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Abstract. Kinetic equations are crucial to an adequate description of many
processes of scientific and industrial importance. In recent years there have
been intensified research activities in the field of numerical algorithms for
kinetic equations related to new areas of application. Typical gas flows in
micro- and nanomachines are in the rarefied regime. Thus the classical Boltz-
mann equation is often used to model such flows. Furthermore, the inelastic
Boltzmann equation describes low density flows of granular material. Finally,
flows of electrically charged particles are described by semiconductor trans-
port equations. There are significant numerical challenges related to these
applications. In low Mach number rarefied flows there is a very small signal-
to-noise ratio. Therefore, variance reduction techniques for the commonly
used Direct Simulation Monte Carlo method are needed. On the other hand,
deterministic algorithms become more competitive. The workshop brought
together leading experts from various fields to discuss recent approaches ad-
dressing the numerical challenges related to the novel applications mentioned
above.
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Introduction by the Organisers

The workshop Numerics for Kinetic Equations, organized by Irene Gamba (Austin,
USA), Sergej Rjasanow (Saarbrücken, Germany), and Wolfgang Wagner (Berlin,
Germany) was held November 16th – November 22nd, 2008. The meeting was
well attended with 15 participants (11 from Europe, 3 from USA, and 1 from
Japan). This workshop brought together researchers with various backgrounds:
mathematics, physics, chemistry, and engineering science. The interdisciplinarity
of the invited participants was essential because the numerical solution of kinetic
equations is characterized by a wide area of applications (rarefied gas dynamics,
modeling of semiconductors, plasma, or combustion). Furthermore, the strong
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coupling between different areas of science is needed to understand the complicated
and highly nonlinear nature of kinetic equations. The last decades have shown
an amazing development in the design of effective numerical methods for kinetic
equations describing processes in micro- and nanomachines. A particular example
is the Knudsen compressor - an energy efficient micro-scale pump with no moving
parts. Furthermore, the inelastic Boltzmann equation is more and more used in
applications. Finally, semiconductor transport models are still a challenge for
numerics.

In this mini-workshop, we have discussed recent mathematical and computa-
tional issues, mainly related to the so called “low Mach number” flows, from the
point of view of numerical efficiency and accuracy. When solving those problems
by the use of the Direct Simulation Monte Carlo method, one has to deal with a
small signal-to-noise ratio. Thus, due to statistical fluctuations, it is difficult to
compute the physical flow parameters (density, stream velocity, temperature, and,
especially, heat flux) with sufficient accuracy, so variance reduction methods are
desperately needed. On the other hand, deterministic algorithms do not exhibit
statistical fluctuations, and, therefore, may become competitive for slow flows.

The talks have been devoted to

• direct simulation Monte Carlo methods for kinetic equations, especially
for very slow flows close to equilibrium (Aoki, Garcia, Hadjiconstantinou,
Pareschi),

• modeling and numerical solution of the kinetic transport in semiconductors
(Degond, Gamba, Muscato),

• deterministic numerical methods for kinetic equations (Babovsky, Filbet,
Kirsch, Rjasanow, Russo),

• kinetic equations and numerics for reactive gas flows and combustion
(Kraft, Vikhansky).

Furthermore, three extended “round table” discussions were devoted to

• deviational particle methods for kinetic equations,
• stochastic fluctuations in Monte Carlo methods,
• benchmark problems for numerical methods.

These discussions were extremely useful for facilitating a clear understanding of
the main difficulties when applying stochastic and/or deterministic methods to
kinetic equations close to the hydrodynamic limit.

The participants appreciated the idea of the mini-workshops - to have not too
many talks, but instead plenty of time for intensive and detailed discussions. We
would strongly support further such workshops. Finally, we would like to thank
both the administration and the staff of the MFO for providing excellent working
conditions and creating a pleasant atmosphere.
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Abstracts

Slow flows of a vapor-gas mixture with large density and temperature
variations in the near-continuum regime

Kazuo Aoki

(joint work with Shigeru Takata, Shugo Yasuda, Carl-Johan T. Laneryd)

When a vapor of a substance is in contact with its condensed phase, evaporation
and condensation (or sublimation) take place on the interface between the vapor
and the condensed phase. If we try to describe flows of the vapor with evaporation
and/or condensation, we have to rely on kinetic theory even in the continuum
limit, since the vapor is not in local equilibrium at the interface. In other words,
even if the mean free path of the vapor molecules (or the Knudsen number based
on it) is very small, we cannot derive correct fluid dynamics by macroscopic and
phenomenological considerations. We can construct correct fluid-dynamic systems
for small Knudsen numbers (including the continuum limit) only by considering
the zero Knudsen number limit and its neighborhood on the basis of kinetic theory.

In this talk, we present some examples of the fluid-dynamic systems established
in this way. Although such systems had been derived some time ago for a single
component system composed of a vapor and its condensed phase [1, 2, 3, 4, 5],
their extension to multi-component systems was made rather recently. Here, we
focus on the fluid-dynamic system for a vapor in the presence of a noncondensable
gas (another component that neither evaporates nor condenses on the interface).
Starting from the Boltzmann equation for a binary mixture of gases and its kinetic
boundary conditions, we derive a system consisting of fluid-dynamic-type equa-
tions and their boundary conditions by a systematic asymptotic analysis for small
Knudsen numbers. The type of the fluid-dynamic system is different depending
on the amount of the noncondensable gas contained in the system.

When the amount of the noncondensable gas is of the same order of magnitude
as that of the vapor, the flow speed becomes slow, with Mach number being of the
order of the Knudsen number, and the fluid-dynamic-type equations describing
this flow contains non-Navier–Stokes terms originating from the thermal stress
and concentration stress. The boundary conditions for the fluid-dynamic-type
equations contain the velocity slip caused by the temperature gradient along the
interface as well as that caused by the concentration gradient there. This fluid-
dynamic system exhibits the ghost effect (the effect of an infinitesimal flow field on
other physical quantities, such as the temperature field) [4, 5, 6] in the continuum
limit. This case has been studied in [7, 8, 9, 10].

When the amount of the noncondensable gas is much smaller than that of the
vapor, strong evaporation and condensation may take place on the interface. The
fluid-dynamic equations in the continuum limit in this case are the compressible
Euler equations for the vapor, and the noncondensable gas, blown away by the
strong vapor flow, disappears from the bulk of the domain. However, it may
concentrate in a very thin layer at the interface where (strong) condensation is
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taking place and may have a large effect on the vapor flow through the boundary
conditions for the Euler equations. This case has been studied in [11, 12, 13, 14].

Restricting ourselves to the first case, we show the outline of the derivation of
the fluid-dynamic-type system, together with some numerical examples. The talk
is mainly based on the results included in [7, 8, 9, 10].
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Kinetic models on integer lattices and the numerical simulation of
micro flows

Hans Babovsky

The Boltzmann equation is an evolution equation for a density f(x, v) (x space

and v velocity) i.e. in full dimensionality an evolution problem in lR6. The Boltz-
mann collision operator is an integral operator of the form

C(f) =

∫

c∈R3

∫

S2

k(|v − c|,∠(v − c, η))(f(v′)f(w′) − f(v)f(w))dω(η)d3c(1)

We omit details and turn our attention to the inner integral of (1) which is an
integral over the surface of a ball through v with center c which is the midpoint
between the collision partners v and w. It is this integral which makes the collision
integral difficult to solve numerically, since balls and uniform grids match only
badly. (See [1] for the 2D case.) In the present work we present an approach
overcoming this problem.

Key point is the observation that it is the group structure of the automorphism
group of a regular lattice which gives rise to a meaningful kinetic model on lattices.
The proposed approach represents a discretization of the collision mechanics rather

than a discretization of the collision operator like the schemes represented in [2] and

is thus a completely alternative approach. However, as we will show it is capable
of resolving a couple of interesting features. By now we restrict to qualitative
studies. Quantitative comparisons will be obtained in near future.

Kinetic models on groups. Consider a finite multiplicative group G with
neutral element η and with subgroup H . Introduce the equivalence relation ∼ on
G, g ∼ g′ ⇔ gg′−1 ∈ H , and denote by [g] the equivalence class (right coset class)

related to g. G/ ∼ is the set of all equivalence classes. Given a density f ∈ lRG
+

on G, define ΠAf := Πg∈Af(g) for any subset A ⊆ G. We now define a collision
operator on G by

CGf(g) =
∑

[g′]∈G/∼

α[g′],[g](Π[g′ ]f − Π[g]f)(2)

with appropriate nonnegative coefficients α[g′],[g]. In order to assure invariance
of the collision operator with respect to the symmetries inherent in G, we require
that α[g′],[g] = α[g̃′],[g̃] whenever [g′g−1] = [g̃′g̃−1]. Furthermore, in order to achieve
microreversibility we assume α[g′],[g] = α[g],[g′].

Depending on the order |H | of H , CG is a linear operator (|H | = 1, i.e. H =
{η}), bilinear (|H | = 2, representing binary collisions), or multilinear (|H | ≥ 3).
In the case H = G, JG = 0. In the focus of our interest is of course |H | = 2 which
covers the case of two-particle interactions.

