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Introduction by the Organisers

This was an exciting workshop which divided almost evenly between pure set
theory and applications of set theory to other fields. There were 52 postdoctoral
and 4 doctoral participants with a high percentage of young people, making for a
lively atmosphere. We scheduled only 11 long (50-minute) talks; the remaining 18
talks were short (30-minutes), allowing for ample time for informal discussion and
collaboration.

Among the highlights of the workshop were the following: Viale presented ex-
citing work showing that any standard approach to proving the consistency of
PFA requires a supercompact. Todorcevic presented deep work on the study of
higher-order gaps in P (ω)/Fin, while Farah and Törnquist presented talks estab-
lishing the unclassifiability of separable C∗-algebras in the sense o descriptive set
theory. Jensen described his ultimate generalisation of Namba forcing and Nee-
man worked miracles with forcings built from finite conditions. Zapletal launched
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a new program mixing ideals with equivalence relations, Gitik solved the normal-
ity problem for precipitous ideals (negatively), Simon Thomas connected large
cardinals with representation theory and Zdomskyy presented a new approach to
preserving large cardinals after applying a wide variety of iterations with fusion.
Louveau presented a major new result in dual Ramsey theory, Sinapova explained
her deep work on the tree property at the successor of a singular and Sargsyan
brought us up-to-date on the influence of large cardinals on the structure of HOD.

The number of new results connecting set theory with other fields of mathe-
matics was a striking feature of this workshop, and points toward an even richer
future for an already dynamic subject.

Sy-David Friedman
Menachem Magidor
Hugh Woodin
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Abstracts

On the notion of guessing model

Matteo Viale

We present a brief account on the notion of guessing model which is analyzed and
introduced in [1] The ultimate and most likely out of reach ambition in this work
is to provide by means of guessing models useful tools to show that for a given
model W of MM , (ℵ2)W has an arbitrarily high degree of supercompactness in
some simply definable inner model V .

A guessing model come in pair with an infinite cardinal δ:

• ℵ0-guessing models provide an interesting characterization of all large car-
dinal axioms which can be described in terms of elementary embedding
j : Vγ → Vλ. In particular supercompactness, hugeness , and the axioms
I1 and I3 can be characterized in terms of the existence of appropriate
ℵ0-guessing models.

• In a paper with Weiss [2] we showed that PFA implies that there are ℵ1-
guessing models, and that in many interesting models W of PFA such
ℵ1-guessing models M can be used to show that in some inner model V of
W , M ∩ V is an ℵ0-guessing models belonging to V and witnessing that
ℵ2 is supercompact in V .

• In [1] I also outline some interesting properties guessing models have in
models of MM . For example assume θ is inaccessible in W , then:
(1) If W models PFA, then for a stationary set G of ℵ1-guessing models

M ≺ Hθ the isomorphism-type of M is uniquely determined by the
ordinal M ∩ ℵ2 and the order type of M ∩ Card where Card is the
set of cardinals in Hθ.

(2) In the seminal paper of Foreman Magidor and Shelah [4] on Martin’s
maximum and in a recent work by Sean Cox [3] several strong forms
of diagonal reflections are obtained, for example Cox shows:

Assume MM holds in V . Then for every regular θ there
is S stationary set of models M ≺ Hθ such that every
M ∈ T computes correctly stationarity in the following
sense:
For every X ∈ M and every set R ∈ M subset of [X ]ℵ0

if R is projectively stationary in V then R reflects on
[M ∩X ]ℵ0 .

(3) We can improve (1) and (2) above to further argue that in a model
V of MM , G ∩ S is stationary.

Such results even if rather technical are attributing to ℵ2 properties shared by
supercompact cardinals in the sense that ℵ0-guessing models M are characterized
by property (1) when ℵ2 is replaced by some suitable inaccessible cardinal κ ∈M
and satisfy many strenghtenings of property (2).
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Stationary and semi stationary reflection principles

Boban Veličković

(joint work with Hiroshi Sakai)

We study consequences of stationary and semi stationary set reflection. We show
that the semi-stationary reflection principle implies the Singular Cardinal Hypoth-
esis, the failure of weak square principles, etc. We also consider two cardinal tree
properties introduced recently by Weiss and prove that they follow from stationary
and semi stationary set reflection augmented with a weak form of Martin’s Axiom.
We also show that there are some differences between the two reflection princi-
ples which suggest that stationary set reflection is analogous to supercompactness
whereas semi-stationary set reflection is analogous to strong compactness.

k-gaps in P(ω)/Fin

Stevo Todorcevic

(joint work with Antonio Aviles)

This will be an overview of the joint work with Antonio Aviles over the last few
years on a higher-dimensional theory of gaps in P(ω)/Fin. This new theory orig-
inally motivated by an application to the theory of function spaces is a natural
extension of the classical one-dimensional theory of gaps developed by Hausdorff
a century ago. We shall examine both the combinatorial and the descriptive set-
theoretic side. For example, we shall identify a finite basis of analytic k-gaps for
each finite dimension k.
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ℵ1-perfect mad families

Jörg Brendle

The starting point of our considerations is a classical result of Mathias [Ma] which
says that an infinite maximal almost disjoint (mad, for short) family on the natural
numbers ω cannot be an analytic subset of the Baire space [ω]ω.

Let a = min{|A| : A ⊆ [ω]ω is an infinite mad family}, the classical almost
disjointness number. Similarly define aBorel = min{|A| : A is an infinite family
of Borel a.d. families such that

⋃
A is mad}, as well as aclosed = min{|A| : A

is an infinite family of closed a.d. families such that
⋃
A is mad}. Then ℵ1 ≤

aBorel ≤ aclosed ≤ a where the first inequality follows from Mathias’ Theorem.
By an unpublished result of Raghavan (personal communication), this inequality
can be improved to t ≤ aBorel where t = min{|A| : A is a tower, that is, A is
a ⊆∗-decreasing sequence of infinite subsets of ω without a lower bound} is the
tower number. A better lower bound for a is the unbounding number b, and it is
natural to ask whether one even has b ≤ aBorel or b ≤ aclosed. In joint work with
Yurii Khomskii (Amsterdam), we proved that this is not the case.

Theorem 1. (Brendle, Khomskii) aclosed < b is consistent.

In particular aclosed < a is consistent.
Let us briefly sketch the framework of this proof. Let Ā = (Aσ : σ ∈ ω<ω) be a

partition of ω (or of a subset of ω) into infinite sets. Put Aσ = {anσ : n ∈ ω}. With

Ā, we naturally associate a perfect almost disjoint (a.d., for short) family X Ā as

follows: for f ∈ ωω, let XĀ
f = {a

f(n)
f↾n : n ∈ ω} and let X Ā = {XĀ

f : f ∈ ωω}.

If A is a family of such partitions such that Ā 6= B̄ ∈ A and f, g ∈ ωω implies
|XĀ

f ∩XB̄
g | < ℵ0, then XA =

⋃
{X Ā : Ā ∈ A} is an a.d. family on ω.

Now assume M ⊆ V is a countable model of a large enough fragment of ZFC,
and let A = {Āi : i ∈ ω} ⊆M .

Main Lemma. There is C̄ = (Cσ : σ ∈ ω<ω) in V such that:

(1) Letting C = A ∪ {C̄}, X C is still a.d.,
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(2) Assume V ′ ⊇ V , M ′ ⊇M , M ′ ⊆ V ′ is a countable model, and all reals in
V which are splitting overM are still splitting overM ′. Then the following
holds in V ′: If Y ∈ [ω]ω belongs to M ′ and |Y ∩XĀi

g | < ℵ0 for all i and

all g ∈ ωω, then there is f ∈ ωω such that X C̄
f ⊆ Y .

The proof is rather technical.
To prove the Theorem using the Main Lemma, perform a finite support iteration

of Hechler forcing of length κ, where κ = κω ≥ ℵ2 is regular, over a model of CH .
The generic extension satisfies b = c = κ. The Main Lemma, in conjunction with
the fact that iterated Hechler forcing preserves reals which are splitting, allows to
build up a family A of ℵ1 many partitions in the ground model such that XA is
mad even in the generic extension. We call such a mad family an ℵ1-perfect mad
family. Thus aclosed = ℵ1 in the extension.

The following problems remain open:

Problem 1. Is aBorel = aclosed?

Problem 2. Is aBorel > b consistent?

Problem 3. (Raghavan) Is h ≤ aBorel where h denotes the distributivity number?

We now turn to definability of mad families.
By a result of Miller [Mi], there is a coanalytic mad family in the constructible

universe L. This is still true in many forcing extensions of V = L, e.g. the Cohen,
random, and Sacks extensions. Friedman and Zdomskyy [FZ] proved that b = ℵ2

is consistent with the existence of a Π1
2 mad family, and Fischer, Friedman, and

Zdomskyy [FFZ] showed the same for arbitrarily large b. Friedman and Zdom-
skyy [FZ] asked whether one can also have simultaneously b > ℵ1 and a Σ1

2 mad
family. By Raghavan’s result mentioned above, t > ℵ1 implies that there are no
Σ1

2 mad families. By the theorem sketched above, adding Hechler reals over L
preserves an ℵ1-perfect mad family which is Σ1

2:

Corollary 1. (Brendle, Khomskii) It is consistent that b is arbitrarily large and
there exists a Σ1

2 mad family.

Further problems are:

Problem 4. Is it consistent that b > ℵ1 and there exists a Π1
1 mad family?

Problem 5. Is the existence of a Π1
1 mad family equivalent to the existence of a

Σ1
2 mad family?

Problem 6. Does the Ramsey property for Σ1
2 sets imply that there is no Σ1

2 mad
family?
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Descriptive set theory and the classification of separable C*-algebras,
Part I

Ilijas Farah

(joint work with Andrew Toms, Asger Törnquist)

In this talk I described an ongoing joint work with Andrew Toms and Asger
Törnquist ([2]). The abstract classification program initiated by Kechris and his
collaborators (e.g., [5]) was one of the main themes in set theory over the last
two decades. Similarly, Elliott’s classification program for nuclear C*-algebras
played a central role in the study of C*-algebras over a similar time span ([1]). We
apply methods of the abstract classification, in particular Greg Hjorth’s results
and concept of turbulence ([4]), to analyze the classification problem for separable
C*-algebras as follows.

The first classification result in the field of C*-algebras was Glimm’s classifica-
tion of unital UHF algebras. In 1960 Glimm has proved that all UHF algebras
are inductive limits of full matrix algebras, Mn(C) for n ∈ N, and that they are
classified by a ‘supernatural’ number

∏
p prime p

n(p). Building on the work of Brat-
telli, in 1976 George Elliott proved a classification result for the larger class of AF
algebras. AF algebras are inductive limits of finite-dimensional C*-algebras. El-
liott has shown that a complete invariant for AF algebras is the ordered abelian
group K0. This classification has a remarkable additional feature of being functo-
rial : every homomorphism between K0-groups lifts to a *-homomorphism of the
corresponding algebras. If homomorphism is an isomorphism, then it lifts to a
*-isomorphism of C*-algebras. An even finer result is true: the automorphism
group of K0(A) is in exact correspondence to the outer automorphism group of A.

Elliott invariant Ell(A) of a C*-algebra A is obtained by expanding K0(A)
by adding another abelian group, K1(A), as well as tracial simplex T (A) of A
and the pairing map ρ that associates states on K0(A) to traces in T (A). By a
remarkable result known as the Bott periodicity, all the higher order K-groups are
are isomorphic to K0 or K1 and K1(A) is isomorphic to K0(C([0, 1)) ⊗ A) (e.g.,
[7]). Elliott’s program postulated that all infinite-dimensional, separable, simple,
unital, and nuclear C*-algebras A are classified by the invariant Ell(A). Moreover,
the classification was purported to be functorial.

Elliott program has enjoyed a series of remarkable successes (see e.g., [9]). Nu-
clear, simple, purely infinite C*-algebras (modulo a technical assumption known
as the Universal Coefficient Theorem, UCT) were classified by the ordered groups
K0 and K1 alone (hence by countable structures) in a sweeping work of Kirch-
berg and Phillips. This essentially reduced Elliott’s program to (i) classification
of finite C*-algebras and (ii) showing that infinite C*-algebras cannot have finite
projections.
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In 1998 Villadsen constructed a separable, simple, unital, and nuclear C*-
algebra A whose K0 group is not weakly unperforated. This means that some
n · x > 0 does not imply x > 0 for some x ∈ K0(A). Villadsen’s algebra was an
inductive limit of subalgebras of algebras of continuous functions from a compact,
finite dimensional, metric space into a finite-dimensional C*-algebra. Its proper-
ties depended on the existence of the so-called Bott projection in the algebra of
continuous functions from S2 into M2(C)).

In 1999, Jiang and Su constructed an infinite-dimensional separable, simple, uni-
tal, and nuclear C*-algebra Z such that Ell(Z) = Ell(C). This was not considered
to be a counterexample to Elliott’s program since C is not an infinite-dimensional
C*-algebra. Jiang and Su also proved that Ell(A ⊗Z) = Ell(A) for every separa-
ble, simple, unital, and nuclear C*-algebra A, thus raising the question whether
all such A are Z-stable, i.e., isomorphic to A⊗Z.

