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Abstract. This report summarizes the 2015 Oberwolfach meeting on math -
ematical methods in quantum molecular dynamics. Over decad es this eld

has hosted considerable research activity from di erent di sciplines, such as
mathematics, chemistry, and physics. The workshop has aime d at bringing

together these scientists for mutual bene t.

Mathematics Subject Classi cation (2010):  82C10.

Introduction by the Organisers

The eld of quantum molecular dynamics hosts considerable resealcactivity from

di erent disciplines, such as mathematics, chemistry, and physics.Within these
disciplines, powerful mathematical methods have been developedowever, inter-
disciplinary communication in the eld is scarce. Scientists in di erent disciplines
frequently fail to talk to one another and often use di erent language to mean the
same thing. The workshop has aimed at bringing together mathemactians and
other scientists in the eld for mutual bene t.

In molecular quantum mechanics, one studies systems that have agons (typ-
ically taken to have mass 1) and nuclei that have much larger massedypically
with masses of several thousand or tens of thousands in the sanmmits). In most
practical instances, these discrepancies of mass allow one to do approximate
separation of variables when solving the associated Schmedingergaation. This
separation of electronic and nuclear motions is usually referred to @ a Born{
Oppenheimer approximation.

Even when one can use a Born{Oppenheimer approximation, therera serious
issues in solving problems of quantum molecular dynamics. One such igsis the
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\curse of dimension." The time{dependent Schrmedinger equation br the nuclei
involves AN space dimensions if there aré& nuclei whose motion is to be studied.
Often this is done numerically, but most numerical approximations have been
developed for only a few dimensions, instead of perhaps 12, 15, 18,more. Several
of the speakers in this Workshop (such as Irene Burghardt, Tuckr Carrington,
Christian Lubich, and Uwe Manthe) directly addressed this problem. Several
others (such as Francis Nier, Johannes Keller, Emil Kieri, Giovanni Gccotti, Sara
Bonella, and Anders Szepessy) discussed alternative approximanas for addressing
the di culties of computing quantum nuclear motion.

Another issue that has gotten mathematical attention in recent years is the
failure of Born{Oppenheimer approximations near level crossings ioavoided cross-
ings of electron energy levels that cause relevant nonadiabatic trgsitions. Several
speakers mentioned this problem (such as Jeremy Richardson), drthe presenta-
tion by Benjamin Goddard was speci cally on this topic.

A few speakers in this Workshop (such as Pierre Rouchon, Raymon#apral,
Ben Leihmkuhler, and Stefan Teufel) talked about molecules interating with a
larger environment. This situation occurs, for example, for molecles in a solution,
and clearly asks for new mathematical methods.

Several speakers (such as Peter Gill, Frarcois Gygi, David Gontier Mathieu
Lewin, Simen Kvaal, and Rupert Klein) discussed electronic states in ralecules.

Other speakers addressed related issues or presented alterivat approximations
and techniques for studying electrons and/or nuclei in molecules. These ranged
from topological (Gianluca Panati) and numerical topics (Erwan Faou), to as-
ymptotic analysis and stability theory (Clotilde Fermanian and Anthon y Bloch),
to quantum computing (Mazyar Mirrahimi) and to alternative approa ches to stan-
dard quantum mechanics (Bill Poirier).

The 28 talks of the Workshop were held by scientists representing avide vari-
ety of disciplines all with strong interest in molecular quantum mechancs. This
diversity of people and backgrounds led to interesting, wide{rangimg discussions.

Acknowledgement:The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, \US Junior Oberwolfad Fellows".