It is an easy matter to check that CG is mass preserving. Furthermore, CGf(g)=
CGf(g′) if g ∼ g′. Thus all other invariants are spanned by functions λ on G with
support on one of the equivalence classes [g] satisfying

∑
[g] λg′ = 0. Therefore a

straightforward argument proves that the set of collision invariants is a subspace
of lRG of dimension idxGH · (|H | − 1) + 1, where idxGH = |G|/|H | is the index
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of H . In particular, if H = {η, g} is of order 2, then besides mass conservation all
other invariants are given by (CGf)g′ − (CGf)gg′ = 0 ∀g′ ∈ G.

A Boltzmann equation on G is now given by

∂tfg = (CGf)g.(3)

Define the H-functional

Hf :=
∑

g

fg ln fg(4)

Following the usual arguments of kinetic theory, one realizes that the H-theorem
holds, i.e. that Hf(t) is monotonously decreasing for solutions of the Boltzmann
equation. This is a consequence of microreversibility which yields

∂tHf = 0.5
∑

A1∈G/∼

∑

A2∈G/∼

αA2,A1
(ΠA2

f − ΠA1
f) (ln ΠA1

f − ln ΠA2
f) ≤ 0.

Using the technique of Lagrange multipliers one can identify all equilibrium solu-
tions by minimizing Hf while leaving the conserved quantities invariant. Finally,
it is straightforward to check from the H-theorem that the collision operator lin-
earized around an equilibrium is negative semidefinite.

Kinetic models on integer lattices. Let

L = {

d∑

k=1

λkbk|λk ∈ Z} ⊂ lRd(5)

be the integer lattice on lRd spanned by d linearly independent normed vectors bk.
Furthermore, denote by OL the automorphism group leaving L invariant, i.e. the
group generated by all rotations and reflections R on lRd satisfying L = RL. Of
course, OL contains the point reflection −id, and thus H = {id,−id} is a subgroup
of OL. We can use the kinetic operator COL

on OL related to this subgroup to
define a collision operator on L as follows.

Given any c, v ∈ L, c 6= v, define the discrete ball

Bc,v := c+ OL(v − c) ⊂ L(6)

around c with v ∈ Bc,v. Keeping c, v fixed, we can identify every element g ∈ OL

with an element w = ψg ∈ Bc,v. Thus the kinetic operator COL
defined on

the group OL as described in the previous section induces in a natural way a
kinetic operator Cc,v on Bc,v. Its properties can be well derived from those of
COL

exploiting the structure of the pseudo inverse ψ† of ψ. A kinetic operator
on the whole lattice is then defined by summing up C :=

∑
c,v k(c, |v − c|)Cc,v

with an appropriate nonnegative function k. C inherits from COL
all the relevant

properties necessary for a kinetic theory, like H-theorem, the conservation laws,
Maxwellians as equilibrium solutions, and the negative semidefiniteness of the
linearized collision operator. However, one has to take care that there are no
artificial invariants. Moreover, the functions α and k may be used to adjust the
macroscopic transport coefficients.
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In three dimensions, two examples are the cartesian lattice Lcart with bk =
ek = k-th canonical unit vector, and the face-centered cubic (fcc) lattice Lfcc

with bk = (1, 1, 1)T − ek. Both have automorphism groups of order 48, see [3],
i.e. discrete balls containing (at most) 48 elements. For both, the only invariants
are mass, momenta and kinetic energy. A theoretical treatment of (a subgrid
of) the fcc lattice can be found in [4]. However, the approach presented in the
present work is much more general and transparent since its derivation is based on
a few fundamental principles of the underlying group structure. Examples in two
dimensions are again the cartesian lattice, and the hexagonal lattice introduced in
[5, 6]. As the only lattice out of the above mentioned examples it is the hexagonal
lattice which possesses an artificial invariant. However, this is suppressed when
supplementing the binary collision operator with a ternary component.

Numerical experiments. We have performed a couple of numerical experi-
ments demonstrating the applicability of the above approach for numerical pur-
poses. There are a number of problems related to micro channel flows which are
hard to resolve with Monte Carlo schemes since their effects are very small. Exam-
ples are the Knudsen paradox (see [7]), thermal creep and the Knudsen pump (see
[8]). Results with a 2D velocity model have been demonstrated in [9] showing that
these effects are well resolved. In addition, we have performed the Benchmark test
suggested for the workshop concerning the heat layer problem described in [10].
This problem is 1D in position space but 3D in velocity space. For this we used
a 141-velocity point lattice. The relevant quantity, heat flux, was within an error
bound of 2 per cent. The calculation time on a conventional laptop was seven
minutes which is much less than the time needed for alternative approaches.
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Asymptotic-Preserving schemes for fluid and kinetic models of
plasmas in quasi-neutral or large magnetic field regimes

Pierre Degond

In [2] (see also [1]), a new numerical discretization of the Euler-Poisson system
has been proposed. The Euler-Poisson system under consideration consists of the
isentropic Euler equations for the particle and momentum densities coupled with
the Poisson equation through a source term modeling the electrostatic force. In
dimensionless units, the coupling constant can be expressed in terms of a parameter
ε which represents the scaled Debye length. When ε is small, the coupling is
strong. In this situation, the particle density is constrained to be close to the
background density of the oppositely charged particle, which we suppose to be
uniform and equal to 1 in scaled units. The velocity then evolves according to the
incompressible Euler equation. The limit ε → 0 is called the quasineutral limit,
since the charge density almost vanishes identically. When two or more particle
species are considered, the limit ε → 0 leads to a more complex model usually
referred to in the physics literature as a quasineutral model. In the present work,
we restrict ourselves to the case of a single particle species as described above.

The scheme which has been proposed in [2] and [1] is ’Asymptotic Preserving’
in the quasineutral limit, which means that it becomes consistent with the limit
model when ε→ 0. The analysis of the stability properties of this scheme in a one-
dimensional framework has been performed in [3] where it has been shown that its
stability domain is independent of ε. This stability analysis is performed on the
Fourier transformed (with respect to the space variable) linearized system. The
stability property is more robust when a space-decentered scheme is used (which
brings in some numerical dissipation) rather than with a space-centered one. The
linearization is first analyzed about a zero mean velocity, and then about a non-
zero mean velocity. At the various stages of the analysis, the scheme is compared
with more classical schemes and its improved stability property is outlined. The
analysis of a fully discrete (in space and time) version of the scheme has been given
and some considerations about a model nonlinear problem, the Burgers-Poisson
problem, are also given.

The Euler-Poisson model is one of the most widely used fluid models in plasma
and semiconductor physics. It can be derived from a moment expansion of kinetic
models such as the Vlasov or Boltzmann Poisson equations supplemented with a
convenient closure assumption (see references above).

There are two important physical length and time scales associated with this
model: the Debye length and the electron plasma period. These two scales are
related one to each other by the thermal speed which is an order one quantity. We
are interested in the quasineutral regime where both parameters can be very small
compared with typical macroscopic length and time scales. A standard explicit
scheme must resolve these micro-scale phenomena in order to remain stable. The
satisfaction of these constraints requires huge computational resources which make
the use of explicit methods almost impracticable.
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Asymptotic-Preserving schemes are superior to the strategy consisting in cou-
pling quasineutral and non-quasineutral models through an interface. Indeed,
a specific treatment is needed to connect the quasineutral model with a non
quasineutral model across the interface. Such situations arise in sheath problems.
In such problems, one has often to deal with a dynamic interface the tracking
of which gives rise to a complex numerical problem. Additionally, the interface
dynamics is not a priori known, and must either be derived from an asymptotic
analysis or must be inferred from physical considerations. In both cases, great care
is required to ensure that the proper dynamics is implemented. Another problem
is related to the fact that the quasineutral to non-quasineutral transition may not
be a sharp transition, but rather a fairly diffuse one, and its approximation into a
sharp interface may actually lead to some unphysical behavior.

For these reasons, it is highly desirable to develop numerical methods which
automatically shift from a quasineutral to a non-quasineutral model across the
transition region when such a transition is encountered. The scheme proposed in
[2] serves this purpose. Additionally, it has been shown that the numerical cost
of this scheme is the same as the standard strategy (we refer the reader to [2] for
more detail).

This strategy has been applied to the Vlasov-Poisson problem, discretized with
particle-in-cell methods [4, 5] or by Eulerian methods [6], to the Euler-Maxwell
model [7] and to the Euler equations subject to a Lorentz force (Euler-Lorentz
model) with a large magnetic field (drift-fluid limit) in [8].
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Solving the Boltzmann equation in N log2 N : numerical simulations
and analysis.