In 2002 Rørdam constructed an algebra which had a remarkable feature of hav-
ing both infinite and finite projections, thus showing the answer to be negative. In
2003 Toms independently constructed a stably finite counterexample to Elliott’s
conjecture. These results were rapidly followed by Toms’s construction of a sep-
arable, simple, unital, and nuclear C*-algebra A that was not Z-stable and yet
had the property that F (A) = F (A ⊗ Z) for every continuous, homotopy invari-
ant functor. Both Rørdam and Toms constructed their counterexamples using
refinements of Villadsen’s techniques.

The invariant W (A) used by Toms to distinguish A and A⊗Z has attracted ma-
jor attention, overtaking the central stage in the updated version of Elliott’s pro-
gram. Remarkably, for simple Z-stable C*-algebras W (A) amplified with K0(A)
provides exactly the same information as the original Elliott invariant (N. Brown,
Perera and Toms, 2007).

As remarkable as they are, Rørdam and Toms non-classification results were not
nonclassification results from the point of view of abstract classification theory as
presented in e.g. [4]. The starting point of [2] was a desire to show that separable,
simple, unital, and nuclear C*-algebras cannot be effectively classified by simple
invariants.

Let us now describe the abstract classification theory standpoint. Recall that
if (X,E) and (Y, F ) are analytic equivalence relations on standard Borel spaces,
E is Borel-reducible to F , in symbols E ≤B F , if there is a Borel-measurable map
f : X → Y such that xE y ⇔ f(x) E f(y).

Model results are given in [10] and [3] where anti-classification results were
proved for von Neumann factors with separable predual and separable Banach
spaces, respectively. In the former work it was shown, using Hjorth’s [4], that no
major class of factors that has not been already classified in the work of Connes
and others can be effectively classified by countable structures. In the latter work
a bit more was proved: every analytic equivalence relation is Borel-reducible to
the isomorphism relation Eb of separable Banach spaces. In particular, Eb is not
even Borel-reducible to an orbit equivalence relation of a continuous Polish group
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action on a Polish space. (The isomorphism of factors with separable predual is
known to be induced by an action of the unitary group.)

A Borel space of separable C*-algebras was introduced in [6] and the Elliott
invariant takes values in a naturally defined standard Borel space. Using Kechris’s
results, in [2] we proved that the computation of the Elliott invariant is Borel.
This set the stage for our non-classification results, described in [8].

I will finish by saying that even the Cuntz semigroup W (A) ranges over a
standard Borel space, and that the map A 7→ W (A) is given by a Borel function.
This suggests that every natural and absolute classification of separable structures
can be given a Borel model, and raises the question whether all such models are
necessarily equivalent?
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Descriptive set theory and the classification of separable C*-algebras,
Part II

Asger Törnquist

(joint work with Andrew Toms, Ilijas Farah)

In the first part of this talk, Ilijas Farah set the stage for a systematic investigation
of the classification of nuclear simple separable C∗-algebras from the point of view
of descriptive set theory. This part is dedicated to providing some more details of
the results that have been achieved in a joint effort of Ilijas Farah, Andrew Toms
and the speaker.

A C∗-algebra is nothing but a norm-closed ∗-subalgebra of B(H), the algebra of
all bounded operators on a complex Hilbert space H . Thus, if we fix a separable
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complex Hilbert space H , then every sequence in B(H) generates a separable C∗-
algebra, and conversely, all isomorphism types of separable C∗-algebras appear
in this way. Moreover, if we give B(H) the Borel structure induced by the weak
operator topology, then B(H) becomes a standard Borel space. It follows that the
elements of

Γ(H) = B(H)N

parametrize all separable C∗-algebras. For γ ∈ Γ, we let C∗(γ) be the C∗-algebra
generated by {γ(n) : n ∈ N}. We let ≃Γ be the relation

γ ≃Γ γ′ ⇐⇒ C∗(γ) is isomorphic to C∗(γ′).

This can be shown to be an analytic equivalence relation, and so Γ provides with a
reasonable setting to study the descriptive set theory of the isomorphism relation of
separable C∗-algebras. The space Γ is what we call a standard Borel parametriza-
tion. It is by no means the only reasonable parametrization of the class of separable
C∗-algebras one can dream up, though the other parametrizations that we have
considered turn out to be identical to this one from the descriptive set-theoretic
point of view. It does raise the following question:

Question 1. Are all reasonable parametrizations by elements in a standard
Borel space of the class of separable C∗-algebras equivalent?

We leave this question for now, but return to the theme at the end of the talk.

The Elliott programme targets a special class of C∗-algebras, namely those
separable C∗-algebras that are nuclear and simple. Simple is easy to explain: It
just means that there are no proper, non-trivial closed two-sided ideals. What
this immediately does is that it rules out the class of algebras of the form C(K),
the continuous complex-valued functions on a compact Polish space from being
considered, which are not simple unless card(K) = 1.

Nuclearity is a more delicate matter. I will not discuss it in this talk, but simply
say that it is an amenability condition. For those familiar with Banach algebras
it suffices to say that a C∗-algebra is nuclear precisely when it is amenable as a
Banach algebra (in the sense of B.E. Johnson, say.) Further, the class of nuclear
C∗-algebras has good permanence properties: It is preserved through inductive
limits, formation of matrix algebra, etc.

A large part of our work on the descriptive set theory of C∗-algebras was mo-
tivated by the classification problem for nuclear simple separable C∗-algebras.
Where does this classification problem belong in the Borel reducibility hierarchy?
The following two results give upper and lower bounds:

Theorem 1. (Farah-Toms-Törnquist.) The homeomorphism relation for com-
pact Polish spaces is Borel reducible to the isomorphism relation for (unital1) nu-
clear simple separable C∗-algebras. In particular, isomorphism in this class is not
classifiable by countable structures.

1An algebra is unital if it has a multiplicative unit, usually denoted 1.
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Theorem 2. (F-T-T.) The isomorphism relation for unital nuclear simple
separable C∗-algebras is Borel reducible to an orbit equivalence relation induced by
a Borel action of a Polish group on a Polish space. In particular, it is not the
≤B-maximal analytic equivalence relation.

In the talk I will focus on Theorem 2, and I will give a rough sketch of the
proof. The proof necessitates proving “Borel versions” of two important theorems
of Kirchberg about nuclear simple separable C∗-algebras, and the more general
class of exact C∗-algebras.

The first of these is the “A ⊗O2 ≃ O2 Theorem”: it states that a C∗-algbera
A is nuclear, unital and simple precisely when A ⊗ O2 ≃ O2. This theorem has
an effective counterpart: Given (a code for) a nuclear simple separable unital
C∗-algebra A, an isomorphism between A ⊗ O2 O2 can be computed in a Borel
way.

The 2nd is Kirchberg’s exact embedding theorem, which states that any exact
separable C∗-algebra can be embedded into O2, and thus O2 provides a “universal”
space for exact (and therefore nuclear) separable C∗-algebras. Again, an effective
version of this is possible: Given (the code for) an exact C∗-algebra A, (the code
for) an embedding into O2 can be computed in a Borel way.

As a corollary, we obtain that the parametrization of exact (and nuclear) C∗-
algebras given by the class of sub-C∗-algebras of O2 is equivalent to the parametri-
zation we obtain from considering the γ ∈ Γ such that C∗(γ) is exact (nuclear).
Thus we eventually come back to the theme introduced by Question 1 above.

Universal flows of closed subgroups of S∞

Lionel Nguyen Van Thé

This work is related to a question asked by Kechris, Pestov and Todorcevic in [1].
Recall that for a topological group G, a G-flow is a topological Hausdorff space
X together with a continuous action of G on X . A G-flow is compact when X is;
it is minimal when the orbit of every point x ∈ X is dense; it is universal when
it can be mapped homomorphically onto any compact minimal G-flow. It is a
general result in topological dynamics that every Hausdorff topological group G
admits a unique compact minimal G-flow which is also universal. In [1], it is shown
that for some closed subgroups of S∞, two combinatorial properties are relevant
in order to compute the universal minimal flow. Those are respectively called
Ramsey property and ordering property (or, more generally, expansion property).
In particular, it is shown that the ordering property is equivalent to minimality of
a certain flow, while the conjunction of the ordering property and of the Ramsey
property is equivalent to the conjunction of minimality and universality of the
same flow. A natural question is therefore: is Ramsey property alone equivalent
to universality?

It turns out that the answer is: no in general. In particular, it is shown that
while the Ramsey property is linked to the extreme amenability of a certain group
(a topological group is extremely amenable iff all of its continuous actions on
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compact spaces admit a fixed point), universality is linked to the relative extreme
amenability of a certain pair of groups (a pair of topological groups (G,H) is
relatively extremely amenable, where H is a subgroup of G, when every continuous
action of G on any compact space has an H-fixed point). This result is used to
produce a negative answer to the question above. It is also used to provide a
combinatorial reformulation of universality, which turns out to be weaker than the
Ramsey property.

It could be however that in some particular remarkable cases (which are the
ones originally described in [1]), Ramsey property and universality coincide. This
is the subject of some work in progress with Yonatan Gutman.
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Subcomplete forcing

Ronald Jensen

We discuss the class of subcomplete forcings and their iterations. We show, in
particular, that if κ is inaccessible, A ⊂ κ and GCH holds below κ, then there is
a subcomplete P , such that whenever G is P -generic, then in V [G] we have:

• κ = ℵ2

• if τ ∈ (ω1, κ) is regular in V , then

cf(τ) =

{
ω if τ ∈ A
ω1 if τ /∈ A

• all stationary subsets of κ remain stationary.

It follows that if κ is strongly inaccessible, then by subcomplete forcing we can
achieve: κ = ω2 and cf(τ) = ω for all regular τ ∈ (ω1, κ).

Forcing with side conditions

Itay Neeman

Forcing axioms have been central in set theory over the last four decades, serving
both as axiomatic center points for consistency proofs, and as objects of study in
their own right. The forcing axiom associated to a cardinal κ and a class of posets
F states that for any P ∈ F and any family A of κ dense sets of P, there is a filter
over P which meets every dense set in A. The most common axioms involve the
class of c.c.c. posets (Martin’s Axiom), the class of proper posets (Proper Forcing
Axiom) and the class of semi-proper posets (Semi-Proper Forcing Axiom). In
the case of c.c.c. posets, the forcing axiom associated to any κ is consistent. For
proper and semi-proper posets, only κ = ω1 is possible. It was expected initially
that there would be analogs of the axioms with greater κ. But already in the
case of proper forcing, the naive approach to arrange a higher analog fails for
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reasons involving preservation (or rather lack of preservation) of any high analog
of properness under iterations. Moreover the proper forcing axiom, and even some
fragments of the axiom, was seen to imply that the continuum is ω2. In particular
then a high analog cannot be an actual strengthening of the axiom or even the
fragments.

In my talk I introduced an alternative proof of the consistency of the proper
forcing axiom, avoiding the countable support that is normally used in connection
with iterations of proper posets, and using instead finite support with the addition
of models as side conditions. Side conditions are needed that allow proving the
preservations of two cardinals, ω1 and a supercompact cardinal θ. The existence
of a poset of side conditions preserving two cardinals is a recent development due
independently to Friedman and Mitchell, and in my talk I presented a substantial
simplification of their approach.

Most importantly, the use of side conditions frees the consistency proof of the
proper forcing axiom from the need to use countable supports for preservation of
properness, and paves the way for a high analog of the axiom, for simultaneously
meeting ω2 dense sets, rather than ω1.

In the talk, I presented a poset of side conditions that preserves three cardinals,
ω1, ω2, and a supercompact θ. I then used it to obtain a high analog of the proper
forcing axiom, for simultaneously meeting ω2 dense sets, in posets that satisfy a
combined clause on existence of master conditions for both countable models and
models of size ω1.

Canonical Ramsey Theory on Polish Spaces

Jindřich Zapletal

(joint work with Vladimir Kanovei, Marcin Sabok)

The talk serves as an advertisement for a book of the same title written jointly
with Vladimir Kanovei and Marcin Sabok. It deals primarily with the following
problem:

Question 1. Let E be a Borel equivalence relation on a Polish space X and let I
be a σ-ideal on the same space. Is there a Borel I-positive set B ⊂ X such that
the equivalence E ↾ B is significantly simpler than E on the whole space?

Here, the phrase ”significantly simpler” can be interpreted in several ways. In
a particularly favorable cases, we may hope for E ↾ B to be one of finitely many
or countably many forms presribed beforehand. In other cases, we can only get
E ↾ B to be strictly below E in the Borel reducibility ordering. In other cases
still, we get a strong negative type result: the Borel reducibility complexity of
the equivalence relation E does not change by restricting to an I-positive Borel
set. The results change according to the ideal and equivalence in question. We
pay attention mainly to the σ-ideals associated with standard forcing notions, and
equivalences in well known Borel bireducibility classes. The main hope is that we
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will discover new ways of proving irreducibility results. The following definitions
are central:

Definition 1. Let I be a σ-ideal on a Polish space X . A Borel equivalence E
is in the spectrum of the ideal I if there is a Borel I-positive set B ⊂ X and a
Borel equivalence relation F on B bireducible with E, such that for every Borel
I-positive set C ⊂ B, the equivalence relation F ↾ C is still bireducible with E.