Moreover, the MFO and the workshop organizers would like to thankthe Simons
Foundation for supporting Tomoki Ohsawa in the \Simons Visiting Pro fessors"
program at the MFO.
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Abstracts

Semiclassical approximations of quantum mechanical equil ibrium
distributions

Stefan Teufel
(joint work with Wolfgang Gaim)

In his seminal paper from 1932 Eugene Wigner computes what he cathe \Quan-

tum correction for thermodynamic equilibrium”. In modern language he shows
how to obtain an asymptotic expansion in powers of the semiclassicgbarame-
ter for certain equilibrium expectation values. More precisely, leth : R" I R,

(a;P 7! h(g; P = 2p?+ V(g) be the Hamiltonian function and h" := 72 + V(X)

the corresponding Schredinger operator acting orl.?(R"), then he gives an explicit
expression for the subleading termc(q; p) in

Toae o= a(@;pe " 1+"%c(g;p+ O("*) dadp:

(2")" Ren

Herea:R?" ! Rand & \=" a(x;i"r x) its Weyl quantization.

We answer a similar question for the case when only some degrees odddom
in a quantum system behave semiclassical, as it happens for example molecular
systems. Such systems are described by Hamiltonians with matrix- rooperator-
valued symbols:

H:iR™MIL q(H); K = Hx i'r ) 2Lsa(L?(R";Hy)):
For example, the Hamiltonian describing a molecule has the form
A= 5 h VY
SRR Al

Hel (X)

with "2 = and operator valued symbol

H(a;p = 2ipi® + He(d) 2 Lsa(L*(R])):
Let e(x) be an isolated eigenvalue oH ¢ (x),
Hei(x) Po(Xx) = €(X) Po(X) ;

and Py(x) the corresponding spectral projection. Then the restriction d B to
the range of Py is

1
M

" n2 n2 "
PoH'Po=Py 5 x+Ha(X) Po=Py 5 x+eXx) Po=Pofi'Pg

with A" = ho(x; i"r 4) for

ho(a; P = 1jpi® + e(q)
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being again the quantization of a \classical" Hamiltonian function. One would
expect and it follows from our I’eSl%tS that indeed

dadp a(q; p) f (ho(a; P) (1+ O("))

@ T af@r)P .
with
ho(d; P = 3ipi* + €(0):

Here

RanPo = f ( X;y¥)] ( X; ) 2 RanPy(x)g:
However, one can ask whether the left hand side of (1) is really theight quantity
to compute and, in the sense of Wigner, what the higher order coections are?
The answer to the rst questions is basically well understood, also dr more gen-
eral systems wheree(q; p) is an isolated eigenvalue of an operator valued symbol
H(qg;p, i.e. H(q;pPPo(q;p = e(q;pPPo(q;p (see [2] for an overview). While for
P, one only has

A= BAB +@ BHATM B+ o)

under suitable technical conditions there are slightly tilted projections P" with
symbol

P(a;p = Po(a) + O(")

R =PHP +@ PHR'Q P+ 0("!):
Hence the range ofP" is an almost invariant subspace forH". The following
theorem shows that one can compute semiclassical expectationsstricted to such
almost invariant subspaces completely in terms of a modi ed classicaHamiltonian
system. Let the modi ed classical Hamiltonian be
h'(a;p = e(@+ "§tru,fPojHjPog =: e(a; P+ "m(q; P
and the modi ed symplectic form
i = 9 i"try, (Po[@Po; @Po))
with corresponding Liouville measure
Theorem 1. (Stiepan, Teufel [3]£Under suitable conditions it holds that
TaTE)P = 4 a@R (N (@p) + O(keki)
R2n
In an upcoming work with Wolfgang Gaim we show that there is also at net order
approximation an underlying classical Hamiltonian system.

such that

Theorem 2: (Gaim, Teufel [4]) Under suitable technical conditions it holds that
" n 1 Z
T AP = o d "a(@:pf (a:p + O("kak.1) ;
R2n

where _ .
f'=f h'+"2 £09 (g) + 129 (e; Py)
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with
n 2

h'(g;p = e(@; P+ "mw(g; P+ "*m2(q; P

and
d = 1+" 1(:P+ "% 2(q;p dadp
the Liouville measure of a symplectic form with second order correabns.
For the corrections to the standard Born-Oppenheimer approximation one nds

for example
h'(g;p = %jpi®+ e(@) + "2 mp;C(g)pice + Stren D(Q)

d = 1+2"%tren C(q) dqdp;
and
f29(aq;p = f%ho(a;p ho; D(G)picr ;
with
Ci (@=trn, @o(c) Ha(d) &0 ' @Po(9
and