Francis Filbet

The development of accurate and fast algorithms for the Boltzmann collision
integral and their analysis represent a challenging problem in scientific computing
and numerical analysis. Recently, several works were devoted to the derivation
of spectrally accurate schemes for the Boltzmann equation. These algorithms are
implemented for the solution of the Boltzmann equation in dimension 2 and 3,
first for homogeneous solutions, then for general non homogeneous solutions. The
results are compared to explicit solutions, when available, and to Monte-Carlo
methods. In particular, the computational cost and accuracy are compared to
those of Monte-Carlo methods as well as to those of previous spectral methods.
Finally, for inhomogeneous solutions, we take advantage of the great computa-
tional efficiency of the method to show an oscillation phenomenon of the entropy
functional in the trend to equilibrium, which was suggested in the work Desvillettes
& Villani.

Very few works were concerned with the stability analysis of the method. In
particular there was no result of stability except when the method is modified
in order to enforce the positivity preservation, which destroys the spectral accu-
racy. In this paper we propose a new method to study the stability of homoge-
neous Boltzmann equations perturbed by smoothed balanced operators which do
not preserve positivity of the distribution. This method takes advantage of the
“spreading” property of the collision, together with estimates on regularity and
entropy production. As an application we prove stability and convergence of spec-
tral methods for the Boltzmann equation, when the discretization parameter is
large enough (with explicit bound).
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Deterministic solvers for nonlinear Boltzmann equations and
Boltzmann Poisson systems

Irene M. Gamba

During this Oberwolfach workshop, we presented different deterministic numerical
schemes to to solve kinetic transport models associated to collisional theory or
non-linear interactions given by the The Boltzmann transport equation (BTE).
This is an integro-differential transport equation that describes the evolution of
a single point probability distribution function f(x, v, t) defined as the proba-
bility of finding a particle at a position x with a velocity (kinetic) v at a time
t. The mathematical and computational difficulties associated to the Boltzmann
equation are due to the non local - non linear nature of the integral operator
accounting for their interactions and or the coupling to the Poisson equation for
charges accounting for long range interactions. The integral form, called the colli-
sion operator, is usually modeled as a linear or multi-linear form in d-dimensional
velocity space and the unit sphere Sd−1, accounting for the velocity interaction law
that characterizes the model, as well as by interaction rates as described above.
Two particular approaches to two different problems where discussed. The first
one is a Discontinuous Galerkin (DG) scheme applied to deterministic computa-
tions of the transients for the Boltzmann-Poisson system describing energy band
electron transport in semiconductor devices, where the collisional term models
optical-phonon interactions that become dominant under strong energetic condi-
tions corresponding to nano-scale active regions under relative strong applied bias.
The second approach is based on a spectral methods with Lagrangian constrains
to secure conservation applied to the non-linear Boltzmann equation for binary
conservative or dissipative collisions. In the first case, the evolution of the elec-
tron distribution function f(x, v, t) in semiconducting materials is governed by the
Boltzmann transport equation (BTE) [19, 21, 24], given by the balance of the ma-
terial transport derivative to a linear integral operator that is mass preserving and
non-expansive. The material transport accounts also for an acceleration term due
to the electric field generates by the negative gradient of the potential balancing
the The Poisson equation of charges. The proposed deterministic numerical tech-
nique for the computation of Boltzmann-Poisson system [8, 9, 10] is a finite element
method using discontinuous piecewise polynomials as basis functions on unstruc-
tured meshes [11, 17, 18]. The transport equation was transform into energy band
based spherical coordinates that allow for a localization of collisional integrals
where the scattering cross sections are singular measures localized at finite shift of
the band energy . It is applied to simulate hot electron transport in bulk silicon,
in a silicon n+-n-n+ diode and in a double gated 12nm MOSFET under strong
bias generating a relative strong force field that develops strongly non-Maxwellian
statistical states. Additionally, the obtained results were compared to those of a
high order WENO scheme simulation as well as Direct Simulations by Monte Carlo
(DSMC) methods [5, 6, 7] and [13]. The proposed method for the second problem
consists in a new spectral Lagrangian based deterministic solver for the non-linear
Boltzmann Transport Equation (BTE) in d-dimensions for variable hard sphere
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(VHS) collision kernels with conservative or non-conservative binary interactions
[14]. The method is based on symmetries of the Fourier transform of the collision
integral, where the complexity in its computation is reduced to a separate integral
over the unit sphere Sd−1. The conservation of moments is enforced by Lagrangian
constraints. The resulting scheme, implemented in free space, is very versatile and
adjusts in a very simple manner to several cases that involve energy dissipation
due to local micro-reversibility (inelastic interactions) or elastic models of slowing
down process. Our simulations are benchmarked with available exact self-similar
solutions, exact moment equations and analytical estimates for the homogeneous
Boltzmann equation, both for elastic and inelastic VHS interactions. Benchmark-
ing of the simulations involves the selection of a time self-similar rescaling of the
numerical distribution function which is performed using the continuous spectrum
of the equation for Maxwell molecules as studied first in [1] and generalized to a
wide range of related models in [2]. The method also produces accurate results in
the case of inelastic diffusive Boltzmann equations for hard spheres (inelastic col-
lisions under thermal bath), where overpopulated non-Gaussian exponential tails
have been conjectured in computations by stochastic methods [23, 12, 22, 16] and
rigorously proven in [15, 4, 3]. In a microscopic description of a rarefied gas, all
particles are assumed to be traveling in a straight line with a fixed velocity until
they enter into a collision. In such dilute flows, binary collisions are often assumed
to be the main mechanism of particle interactions. The statistical effect of such
collisions can be modeled by collision terms of the Boltzmann or Enskog transport
equation type, where the kinetic dynamics of the gas are subject to the molecular
chaos assumption. The nature of these interactions could be elastic, inelastic or
coalescing and collision rates may either be isotropic or anisotropic depending on a
function of the scattering angle. Usually these interactions are described in terms
of inter-particle potentials and their interaction rate is modeled as a product of
power laws for the relative speed and the differential cross (angular) section. When
such rates are independent of the relative speed, the interaction is called of Maxwell
type and when the rates depends on the relative speed they are modeled by a power
law with exponents depending on those of the intramolecular potentials and the
space dimension as well rates proportional to positive powers of the relative speed
between zero and one are called variable hard potentials interactions, and when
the rate is proportional to the relative speed, it is referred to as hard spheres (HS).
Our numerical study is performed for several examples of well-established behavior
associated to solutions of energy dissipative space homogeneous collisional models
under heating sources that secure existence of stationary states with positive and
finite energy. We shall consider heating sources corresponding to randomly heated
inelastic particles in a heat bath, with and without friction; elastic or inelastic col-
lisional forms with anti-divergence terms due to dynamically (self-similar) energy
scaled solutions [15, 4] and a particularly interesting example of inelastic collisions
added to a slow down linear process that can be derived as a weakly coupled heavy
and light binary mixture. For this particular case, when Maxwell type interactions
are considered, it is shown that [1, 3, 2], on one hand dynamically energy scaled
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solutions exist, and, for a particular choice of parameters, they have a close, ex-
plicit formula in Fourier space, and their corresponding anti Fourier transform in
probability space exhibits a singularity at the origin and power law high energy
tails, while remaining integrable with finite energy. In addition, they are stable
within a large class of initial states. We used this particular example to bench-
mark our computations by spectral methods by comparing the dynamically scaled
computed solutions to the explicit one self-similar one.
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Fluctuations in Direct Simulation Monte Carlo

Alejandro L. Garcia

Direct Simulation Monte Carlo (DSMC) is the dominant numerical tool for the
calculation of rarefied gas flows. [1] In DSMC the fluid is represented by parti-
cles and thus the hydrodynamic variables, such as density and temperature, have
local fluctuations. Note that these statistical variations have nothing to do with
the Monte Carlo nature of the DSMC algorithm but rather its representation of
the physical state by particles; deterministic particle algorithms, such as Molecu-
lar Dynamics, have similar statistics. Hydrodynamic fluctuations are correlated in
time and, out of equilibrium, also in space; their properties at and near equilibrium
are relatively well-known. [2, 3] In problems where the quantities of interest are
mean flow values, such as mean fluid velocity, the presence of hydrodynamic fluc-
tuations in DSMC is considered an annoyance because statistical averages must be
taken to determine those quantities accurately. On the other hand, for problems in
which fluctuations are essential to the representation of the phenomena of interest
(e.g., Brownian motion), the fact that DSMC correctly simulates fluctuations at
the hydrodynamic level is a beneficial feature of the method.