For every forcing P , it makes sense to evaluate the spectrum of the ideal I
naturally associated with the poset P . Thus, E0 and the identity belongs to
the spectrum of Silver forcing, but no other equivalence relations classifiable by
countable structures do. EKσ

belongs to the spectrum of the Laver forcing. On
the other hand, EKσ

does not belong to the spectrum of the ideal generated by
closed measure zero sets.

Definition 2. The ideal I has the Silver property if for every Borel equivalence
relation E, either there is a Borel I-positive set of pairwise inequivalent elements,
or the underlying space decomposes into countably many equivalence classes and
a set in I.

So for example, the ideal of countable sets has the Silver property as per the
Silver dichotomy. However, other σ-ideal have this property, for example the ideal
of σ-compact sets in ωω or the ideal of σ-porous sets on R. The nondominating
ideal on ωω has the Silver property for the equivalence relations classifiable by
countable structures, but not in general.

Definition 3. Let E be a Borel equivalence relation on a Polish space X and
x ∈ X be a set generic point. The model V [x]E is the model of all sets hereditarily
definable from parameters in the ground model and from [x]E in some large collapse
forcing extension.

This is a model of ZFC that depends only on the E-equivalence class of x
and not on x itself. It allows to connect equivalence relations with models of set
theory. The computations of intermediate models are often known, and they can
be brought to bear on equivalence relations via this definition.

There are numerous open questions and promisin lines of research in the subject.
We will include one typical representative:

Question 2. Let E be a Borel equivalence relation on Rω reducible to an orbit
equivalence. Is there a product of perfect sets on which E is smooth?

To explain, clearly E1 does not change its Borel complexity on any product of
perfect sets, and it is widely believed to be the simplest equivalence relation not
reducible to an orbit equivalence. The answer to the question is positive for orbit
equivalences of the permutation group. The question is clearly connected to the
computation of the spectrum of the product of countably many copies of Sacks
forcing.
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Borel ideals as tools

Michael Hrušák

The talk concerns the use of the combinatorics of Borel ideals on ω in perhaps
unexpected areas.

Here, an ideal is a subset of P(ω) closed under subsets and unions. The space
P(ω) is equipped with the usual Polish topology, and therefore it makes sense to
speak about descriptive set theoretic complexity of ideals on ω.

We will use Borel ideals to solve two rather old questions.
The first one, due to Canjar, concerns the existence of ultrafilters U such that

the corresponding Mathias-Prikry forcing MU does not add a dominating real.
Let F be a filter on ω. The Mathias-Prikry forcing associated with F is the

partial order
MF = {〈s, F 〉 : s ∈ [ω]<ω, F ∈ F}

ordered by
〈s, F 〉 ≤ 〈s′, F ′〉 iff s ⊇ s′, F ⊆ F ′ and s \ s′ ⊆ F ′.

Canjar himself has shown that such ultrafilters exist assuming d = c and that
any such ultrafilter has to be a P-point without rapid Rudin-Keisler predecessors
and asked:

Question 1. (Canjar 1980) Is every P-point U without rapid Rudin-Keisler pre-
decessors such that the corresponding Mathias-Prikry forcing MU does not add a
dominating real?

Soon after that C. Laflamme introduced the notion of a strong P-point:
An ultrafilter is a strong P-point if for any sequence 〈Cn : n < ω〉 of compact

subsets of U (considering U as a subset of 2ω with the product topology), there is
an interval partition 〈In : n < ω〉 such that

⋃
n<ω In ∩Xn ∈ U for each choice of

Xn ∈ Cn.
Laflamme noticed that: The forcing MU does not add a dominating rea⇒ U

is a strong P-point ⇒ U is a P-point without rapid RK-predecessors anad asked
whether eithr of the implications can be reversed.

Question 2. (Laflamme 1981) Is every strong P-point U such that the correspond-
ing Mathias-Prikry forcing MU does not add a dominating real? Is every P-point
without rapid RK-predecessors a strong P-point?

In a joint work with A. Blass, H. Minami and J. Verner we were able to answer
all of these questions by proving:

Theorem 1. Let U be a free filter on ω. Then MF does not add a dominating
real if and only if U is a strong P-point if and only if the filter U<ω is a P+-filter.

Here,given a filter F on ω let

F<ω = {A ⊆ [ω]<ω \ {∅} : ∃F ∈ F [F ]<ω \ {∅} ⊆ A},

and a filter F on ω is a P+-filter if every decreasing sequence of F -positive sets
has a positive pseudo-intersection (mod fin).
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Theorem 2 (H.-Verner). The generic ultrafilter added by P(ω)/I 1
n
is a P-point

without rapid RK-predecessors which is not a strong P-point. In fact, the same is
true for any quotient over a tall Fσ P-ideal.

Here I 1
n

denotes the summable ideal :

I 1
n

= {A ⊂ ω : Σn∈A

1

n
<∞}

The second application of Borel ideals we will talk about deals with continuous
selections and uses combinatorics of an ideal closely realted to Rado’s Random
graph.

Definition 1 (Michael 1951). A weak selection on a topological space X is a
continuous function ϕ : X2 → X such that ϕ((x, y)) = ϕ((y, x)) ∈ {x, y} for every
x, y ∈ X .

A topological space X is weakly orderable if it admits a weaker linearly ordered
topology or, equivalently, if it admits a continuous one-to-one function to a linearly
orderable space.

Proposition 1. (Michael 1951)

• Every weakly orderable space admits a weak selection.
• Every connected space which admits a weak selection is weakly orderable.

The question, implicit in Michaels paper whether the first implication can be
reversed was asked explicitly in a 1981 paper by J. van Mill and E. Wattel

Question 3. (van Mill-Wattel 1981) Is every space which admits a weak selection
weakly orderable?

They gave a positive answer for compact spaces.

Theorem 3. (van Mill-Wattel, 1981) Every compact space which admits a weak
selection is orderable, in particular, weakly orderable.

With I. Martinez Ruiz we have shown that the answer is negative (even for
separable locally compact spaces).

Theorem 4 (H.-Martinez Ruiz). There is a separable locally compact space ad-
mitting a weak selection which is not weakly orderable.

Some further uses of Borel ideals as tools will be briefly mentioned.
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On the complexity of the isomorphism problem for measures on
Boolean algebras

Mirna Džamonja

(joint work with Piotr Borodulin–Nadzieja)

A celebrated result in measure theory is the theorem of Maharam in 1942 which
states that if µ is a homogeneous σ-additive measure on a σ-complete Boolean alge-
bra B, then the measure algebra of (B, µ) is isomorphic to the measure algebra of
some 2κ with the natural product measure. Moreover, every measure algebra can
be decomposed into a countable sum of such algebras where the measure is homoge-
neous. This provides us with a very beautiful classification of σ-complete measure
algebras and it is natural to ask if a similar characterisation can be obtained under
weaker assumptions. In particular, a natural class to consider is formed by pairs
(B, µ) where B is any Boolean algebra, not necessarily σ-complete, and µ is a
strictly positive finitely additive measure on B, where µ without loss of generality
assigns measure 1 to the unit element of B.

A closely connected, but not the same problem, is that of obtaining a combi-
natorial characterisation of Boolean algebras B which support a measure, that is,
for which there is a finitely additive µ which is strictly positive on B. It is easy
to see that such an algebra must satisfy the countable chain condition ccc and
the question of the sufficiency of this condition was raised by Tarski. Horn and
Tarski in 1948 suggested various other chain conditions and Gaifman in showed
that in fact a rather strong condition of being a union B =

⋃
n<ω Bn where each

Bn+1 is n-linked, does not suffice for B to support a measure. Kelley in 1951
gave an exact combinatorial characterisation of Boolean algebras that support a
measure, which we therefore call Kelley algebras. This characterisation is that
B \ {0} =

⋃
n<ω Bn, where each Bn has a positive Kelley intersection number.

The Kelley intersection number for a family F of sets is said to be ≥ α if for every
n < ω and every sequence of n elements of F (possibly with repetitions), there is
a subsequence of length at least α ·n which has a nonempty intersection. Then the
Kelley intersection number is the sup of all α such that the intersection number
of is ≥ α. This characterisation is unfortunately not very useful in practice, as
it is hard to check, but nevertheless, it sheds light on our initial problem of clas-
sification. Namely, it shows that every σ-centred Boolean algebra does support
a measure. The σ-centred Boolean algebras are exactly the subalgebras of P(ω),
which for various good reasons are considered to be unclassifiable.

This detour shows that if we hope to have a classification of Kelley algebras,
we should better first restrict to some reasonable subclass. Maharam’s theorem
suggests that there should be some cardinal invariant at least as a first divid-
ing line, so the natural first reduction is to consider only those Boolean algebras
that support a separable measure. This can be easily defined by noticing that
a strictly positive measure µ on a Boolean algebra B induces a metric d given
by d(a, b) = µ(a∆b). This gives rise to the cardinal characteristics given by the
density character of this metric space, which is exactly the Maharam type of a
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measure algebra if the algebra is σ-closed and the measure σ-additive and homo-
geneous. The measure µ is said to be separable if the density character defined
above is equal to ω. In this paper we shall only consider separable measures. The
question of a combinatorial characterisation of Boolean algebras that support a
separable strictly positive measure has already been considered by many authors,
including Talagrand in 1981, who proposed a plausible candidate characterisation.
In 2008 Džamonja and Plebanek have shown that there is a ZFC counterexample
to this characterisation, therefore putting the characterisation programme back to
zero.

Going back to the fact that all subalgebras of P(ω) are Kelley algebras, we note
that it is rather easy to construct atomic separable measure, counting measures.
Many subalgebras of P(ω) only support such a measure, so it is more natural to
restrict our attention to the non-atomic case. For a Boolean algebra to support a
non-atomic measure it is of course necessary that the algebra itself be non-atomic,
so we shall mostly consider such algebras. Džamonja and Plebanek showed that
Martin’s axiom (for cardinals < c) implies that every non-atomic Boolean algebra
of size less than c supports a non-atomic separable measure, which shows on the
one hand that the characterisation of algebras supporting a non-atomic separable
measure is really about algebras of size c (it is easy to see that such a measure
cannot exists on an algebra of size > c), and on the other hand that a classification
is difficult since it potentially includes all small enough non-atomic algebras.

Since the work of Harrington and Louveau, through much recent work in de-
scriptive set theory, there has emerged a powerful machinery for showing the com-
plexity of various classification problems. Namely, suppose that we wish to classify
the objects in a certain class, say we are in a Polish space and we wish to classify
definable subspaces of it according to some equivalence relation. The equivalence
relation may be understood as having the same invariant. If this classification is
useful, then the invariant should be definable and checking if two objects are in
the same class should be doable in a definable way. If we show that such a defin-
able classification is not possible, then we have shown that the class we started is
unclassifiable in reasonable terms. In this paper our aim is to show that the class
of Boolean algebras supporting a separable measure is unclassifiable. We cannot
approach this problem directly using the classification techniques of equivalence
classes in Polish spaces, since the Boolean algebras in question cannot be coded as
elements of a Polish space. However, since we are after a non-classification result,
we may restrict to a subclass of our initial class, which may be seen as coming
from a Polish space and show a non-classification of even that smaller class. This is
exactly what we do, by showing that even the (separable) measures on the Cantor
algebra are nonclassifiable.

That result shows that the density of the metric space induced by a measure is
not a good invariant for classification. We are therefore led to search for a different
invariant, which we find by reconsidering the definition of separability. Namely a
measure µ on B is separable iff there is a countable A ⊆ B which is µ-dense in the
sense that for every b ∈ B and ε > 0 there is a ∈ A such that µ(a∆b) < ε. Let us
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say that A ⊆ B is µ-uniformly dense if for every b ∈ B and ε > 0 there is a ∈ A

such that a ≤ b and µ(b \ a) < ε. The uniform density of (B, µ) can be defined
as the smallest cardinal κ such that there is a µ-uniformly dense A ⊆ B of size κ.
Kelley algebras whose uniform density is ℵ0 are called uniformly regular and they
have been considered in the literature, for example in by Mercourakis, and it was
shown that uniform regularity is quite different than separability. We show that
in fact for the purposes of characterisation, uniformly regular measures are much
superior to the separable ones, since we prove that a Boolean algebra supports a
non-atomic uniformly regular measure iff it is a subalgebra of the so called Jordan
algebra, and algebra which is well known in the literature.

We recall in that it is also known that algebras supporting a non-atomic sepa-
rable measure are subalgebras of a fixed algebra (namely the Cohen one) but that
there is no iff characterisation known. Our results suggest that the classification of
non-atomic Kelley algebras should proceed with the invariant being the uniform
density rather than the Maharam type.

References
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A model with a precipitous ideal but without normal one

Moti Gitik

T. Jech and K. Prikry asked if it is possible to have a model with a precipitous
ideal but without normal one.

We show the following:

Theorem 1. Con(∃κo(κ) = κ++) → Con(∃ a precipitous ideal on ℵ1 but there is
no normal precipitous ideal).