Dij (q) =tr 4, Po(0) @Po(q) @Po(0q)

We nd similar higher order approximations in terms of the modi ed clas sical
system also for the Heisenberg time-evolution of semiclassical olysables.
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Variational Multicon gurational Quantum Dynamics Using M oving
Gaussian Basis Sets

Irene Burghardt
(joint work with Sarah Remer, Matthias Ruckenbauer, Pierre Eisenbrandt)

In this contribution, we review the current status and prospects of the Gaussian-
based Multicon guration Time-Dependent Hartree (G-MCTDH) met hod [1, 2, 3],
with particular emphasis on recently developed two-layer and multi-layer variants
[4] as well as multicon gurational quantum-classical hybrid schems [5].

The solution of the time-dependent Schmedinger equation using Gassian wave-
packets (GWPs) goes back to Heller [6, 7] and Hagedorn [8] and wastéx ex-
tended to a variational treatment involving superpositions of GWPs by Metiu and
collaborators [9]. In the latter case, a non-classical evolution of agpled GWPs
results from the application of the Dirac-Frenkel time-dependentvariational princi-
ple to a parametrized wavefunction [10, 11, 12]. Both \thawed" Gaussians (TGs)



1508 Oberwolfach Report 27/2015

[6, 9], with a exible width, and \frozen" Gaussians (FGs), with a xed width
[7], are accommodated in this framework. While the approach of Ref[9] carries
over straightforwardly to multi-dimensional GWPs, an unfavorable scaling with
dimensionality results due to the nonclassically coupled, \entangled"GWP evolu-
tion [13, 14].

For high-dimensional systems it is therefore advantageous to usa multicon g-
urational, tensor product wavefunction form, in line with the multico n guration
time-dependent Hartree (MCTDH) [15, 16] approach. Thus, the Gaussian-based
multicon guration time-dependent Hartree (G-MCTDH) method [1, 2, 3] involves
a variational, non-classical evolution of coupled GWPs propagated insubspaces
under the e ect of time-dependent mean- eld Hamiltonians. This method inter-
polates between the standard MCTDH scheme and more approxima& approaches
based upon classically evolving Gaussian basis sets. Further, hybricepresenta-
tions can be straighforwardly chosen that mix subspaces compodeof GWPs vs.
standard MCTDH single-particle functions (SPFs). Indeed, the original version
of the G-MCTDH method was formulated as a hybrid scheme tailored b unitary
system-bath dynamics in many dimensions [1]. A closely related methods the
Local Coherent States Approximation (LCSA) by Martinazzo and collaborators
[17].

Besides system-bath type situations, an important area of applicéon is on-the-
y dynamics in conjunction with ground-state or excited-state electonic struc-
ture calculations [14, 18, 19]. Here, the so-called variational multi-on gurational
Gaussian (VMCG) variant [14, 18] has been employed, where all deges of free-
dom are grouped together in high-dimensional GWP particles. This failitates
the correspondence with the con guration space points where etgronic structure
calculations are carried out, at the expense of unfavorable scalingf the GWP
dynamics.

Even though good performance and convergence properties habeen achieved
to date for the G-MCTDH approach for medium-sized systems, a sigi cantly
larger number of GWP functions may be required as compared with tle fully
exible basis sets of the MCTDH method, especially if multidimensional FG type
GWPs are employed. A remedy is provided by a recently developed two(and
multi-)layer version of the G-MCTDH method which e ectively reintro duces ex-
ibility into FG basis sets [4]. Since the rst layer(s) consist of MCTDH-lik e,
orthogonal SPFs, this approach can be straightforwardly combimd with existing
multi-layer MCTDH schemes [20, 21, 22].