The talk was divided into two parts, fluctuations in DSMC as annoyances and
as features. The fact that fluctuations can be an annoyance is illustrated by the
fact that the statistical error in the fluid velocity varies with the Mach number,
Ma, such that for a given level of accuracy (e.g., one percent error) the number
of statistical samples goes as Ma−2. [4] This “signal-to-noise” problem for DSMC
is well-known and is most prevalent in low-speed flows, such as those found in
MEMS. [5]
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Two other examples where fluctuations produce undesirable effects were de-
scribed in the talk. The first was the fact that some proposed variants of DSMC,
in which the algorithm is modified in an effort to reduce statistical variance, may
introduce statistical biases. For example, if the cell volume, Vc, is adapted to
produce approximately a constant number of particles per cell, as in [6], then cell
volume is now a random variable. In standard DSMC the number of collisions
attempted in a cell during a time step ∆t is computed as,

(1)
Nc(Nc − 1)max{σvr}∆t

2Vc
,

where Nc is the number of particles in the cell, σ is the cross-section, and vr the
relative speed. When Vc is constant this expression gives the correct equilibrium
collision rate, even for Nc < 1, since 〈Nc(Nc−1)〉 = 〈Nc〉

2 and attempted collisions
are accepted with probability σvr/max{σvr}. However, when Vc is a random
variable the collision rate is biased by the fact that 〈1/Vc〉 6= 1/〈Vc〉. For example,
if the cell volume varies such that Nc is held fixed then the collision rate is lowered
by a factor of approximately 1 − 〈Nc〉

−2; for an average of Nc = 7 particles per
cell this results in a reduction of about 2%. If one replaces Nc(Nc − 1) with N2

c in
(1) the bias is even worse, with the collision rate increasing by a factor of about
1 + 〈Nc〉

−1 (about 14% error for 7 particles per cell). [7]
In the second example of fluctuations as annoyances, we consider the measure-

ment of hydrodynamic variables, such as fluid velocity and temperature. One
may measure an instantaneous value for fluid velocity, u, in a cell as the average
velocity of the particles; equivalently, u = J/M where J is the total momen-
tum of the particles and M is the total mass in the cell. However, the unbiased
value of fluid velocity is not the average instantaneous fluid velocity but rather
〈u〉 = 〈J〉/〈M〉 6= 〈J/M〉. The origin of this bias is the correlation of density and
momentum fluctuations that arises in non-equilibrium states. [8] A similar bias
occurs for temperature (and other hydrodynamic variables) so the unbiased mean
temperature is computed as 〈T 〉 = T (〈M〉, 〈J〉, 〈E〉) 6= 〈T (M,J, E)〉, where E is
the total energy of particles in a cell. [9]

The second part of the talk described scenarios in which the phenomena of
interest depended on hydrodynamic fluctuations. One example is Brownian mo-
tion, in particular in non-equilibrium problems such as the adiabatic piston [10]
and the Triangula Brownian motor [11]. DSMC is useful for simulations of these
systems because when each simulation particle represents a single molecule in the
physical system the correct equilibrium fluctuation variances are obtained simply
because the number of particles in a cell is Poisson distributed while the veloc-
ity distribution function is Maxwellian. Out of equilibrium the primary effect on
fluctuations is the correlation created by the breaking of symmetries and the cor-
responding propagation of this asymmetry by hydrodynamics. For example, for a
fluid subjected to a temperature gradient fluctuations of density and momentum
are spatially correlated since sound waves are produced and propagate differently
along the gradient compared to perpendicular or anti-parallel to the gradient. [3]
Thus the main ingredients that lead to correct non-equilibrium fluctuations are
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correct equilibrium (and local equilibrium) fluctuations plus hydrodynamic trans-
port.

DSMC is also useful for validating other algorithms for calculating hydrody-
namic fluctuations. To incorporate thermal fluctuations into macroscopic hy-
drodynamics, Landau and Lifshitz introduced an extended form of the Navier-
Stokes equations by adding stochastic flux terms [12], which we may write as
∂U/∂t+∇·H = ∇·D+∇·S where U = (ρ, j, e) are the densities of the conserved
variables (mass, momentum, and energy), while H, D, and S are the hyperbolic,
dissipative, and stochastic fluxes, respectively. Recently, we introduced a cen-
tered scheme for the LLNS equations based on a third-order Runge-Kutta (RK3)
temporal integrator combined with interpolation schemes designed to preserve
fluctuations. [13] This scheme was validated by comparison with DSMC results
for the spatial and temporal spectrum of equilibrium and non-equilibrium fluc-
tuations. We have also found that in Algorithm Refinement hybrids [14], which
couple a DSMC simulation to a PDE calculation, the fluctuation spectrum in the
DSMC region is only correct when the stochastic fluxes are included in the PDE
algorithm. [15]

Finally, a variety of DSMC variants have been proposed to treat non-ideal
fluids, such as dense gases and liquids. In general, the fluctuations produced by
these variants are thermodynamically inconsistent in that the variance of density
fluctuations does not agree with the compressibility predicted from the equation
of state. Recently however, a new variant called Stochastic Hard Sphere Dynamics
(SHSD) has been developed that produces consistent fluctuations. [16] The only
current limitation of SHSD is that it is limited to dense fluids described by a linear
core potential.
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Efficient Solutions of the Boltzmann equation using variance-reduced
Monte Carlo formulations

Nicolas G. Hadjiconstantinou

We present and discuss efficient variance-reduced Monte Carlo methods for solving
the Boltzmann equation in the limit of small deviation from equilibrium; in this
limit traditional particle methods, such as direct simulation Monte Carlo (DSMC),
become very inefficient due to the slow convergence associated with the statistical
sampling of hydrodynamic properties. The limit of small deviation from equilib-
rium has recently received significant attention in connection to small-scale science
and engineering applications.

In the formulations presented here, the variance reduction is achieved by simu-
lating only the deviation from equilibrium [1]. We discuss both pde-based [2] and
particle-based methods [3], but focus on the latter due to their relative simplicity,
low memory requirements, and robust capture of discontinuities in the distribution
function.

We show that in the limit of small deviation from equilibrium of interest here
“deviational” formulations result in relative statistical uncertainty–ratio of the
standard deviation in a hydrodynamic quantity to the mean value of the same
quantity–levels that are independent of the magnitude of the deviation from equi-
librium. As a result, arbitrarily small deviations from equilibrium can be simulated
at a cost that is independent of the magnitude of the latter. Moreover, under some
cases, the magnitude of the variance reduction is such that significant computa-
tional savings compared to standard particle methods for solving the Boltzmann
equation (e.g. DSMC) can be realized even for deviations from equilibrium char-
acteristic of weakly non-linear problems [3].

Particular emphasis will be given on a newly-developed particle method known
as low-variance deviational simulation Monte Carlo (LVDSMC), which differs from
DSMC only in ways necessary for simulating the deviation from equilibrium. As we
show, LVDSMC retains the majority of desirable features associated with DSMC,
while allowing the simulation of arbitrarily small deviations from equilibrium.
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The Fourier transformed inelastic Boltzmann equation

Ralf Kirsch

(joint work with Sergej Rjasanow)

We consider the diffusively driven Boltzmann equation for inelastic particle inter-
actions. In the spatially homogeneous case, the corresponding initial value problem
reads

(1) ft(t, v) − β∆vf(t, v) = Qα(f, f)(t, v) , f(0, v) = f0(v) ,

where the unknown distribution function f depends on time t and velocity v ∈ R
3

only. The parameter β > 0 describes the intensity of the diffusive forcing and the
weak form of the bilinear collision operator Qα(·, ·) is given by

∫

R3

Qα(f, g)(v)ϕ(v) dv =

1

2

∫

R3

∫

R3

f(v) g(w)

∫

S2

B(v, w, e)
(
ϕ(v′α) + ϕ(w′

α) − ϕ(v) − ϕ(w)
)
de dw dv ,

(2)

with ϕ being a suitable test funtion and the collision kernelB describing the details
of the particle interaction. The velocity transformation is defined by

v′α =
1

2
(v + w) +

1 − α

4
(v − w) +

1 + α

4
|v − w| e ,

w′
α =

1

2
(v + w) −

1 − α

4
(v − w) −

1 + α

4
|v − w| e ,

where e ∈ S2 is a unit vector. The elasticity parameter α ∈ [0, 1] is commonly
called restitution coefficient and the case of elastic collisions corresponds to the
special choice α = 1. In order to obtain explicit expressions, we assume that the
restitution coefficient is constant and that the particle interaction is described by
the variable hard sphere model (VHS):

B(v, w, e) = Cλ |v − w|λ , 0 ≤ λ ≤ 1 , Cλ > 0 .
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Our goal is to rewrite equation (1) by use of the Fourier transform,

ϕ̂(ξ) = Fv→ξ(ϕ) =

∫

R3

ϕ(v) ei(v,ξ)dv ,

ϕ(v) = F−1
ξ→v(ϕ̂) =

1

(2π)3

∫

R3

ϕ̂(ξ) e−i(v,ξ) dξ ,

in the sense of tempered distributions. To this end, we consider the weak formu-
lation of (1) with the test function ϕ being shifted by some arbitrary z ∈ R

3 and
supposed to belong to the Schwartz space S of rapidly decreasing and infinitely
smooth functions:

(3) ∀ϕ ∈ S :
(
ft − β∆vf−Qα(f, f) , ϕ(z−·)

)
= 0 .

The main part of the reformulation is to express the shifted weak form of the
operator (2) in terms of the Fourier transforms of f and g. It turns out that

(4)
(
Qα(f, g), ϕ(z − ·)

)
= F−1

ξ→z

(
ϕ̂(·)

∫

R3

f̂
( · + η

2

)
ĝ
( · − η

2

)
T̂λ,α(·, η) dη

)
(z) ,

where the kernel is given by

T̂λ,α(ξ, η) =

2λ−1 Cλ

(2π)3

∫∫

S2R3

|y|λei(y,η)
(
e−i(yα,e,ξ) + ei(yα,e,ξ) − e−i(y,ξ) − ei(y,ξ)

)
dy de ,

(5)

with the short notation yα,e =
1

2

(
(1 − α)y + (1 + α) |y| e

)
.