The next result follows from the proof:

Theorem 2. There is a model with a supercompact in which there is no precipitous
filters on ℵ1 extending Cubℵ1 ↾ S, for some fixed stationary S ⊆ ℵ1.

The following related problems remain open.

Question 1. Is the assumption o(κ) = κ++ needed for a model with a precipitous
ideal on ℵ1 but without a normal one?

We think that it is likely to be possible to show that if ℵ1 is ∞–semi precipitous
with a witnessed forcing satisfying ℵ3–c.c. and with image of ℵ1 under the cor-
responding generic embedding is at least ℵ3, then o(κ) = κ++ in an inner model.
But probably there is no need to go via a construction of such ∞–semi precipitous.

Question 2. Is it possible to have a GCH model with a precipitous ideal on ℵ1

but without a normal one?

By [7] large cardinals not far from o(κ) = κ++ are needed for such a model.
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Question 3. Is it possible to generalize the present result to cardinals bigger than
ℵ1?
Simplest case: Is there a model with a precipitous ideal on ℵ2 but without a normal
one?

The next question is well known with partial answers given by Schimmerling,
Velickovic [13], Woodin [14] (8.1 Condensation Principles) and recently by Wu.

Question 4. Is it consistent that there is a supercompact cardinal and ℵ1 does
not carries a precipitous ideal?

Question 5. Is it consistent that there is a supercompact cardinal and ℵ1 does
not carries a precipitous filters that are Q–points, i.e. isomorphic to filters which
extend Cubℵ1?
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On partial square sequences

John Krueger

A famous theorem in set theory is the result that the failure of the square principle
✷κ, for a regular uncountable cardinal κ, is equiconsistent with a Mahlo cardinal.
Solovay proved that if λ > κ is a Mahlo cardinal, then in any generic extension
by the Lévy collapse Coll(κ,<λ), λ = κ+ and ¬✷κ. On the other hand, Jensen
proved that ¬✷κ implies that κ+ is Mahlo in L.

Partial square sequences were introduced by Shelah as a weakening of the square
principle. Let ν < κ+ be regular, and let A ⊆ κ+ ∩ cof(ν). We say that A carries
a partial square if there exists a sequence 〈cα : α ∈ A〉 satisfying: (a) cα is a club
subset of α; (b) ot(cα) = ν; (c) if γ is a limit point of cα and cβ , then cα∩γ = cβ∩γ.
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A significant difference between the square principle and partial squares is that,
while ✷κ is independent of ZFC, the existence of partial squares is provable in
ZFC. For example, Shelah proved that if κ is a regular uncountable cardinal, then
κ+ ∩ cof(<κ) splits into κ many pairwise disjoint subsets each of which carries a
partial square.

Magidor constructed a model of set theory which satisfies a strong form of
stationary set reflection, using a weakly compact cardinal. In this model there is
no stationary subset of ω2 ∩ cof(ω1) which carries a partial square.

We define a forcing iteration which destroys the stationarity of any subset of
κ+∩cof(κ) which carries a partial square, using a greatly Mahlo cardinal. We also
obtain the lower bound, by showing that if no stationary subset of κ+ ∩ cof(κ)
carries a partial square, then κ+ is greatly Mahlo in L. Thus the statement that
there exists a regular uncountable cardinal κ such that no stationary subset of
κ+∩cof(κ) carries a partial square is equiconsistent with a greatly Mahlo cardinal.

Unitary representations of oligomorphic groups

Todor Tsankov

Traditionally, representation theory is restricted to studying representations of
locally compact groups, and for a good reason: the Haar measure provides an
invaluable tool for constructing and analyzing representations. It gives rise to
the left-regular representation (so that every locally compact group has at least
one faithful representation) but also allows to define convolution of functions and
various useful topologies on function spaces on the group. And indeed, many
standard theorems of representation theory break down for non-locally compact
groups: for example, the group of homeomorphisms of the reals has no non-trivial
unitary representations (Megrelishvili [6]), while the group of all measurable maps
from [0, 1] to the circle has a faithful unitary representation (by multiplication on
L2([0, 1])) but has no irreducible representations (this example is due to Pestov;
see [2, Example C.5.10]). Nevertheless, some non-locally compact groups do have
a nice representation theory: for example, the infinite symmetric group S∞ and
the unitary group of a separable, infinite-dimensional Hilbert space both have only
countably many irreducible representations that separate points and every repre-
sentation splits as a sum of irreducibles (Lieberman [5] and Kirillov [4]). In both
situations, the representation theory is quite similar to the one for compact groups.
We present a similar classification result for the representations of oligomorphic
permutation groups.

Let S∞ be the group of all permutations (not necessarily of finite support) of a
countable infinite set X. It becomes naturally a topological group if equipped with
the pointwise convergence topology (where X is taken to be discrete). For us, a
permutation group will be a closed subgroup of S∞ equipped with its natural action
on the set X. It is well known that the topological groups that can be realized
as permutation groups are exactly the Polish (separable, completely metrizable)
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groups that admit a basis at the identity consisting of open subgroups. The basis
is given by the stabilizers of finite sets.

A natural way in which permutation groups arise is as automorphism groups of
countable structures in model theory, i.e. one fixes some relations and functions
on the set X and considers the group of all permutations that preserve them. We
will restrict our attention to oligomorphic permutation groups which are defined
as follows.

Definition 1. A permutation group Gy X is called oligomorphic if the induced
action Gy Xn has only finitely many orbits for each n.

The following property of topological groups will also be relevant for us.

Definition 2. A topological groupG is called Roelcke precompact if for every open
neighborhood of the identity U , there exists a finite set F such that G = UFU .

In the above definition, one can obviously restrict U to belong to a basis at the
identity, so for closed subgroups of S∞, the definition has the following equivalent
form: G ≤ S∞ is Roelcke precompact iff for every open subgroup V ≤ G, the set of
double cosets {V xV : x ∈ G} is finite. One has the following basic characterization.

Theorem 1. For a closed subgroup G ≤ S∞, the following are equivalent:

(i) G is Roelcke precompact;
(ii) for every continuous action G y X on a countable set X with finitely

many orbits, the induced action Gy Xn has finitely many orbits for each
n;

(iii) G can be written as an inverse limit of oligomorphic groups.

Note that an oligomorphic group can never be locally compact: if V ≤ G is a
compact open subgroup, then the union of finitely many V double cosets will be
compact.

A standard way to produce structures with oligomorphic automorphism groups
is the so-called Fräıssé construction: given a class of finite structures satisfying a
certain amalgamation property, there is a way to build an infinite structure that
contains all structures in the class as substructures and is moreover homogeneous.
We refer the reader to [3] for the general theory and just present a few examples.

• The Fräıssé limit of all finite sets without structure is a countably infinite
set X. The corresponding group is S∞, the group of all permutations of
X.

• The Fräıssé limit of all finite linear orders is the countable dense linear
order without endpoints (Q, <).

• The Fräıssé limit of all finite boolean algebras is the countable atom-
less boolean algebra which is isomorphic to the algebra of all clopen sub-
sets of the Cantor space 2N. The corresponding automorphism group is
Homeo(2N), the group of all homeomorphisms of 2N.

• The Fräıssé limit of all finite vector spaces over a fixed finite field Fq is
the countable-dimensional vector space over Fq.
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• The Fräıssé limit of all finite graphs is the random graph, the unique count-
able graph R such that for every two finite disjoint sets of vertices U, V ,
there exists a vertex x which is connected by an edge to all vertices in U
and to no vertices in V .

The main theorem, proved in [7], describes all representations of an oligomor-
phic group as direct sums of irreducible representations which are induced from
irreducible representations of finite quotients of open subgroups. More precisely,
the following holds.

Theorem 2. Let G be an oligomorphic group. Then every irreducible unitary
representation of G is of the form IndG

C(V )(σ), where V ≤ G is an open subgroup,

C(V ) is the commensurator of V , V ✂C(V ), and σ is an irreducible representation
of the finite group C(V )/V . Moreover, every unitary representation of G is a sum
of irreducibles.

We also provide a complete description of when two representations of the form
IndG

C(V )(σ) are equivalent.
As every oligomorphic group has only countably many distinct open subgroups,

this means that every oligomorphic group has only countably many irreducible
representations.

If one is given a realization of an oligomorphic group as the automorphism group
of a countable structure, it is usually possible to give a more concrete description of
the representations in terms of the structure. For example, for the random graph,
one can take a finite (induced) subgraph A ⊆ R and set V to be the pointwise
stabilizer of A. Then C(V ) is the setwise stabilizer of A and C(V )/V ∼= Aut(A).
As a result, one obtains that irreducible representations of the automorphism group
of the random graph are obtained by induction from irreducible representations of
automorphism groups of finite graphs (and in fact, this correspondence is one-to-
one if one takes care of the obvious identifications).
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An analysis of the amenablity problem for Thompson’s group F

Justin Tatch Moore

Thompson’s group F is a well studied object which has been rediscovered several
times in different contexts. Abstractly, it is the group generated by xn (n ∈ ω)
subject to the relations x−1

i xnxi = xn+1 for each i < n. The generators xn for
n > 1 are redundant and in fact F has a finite presentation (although this is not
obvious). F also can be defined as a group of automorphisms of [0, 1] as follows.
Let T denote the collection of all subsets T of [0, 1] which contain {0, 1} and satisfy
that if s < t are consecutive elements of T , then there are natural numbers p and
q such that s = p/2q and t = (p + 1)/2q. If S, T ∈ T have an equal number of
elements, then the unique order preserving map from S to T extends piecewise
linearly to a map of [0, 1] to [0, 1]. The collection of all such maps with composition
forms a group isomorphic to F . F acts on T by set-wise application. There are
several other natural ways of viewing T . One which we will need below is that T
is the collection of all variable free terms in a binary operation ̂ and a constant
symbol 1.

A basic question about F which still remains open is whether it is amenable:
does it support a finitely additive translation invariant probability measure? Part
of the interest in this question stems from the fact that it is known that F does not
contain a copy of the free group on two generators and therefore a negative answer
would give a finitely presented counterexample to the so called von Neumann-
Day Conjecture. This conjecture has been resolved, but only recently for finitely
presented groups and by a counterexample which is both complex and ad hoc [4].

My approach to this problem has been to determine what can be said about
invariant measures on F and the subsets of F which must be assigned measure 0 by
any invariant measure. The most quotable results along these lines were obtained
in [3]. First recall that an action of a finitely generated group is amenable if and
only if for every ǫ > 0 there is an ǫ-Følner set for the action with respect to a
fixed finite generating set — that is a finite set A such that

∑
γ |A△A · γ| < ǫ|A|,

where γ ranges over the finite set of generators. If an action is amenable, we can
therefore ask how fast the minimum cardinality of a 1/n-Følner set grows as n
increases. In [3] it is shown that, if F is amenable, then there is a constant C such

that the minimum cardinality of a C−n-Følner set is at least 22
...2

(this is true
for both the action of F on itself and on T ). This is derived from the following
qualitative result which is of independent interest: if µ is an F -invariant measure
on T and Ii (i ≤ l) is a sequence of intervals such that 0 < min Ii ≤ max Ii+1 < 1
for all i < l, then µ-a.e. T satisfy that |T ∩ Ii| (i ≤ l) is strictly increasing or
strictly decreasing.

This last qualitative property of F -invariant measures on T places limitations on
the methods of construction which might be successful in constructing an invariant
measure. The main purpose of this talk is to present two candidates for how to
build such invariant measures which naturally build in this qualitative feature.
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The first is non-constructive and is motivated by a well known result of El-
lis: if (S, ∗) is a compact left topological semigroup, then S has an idempotent.
Typically this result is applied by starting with a discrete semigroup S and then
using iterated integration to extend the binary operation to βS — the Cech-Stone
compactification of S. In fact the operation also extends to the finitely additive
probability measures on S. One can ask whether there is an analog of Ellis’s the-
orem for arbitrary binary operations. While Ellis’s theorem yields an idempotent
ultrafilter on S when S is a semigroup, there are no idempotent ultrafilters on
the free binary system on one generator. It seems plausible, however, that there
would be an idempotent probability measure. In fact one can prove that if µ is an
idempotent measure on (T , ̂), then µ is invariant with respect to the action of F .

Conjecture 1. If (S, ∗) is any binary system, then there is an idempotent proba-
bility measure on S.

It is interesting to note that the process of extending the operation to the space
of probability measures requires a choice in the order of integration and this choice
would account for the asymmetry noted above which ergodic invariant measures
must exhibit.

The second approach to proving that F is amenable involves attempts to build
explicit Følner sets for F . The main ingredient is the assumption of the existence
of a system of functions fT (T ∈ T ) satisfying the following properties:

• Each fT is a non-identity increasing function from N to N and fS = fT if
S is equivalent to T by the repeated applications of the left self distributive
law â(b̂c) = (âb)̂(âc).

• crit(fÂB) = fA(crit(fB)) where crit(fT ) = min{n : fT (n) 6= n}.
• {crit(fT ) : T ∈ T } = N.