In this talk, rst applications of the two-layer approach are demonstrated for
a model of site-to-site vibrational energy ow in the presence of itrasite vibra-
tional energy redistribution, as well as for nonadiabatically coupledsystems. These
results are promising and suggest that the multi-layer variant will signi cantly ex-
tend the scope of multicon gurational GWP-based methods.

Following up on Hagedorn's work on the classical limit of GWP dynamics
[23, 24], we further consider a variational, multicon gurational formulation of
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guantum-classical dynamics [5], based upon a classical-limit G-MCTDH ave-
function. Using semiclassically scaled GWPs, a multicon gurational Ehrenfest
dynamics is obtained (see also Ref. [25] for a related developmentContrary to
standard Ehrenfest dynamics, the multicon gurational approach accounts for cor-
relations between the quantum and classical subspaces and leads & consistent
guantum-classical description.

Overall, we anticipate that hierarchical hybrid schemes involving fully varia-
tional and classical GWP evolution in di erent subspaces will prove vesatile tools
in future developments of high-dimensional quantum dynamics.
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A phase-space approach to bosonic quantum mean eld dynamic S
Francis Nier
(joint work with Zied Ammari)

In a series of articles with Zied Ammari, we developed a phase space aach to
bosonic mean eld problems, inspired by former works of Berezin, Hegp, Kree and
the development around the 1990's of semiclassical or Wigner meass (Shnirel-
man, Colin de Verdere, Hel er-Martinez-Robert, Gerard-Mar kowick-Mauser-Pou-
paud, Lions-Paul...). A rather comprehensive list of referencesrelated to this
point of view or other recent works about mean eld problems can befound in the
articles.
As a starting point, semiclassical Canonical Commutation Relations ean be writ-
ten:

[a(g);a (f)l=2hhg; fiz = "hy;fiz
where h ; iz denotes the hermitian scalar product on the one particle Hilbert
spaceZ , h or " is a small parameter, anda(g) and a (f ) are the annihilation and
creation operators on the bosonic Fock spackl = onZ o N |
The mean eld problem is reduced to the asymptotics” = 1=N where N is the
number of particles, and therefore coincides formally with a semiclascal asymp-
totics (h! 0).
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As an example theN -bod& problem

3
_ X 1 X
i@ = 4 o + N V(X Xj)5
i=1 ;)
can be written 5 3
i 1 X 1 X
N@ N et Ve S

i=1 |

When 2 L?(RY;C) sm N = 7 =m N js aN -particle wave functions andV (x) =
V( x), it can be rewritten with " = ZL:

where 7 ~

H' = ra (x)r a(x) dx+ % V(x y)a (y)a (x)a(y)a(x) dxdy :

Rd R2d
is the Wick quazntization of the ene&gy

E(z)=  jr z(x)j* dx + % V(x y)a (iz(x)i%jz(y)i* dxdy;
Rd R2d
The mean eld dynamics is then given by the Hartree equation
i@z=  z+(V jzj®)z= @E;
which is exactly the usual semiclassical result whe@ = L?(RY; C) is replaced by
a nite dimensional Hilbert space.
With this strategy, we obtained in several steps the following resuls:
A) Existence of Wigner measures in [1]: Forf 2 Z consider the unitary Weyl
operator W-(f) = & ( D with ( )= 2520 and let N denote the semiclassical
number operator N = "N--; on the Fock space. Let §6)-5.,) be a family of
non negative trace class operators ot with Tr [ %] =1 (e.g. % = ih j). For

a subsetE®2 (0;"() with 0 2 EO, we say that the Borel probability measure on
Z is the Wigner measure of $6)-og o, if

: — 2i Rehf;zi .

"2E|I0m! 0Tr [YoW- (f)] = ] e d (2):
We denote by M (%;" 2 E) the set of Wigner measures obtained for alE® E
with 0 2 EO. Under the simple estimate Tr %N C uniform in " for some

> 0andC > 0,M (%;" 2 E) is not empty.