Combining (4) with (3), we see that the transformed equation reads

(6) f̂t(t, ξ) + β|ξ|2 f̂(t, ξ) =

∫

R3

f̂
(
t,
ξ + η

2

)
f̂
(
t,
ξ − η

2

)
T̂λ,α(ξ, η) dη .

The mass density ρ, momentum m and energy E associated to the distribution
function f are expressed in the Fourier representation as follows:

ρ(t) = f̂(t, 0) , m(t) = i∇f̂(t, 0) , E(t) = −
1

2
∆f̂(t, 0) .

It is easily seen that T̂λ,α(0, η) ≡ 0 and ∇ξT̂λ,α(0, η) ≡ 0, so it follows from (6) that
the mass density and momentum are conserved quantities. Since we consider the
spatially homogeneous equation, we can suppose without loss of generality that
ρ(t) ≡ 1 and m(t) ≡ 0. With these assumptions, we find for the time evolution of
the energy:

(7)
dE

dt
− 3β = −

1

2

∫

R3

f̂
(
t,
η

2

)
f̂
(
t,−

η

2

)
∆ξT̂λ,α(0, η) dη .
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The explicit form of the Laplacian in the integral can be computed, it is

−
1

2
∆ξT̂λ,α(0, η) =





2λ−1 Cλ

π
sin
(πλ

2

)
Γ(λ+ 4)(α2 − 1)|η|

−(λ+5)
, λ ∈ (0, 1]

C0

4
(α2 − 1)

δ
′′′

(|η|)

|η|
, λ = 0

.

Inserting the expression for Maxwellian molecules (λ = 0) into (7), we obtain

d

dt
E(t) = 3β − C0π(1 − α2)E(t) ,

and find

E(t) =
3β

C0 π (1 − α2)

(
1 − e−C0π(1−α2) t

)
+ E0 e−C0π(1−α2) t .

Usually, the dissipation of the temperature is considered, which means essentially
the same in the spatially homogeneous case. In this sense, we recovered here a
well-known result for Maxwellian molecules (see e.g. [2] and the references therein).

The integral kernel T̂λ,α in (5) can be computed explicitly: For 0 < λ ≤ 1, it is
given by

T̂λ,α(ξ, η) = −
2λCλ

π
Γ(λ+ 1) sin

(πλ
2

)
×

(∣∣∣ 1+α
2 |ξ| −

∣∣η + 1−α
2 ξ
∣∣
∣∣∣
−λ−1

−
∣∣∣1+α

2 |ξ| +
∣∣η + 1−α

2 ξ
∣∣
∣∣∣
−λ−1

(1+α)|ξ||η + 1−α
2 ξ|

+

∣∣∣ 1+α
2 |ξ| −

∣∣η − 1−α
2 ξ
∣∣
∣∣∣
−λ−1

−
∣∣∣ 1+α

2 |ξ| +
∣∣η − 1−α

2 ξ
∣∣
∣∣∣
−λ−1

(1+α)|ξ| |η − 1−α
2 ξ|

− (λ+ 1)
( 1

|η − ξ|λ+3
+

1

|η + ξ|λ+3

))
,

and in the case of Maxwellian molecules, it reads

T̂0,α(ξ, η) = C0

(
δ
(

1+α
2 |ξ| −

∣∣η − 1−α
2 ξ
∣∣
)

+ δ
(

1+α
2 |ξ| +

∣∣η − 1−α
2 ξ
∣∣
)

(1+α)|ξ|
∣∣η − 1−α

2 ξ
∣∣

+
δ
(

1+α
2 |ξ| −

∣∣η + 1−α
2 ξ
∣∣
)

+ δ
(

1+α
2 |ξ| +

∣∣η + 1−α
2 ξ
∣∣
)

(1+α)|ξ|
∣∣η + 1−α

2 ξ
∣∣ − 2π

(
δ(η − ξ) + δ(η + ξ)

)
)
.
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Inserting the last expression into (6) with β = 0, we find the inelastic Boltzmann
equation for Maxwellian molecules in the same form as in [1]:

f̂t(t, ξ) = C0

(∫

S2

f̂
(
t,

(3 − α)ξ + (1 + α)|ξ|e

4

)
f̂
(
t,

(1 + α)ξ − (1 + α)|ξ|e

4

)
de

− 4πf̂(t, ξ) f̂(t, 0)

)

As expected, the expressions for T̂λ,α coincide for α = 1 with the corresponding
kernels previously computed in the case of elastic collisions (see [3]).
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Kinetic models for a more detailed understanding of soot formation
and their application to internal combustion engines

Markus Kraft

(joint work with Matthew S. Celnik, Markus Sander, Abhijeet Raj, Richard H.
West, Sebastian Mosbach)

1. Overview

We present a detailed model for soot which takes the chemical and structural
properties of an individual particle into account. The model is formulated in
terms of a kinetic equation which in turn is approximated by a stochastic par-
ticle system. The type space of a stochastic particle includes information of the
chemical composition of an individual soot particle. This is achieved by propos-
ing an aromatic site model for soot particles which incorporates detailed chemical
information about a soot particle’s reactive sites into the computationally effi-
cient site-counting model. This information is combined with a primary-particle
aggregate model which accounts for the fractal structure of soot particles. The
Aromatic Site Counting - Primary Particle (ARS-SC-PP) model is used to sim-
ulate soot formation in a laminar premixed flame and in an internal combustion
engine, the latter being achieved by incorporating the detailed soot model into a
Stochastic Reactor Model previously used for engine simulations. Furthermore, a
methodology is proposed to calculate the drag and thermophoretic force acting on
soot particles using kinetic schemes to obtain a functional expression for particle
diffusion and thermophoretic velocity.
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2. A kinetic equation for soot particle population dynamics

In the following we develop a mathematical framework which incorporates all the
models described above. The classification is based on the one presented in [1, 2, 3]
and is slightly extended.

We assume that:

• Individual soot particles may be completely described by elements of some
type space E on which addition corresponding to coagulation is defined.

• The soot particle population is described at time t by the number n (t, x)
per unit volume of particles of type x ∈ E.

• n evolves according to the discrete Smoluchowski coagulation equation:

(1)
d

dt
n (t, x) =

(
Kt (x) +

∑

l∈U

S
(l)
t (x)

)
(
n (t, ·)

)
+ I (t, x) .

In these definitions we make the implicit assumption that E is countable so
that summations are meaningful. This assumption is common in the literature
but not essential and can be removed by replacing the sums with integrals. The
(time dependent and non-linear) coagulation operator K is then defined by

Kt (x) (n (t, ·)) =
1

2

∑

y,z∈E:y+z=x

Kt (y, z)n (t, y)n (t, z)

−
∑

y∈E

Kt (x, y)n (t, x)n (t, y) .
(2)

The first sum represents coagulation to form particles of type x and the second
loss of particles of type x due to coagulation. Kt (x, y) defines a map from the
concentrations of particles of types x and y to their coagulation rate at time t
given by Kt (x, y)n (t, x)n (t, y). K is known as the coagulation kernel.
Particle reactions, PAH condensation, and particle restructuring which

only involve one physical particle at a time are described by the linear operator S
defined by

(3) S
(l)
t (x) (n (t, ·)) =

∑

y∈E

βt (y) P

(
g(l) (y) = x

)
n (t, y) − β

(l)
t (x)n (t, x) ,

where l ∈ U . U is an index set for a process or a type of event which is either one
element of a set of chemical reactions between the surrounding gasphase and a
particle, or the condensation of a PAH at a particle’s surface, or the restructuring

of a particle due to inter molecular forces e.g. sintering. β
(l)
t (x) is the rate at

which a particle of type x undergoes the change of index l at time t. g(l) (x) is the
result of a particle of type x undergoing an event of index l. If a surface reaction
removes a particle from the population the function will take the special value 0 in
E. We allow for g(l) to be a random function. Note in the deterministic case the
probability P in (3) reduces to an indicator function. For example, in the case of x
describing the number of monomers in a particle then the addition of a monomer
is given by g(y) = y + 1.
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The Particle inception I (t, x) is the rate at which particles of type x enter
the system at time t.

As boundary conditions general we will use n (0, x) = n0(x) for all x ∈ E .
The typespace E is described in detail in reference [5]. The numerical treatment

employs the linear process deferment and an operator splitting technique described
in references [2, 4].