Such a family of functions is unique if it exists, in which case the functions fT
are all recursive. The existence of such a system is known to follow form the
existence of a rank-to-rank elementary embedding but it is not known to follow
from ZFC [2]. Such functions allow for the definition of a number of finite-to-one
functions from T into N which seem relevant to building Følner sets for F . The
main template is:

φ(T ) =

{
0 if T = 1

max(φ(A), fA(φ(B))) if T = ÂB
This function is finite-to-one and satisfies that φ(T ) ≤ φ(T ·xk) whenever T ·xk is
defined. It can be shown that An = {T ∈ T : φ(T ) ≤ n} does not contain a Følner
sequence, but I conjecture that if these sets are additionally constrained by some
condition which only concerns the LD-class of T ∈ T , then one obtains sets which
contain a Følner sequence. A test conjecture is the following. Let An,p denote

those T which are iterated right divisors of 1[p+1] (the p + 1st right associated
power of the generator 1) and which satisfy φ(T ) ≤ n.

Conjecture 2. For every ǫ > 0, there is a p0 such that if p > p0 then for all but
finitely many n, An,p is ǫ-Følner.
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Moreover, it should be possibly to take p0 to be O(1/ǫk) for some k.
Additionally, I conjecture that the amenability of F is equivalent to the exis-

tence of the system of functions fT (T ∈ T ).

Conjecture 3. The Følner function of F is bi-primitive recursive in any of the
functions fT .

Dougherty has shown that none of the functions fT are primitive recursive but
that each is primitive recursive in any other, assuming that the system exists [1].

References

[1] R. Dougherty, Critical points in an algebra of elementary embeddings, Ann. Pure Appl.
Logic 65 (1993), no. 3, 211–241.

[2] R. Laver, On the algebra of elementary embeddings of a rank into itself, Adv. Math. 110

(1995), no. 2, 334–346.
[3] J. T. Moore, Fast growth in Følner function for Thompson’s group F , ArXiv Preprint

0905.1118, Aug. 2009.
[4] A. Y. Ol′shanskii, M. V. Sapir, Non-amenable finitely presented torsion-by-cyclic groups,

Publ. Math. Inst. Hautes Études Sci. 96 (2003), 43–169, 2002.

On the Bergman and Steinhaus properties for infinite products of
finite groups

Simon Thomas

(joint work with Jindřich Zapletal)

In this talk, we discussed the Bergman and Steinhaus properties for infinite prod-
ucts of finite groups.

Definition 1. Suppose that G is a non-finitely generated group.

(a) G has countable cofinality if G =
⋃

n∈ωGn can be expressed as the union
of a countable increasing chain of proper subgroups. Otherwise, G has
uncountable cofinality.

(b) G is Cayley bounded if for every symmetric generating set S, there exists
an integer n ≥ 1 such that every element g ∈ G can be expressed as a
product g = s1 · · · sn, where each si ∈ S ∪ { 1 }.

(c) G has the Bergman property if G has uncountable cofinality and is Cayley
bounded.

Definition 2. Let G be a topological group. Then G has the Steinhaus property if
there exists a fixed integer k ≥ 1 such that for every symmetric countably syndetic
subset W ⊆ G, the k-fold product W k contains an open neighborhood of the
identity element 1G.

The talk focused on groups of the form
∏
SL(2, pn), where ( pn | n ∈ ω ) is

an increasing sequence of primes. This may seem a strange choice, given that the
results of Saxl-Shelah-Thomas [1] and Thomas [2] imply that the Bergman and
Steinhaus properties always fail for such groups.
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Theorem 1 (ZFC). If ( pn | n ∈ ω ) is an increasing sequence of primes, then:

(a)
∏
SL(2, pn) has countable cofinality;

(b)
∏
SL(2, pn) is not Cayley bounded; and

(c)
∏
SL(2, pn) does not have the Steinhaus property.

However, this is not the end of the story. The arguments in both [1] and [2]
make use of an ultraproduct

∏
U
SL(2, pn), where U is a nonprincipal ultrafilter

over ω; and it is natural to ask whether the existence of such an ultrafilter is
either necessary or sufficient in order to establish the failure of the Bergman and
Steinhaus properties for

∏
SL(2, pn). Of course, when considering this kind of

question, we cannot work with the usual ZFC axioms of set theory since these
already imply the existence of nonprincipal ultrafilters over arbitrary infinite sets.
Instead we will work with the axiom system ZF +DC, where DC is the following
weak form of the Axiom of Choice.

Axiom of Dependent Choice (DC). Suppose that X is a nonempty set and
that R is a binary relation on X such that for all x ∈ X, there exists y ∈ X with
x R y. Then there exists a function f : ω → X such that f(n) R f(n + 1) for all
n ∈ ω.

The following result shows that the existence of a nonprincipal ultrafilter over
ω is indeed necessary in order to prove the failure of the Bergman property. It
is currently not known whether the failure of the Steinhaus property implies the
existence of a nonprincipal ultrafilter over ω.

Theorem 2 (ZF +DC). Let ( pn | n ∈ ω ) be an increasing sequence of primes. If∏
SL(2, pn) does not have the Bergman property, then there exists a nonprincipal

ultrafilter over ω.

On the other hand the following result shows that the existence of a nonprincipal
ultrafilter over ω is not sufficient to prove the failure of either the Bergman property
or the Steinhaus property. (Here LC indicates that the proof makes use of a
suitable large cardinal hypothesis.)

Theorem 3 (LC). If ( pn | n ∈ ω ) is a sufficiently fast growing sequence of
primes, then

∏
SL(2, pn) has both the Bergman property and the Steinhaus prop-

erty in L(R)[U ].
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Fusion and large cardinals

Lyubomyr Zdomskyy

(joint work with Radek Honzik, Sy-D. Friedman)

An important technique in large cardinal set theory is that of extending an el-
ementary embedding j : M → N of inner models to an elementary embedding
j∗ : M [G] → N [G∗] of generic extensions of them. For example, using a reverse
Easton iteration of forcings adding α++ many Cohen subsets to every inaccessible
cardinal α below a strong cardinal κ, Woodin produced a model where κ remains
measurable and GCH fails at κ. As a complementary technique to the above men-
tioned proof of Woodin, Friedman and Thompson suggested in [2] to use perfect
trees, using fusion as a substitute for distributivity. This allowed them to pro-
vide, among other results, a new proof of Woodin’s theorem. Another example of
the use of fusion for extending elementary embeddings is given in our joint work
with Friedman [3], where we used an iteration with supports of size ≤ κ of a suit-
ably defined uncountable version of the Miller and Sacks forcings (the latter is an
alternative name for the perfect tree forcing).

These results suggest to isolate some property (or properties) B such that when-
ever κ is a large cardinal (e.g., strong cardinal) and 〈Pξ,Q

˜
ξ : ξ < γ〉 is an iteration

with supports of size ≤ κ such that Pξ
“Q
˜
ξ has the property B” for all ξ < γ,

then (κ+)V is a cardinal in V Pγ and κ remains large in this forcing extnsion. One
of such properties is a suitable modification of the reasonable B-boundedness of
Roslanowski and Shelah from [5] given by the definition below.

In what follows µ̄ denotes an increasing sequence 〈µα : α < κ〉 of regular
cardinals below an inaccessible cardinal κ such that |

∏
ξ<α f(ξ)| < µα for every

f : α → µα. Let U be a family of unbounded subsets of κ which is closed under
diagonal intersections. For a poset Q we denote by UQ the closure of U under
diagonal intersections in V Q.

Definition 1. Let Q be a forcing notion.
For a condition p ∈ Q we define a game

GBe

U ,µ̄(p,Q) between two players, Generic

and Antigeneric, as follows. A play of

GBe

U ,µ̄(p,Q) lasts κ steps and results in a

sequence
〈
Iα, 〈p

α
t , q

α
t : t ∈ Iα〉 : α < κ

〉
constructed by the players. The αth round

is played as follows:

(1) First, Generic chooses a non-empty set Iα of cardinality < µα and a col-
lection 〈pαt : t ∈ Iα〉 of pairwise incompatible elements of Q such that
(a) for any J ⊂ α and (tξ)ξ∈J ∈

∏
ξ∈J Iξ, if there exists a lower bound

for the set {qξtξ : ξ ∈ J} ∪ {pαt } for some t ∈ Iα, then pαt is such a
lower bound;

(b) for any limit α < κ, a cofinal subset J of α, and a sequence (tξ)ξ∈J ∈∏
ξ∈J Iξ, the set {t ∈ Iα : ∀ ξ ∈ α (pαt ≤ qξtξ)} has size at most |α|.

(2) Antigeneric answers by picking a collection 〈qαt : t ∈ Iα〉 such that qαt ≤ pαt
for all t ∈ Iα.
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Generic wins this play
〈
Iα, 〈p

α
t , q

α
t : t ∈ Iα〉 : α < κ

〉
if there exists p∗ ≤ p such

that p∗  {α < κ : ∃ t ∈ Iα (qαt ∈ ΓQ)} ∈ UQ.
We say that Q is reasonably Be-bounding

1 over U , µ̄ if Q is < κ strategically
closed and the Generic has a winning strategy in

GBe

U ,µ̄(p,Q) for all p ∈ Q. If

U = {κ}, then forcing notions which are reasonably Be-bounding over U , µ̄ will be
called reasonably Ae-bounding over µ̄. ✷

If we remove items (a), (b) (or just item (b)) from Definition 1(1), we get the

definition of the game

GrcB
U ,µ̄ (p,Q) and of reasonably B-bounding over U , µ̄ forcing

notions introduced in [5], respectively. If U = {κ}, then forcing notions which are
reasonably B-bounding over U , µ̄ are called [5] reasonably A-bounding over µ̄.

Assume GCH in V and let κ be an inaccessible limit of inaccessible cardinals
in V . We define in V a poset Rκ as follows. Let R0 be the trivial forcing. For
i < κ let S

˜i
be a Ri-name for the lottery sum of all < ρi-directed closed posets

whose underlying set is a subset of H(ρ++
i )V

Ri
, where ρi is the ith inaccessible

cardinal below κ. In other words, let Si be a Ri-name for the poset {〈S, s〉 : S is

a < ρi-directed closed posets whose underlying set is a subset of H(ρ++
i )V

Ri
and

s ∈ S}∪{1}, ordered with 1 above everything else and 〈S, s〉 ≤ 〈S′, s′〉 when S = S′

and s ≤ s′. Let Rκ be the iteration 〈Rξ, S˜ξ
: ξ < κ〉 with Easton support.

The following theorem is the main result we are going to present.

Theorem 1. Suppose GCH holds and j : V → M is a (κ, κ++)-extender ul-
trapower2 and H(κ++)V = H(κ++)M . Let U be a normal filter on κ contained
in the measure derived from j. Let also Rκ be the poset defined above and in
V Rκ let Q̄ = 〈Pξ,Q

˜
ξ : ξ < γ〉 be a κ-support iteration such that γ ≤ κ++

and R∗Pξ
“Q
˜
ξ is a < κ directed closed reasonably Be-bounding over U , µ̄ poset

of size ≤ κ+” for all ξ < γ. Then j can be extended to an elementary embedding
j∗∗ : V Rκ∗Pγ → M j(Rκ∗Pγ) so that H(κ++) of V Rκ∗Pγ and M j(Rκ∗Pγ) coincide. In
particular, κ remains measurable in V Rκ∗Pγ .

Theorem 1 covers iterations of the “plain” Sacks forcing at κ introduced in [4]
and also of some posets from [5]. In particular, we have the following

Corollary 1. Suppose GCH holds and j : V → M is an (κ, κ++)-extender ul-
trapower such that H(κ++)V = H(κ++)M . Let U be the measure derived from j.
Then there exists a κ++-c.c. κ-proper poset P of size κ++ such that

(1) j can be extended to an elementary embedding j∗ : V P →M j(P);
(2) If W ∈ V P is a normal measure on κ such that U ⊂ W, then dW = κ+;
(3) If W ∈ V P is a normal measure on κ such that U 6⊂ W, then dW = κ++.

However, Theorem 1 does not cover arbitrary Sacks posets at κ (e.g., those
where a node on αth splitting level of a tree has > |α|+ immediate successors, see
[1] where such posets were used to force a prescribed number of normal measures
on a measurable cardinal.) Iterations with support ≤ κ of the poset Miller(κ)

1The letter “e” comes from “extending embeddings”
2I.e., M = {j(f)(a) : f ∈ V, f : H(κ) → V, and a ∈ H(κ++)}.
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introduced in [3] are also not in the scope of applications of Theorem 1. We plan
to discuss possible strategies how to overcome these difficulties.
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Bounding coloring numbers by powers of choice numbers in all infinite
graphs

Menachem Kojman

The choice number or list-chromatic number χℓ(G) of a graph G = (V,E) is the
least cardinal κ such that for every assignment of a list L(v) of κ colors to each
v ∈ V there exists a valid coloring c of V such that c(v) ∈ L(V ) for each vertex
v ∈ V . The coloring number Col(G) of G is the least κ such that there is a well-
ordering ≺ of V satisfying that each vertex v ∈ V has fewer than κ neighbors in
{u : u ≺ v}. For every G it holds that χ(G) ≤ χℓ(G) ≤ Col(G) (where χ(G) is
the usual chromatic number of G.)