From the de nition, the uniqueness M (% ;" 2 E® = f g can always be supposed
after a subsequence (subfamily) extraction.
B) (PI)-condition [2] and [3]: After assumingM (%;" 2 E) = f g, the (PI)-
condition (PI for Polynomial and ldentity) is writtezn:

8k 2 N; im Tr %N* = jzj* d (2):
"2E;"1 O 7
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It is actually equivalent to the convergence

; omhWick  — .
2élmI 0Tr Yob = ] b(z) d (2):
for all b(z) = he 9; Bz Pi with B bounded operator. Contrary to the usual nite
dimensional case (forZ), the above conditions may not be satis ed according to
what we called in [2] a dimensional defect of compactness (\dimensiat' referring
to the in nite dimensional phase-space).

Alternatively if the condition (PI) is satis ed, it implies a very strong ¢ onvergence
result about all the reduced density matrices. In the exampleZ = L?(RY;C) the
p-particles reduced density ma%rix is de ned as usual by

Pl (x;y) = (X9 ( y; X9 dXx?;
Rd(N p)
and the general de nition is
h i Wick
T Pp = Ll %b - -
Tr [%(jzj2P)Wick ]
The condition (PI) implies the trace norm convergence

8p2 N; limk @ P=0;

with Z
P = jz Pihz Pjd (2):

z
C) Propagation results in [3] and [4] (see also [5]): Although the written
results are more general, let us stick for this short summary to ouexample with a
pair interaction potential, leading to the Hartree equation in the mean eld limit.
Under di erent assumptions and with two di erent techniques we proved in [3]
and [4] the following propagation result

(M (%;"2E)=f og), 8t2R; M(e " %" ;"2E)=f g

where (= ( t;0) ¢ is the push-forward of by the nonlinear hamiltonian ow

on the phase-space4 or Z; see below) associated with the energ¥(z)) .

In [3], it was proved for V 2 L! (RY) under the additional condition that the

family (%)-,e satis es the condition (PI). The technical part relied on truncate d
Dyson expansions, adapted from previous works of J. Fehlich ad collaborators,
combined with the a priori information carried by Wigner measures.

In [4], it was proved for a class of singular potentials including the ® attractive or

repulsive Coulombic potential V (x) = J% , €2 R. Then the nonlinear hamiltonian
ow is well dened on Z; = H1(RY;C). The propagation result was obtained
after adapting to our in nite dimensional case, measure transpotation techniques
developed by Ambrosio, Gigli and Savae.

An important remark: The folklore often confuses the mean eld regime with
uncorrelated states. UncorreIeHed mean eld states are actuallycoherent states,

% = j ih j, with = W( 2" f) (then = ¢), or Hermite (or atomic
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. 1 1 RZ
coherent) states with = f N N"1! 1(then = ? = & 4¢d). In

other cases (()2) di ers from (()1) (()1) . The propagation of Wigner measures can
be used to follow the nonlinear deformations of correlations like (()2) (1) (()1) (1)

M.
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Using Spectrograms for the Semiclassical Propagation of Qu antum
Expectations

Johannes Keller
(joint work with Caroline Lasser, Tomoki Ohsawa)

Let 2 L?(RY;C) denote a solution of the time-dependent Schmdinger equation
(1) '@ = 5 i+ V g
where 0< " 1 is a small parameter. After conducting the Born-Oppenheimer
approximation, (1) appears as the e ective equation in atomic units for the vibra-
tional motion of the nuclei in a molecule on a single electronic potentialenergy
surfaceV. In this application, " typically equals the square root of the ratio of
electronic versus average nuclear mass, and the prefactor on the left hand side
of (1) is due to a time rescaling.
We want to compute the evolutiorllD of quanéum expectation values
L2

for observablesA : L2(RY:C) ! L23(RY;C). If A is obtained from a phase space
function (a symbol) A : R?® 1 R by Weyl quantization, Egorov's theorem implies
the semiclassical approximation

D E Z
3) t;/‘b t

(A W (2)dz+ O("?);
R2d

whereW , : R?d 1 R is the Wigner transform of the initial state o, and ' is
the ow of the classical Hamiltonian system

4) a=p; p=r V(o:
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Discretizations of the Egorov theorem (3), like the LSC-IVR method or the Wigner
guasi classical method, are well-known in chemistry since decadesge also [KL14].