We have successfully applied this detailed population balance model in order
to simulate the formation of soot in internal combustion engines [6]. This
work made it possible for the first time to investigate numerically details of the
morphology as well as the chemical composition of complex soot aggregates as
they are formed in engine combustion.
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Direct Simulation Monte Carlo for semiconductors

Orazio Muscato

(joint work with Wolfgang Wagner and Vincenza Di Stefano)

The combination of a statistical solution of the Boltzmann transport equation
(BTE) and a self-consistent solution of the Poisson equation continues to gain pop-
ularity as a viable approach to submicrometric device simulation. In contrast to
other simulation tools, like drift-diffusion or hydrodynamic models, which involve
the solution of coupled systems of partial differential equations, the Boltzmann
equation is treated by replacing the distribution function with a representative set
of particles. This Monte Carlo approach is a useful tool, since it permits particular
physical simulations unattainable in experiments, or even investigations of nonex-
istent materials in order to emphasize special features of the phenomenon under
study. It provides an accurate description of carrier transport phenomena because
various scattering mechanisms and band structure models are taken into account.



2968 Oberwolfach Report 52/2008

The Direct Simulation Monte Carlo (DSMC) mimics, inside the device, the sto-
chastic particle system of the form

(
xi(t), ki(t)

)
, i = 1, . . . , N , t ≥ 0 ,

where xi, ki are respectively the i-th electron position and wave-vector. The par-
ticles move according to Newton’s equations of motion

d

dt
xi(t) = v(ki(t)) ,

d

dt
ki(t) = −

q

~
Ẽ(xi(t)) .

until they suffer a scattering. In the previous formula Ẽ is the electric field, whose
electric potential Φ satisfies the Poisson equation

ǫ∆xΦ(t, x) = q [n(t, x) +NDop(x)] ,

where n is the electron density and NDop denotes the doping density.
In the simulation a time step ∆t is fixed, during which the electric field is kept fixed;
the particles are moved and scattered independently of each other. At the end of
the time step, the electric field is recalculated according to the density provided
by the system. This procedure introduces a systematic error called splitting error,
which depends on ∆t. Moreover, the time step has a physical limitation: in fact
in order to avoid plasma oscillations, it must be chosen considerably smaller than
the inverse of the frequency plasma (which depends on the doping and is order
of 0.1 ps). In this way, we obtain a numerical algorithm for solving the BTE in
the sense that functionals of the BTE solution are approximated (as N → ∞ and
∆t → 0) by averages over the particle system. The stochasticity is introduced in
the duration of the free-flight (i.e. the time interval in which the electron does not
suffer a scattering), and in the choice of the scattering mechanism. In the following
we shall consider the quasi parabolic band approximation, and the electron-phonon
interactions (acoustic and optical), which for silicon, at room temperature, are the
main scattering mechanisms [1].
Since the scattering process is Markovian, the distribution function of the random
scattering time τi of particle i is

Prob(τi < s) = 1 − exp

(
−

∫ s

0

λ(ki(t)) dt

)
.

According to the inverse transform method, the random scattering time is gener-
ated by solving the equation

∫ τi

0

λ(ki(t)) dt = − log u ,(1)

where u ∈ [0, 1] is a uniform random number. If (1) does not have a solution

τi ∈ [0,∆t] ,
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then the particle i does not scatter during the time interval [0,∆t] . This happens
with probability

Prob(τi ≥ ∆t) = exp

(
−

∫ ∆t

0

λ(ki(t)) dt

)
.(2)

However, the integral on the left-hand side of (1) cannot be calculated analytically
except in some trivial cases (e.g. if λ is constant). There are two different ways of
dealing with the problem of generating scattering times according to (1), the Self
Scattering Technique (SST) and the Constant Time Technique (CTT). In the SST
a fictitious scattering is introduced [1]. Whenever the self scattering is selected as
the collision mechanism, nothing happens to the particle which maintains, after
the scattering, the same energy and momentum it had before. The self scattering
does not alter the statistical distribution of the real scattering events, but the
(artificially increased) total scattering rate changes and consequently the CPU
time. The simplest SST algorithm is the Constant Gamma. Let Γ be a number
greater then the largest scattering rate possible in the simulation, i.e.

Γ ≥ max
ki∈Ω

λ(ki) .

When introducing the self scattering rate Γ − λ(ki) , the total scattering rate
becomes constant and the scattering time is obtained from (1) as

τi = −
logu

Γ
.(3)

In order to reduce the number of self scattering events the Piece-wise Constant
Gamma and the Individual Gamma algorithms have been introduced at the ex-
pense of a more programming complexity. In the CTT [2] each particle is moved
over a time step ∆tsc, and then, by using an approximation of eq. (2) (which
introduces an extra systematic error), the scattering is checked.
In general the error of the DSMC algorithms consists of two components, the
systematic error (wrong expectation) and the statistical error (fluctuating estimate
of expectation). Two numerical parameters are involved, the particle number N
and the time step ∆t . The particle number influences both the systematic and
statistical errors, whereas the time step only the systematic error. A preliminary
study of the splitting error has been performed, in the bulk case, in [3]. For the
inhomogeneous case, we have chosen the 1D n+−n−n+ silicon diode. The particle
number introduces an error in the calculation of the internal electric field. At this
stage the particles interact with each other, otherwise they are independent. This
error vanishes sufficiently fast both for SST and CTT [4], when the number of
particles goes to infinity, as shown in figure 1.
The splitting error, due to the time step, vanishes sufficiently fast for the SST
algorithm, whereas that for the CTT is affected by the extra systematic error
already mentioned [4]. Regarding to the efficiency, we have compared the SST
algorithms (i.e. Constant Gamma, Piece-wise Constant Gamma and Individual
Gamma) with the CTT one. The result is that, with a fixed precision in the data
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Figure 1. Average Absolute Error for the mean velocity versus
the particle number, obtained with the SST and with the CTT

(less then 1 %), the Individual Gamma is the most performant method with a gain
factor 3 respect to the Constant Gamma.
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On recursivity and adaptivity in time relaxed Monte Carlo methods

Lorenzo Pareschi

(joint work with Stefano Trazzi, Bernt Wennberg)

We review some recent results on Time Relaxed Monte Carlo (TRMC) designed
for the simulation of the Boltzmann equation

(1)
∂f

∂t
+ v · ∇xf =

1

ǫ
Q(f, f), x ∈ Ω ⊂ R

3, v ∈ R,

close to fluid regimes. After a splitting of the equation the collision step is approx-
imated by using an exponential expansion (Wild sum) of the solution truncated
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by replacing high order terms with the equilibrium Maxwellian distribution. The
schemes read

(2) fn+1(v) = e−µ∆t/ε
m∑

k=0

(1 − e−µ∆t/ε)kfn
k (v) + (1 − e−µ∆t/ε)m+1M(v),

where fn = f(n∆t) and ∆t is a small time interval. The quantity M (referred to
as the local Maxwellian associated with f) is the asymptotic stationary solution
of the equation and the coefficients fk are given by

(3) fk+1(v) =
1

k + 1

k∑

h=0

1

µ
P (fh, fk−h), k = 0, 1, . . . ,

with P (f, f) = Q(f, f) + µf .
Speed up of the method close to fluid regimes is obtained by efficiently ther-

malizing particles close to the equilibrium state. The methods can be efficiently
implemented using a recursive formulation based on collision trees (see Figure 1).
This allows to obtain an effective uniform accuracy in time without any restric-
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Figure 1. Mc Kean graphs for f1, f2 and f3

tion on the time step and subsequent increase of the computational cost. Several
techniques can be used to truncate the recursive trees without deteriorating the
accuracy of the numerical solution. Techniques based on adaptive strategies and
well-balanced trees are presented. Adaptivity is realized selecting the depth of
the collision trees accordingly to the distance of the solution from the equilibrium
through a suitable indicator. This can be performed, for example, measuring the
variation of some macroscopic variables such as the fourth order moment or the
components of the shear stress tensor.



2972 Oberwolfach Report 52/2008

Off course different definition of length L of a collision tree can be used

L(k = h+ j + 1) = k,(4)

L(k = h+ j + 1) = 1 + min{L(h), L(j)},(5)

L(k = h+ j + 1) = 1 + mean{L(h), L(j)},(6)

so that if L(k) > mmax at the end of the collision tree we assume that particles
are thermalized. In particular, the last two definitions are capable to select the
so-called “well balanced” trees. Numerical results emphasize the gain of efficiency
of the present simulation schemes with respect to standard DSMC methods (see
Figure 2).
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Figure 2. Stationary shock for ε = 0.1. Maximum length of the
collisional trees in each cell (left) and number of collisions (right)
for adaptive TRMC and Bird’s method.
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Degenerated approximation of the Boltzmann distribution function

Sergej Rjasanow
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1. Introduction

The spatially homogeneous Boltzmann equation reads

ft(t, v) = Q(f, f)(t, v) for t > 0 , v ∈ R
3 ,(1)

where the unknown distribution density function f depends on time t ≥ 0 and
velocity v ∈ R

3. The collision operator is given by

Q(f, g)(v) =

∫

R3

∫

S2

B(v, w, e)
(
f(v′)g(w′) − f(v)g(w)

)
de dw ,

where S2 denotes the unit sphere and

v′ =
1

2

(
v + w + |v − w| e

)
, w′ =

1

2

(
v + w − |v − w| e

)
.