N. Alon proved that Col(G) ≤ c2χℓ(G) for some constant c for every finite graph
G and asked if some analogous bound holds in the infinite case. Using Shelah’s
revised GCH Theorem we prove that for every graph G with infinite χℓ(G) it holds
that

Col(G) ≤ iω(χℓ(G)).

Better upper bounds hold for proper initial segments of the cardinals or by
assuming very weak forms of the Singular Cardinals Hypothesis. The main point,
though, is that countably many power-set operations suffice to bound the coloring
number in all graphs in ZFC.
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More on continuous pair colorings on Polish spaces

Stefan Geschke

1. Introduction

Let X be a Polish space. A coloring c : [X ]2 → 2 of the unordered pairs of X
is continuous if for all x, y ∈ X with x 6= y there are disjoint open sets U, V ⊆ X
such that x ∈ U , y ∈ V , and for all a ∈ U and all b ∈ V , c(x, y) = c(a, b).

Continuous colorings made an appearance in the theory of planar convexity
in [5] and have been studied more systematically in [4]. Some more information
was obtained in [1] and [2]. The new results presented here without citation will
appear in [3].

In the light of the importance of the G0-dichotomy for analytic graphs [6], it
seems to be natural to consider instead of a continuous coloring c : [X ]2 → 2 the
clopen graph

(X, {(x, y) ∈ X2 : x 6= y ∧ c(x, y) = 1})

on X associated to c. Several graph-theoretic cardinal invariants are degenerate for
clopen graphs in the sense that they are either countable or 2ℵ0 . Examples include
the clique number, the chromatic number, and the Borel chromatic number. A
cardinal invariant that is not degenerate in this sense is the cochromatic number
which we call homogeneity number in the context of continuous colorings.

Definition 1. Let c : [X ]2 → 2 be a continuous coloring on a Polish space X . The
homogeneity number hm(c) is the least size of a family of c-homogeneous subsets
of X that covers X .

The following facts were already proved in [5]:

Theorem 1. a) There is a continuous coloring cmin : [2ω]2 → 2 such that for
every uncountably homogeneous continuous coloring c on a Polish space we have
hm(cmin) ≤ hm(c).

b) 2ℵ0 ≤ (hm(cmin))+

c) It is consistent that for every continuous coloring c on a Polish space we have
hm(c) < 2ℵ0 .

In [4], the following result was shown:

Theorem 2. a) There is a continuous coloring cmax : [2ω]2 → 2 such that for
every continuous coloring c on a Polish space, hm(c) ≤ hm(cmax).

b) It is consistent that hm(cmin) < hm(cmax).

Finally, after some initial results in [5] and [4], in [1] it was determined that
hm(cmin) is large compared to other cardinal characteristics of the continuum.

Theorem 3. cof(tnull) ≤ hm(cmin)

In particular, hm(cmin) is larger than all cardinal characteristics in Cichoń’s
diagram.
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2. Depth and width

Definition 2. Let A ⊆ ωω be a closed set. A continuous coloring c : [A]2 → 2 is
of width m ∈ ω if no node in the tree

T (A) = {s ∈ ω<ω : ∃x ∈ A(s ⊆ x)}

has more than m immediate successors.
For {x, y} ∈ [ωω]2 let

∆(x, y) = min{n ∈ ω : x(n) 6= y(n)}.

The coloring c is of depth k ∈ ω if for all {x, y} ∈ [A]2 the color c(x, y) only
depends on x ↾ ∆(x, y) + k and y ↾ ∆(x, y) + k.

Note that if we speak of depth and width of a coloring this implicitly means
that the coloring is defined on a closed subset of ωω. The methods developed in
[4] can be used to show the following:

Lemma 1. a) Every continuous coloring on a zero-dimensional, compact metric
space X is isomorphic to a coloring of depth 2.

b) For every continuous coloring c on a Polish space there is a continuous
coloring d of depth 1 such that hm(c) = hm(d).

Using a construction similar to the construction of cmax in [4] together with
Lemma 1 a) we obtain

Theorem 4. There is a continuous coloring cuniversal : [ωω]2 → 2 of depth 2
such that every continuous coloring on a zero-dimensional, compact metric space
embeds into cuniversal in the natural sense.

Using an entirely new argument, we show that many colorings have the same
homogeneity number as cmin.

Theorem 5. Let c be a continuous coloring of finite width and depth. If hm(c) is
uncountable, then hm(c) = hm(cmin).

3. Analysis of continuous colorings in terms of finite induced

subgraphs

We assume all classes of graphs to be closed under isomorphism. A class of
finite graphs is nontrivial if it contains a graph that has an edge and a graph with
two points that are not connected by an edge. A class of finite graphs is closed if
it is closed under taking induced subgraphs and under substitution.

Given two graphs G and F with disjoint sets V (G) and V (F ) of vertices and
a vertex v ∈ V (G), H is obtained by substituting F for v in G if V (H) is the
disjoint union of the sets V (G)\ {v} and V (F ), any two vertices in V (G)\ {v} are
connected in H if they are connected in G, any two vertices in V (F ) are connected
in H if they are connected in F , and a vertex u ∈ V (G) \ {v} is connected in H
to a vertex w ∈ V (F ) if u and v form an edge in G.
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Definition 3. Let c be a continuous coloring on a Polish space X . Let age(c)
denote the class of all finite graphs G that are isomorphic to an induced subgraph
of the clopen graph associated with c.

The coloring c is self-similar if for every nonempty open set O ⊆ X we have
age(c ↾ O) = age(c).

Theorem 6. a) If c is a self-similar continuous coloring on a Polish space and
hm(c) is uncountable, then age(c) is a nontrivial closed class of finite graphs.

b) If A is a closed class of finite graphs then there is a selfsimilar continuous
coloring cA of depth 1 on a compact subset of ωω such that age(cA) = A. With
these properties, the coloring cA is unique up to bi-embeddability.

c) For each continuous coloring c on a Polish space we have hm(c) ≤ hm(cage(c)).
If c is self-similar, then hm(c) = hm(cage(c)).

The smallest nontrivial closed class of finite graphs is the class generated by
a single edge and its complement. This is the class of finite P4-free graphs, i.e.,
the class of finite graphs that do not contain induced subgraphs isomorphic to P4,
the path on four vertices. Let A be the class of finite P4-free graphs and let B
be the class of all finite graphs. Then cmin is bi-embeddable with cA and cmax is
bi-embeddable with cB.

In [2] it was shown that every uncountably homogeneous, continuous coloring
c on a Polish space whose associated graph is P4-free satisfies hm(c) = hm(cmin).
Generalizing this result, we obtain the following corollary of Theorem 5:

Theorem 7. If D is a nontrivial closed class of finite graphs that is generated by
finitely many graphs, then hm(cD) = hm(cmin).

Another important closed class of finite graphs is the class of perfect graphs.
That this class is closed is just Lovász’ Substition Theorem [7]. If C denotes
the class of finite perfect graphs, then an analysis of the proof of Theorem 2 b)
shows that actually hm(cC) < hm(cB) is consistent. It is possible to give a purely
combinatorial condition on a pair (E ,F) of closed classes of finite graphs that is
sufficient for the consistency of hm(cE) < hm(cF ). Unfortunately, it is currently
not known whether there is any such pair of classes that satisfies the condition
and is substantially different from the pair (C,B).

In particular, we do not know whether there are uncountably homogeneous
continuous colorings c1, c2, and c3 on Polish spaces such that for any two of
them the homogeneity numbers can be separated in a generic extension of the
set-theoretic universe.
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On isometric representations and maximal symmetry

Christian Rosendal

(joint work with Valentin Ferenczi)

0.1. Existence of non-trivial isometries. It has been a longstanding question
whether a Banach space can admit only trivial continuous linear operators. A
major breakthrough was due to W.T. Gowers and B. Maurey in the 1990’s, with the
definition of the hereditarily indecomposable space GM , which has few operators
in the sense that every operator on it is a strictly singular perturbation of a multiple
of the identity [7]. Finally, a stricter question was recently solved by S. Argyros
and R. Haydon [1], with the construction of a space on which every operator is a
compact perturbation of a multiple of the identity map. The space AH of Argyros
and Haydon has a Schauder basis, and so all compact operators are limits of finite-
rank operators. Therefore the space AH has no other operators than those that
necessarily arise on any Banach space from the existence of the identity map and
the finite dimensional maps.

The presented results address another similar issue, namely:

Question 1. Does every Banach space contain a non trivial isometry?

Now, K. Jarosz [8] showed that any Banach space may be equivalently renormed
to have only the trivial isometries λId, where λ is a scalar of modulus 1. But of
course, this does not prevent the group of isometries to be extremely non-trivial
for some other norm and is not an isomorphic property of the space. So we seek
a more structural result on the isometry groups (Isom(X), ‖·‖), where ‖·‖ varies
over all equivalent norms on X .

Note that an infinite-dimensional Banach space X may always be equipped with
an equivalent norm associated to an isomorphic representation of X as the ℓ1-sum
F⊕1H , where F is any choice of a finite dimensional space, in which case Isom(X)
will at least contain a subgroup isomorphic to Isom(F ). In other words for any
Banach space X and any group G of isometries on a finite dimensional space, G
will appear as a subgroup of Isom(X) in some equivalent norm on X .

Therefore we should have a less restrictive concept of what we mean by “trivial
isometries” if we look for results about all possible equivalent renormings. One of
our main results is that there do exist spaces with as few isometries as possible,
in the sense that under any equivalent norm the only isometries are those which
arise naturally from a decomposition as above:
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Theorem 1. Let X be a separable, complex, reflexive, hereditarily indecomposable
Banach space without a Schauder basis. Then for any equivalent norm on X,
there exists an isometry invariant decomposition F ⊕H of X such that F is finite
dimensional and all isometries act trivially on H.

0.2. Transitivity of norms. The previous result is closely related to a classical
open problem in Banach space theory.

A norm on a Banach space X is said to be transitive or isotropic if for any two
points x, y of the unit sphere SX of X , there exists a surjective linear isometry T
on X such that Tx = y. The following conjecture was stated by S. Banach in [2]
and attributed to S. Mazur.

Conjecture 1 (Mazur’s rotation problem). Any separable Banach space with a
transitive norm is isometric to ℓ2.

Weaker notions of transitivity were put forth by A. Pe lczyński and S. Rolewicz
in 1962 at the International Mathematical Congress in Stokholm [9] and also pub-
lished by S. Rolewicz in 1972 [10].

A norm on a Banach space is said to be almost transitive if for any point x of
the unit sphere SX of X , the Isom(X)-orbit of x is dense in SX . Almost transitive
norms are not too difficult to obtain. For example the classical norm on Lp([0, 1]),
1 6 p < +∞, is almost transitive, but the norm on ℓp, 1 6 p < +∞, p 6= 2 is not
[10]. It is also known that the non-trivial ultrapower of a space with an almost
transitive norm will have a transitive norm, see [4]. Therefore there are many
examples of non-separable, non-Hilbert spaces with a transitive norm.

Finally, a formally weaker notion is that of a convex transitive norm on a Banach
space X , which means that for any x of SX , the convex hull of the Isom(X)-orbit
of x is dense in the closed unit ball BX of X .

More interesting than asking whether a specific norm on a Banach space X is
transitive, almost transitive, or convex transitive, is the question whetherX admits
an equivalent norm with one of these forms of transitivity. For example, C([0, 1],R)
has an equivalent almost transitive norm [4], although the supremum norm itself is
not, [6] p. 195. There also are separable spaces with no equivalent almost transitive
norm. Actually, any non superreflexive space, which is reflexive, has the Radon-
Nikodym property, or is an Asplund space, fails to admit an equivalent almost
transitive norm [4]. This gives a long list of spaces with no equivalent almost
transitive norm: c0, ℓ1, Tsirelson’s space T , Schlumprecht’s space S, Gowers-
Maurey’s space GM , for example.

However the question of whether any superreflexive space admited an equiva-
lent almost transitive norm remained open. Even the possibility that every super-
rreflexive space could have a transitive norm was not disconsidered, see [5, 4].

Theorem 2. There exists a separable superreflexive complex Banach space X such
that for any equivalent norm on X, there exists an isometry invariant decomposi-
tion

X = F ⊕H,



122 Oberwolfach Report 02/2011

where F is finite-dimensional and T |H = λId for any isometry T on X. It follows
that X has no equivalent almost transitive or even convex transitive norm.

0.3. Maximal norms. Our results are even more strongly related to the notion
of a maximal norm on a Banach space [9], which is a weaker notion than any of the
three forms of transitivity considered in the previous section. While by the result
of Jarosz it is always possible to renorm a given Banach space to obtain only trivial
isometries, a best norm on a Banach space is one displaying as much symmetry
as possible. For example, a space with an unconditional basis always has an
equivalent norm for which all maps acting by change of signs of the coordinates are
isometries, with similar results holding for spaces with symmetric or subsymmetric
bases.

A norm ‖·‖ on a Banach space X is said to be maximal if whenever ||| · ||| is an
equivalent norm on X such that

Isom(X, ‖·‖) 6 Isom(X, ||| · |||),

then actually
Isom(X, ‖·‖) = Isom(X, ||| · |||).