“(zn ).
The Wigner transform W | is typically not a probability density, which creates
severe di culties for the sampling step. A possibility to circumvent th is problem
is to use the state's Husimi transform

(5) Ho:WOWgo;

which is a probability density. However, as shown in [KL13], merely replaing
W , by H , in (3) deteriorates the accuracy to O(") errors, unless one includes
involved corrections of the dynamics by additional ODEs. In (5), Wy, denotes the
Wigner transform of the harmonic oscillator ground state.

The convolution of two Wigner transforms is always a probability dengty on
phase space. In time-frequency analysisy , W with 2 L?(RY;C) is called a
spectrogram of . In [KLO15] we introduce the novel phase space density

xd
(6) b =L DWW, Wy F W, W

j=1
consisting of the state's Husimi transform and the spectrogram®btained from the
rst order multivariate Hermite functions ' ¢ , with ¢ the jth unit vector in RY,

Figure 1.  Contour plots of the Wigner function (left) and the
density  (right) for a one-dimensional superposition of a Gauss-
lan wave packet and a delocalized Lagrangian state. Negative
values are indicated by blue color (color in online version only).

In gure 1 one can see an example for the new density in one space dimension.
While the nonnegative Husimi transform does not show any of the inerferences
that arise in the Wigner transform, the new density again attains negative
values.

The function | is a linear combination of two smooth probability densities,
and hence much better amenable for sampling purposes than the Wiger transform



Mathematical Methods in Quantum Molecular Dynamics 1515

W ,. As our main result we prove that one can replace the Wigner transfrm in
the Egorov theorem by | without deteriorating the second order accuracy in",
that is,

D E Z
(7) R = (A )2) (2)dz+ O("):

L2 R2d

In [KLO15] we illustrate the validity and applicability of the semiclassical approx-
imation (7) by means of various numerical experiments.

For instance, we consider the evolution of potential energies for 82-dimensional
Henon-Heiles type system with Gaussian initial data, see gure 2. Sioe reliable
references are not available for this high-dimensional system, weompare the val-
ues obtained from discretizations of Egorov's theorem (3), the n& spectrogram
approximation (7), and the \naive Husimi method" that results fro m replacing
the Wigner transform W | in (3) by the Husimi transform H ,. Figure 2 shows
that the results of the Wigner and the spectrogram method are alnost indistin-
guishable, while the the outcome of the naive Husimi method di ers casiderably.

Figure 2. Evolution of potential energies for 32-dimensional
Henon-Heiles system with Gaussian initial data and" = 0:0029.
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Discretised dynamical low-rank approximation in the prese nce of
small singular values

Emil Kieri
(joint work with Christian Lubich, Hanna Walach)

We prove error estimates for a novel time-stepping scheme for lowank matrix and
tensor di erential equations. The estimate is robust with respectto small singular
values. When a singular value in the approximation approaches zerostandard
time-stepping schemes break down. We show that the new methodos/es this
problem.

Low-rank approximations have had much success in the eld of quatum dy-
namics, in particular through the multi-con gurational time-depen dent Hartree
(MCTDH) method [5]. However, also time-stepping schemes for MCTOH have
di culties in the presence of small singular values. MCTDH uses the Tucker
format to construct low-rank approximations of tensors. In this work we use a
di erent low-rank tensor format, known as tensor trains or matr ix product states.