The so-called collision kernel B describes the microscopic details of the particle
interaction and is generally assumed to be of the form

B(v, w, e) = bλ(µ) |v − w|λ , µ =
(v − w, e)

|v − w|
, −3 < λ ≤ 1 ,

where (·, ·) denotes the scalar product in R
3. In general, the angular part bλ

contains a non-integrable singularity at µ = 1. In practical applications, the so-
called VHS model for hard potentials is frequently considered, i.e. the function bλ
is assumed to be constant:

(2) B(v, w, e) = Cλ |v − w|λ , 0 ≤ λ ≤ 1 .

2. Deterministic Approximation of the Boltzmann equation

In [2], we have used the following form of the collision integral for its numerical
computation

Q(f, f)(t, v) = Fy→v

( ∫

R3

T (u, y)F−1
z→y

(
f(t, z − u)f(t, z + u)

)
du

)
(t, v) ,

where F denoted the Fourier transform. The time independent kernel T is defined
as follows

T (u, y) = 8

∫

S2

B(2v, 2w, e)
(
e−ı|u|(y, e) − e−ı(y, u)

)
de .(3)

For the VHS model of interaction (2), the integral in (3) can be computed analy-
tically and the kernel T takes the form

T (u, y) = 25+λ π Cλ |u|λ
(
sinc(|u| |y|) − e−ı(y, u)

)
,(4)

where the abbreviation

sinc z =
sin z

z
, z ∈ R

has been used. After discretisation on an appropriate uniform grid Cn, we solve
the initial value problem (1) on this grid by use of the Fast Fourier Transform
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(FFT) and of the Runge-Kutta methods in time. The memory requirement is
9/16n4 + O(n2) for the values of the kernel (4) on the grid. This value is close to
the optimal O(n3). However the numerical work is n6/8 + O(n5 log2 n) for every
time step, which is far from being optimal.

3. Degenerate Approximation

On the grid, a given density function f will be represented in a tensor like form

F (t) =
(
fj(t)

)
j∈Cn

=
(
fj1,j2,j3(t)

)n/2

j1,j2,j3=−n/2
∈ R

(n+1)×(n+1)×(n+1) ,(5)

with fj(t) = f(t, vj) and, therefore, will require O(n3) words of memory. However,
if the function f is degenerate in the variable v

f(t, v) =

r(t)∑

k=1

βk(t)
3∏

ℓ=1

f
(ℓ)
k

(
t, v(ℓ)

)
, v =

(
v(1), v(2), v(3)

)⊤
(6)

with r(t) ≤ r, then its discretisation (5)

F (t) =
(
fj(t)

)
j∈Cn

, fj(t) =

r(t)∑

k=1

βk(t)

3∏

ℓ=1

f
(ℓ)
k

(
t, v

(ℓ)
j

)
, j ∈ Cn(7)

will require at most 3 r (n + 1) + 3 words of memory, i.e. a linear amount for
n → ∞. We will refer to the number r in (6)–(7) as the rank of the function f
or of the tensor F . As we will see later, numerical work can also be significantly
reduced if the distribution function is degenerate. It is clear that the majority of
realistic distribution functions is not degenerate. However, some of them, related
to the Boltzmann equation, are degenerate (Maxwell distribution, BKW solution)
or can be approximated up to the accuracy ε by a degenerate function fε, i.e.

‖F − Fε‖F ≤ ε‖F‖F , ‖F‖F =

√∑

j∈Cn

(
fj

)2
,

where now Fε is of the form (7). To obtain this approximation, we first generate
the tensor F (0) corresponding to the initial condition in (1) leading to O(n3)
arithmetical operations. Then, the approximation algorithm from [3] is applied.
For a given tensor Fε(t), we have to compute the collision integral. The algorithm
works similar to the Adaptive Cross Approximation introduced in [1]. The total
numerical work in this step will be O(n4r + n3r3). The final Fourier transform
does not change the rank of the low rank approximation.

4. Numerical example

As an example we consider the initial distribution f0 as a mixture of two dif-
ferent Maxwell distributions

f0(v) = αfM1
(v) + (1 − α)fM2

(v) , 0 ≤ α ≤ 1 .
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Figure 1. Time relaxation of the three-way rank, ε = 10−6, ε = 10−8

Thus, its exact three-way rank is equal to 2. The parameters of the Maxwell
distributions are V1, T1 and V2, T2. For the following choice

V1 = (−2, 2, 0)⊤ , V2 = (2, 0, 0)⊤ , T1 = T2 = 1 , α = 1/2

we obtain ρ0 = 1 , V0 = (0, 1, 0)⊤ and T0 = 8/3. The results for the time relaxation
of the rank are shown in Figure 1. The left plot in this figure corresponds to
ε = 10−6 while the right plot to ε = 10−8.

5. Conclusions

The main new idea is an approximation of the discrete distribution function
with the help of the three-way decomposition. This leads to a drastic reduction
of the computational time of the algorithm. The memory requirements in the
current version of the algorithm keep practically the same due to the kernel T .
The numerical results are obtained for analytically known curves for the time
relaxation of the moments for the Maxwell pseudo-molecules.

References

[1] M. Bebendorf and S. Rjasanow. Adaptive Low-Rank Approximation of Collocation Matrices.
Computing, 70:1–24, 2003.

[2] I. Ibragimov and S. Rjasanow. Numerical solution of the Boltzmann equation on the uniform
grid. Computing, 69(2):163–186, 2003.

[3] L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika,
31:279–311, 1966.

Moving boundary problems for the BGK model of rarefied gas
dynamics

Giovanni Russo

(joint work with Francis Filbet)

A new semilagrangian method is presented for the numerical solution of the BGK
model of the Boltzmann equation in a domain with moving boundary.

This work is motivated by the computation of rarefiled flow in MEMS (Micro
Electro Mechanical Systems) [3]. The size of such devices is small enough that gas



2976 Oberwolfach Report 52/2008

flow require a kinetic treatment even at normal pressure and temperature condi-
tions. Micro accelerators are often composed of several elements, each of which
consists of a moving part, the shuttle, which is free to oscillate inside a fixed part,
the stator. Although under certain conditions one can obtain an accurate descrip-
tion of the flow by quasi-static approximation [2], more general flow conditions
inside the element requires the treatment of a domain whose boundaries are not
fixed. As a warm up problem, we consider the evolution of a gas in a one dimen-
sional piston. Since we are interested in description of the moving boundary, we
choose the simple BGK model to describe the gas. The numerical method that we
use is a deterministic semilagrangian method on a fixed grid in space and velocity.
Such a method is illustrated in detail in paper [5].

Description of the method First let us assume that the integration domain
in space is [0, L], with a fixed L. The initial-boundary problem can be written as

(1)
∂f

∂t
+ v

∂f

∂x
=

1

τ
(M [f ] − f), f(t, x, v) = f0(x, v)

where v ∈ R, x ∈ [0, L], and t > 0, and M [f ] represents the local Maxwellian that
has the same conservative moments of f .

Suppose we want to integrate the equation up to a fixed time t = tf . For
simplicity we assume constant time step ∆t = tf/Nt and uniform grid in physical
and velocity space, with mesh spacing ∆x and ∆v, respectively, and denote the grid
points by tn = n∆t, xi = i∆x, i = 0, . . . , Nx, vj = j∆v, j = −Nv, . . . , Nv, where
Nx+1 and 2Nv+1 are the number of grid nodes in space and velocity, respectively.
We assume that the distribution function is negligible for |v| > vmax = Nv∆v.

Let fn
ij denote the approximation of the solution f(tn, xi, vj) of the problem (1)

at time tn in each spatial and velocity node, and assume that it is given.
Integration of Eq. (1) along the characteritsics by implicit Euler scheme gives

(2)
fn+1

ij = f̃n
ij +

∆t

τ
(Mn+1

ij − fn+1
ij ),

xi = x̃ij + vj∆t, i = 0, . . . , Nx, j = −Nv, . . . , Nv.

The value of the function f̃n
ij is reconstructed at position x̃ij = xi − vj∆t by

a suitable high order reconstruction. In particular, here we use a piecewise cubic
polynomial, which is obtained by Hermite interpolation in each interval [xi, xi+1].
The first derivatives of the function at location xi, (∂fj/∂x)xi

, are computed by
second order central difference. The reconstruction is linear, without limiters.
This guarantees that the scheme is conservative [1].

Implicit calculation The implicit term can be explicitly computed by mul-
tiplying Eq. (2) by 1, v, |v|2 and summing over the velocities. This procedure
allows the computation of the moments, because Mn+1

i,· and fn+1
i,· have the same

moments. Therefore one obtains

(3) ρn+1
i =

∑

j

f̃n
ij , (ρu)n+1

i =
∑

j

vj f̃
n
ij , En+1

i =
1

2

∑

j

|vj |
2f̃n

ij .



Mini-Workshop: Numerics for Kinetic Equations 2977

Once the moments have been computed, the Maxwellian can be calculated from
the moments, and the density function can be explicitly computed as

(4) fn+1
ij =

τ f̃n
ij + ∆tMn+1

ij

τ + ∆t
.