Observe that if G is a bounded group of isomorphisms on a Banach space
(X, ‖·‖), then the renorming |||x||| = supg∈G ‖gx‖ turns G into a group of isometries
of X . So equivalently, a norm ‖·‖ on X is maximal if Isom(X, ‖·‖) is a maximal
bounded subgroup of the general linear group GL(X) of X .

Once one has obtained a maximal norm ‖·‖ on a Banach space, one may claim to
have found a norm which is optimal for the problem of preserving the symmetries
of the space, and in that sense is an optimal choice of norm on the space. Of course
not every norm on a Banach space is maximal, but many spaces admit natural
maximal norms. Furthermore, Rolewicz [10] proved that any convex transitive
norm must be maximal. Actually, a norm ‖·‖ is uniquely maximal if whenever ||| · |||
is an equivalent norm such that

Isom(X, ‖·‖) 6 Isom(X, ||| · |||),

then ||| · ||| is a scalar multiple of ‖·‖. E. Cowie [3] proved the reverse direction of
Rolewicz’s result by showing that a norm on a Banach space is convex transitive
if and only if it is uniquely maximal.

Therefore all three notions of norm transitivity considered earlier imply maxi-
mality, and in particular the norm on Lp([0, 1]) is maximal. Rolewicz also proved
that if a space has a 1-symmetric basic sequence, then the norm is maximal. There-
fore the usual norms on the spaces c0 and ℓp are maximal, though not uniquely
maximal.

It was a longstanding question, formulated by Wood in [11], whether any Banach
space must admit an equivalent maximal norm. Our results allow us to answer
this question in the negative.

Theorem 3. Let X be a separable, complex, reflexive hereditarily indecomposable
Banach space without a Schauder basis. Then X admits no equivalent maximal
norm and hence GL(X) contains no maximal bounded subgroup.
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A Dual Ramsey result for finite co-structures with forbidden
configurations

Alain Louveau

Many Ramsey-type results for finite structures have been obtained in the 70’s and
80’s, including Dual Ramsey results, see e.g. [2]. These results assert, for a given
class of structures, that for all elements A and B of the class, there is an element
C in the class with the property that for any partition of the substructures of C
of type A in two pieces, one of the pieces contains all substructures of type A of
a substructure of type B of C. In the direct case, structures and substructures
have their usual (model-theoretic) meaning, while in the dual case, one considers
co-structures (relations are now sets of labelled partitions), and ”substructures”
are now understood as quotients.

Recently, an important link has been discovered between these Ramsey results
for classes of finite structures, and the dynamical properties of the automorphism
group of their infinite (direct or inverse) limit, see [1].

This has prompted new investigations about the extent of the Ramsey property
among classes of finite structures. In [4], S. Solecki has proposed a new approach
to dual Ramsey results, proving in particular that the Ramsey property above
holds for the class of all finite co-structures, with co-relations and functions, of
any given finite type.
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At the Oberwolfach meeting, I presented a similar result, for relational co-
structures which avoid certain types of forbidden configurations. The proof relies
heavily on Solecki’s technique and results. Earlier results of this form had been
obtained by Nesetril and Rödl [3], and our result generalize them, by weakening
the conditions put on the forbidden configurations.
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Prikry type forcing and stationary reflection at ℵω+1

Martin Zeman

Given a regular cardinal λ, a stationary set S ⊆ λ and an ordinal ν < λ of
uncountable cofinality, we say that S reflects at ν if and only if S ∩ ν is stationary
in ν. In this situation ν is called a reflection point of S. If S is a family of
stationary subsets of λ and ν is a reflection point of every S ∈ S we say that
the sets from S simultaneously reflect at ν. The requirement that “sufficiently
many” stationary subsets of λ have reflection points implies the consistency of
large cardinals relative to ZFC; this is a fact known for a long time. For cardinal
successors of small regular cardinals equiconsistency results were established by
Jensen, Harrington and Shelah in the case of simple reflection and by Baumgartner
and Magidor in the case of simultaneous reflection. In either case the consistency
strength is quite low.

The situation at successors of of singular cardinals is quite different, as the
consistency strength is known to be very high, although the gap between the
known lower and upper bounds is immense. The statement “Every stationary
subset of ℵω+1 has a reflection point” is consistent relative to the existence of
infinitely many supercompact cardinals by a result of Magidor. The best known
lower bound, on the other hand, is merely at the level of many Woodin cardinals,
due to Steel and later improved by Sargsyan.

The inner model theoretic considerations in [6] indicate that the consistency
strength of stationary reflection should be in the region still consistent with exten-
der models for short extenders, hence should be significantly below any nontrivial
instance of supercompactness, and the large cardinal axioms emerging from these
considerations seem to be natural candidates for the consistency strength. Since
such large cardinal axioms do not have much influence on the universe beyond the
cardinal successor of the cardinals in question, the only tool currently available
for turning large cardinals into ℵω without changing combinatorics at ℵω+1 too
much seems to by a Prikry type forcing of the kind used for obtaining failure of
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the Singular Cardinal Hypothesis at ℵω and variations thereof; the forcing P used
in our construction is essentially a variation due to Woodin; it is described for
instance in [3].

Let us say that SC(κ) holds if and only if κ is strongly inaccessible and the set

Sκ = {x ∈ [κ+]<κ | otp(x) is a cardinal}

is stationary. Burke and Jensen proved independently that SC(κ) implies the
failure of �κ and by the results in [6], SC(κ) is equivalent to the failure of �κ

in extender models. It is easy to see that SC(κ) is much weaker than the κ+-
supercompactness of κ.

The intuition that the consistency strength of the failure of �ℵω
should be

relatively low is supported by the following result.

Theorem 1. [Zeman 2002] Assume GCH + SC(κ) hold and there is a normal
measure on κ. Then ¬�ℵω,<ω holds in the generic extension via P. The analogous
conclusion is also true for uncountable cofinalities where the forcing P is replaced
by the obvious modification of Magidor forcing.

The failure of the finite family square principle seems to be the best possible
here: Since κ+ is not collapsed, the forcing P necessarily adds a �ℵω,ω-sequence,
due to a result of Cummings-Schimmerling [2]. In general, various results from
singular cardinal combinatorics indicate that both squares and stationary reflection
principles change their behavior dramatically once we begin considering families
of size equal to the cofinality of the singular cardinal in question. It is believed
that the failure of �ℵω,ω has significantly higher consistency strength, possibly
at the level of supercompactness. There is one more issue in connection with
the above theorem: It is assumed that κ is measurable, although it feels like
this assumption is unnecessary. Indeed, the least κ that satisfies SC(κ) is not
measurable. Moreover, the measure on κ in Theorem 1 is only needed to make the
use of a Prikry type forcing possible. This leads to a natural question:

Question 1. Is it possible to eliminate the assumption on measurability of κ from
Theorem 1?

The above theorem on the failure of the square principle motivates the result
on stationary reflection. The general intuition is that stationary reflection should
be of higher consistency strength than that of failure of square. In any case, it is
not clear how to obtain a model for stationary reflection starting from the large
cardinal axiom SC(κ) alone. Here we use a stronger axiom which we denote by
QC(κ). This axiom was introduced by Jensen in [5] and it is easy to verify that it is
still much weaker than any nontrivial version of supercompactness. Unfortunately,
we do not have a combinatorial formulation of the axiom. QC(κ) asserts that for
every A ⊆ κ+ there are λ > κ, a set A′ ⊆ λ+ and an elementary embedding
σ : (Hκ+ , A) → (Hλ+ , A′) with critical point κ.

Theorem 2. [Faubion,Zeman 2010] Assume GCH + QC(κ). In the generic ex-
tension via P we have κ = ℵω, κ

+ = ℵω+1 and the following kind of stationary
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reflection principle holds. If S1, . . . , Sn is a finite family of stationary subsets of
ℵω+1 disjoint from S∗ = {ξ < κ+ | cfV(ξ) = κ} then S1, . . . , Sn reflect simultane-
ously at some ν < ℵω+1.

Our goal is to obtain the full reflection at ℵω+1. It is easy to see that the set
S∗ is non-reflecting both in the ground model and the generic extension and it
is possible to add a club subset of ℵω+1 via the usual distributive forcing that is
disjoint with S∗. This of course may add new non-reflecting stationary sets, but it
is plausible that the presence of the embeddings guaranteed by QC(κ) may make
it possible to iterate adding club subsets of ℵω+1 in the Harrington-Shelah style
[4] to obtain the full reflection. Modifying the Harrington-Shelah construction to
the current context is the focus of our current research on this topic.
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The tree property and not SCH for small cardinals

Dima Sinapova

The tree property at κ+ states that every tree with height κ+ and levels of size
at most κ has an unbounded branch. Equivalently, there are no Aronszajn trees
on κ+. In 1980’s Woodin and others asked if the failure of the Singular Cardinal
Hypothesis (SCH) at a singular κ implies the existence of an Aronszajn tree at κ+.
To motivate the question we note a few facts about Aronszajn trees that illustrate
the tension between the tree property and the failure of SCH. Results of Shelah
showed that the tree property holds at successors of limits of strongly compact
cardinals. On the other hand, Solovay showed that SCH holds above a strongly
compact.

With regard to SCH, in order to violate SCH at κ, one has to use Prikry type
forcing. For a while all such constructions preserved κ+. Prikry forcing at κ that
preserves κ+ adds a weak square sequence to κ, which is equivalent to the existence
of a special Aronszajn tree at κ+. Then in 2008 Gitik-Sharon [1] showed that the
failure of SCH is consistent with the negation of weak square. This result suggested
that the failure of SCH may also be consistent with the tree property. And indeed,
recently Neeman [2] showed that that the failure of SCH at κ is consistent with the
tree property at κ+ for a singular κ of cofinality ω. The next question is whether



Set Theory 127

his result can be pushed down to small cardinals. It turns out that we can. We
show the following theorem [3]:

Theorem 1. Suppose that in V , 〈κn | n < ω〉 is an increasing sequence of super-
compact cardinals. Then there is a generic extension in which:

(1) κ = κ0 = ℵω2 ,
(2) the tree property holds at ℵω2+1,
(3) SCH fails at ℵω2 .

The reason for the choice of ℵω2 is as follows. The most direct way of obtaining
Neeman’s result for small cardinals is to combine the Prikry type forcing from
Gitik-Sharon [1] with collapses. Prior to forcing with that poset, we have added
many subsets to κ in order to violate SCH at κ in the final model. As this reflects
down, when collapsing we have to leave some space in between elements of the
Prikry sequence below κ. This yields a model where κ becomes ℵω2 . It is open
whether ω2 can be changed to ω. We conclude with the following open question:

Question 1. Is it consistent to have the tree property at ℵω+1 and not SCH at
ℵω?
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Fodor-type Reflection Principle and very weak square principles

Sakae Fuchino

Fodor-type Reflection Principle (FRP) is the principle which asserts that the fol-
lowing FRP(κ) holds for all regular κ > ℵ1:

For any stationary S ⊆ Eκ
ω and g : S → [κ]ℵ0 there is I ∈ [κ]ℵ1 such that

(1) cf(I) = ω1; g(α) ⊆ I for all α ∈ I ∩ S.
(2) for any f : S ∩ I → κ such that f(α) ∈ g(α) ∩ α for all α ∈ S ∩ I, there is

ξ∗ < κ such that f−1”{ξ∗} is stationary in sup(I).

FRP(κ) for regular κ follows from the reflection principle RP([κ]ℵ0) of stationary
subsets S of [κ]ℵ0 to a subset of κ of cardinality and cofinality ω1.

FRP is weaker than most of the other known reflection principles in that it is
preserved under c.c.c. generic extensions. In particular, the size of the continuum is
not bounded under FRP. In [9], [4], [5] and [6], it is proved that FRP is equivalent
to many ”mathematical” reflection theorems over ZFC.

FRP is inconsistent with the Weak Square Pinciple �∗
κ for cardinals κ > ω of

cofinality ω since FRP implies the failure of ADSκ of [2] ([7]).



128 Oberwolfach Report 02/2011

On the other hand it is consistent with some very weak versions of the square
principle at such cardinals.

For example, starting from a supercompact cardinal, we can easily show the
consistency of

(3) FRP + the very weak square of Foreman and Magidor [3] for all uncount-
able cardinals.

This is in strong contrast with the situation under MM, where the very weak
square does no hold at cardinals of countable cofinality ([1]).

Starting from a model of (3) and forcing with an appropriate c.c.c. poset, we
obtain e.g. a model of

(4) FRP + �∗∗∗
ℵ1,κ

of [10] for all successor cardinals κ > ℵ1 + CH + MA.

H. Sakai proved recently that under GCH and MA+(σ-closed) there is a poset for
any regular cardinal λ > ℵ1 forcing FRP(λ)+�(λ) ([8]). In contrast, B. Velick-
ovic’s proof of ¬ = �(λ) from PFA can be modified to show the same consequence
from the Weak Reflection Principle (WRP).
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Pointwise definable models of set theory

Joel David Hamkins

(joint work with David Linetsky, Jonas Reitz)

This extended abstract is based on joint work [3] of myself with Linetsky and
Reitz. The theme of the work arises with what we call the “math tea” argument,
perhaps heard at some of the better math teas, asserting:



Set Theory 129

“There must be real numbers we cannot describe or define, because
there are uncountably many real numbers, but only countably
many definitions.”