We consider the low-rank approximation of a large, time-dependenttensor
A(t) 2 C™M Nd given via a tensor di erential equation

A(t) = F(GA():  A(Q)= Ag2C™  Na:

If we can approximate A(t) by a rank-r tensor train, the amount of data required
to representA(t) would be reduced fromO(n?) to O(dr?n), with n = max n;. To
keep the notation simple we will in this note only consider the matrix ca®, i.e.,
d =2, and aim at approximating A(t) by a rank-r matrix. The results extend to
low-rank tensors in the tensor train format with arbitrary d.

Commonly, the singular values of a matrix decay without a distinct gap. This
means that the last included and rst neglected singular values, ; and 41, are
of similar size. 41 represents neglected information, and if it is not small the
low-rank approximation will introduce a large error. We should therefore expect
also ; to be small. In this work we prove that the splitting scheme is robust inthis
situation: If the exact solution is an "-perturbation of a rank-r matrix, the error
can be bounded in terms of and the time step, independently of the smallness of

. For a more precise statement and a proof of this result, see [1].
We approximate A(t) by a matrix of rank r using the SVD-like decomposition

A Y= UDSOVD) ;

whereU 2 C"t " andV 2 C"2 ' have orthonormal columns andS 2 C" ". We
denote the manifold of rank+ matrices by M ; and its tangent space atY by
Ty M .. We then determine the time-evolution of Y (t) using the Dirac{Frenkel
time-dependent variational principle,

(1) ()= P(Y(@)FEY(®);  Y(O)= Yo

where P (Y) is the orthogonal projection onto the tangent spaceTy M ;. This can
also be seen as a Galerkin condition on the tangent space. Subjeob ta gauge
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condition, (1) determines a system of di erential equations for the matricesU, S
andV [2],

() =(1  U@u@) FEGY @)Vose)

S(t) = U(t) FEY D)V (D),
V()= (1 VIOV )FEY (D) UM)S(D)

We note that this system is sti if | is small, and does not have a well-de ned
solution in the limit , ! O.
The projection onto the tangent space can be decomposed as

P(Y)Z = 2VV Uuu ZVvV + UU Z; Y = USV ; Z2C" Nz

Recently, a time-stepping scheme based on this splitting was propesl [3]. A sim-
ilar scheme for the tensor train case has also been constructed [4Error bounds
in terms of the time step h are available by standard theory for splitting methods,
but unfortunately these estimates break down when , ! 0. Such a break-down
is, however, not observed in numerical experiments. The splitting sheme pos-
sesses a remarkable exactness property, which gives a rst thestical indication
of its robustness: IfA(t) 2 M, for all t and its time-derivative A(t) = F(t) is
given independently of A(t), then the splitting method is exact for any h and
independently of .. Our analysis unies this property with the standard error
estimates.

The error estimate requiresF to be Lipschitz continuous. This is a consider-
able limitation in a quantum dynamics context, since for a discretisation of the
Schmdinger equation with spatial step size x the Lipschitz constant will be of
order x 2. This suggests that very small time steps would be needed. Such
a time step restriction is however not observed in numerical experirants. The
method seems to be robust for partial di erential equations, andit would be of
interest to extend the theory also to this situation.
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Convergence of normalized gradient algorithms applied to g round
states computations

Emwan Faou
(joint work with Tiphaine kzquel)

We consider the convergence of the normalized gradient algorithmsed to compute
numerically ground states of Schmdinger equations ful lling symmetry and coer-
civity conditions as considered in the seminal works of Weinstein [7] ath Grillakis,
Shatah and Strauss [5, 6].

