, it is shown
that the theory of fibre polytopes extends to one of mixed fibre polytopes. If the short
exact sequence

@%XLVLY—N@

consists of euclidean spaces, with
@ a linear isometric injection and ¥ orthogonal projection, for a polytope P in V define
its fibre polytope fib(P;®) by

fib(P; ®) := /Py'/ (P —y) NX)dy.
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It turns out that fib(P-; @) is a weakly continuous translation covariant valuation, which
immediately implies the existence of polynomial expansions. Further, there is induced a
natural (surjective) homomorphism from the space of tensor weights on polytopes in V
to the corresponding space of such weights on polytopes in X. Moreover, these homo-
morphisms compose in the correct way; this is in contrast to the situation of the fibre
polytope construction, which does not iterate as one would wish. Direct calculations then
explain that the general mized fibre polytope fib(Py, ..., Py;®) can be defined as the coef-
ficient of (m+1)!A\g - - - A, in the polynomial expansion of fib(AgPy+ - - - + Ay, Pry; @), where
Aoy -y A > 0and m :=dimY.

Edited by Arnold Wafimer and Giinter M. Ziegler
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