Notice that as τ → 0 the distribution function fn+1
ij is projected onto the Max-

wellian. Furthermore, in this limit the whole scheme becomes a relaxation scheme
for the Euler equations. We say that the scheme is Asymptotic Preserving [4].

The piston problem The system consists in a gas inside a one dimensional
slab, which is driven by a moving piston (see Figure 1). On the left boundary of
the domain there is a fixed wall (the origin of our coordinate system), at the right
end there is a piston, whose position is an assigned function of time xp : t ∈ R →
xp(t) ∈ [0, L]. We assume that the gas inside the slab is governed by the BGK
equation. The system is discretized on a uniform grid in the computational domain
[0, L] by Nx + 1 grid points of coordinates xi = ih, i = 0, . . . , Nx, h = L/Nx. As
the piston moves, the domain occupied by the gas changes, while the position of
the grid points remains fixed. As a consequence, only a certain number Nx(t) of
grid points is actually used (active points) while other points lie outside of the
domain (ghost points).

The number of equations to be solved changes with time. We choose the time
step in such a way that the piston can move by at most one grid point in one step,
and denote by up(t) ≡ ẋp(t) the assigned piston velocity.

Different boundary conditions may be assigned to the boundary. Here we con-
sider the case of specular reflection.

Specular reflection At the wall, at each time t, the distribution function, for
positive velocities, is given by

f(t, 0, v) = f(t, 0,−v), which is discretized as fn
−i,j = fn

i,−j, i ≤ 0, j > 0,

keeping in mind that vj = j∆v.
A similar condition can be used to treat reflecting boundary conditions near

the piston:
f(t, xp, v) = f(t, xp, v

∗), v∗ = 2up − v.

We convert the condition into an initial value for the ghost point using the following
argument. We approximate the motion of the piston by a piecewise linear function
of time, i.e. we assume that in time interval [tn, tn+1] the velocity of the piston is
unchanged. Then the value of the density function f(tn, x̃ij , vj), at the foot of the
characteristics corresponding to the velocity vj < up, is set to fn(x∗, v∗), where
xij + x∗ = 2xp(tn) and vj + v∗ = 2up(tn) (see Figure 2).

The simplest way to implement such condition is to precompute the values of
the distribution function at ghost points xi > xp(tn), for vj < up, as fn(xi, vj) =
fn(x∗, v∗), with xi+x

∗ = 2xp(tn) and vj+v
∗ = 2up(tn), and then use the standard

piecewise Hermite interpolation from grid points (active or ghost) at time level tn.
In general point (x∗, v∗) is not on a grid in phase space, therefore interpolation
in x and v has to be used. In some cases, point (x∗, v∗) is in a cell whose values
of the function is known at the vertices, and bilinear interpolation can be used.
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In other cases, the function at the vertices is itself not known, and an iterative
procedure has to be used.

Figure 1. Setup of the piston problem. The equations are solved
for the values of the distribution function in the active grid points.
The values outside of the computational domain (ghost points) are
computed by making use of the boundary conditions

Figure 2. Definition of the specular boundary conditions at the
wall (left) and at the piston (right)

Numerical tests As numerical test we solve the BGK equation with Maxwel-
lian initial condition, and reflecting boundary conditions at the wall and at the pis-
ton. We impose the motion of the piston with a given velocity up(t) = 0.25 sin(t).
The piston induces waves that move back and forth into the slab. For small Knud-
sen number the behavior of the gas should be well described by the Euler equations
of gas dynamics. To validate this expectation, a comparison is performed between
solution of the BGK equation and the solution of the Euler equations of gas dy-
namics. The latter is obtained by writing the equations in Lagrangian form, so
that the domain in Lagrangian coordinates becomes fixed, and then applying a
finite volume central scheme to solve the equations numerically.
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The pressure at the piston and at the wall for the BGK model and for the
Euler equations are shown in Figure 3. During the talk, the time evolution of the
distribution function f(x, v, t) is shown.

Implementation of Maxwell boundary conditions and extension to two space
dimensions will allow a realistic simulation of the oscillation of the shuttle in
MEMS.
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Figure 3. τ = 10−3 : the pressure at the boundary (1) x = xp(t)
and (2) x = L obtained by the semi-Lagrangian method for BGK
equations and a Lagrangian scheme for Euler equations.

References

[1] F. Filbet, E. Sonnendrucker, Comparison of Eulerian Vlasov Solvers, Comput. Phys. Com-
munications, 150 (2003), 247–266. MR1977366 (2004c:82115)

[2] A. Frangi, A. Frezzotti, S. Lorenzani, On the application of the BGK kinetic model to
the analysis of gas-structure interactions in MEMS, Computers and Structures 85 (2007),
810–817.

[3] M. Gad-el-Hak, editor, The MEMS handbook, CRC Press, 2002.
[4] S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations,

SIAM J. Sci. Comput. 21 (1999), 441–454. MR1718639 (2000h:65115)
[5] G. Russo, F. Filbet, Semilagrangian schemes applied to moving boundary problems for the

BGK model of rarefied gas dynamics, Kinetic and Related Models, accepted.

Simulation of thermophoretic flows by a lattice-Boltzmann method

Alexander Vikhansky

The recent development of microfluidic devices has turned researcher interest to-
ward numerical methods which can simulate slow slightly non-equilibrium gas
flows. If the characteristic size of a microdevice L is of order of 10−104 mean free



2980 Oberwolfach Report 52/2008

paths of a molecule λ, the non-equilibrium contribution to the momentum and en-
ergy fluxes cannot be neglected. To illustrate the problem consider the Boltzmann
equation which governs the dynamics of an ideal gas

(1) ∂tf + ~c · ~∇f = Ω(f),

where ~c is a velocity of a particle and Ω(f) is a collision operator. The density ρ,
velocity ~u and temperature T of the gas are defined by the following moments of
the velocity distribution function f(t, ~x;~c):

(2) ρ =

∫
fd~c, ρ~u =

∫
~cfd~c, 3ρRT =

∫
f(~c− ~u)2d~c,

where R is the specific gas constant. The solution feq of the equation Ω(f) = 0
with the given parameters ρ, ~u and T is called the local equilibrium distribution:

(3) feq =
ρ

(2πRT )3/2
exp

(
−

(~c− ~u)2

2RT

)
.

Using L as the characteristic size, speed of sound cs as the characteristic velocity
and cs/λ as the characteristic collision rate, we introduce the following transforma-

tion of the variables: ~c′ = ~c/cs, ~x′ = ~x/L, t′ = (cs/L)t, Ω′ = (λ/ρcs)Ω, f
′ = f/ρ.

After some algebra Eq. (1) yields:

(4) ∂t′f
′ + ~c′ · ~∇′f ′ = Kn−1Ω′(f ′),

where Kn = λ/L is the Knudsen number. If Kn is bigger then 10−4 the deviation
of f from the local equilibrium creates new effects, which do not follow from the
Navier-Stokes (NS) equations.

Since the solution of Eq. (4) by the traditional direct simulation Monte Carlo
(DSMC) method in the low-speed case suffers from a prohibitively high statistical
scatter, deterministic numerical methods, which use Kn as a small parameter, be-
come an attractive alternative to DSMC. In the recent years the lattice-Boltzmann
(LB) method has been established as a powerful alternative to the conventional
methods in computational fluid dynamics. The method represents the fluid as a
gas consisting of particles with N discrete velocities ~ci. The number of particles
with velocity ~ci at a node ~x at time t is fi(~x, t) and the particle distribution is
f = (f0, ..., fN).

In the present study we propose a new version of the lattice-Boltzmann (LB)
method for the simulation of slightly non-equilibrium flows with Knudsen numbers
about 0.1. We use a tensorial formalism which allows us to formulate a LB model
with adjustable Prandtl number and ensures that the resulting numerical method
has a desired degree of isotropy. The new collision term is a modification of the
classical BGK model and retains the main advantages of the BGK model, namely
simplicity and low computational cost.

This method has been applied to simulation of rarefied gas flow in so-called
Knudsen compressor, i.e., a microfluidic device which creates unidirectional gas
flow due to periodic variation of the channel cross-section and the temperature
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along the walls. It is known that Knudsen compressors are attain maximum effi-
ciency at Kn = 0.1−0.3, therefore LB method is a very efficient tool for numerical
analysis of these devices. The obtained results are in good agreement with the ex-
isting theoretical data.

As an extension of the model we considered flow of two-component gas mix-
ture. It is shown that Knudsen compressor can be used for separation of gases of
different molecular masses. This effect cannot be associated with the famous ther-
modiffusion as it could be expected, but originates from the Knudsen layer near
the walls of the device. The geometry of the channel also plays a very important
role in the process of separation.

Finally, it is important to note that unlike DSMC, the present version of the
LB method converges within several minutes of CPU time on a desktop PC. The
present model contains only 78 discrete velocities but approximates the Boltzmann
equation up to Kn2.

Reporter: Sergej Rjasanow
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