Does it withstand scrutiny?1 An object is definable in a structure M if it is the
unique object r satisfying an assertion M |= ϕ[r]. For example, no reals are
definable in the real line 〈R, <〉, but exactly the algebraic reals are definable in
〈R,+, ·, 0, 1, <〉. Additional reals become definable as we add structure or move to
higher orders, such as 〈Hω2 ,∈〉 or 〈Vω+ω,∈〉. One naturally considers only struc-
tures that are themselves definable with respect to the set-theoretic background,
but this gives rise to subtle meta-mathematical issues, for the notion of being
definable in 〈V,∈〉 is not expressible in set theory.

Definition 1. A structure M is pointwise definable if every element of M is
definable without parameters in M.

There are a number of easy folklore observations. If ZFC is consistent, then
there are continuum many non-isomorphic pointwise definable models of ZFC,
by considering the collection of definable elements of any model of V = HOD.
Pointwise definable models with the same theory are isomorphic, and indeed, the
pointwise definable models of ZFC are exactly the prime models of the theory
ZFC + V = HOD. Pointwise definability is a strong form of V = HOD, since the
ordinal parameters are not needed. If there is a transitive model of ZFC, then
there are continuum many transitive pointwise-definable models of ZFC, essen-
tially because any countable transitive model of ZFC has a perfect set of forcing
extensions. The minimal transitive model of ZFC is pointwise definable by a simple
condensation argument, and this generalizes to higher levels of the constructible
hierarchy. For example, if there is an uncountable transitive model of ZF, then
there are arbitrarily large α < ωL

1 for which Lα is a pointwise definable model of
ZFC. This fact implies that if there is an uncountable transitive model of ZF, then
every real is an element of a pointwise definable ω-standard model of ZFC+V = L.
The reason is that the conclusion is true in L by the previous observation, but
the statement itself is Π1

2, hence absolute to V . Indeed, every countable transitive
model M of set theory has an end-extension to a (possibly nonstandard) model
M+ |= ZFC+V = L, such that M+ is pointwise definable. This latter fact admits
curious instances, for instance when M has many large cardinals or true 0♯ is in
M , but still M is extended to a pointwise definable model of V = L.

There can be no uniform definition of the class of definable elements, although
in some models of ZFC, it can happen that the definable elements form a definable
class. In others, such as in any nonprincipal ultrapower of a pointwise definable
model, the definable elements do not form a class. There are models in which the
definable elements form a class, but there is no definability map r 7→ ψr mapping
each definable element to a definition of it. But other models have both the

1We leave aside the remark of eight-year-old Horatio, who announced, “Sure, papa, I can
describe any number. Let me show you: you tell me a number, and I’ll tell you a description of
it!”.
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definable elements and a definability map existing as sets, although in no model
can a definability map be definable.

Theorem 1. Every countable model of ZFC has a pointwise definable class forcing
extension.

An earlier independent version of this theorem was mentioned by Ali Enayat
[1], who was concerned with the Paris models, models of ZF in which every ordinal
is definable without parameters.

Theorem 2 (Enayat [1]). If L has an uncountable transitive model of ZF, then
there are Paris models of arbitrarily large cardinality.

These models are very large, but have only countably many ordinals. The
proof uses model-theoretic methods and Lω1,ω logic, such as Morley’s two-cardinal
theorem, and a result of Harvey Friedman showing that every model M |= ZF has

extensions with same ordinals of size iα, where α = ORDM .
The proof of theorem 1 makes use of the following result of Simpson, which he

proved first for PA.

Theorem 3 (Simpson [4]). Let 〈M,∈〉 be a countable model of ZFC. Then, there
is an M -generic class U ⊆ M such that 〈M,∈, U〉 |= ZFC(U) and every element
of M is definable in 〈M,∈, U〉.

Consider now the extension of theorem 1 to Gödel-Bernays set theory, also
known as von Neumann-Gödel-Bernays set theory, a second-order set theory that is
conservative over ZFC. Models have form 〈M,S,∈〉, where 〈M,∈〉 |= ZFC and S ⊂
P (M) is a family of classes, such that instances of Replacement and Separation
are allowed to use finitely many class parameters (but not to quantify over classes),
and there is a global choice class. GBC is conservative over ZFC since every ZFC
model 〈M,∈〉 can be extended to a GBC model 〈M,S,∈〉 by adding a generic
global well-ordering and letting S consist of the definable (with set parameters)
classes of M relative to it.

Theorem 4. Every countable model of Gödel-Bernays set theory has a pointwise
definable extension, where every set and class is first-order definable without pa-
rameters.

Theorem 4 is proved first in the case of the principal GBC models 〈M,S,∈〉,
which have some X ∈ S such that every class in S is definable in 〈M,∈, X〉.
Natural examples of principal models include the ZFC definability extensions;
and the principal GBC models are closed under class forcing. A non-example is
obtained by successive forcing extensions M,M [G0],M [G0, G1], · · · , whose union
is non-principal. No model 〈M,S,∈〉 of Kelly-Morse set theory is principal as a
GBC model, since KM proves the existence of a truth predicate relative to any
one class. For example, if κ is inaccessible, then 〈Vκ, Vκ+1,∈〉 is easily seen to be
non-principal since Vκ+1 has size 2κ.

In order to achieve the full GBC theorem, we show that every GBC model
〈M,S,∈〉 can be extended to a principal model. The initial idea was to use meta-
class forcing to code up all the classes in one class. For example, if κ is inaccessible,
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then 〈Vκ, Vκ+1,∈〉 is extended to a principal GBC model Vκ[G] by forcing with
Coll(κ, 2κ), and something similar works with KM models. The general GBC case
is treated by the following.

Theorem 5. (S. Friedman) Every countable GBC model M = 〈M,S,∈〉 has an
extension to a principal GBC model M[Y ] = 〈M [Y ], S[Y ],∈〉.

The extension M[Y ] is not a forcing extension, but is built as an increasingly
partial generic extension by a descending sequence of class partial orders Qn, with
Y ⊂ Qn increasingly but only partially generic for each n. The classes of the
original model are hidden away, coded into increasingly difficult subclasses of Y .

Combining all the arguments, the final conclusion is that every countable model
of Gödel-Bernays set theory has a pointwise definable extension, where every set
and class is first-order definable without parameters, establishing Theorem 4.
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Many countable support iterations of proper forcings preserve Souslin
trees

Heike Mildenberger

(joint work with Saharon Shelah)

We show [3] that there are many models of cov(M) = ℵ1 and cof(M) = ℵ2 in
which the club principle holds and there are Souslin trees. The proof consists of
the following main steps:

(1) We give some conditions on a forcing in terms of games that imply that
the forcing is (T, Y,S)-preserving. A special case of (T, Y,S)-preserving is
preserving the Souslinity of an ω1-tree.

(2) We show that some tree-creature forcings from [5] satisfy the sufficient
condition for one of the strongest games.

(3) Without the games, we show that some linear creature forcings from [5]
are (T, Y,S)-preserving. There are non-Cohen preserving examples.

(4) For the wider class of non-elementary proper forcings we show that ω-
Cohen preserving for certain candidates implies (T, Y,S)-preserving.

(5) We give a less general but hopefully more easily readable presentation of
a result from [6, Chapter 18, §3]: If all iterands in a countable support
iteration are proper and (T, Y,S)-preserving, then also the iteration is
(T, Y,S)-preserving. This is a presentation of the so-called case A in which
a division in forcings that add reals and those who do not is not needed.
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In [2] we showed: Many proper forcings from [5] with finite or countable H(n)
(see Section 2.1) force over a ground model with ♦ω1 in a countable support
iteration the club principle. After ω1 iteration steps the diamond holds anyway.

This work is related to Juhasz’ question [4]: “Does Ostaszewski’s club principle
imply the existence of a Souslin tree?”

Partial positive answers are known: In a model of the club principle and
cov(M) > ℵ1 by Miyamoto [1, Section 4] there are Souslin trees. Brendle showed
[1, Theorem 6]: In a model of the club principle and cof(M) = ℵ1 there are Souslin
trees. Now in this work we add examples of ZFC models that witness there can
be a Souslin tree and in the examples from [5] the club principle holds and neither
sufficient conditions holds, i.e., in some of our examples we have cov(M) = ℵ1 and
cof(M) = ℵ2.

In particular, items 2 and 4 apply to Miller forcing. So we have two proofs that
in the Miller model there is a Souslin tree and we have that the club principle
holds. It is known that in the Miller model d = ℵ2 and cov(M) = ℵ1. Item 3
applies to the Blass-Shelah forcing and gives another model of this kind, that is, in
contrast to the Miller forcing, not ω-Cohen preserving and increases the splitting
number. Besides these particular examples the main technical work in [3] is an
investigation of preserving Souslin trees.
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HOD mice

Grigor Sargsyan

We give the definition of a HOD mouse below ADR + “Θ is regular“ and its
generalization to higher levels. In particular, we outline a comparison argument
for HOD mice at a level of overlapped Woodins.
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Forcings constructed along morasses

Bernhard Irrgang

I used the opportunity to talk on my project to construct forcings along morasses
which was motivated by the following theorem and (still open) problem of Todor-
cevic’s.

Theorem 1 (Todorcevic). If ✷ω1 holds, then there exists a ccc forcing that adds
a function f : ω2 × ω2 → ω which is not constant on any A × B ⊆ ω2 × ω2 with
otp(A) = otp(B) = ω.

Question 1 (Todorcevic). Is it consistent that there exists a function f : ω3×ω3 →
ω which is not constant on any A×B ⊆ ω3 × ω3 with otp(A) = otp(B) = ω?

My naive idea to answer this question was as follows:

First step: Replace ✷ω1 by the existence of a simplified (ω1, 1)-morass. Note
that the existence of a simplified (ω1, 1)-morass implies ✷ω1 .

Second step: Reformulate the construction of the forcing as a typical morass
construction. That is, use the morass as an index set for a recursive construction
of a system of embeddings between forcings and take its direct limit.

Third step: Carry out the same construction along a simplified (ω1, 2)-morass.
This yields a forcing of size ω3 which might do the right thing.

My first attempt to construct a forcing along a simplified (ω1, 1)-morass used Ten-
nenbaum’s forcing to add a Suslin tree. As it turned out, this kind of construction
leads to a ccc forcing which can be densely embedded into a forcing of size ω1.

Theorem 2. If there is a simplified (ω1, 1)-morass, then there exists a ccc forcing
of size ω1 that adds an ω2-Suslin tree.

Since ccc forcings of size ω1 preserve GCH , the method cannot be used to
answer Todorcevic’s question. But with a slight modification it is possible to
reprove some known results:

Theorem 3 (Galvin). It is consistent that there exists a function f : [ω2]2 → ω
such that {ξ < α | f(ξ, α) = f(ξ, β)} is finite for all α < β < ω2.

Theorem 4 (Todorcevic). It is consistent that there exists a function f : ω2×ω2 →
ω which is not constant on any A×B ⊆ ω2 × ω2 with otp(A) = otp(B) = ω.

Theorem 5 (Koszmider). It is consistent that there exists a sequence 〈Xα | α <
ω2〉 such that Xα ⊆ ω1, Xβ − Xα is finite and Xα − Xβ is uncountable for all
β < α < ω2.

Theorem 6 (Baumgartner, Shelah). It is consistent that there exists an (ω, ω2)-
superatomic Boolean algebra.
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I also have an example of a construction along a simplified (ω1, 2)-morass. It
is motivated by a theorem of Juhasz. Let X be a topological space. Its spread is
defined by

spread(X) = sup{card(D) | D discrete subspace of X}.

Theorem 7 (Hajnal, Juhasz - 1967). If X is a Hausdorff space, then card(X) ≤

22
spread(X)

.

In his book ”Cardinal functions in topology” (1971), Juhasz explicitly asks if
the second exponentiation is really necessary. This was answered by Fedorcuk
(1975).

Theorem 8 (Fedorcuk). In L, there exists a 0-dimensional Hausdorff (and hence

regular) space with spread ω of size ω2 = 22
spread(X)

.

This is a consequence of ♦ (and GCH). There was no such example for the case
spread(X) = ω1. By thinning-out Cohen forcing along a simplified gap-2 morass,
one obtains:

Theorem 9. If there is a simplified (ω1, 2)-morass, then there exists a ccc forcing
of size ω1 which adds a 0-dimensional Hausdorff space X of size ω3 with spread
ω1.

Hence there exists such a forcing in L. By the usual argument for Cohen forcing,
it preservesGCH . So the existence of a 0-dimensional Hausdorff space with spread

ω1 and size 22
spread(X)

is consistent.
Gap-1 morasses can be pictured as two-dimensional structures, gap-2 morasses

as three-dimensional structures. In this sense my results can be summarized by

two-dimensional three-dimensional

preserving GCH Suslin tree topological space

not preserving GCH coloring and ???
similar examples

.

It would be interesting to find a three-dimensional construction of a forcing
which destroys CH . If my original approach to Todorcevic’s question works, the
necessary forcing would be of this form.

More on my approach can be found in my papers [1, 2, 3]. An excellent source
for most of the other topics mentioned is [4].
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