We consider the focusing cubic non linear Schredinger equation

(NLS) i@ = - ] %

set on R, where (t;x) depends on space variablex 2 R. With this equation is
associated the energy

(1) H(; )=

that is preserved by the ow of (NLS) for all times. The equation (NLS) can thus

be written
: 1 o @H
i@ = = 2 =2=21(: ):
b @ ;)
Let r H denote the L? derivative of the energy H with respect to real functions
. The ground state (x) is de ned as the unique real symmetric minimizer of the
problem

(2) I(min H( ):

|_2:1

In the one dimensional cubic case considered in this paper, explicit coputations
show that
1 X
X) ;= =sech —=
x):= 3 >
We denote by  the Lagrange multiplier associated with this minimization prob-
lem, such that

@ rHO)= 5 s

In general, is not explicitly known, and one has to rely to numerical simulation.
To compute numerically , the imaginary time method, which is a nonlinear version
of the normalized gradient algorithm (see [1]). The algorithm consistsan de ning

a sequencd ,Qn2n as follows:

(i) Anintermediate function |, is de ned a a numerical approximation of the
solution of the parabolic equation

(4) @ =5 +]J° =71 H()
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over a time interval [0; ], where is a given time step. To compute
we will consider the following time integration methods:

n= nt 'dH( Ny n):

with 8

< j nj? n (implicit-explicit)

Gt a? . (linearly implicit)
j 4% . (fully implicit)

'bH( Ny n)=

NI -

(i) Then we de ne the normalized function

() nel =

n™ 2

Our main result is the following:

Theorem 1.1. There existsB and o such that if kuokHl B and o0, then
there exist constantc and C such that

For the linearly implicit scheme, we have

8n k , K1 Ce "

For the implicit-explicit and fully implicit Eschemes, there exists such

that k k,, C ,and

8n Kk , K, 1 Ce "

This result can be extended to the fully-discrete case in space andme by using
the analysis of [3] and [2]. The main conclusion is that the linearly implicit séiemes
has in nite order in time in the numerical computation of the soliton (t hat is: the
exact ground state is also the ground state of the numerical schmee).
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The multi-con gurational time-dependent Hartree approac h revisited
Uwe Manthe

The multi-con gurational time-dependent Hartree (MCTDH) appr oach facilitates
accurate high-dimensional quantum dynamics simulations. In the aproach, the
wavefunction is expanded in a direct product of self-adapting timedependent
single-particle functions (SPFs). The equations of motion for the &pansion coe -

cients and the SPFs are obtained via the Dirac-Frenkel variationalprinciple. While

this derivation yields well-de ned di erential equations for the motio n of occupied
SPFs, singularities in the working equations resulting from unoccupid SPFs have
to be removed by a regularization procedure. Here an alternative drivation of
the MCTDH equations of motion is presented. It employs an analysis bthe time-

dependence of the single-particle density matrices up to second @er. While the

analysis of the rst order terms yields the known equations of motian for the oc-
cupied SPFs, the analysis of the second order terms provides newjations which
allow one to identify optimal choices for the unoccupied SPFs. The eect of the
optimal choice of the unoccupied SPFs on the structure of the MCDH equations
of motion and their regularization is discussed. Generalized equatisapplicable
in the multi-layer MCTDH framework are presented. Finally, the e ec ts resulting

from the initial choice of the unoccupied SPFs are illustrated by a simpe numerical
example.

Time integration in the multicon guration time-dependent Hartree
method of molecular quantum dynamics

Christian Lubich

Developed over the last 25 years, the multicon guration time-depedent Hartree
(MCTDH) method [5, 6] has become a reference method for compirig accurate
guantum dynamics of small molecules. It combines a low-rank tensoapproxi-
mation in the Tucker format with the Dirac{Frenkel time-dependent variational
principle, which yields a large, highly structured, nonlinear system ofdi erential
equations for the core tensor and the single-particle basis functiws. This system
needs to be solved numerically. It is a known di culty to deal with the t ypically
ill-conditioned density matrices whose inverses appear in the equatis of motion.
This leads to severe stepsize restrictions for the known integrats, which are only
mitigated by an ad hocregularization of the density matrices.

This talk presents a numerical integrator that avoids this di culty. A step of
the integrator alternates between orthogonal matrix decompogions and solving
linear systems of di erential equations, which can be e ciently solved by Lanczos
approximations. The MCTDH density matrices are nowhere computel, nor are
their inverses.

The integrator proposed here can be interpreted as a splitting metod that
is based on an additive decomposition of the projection onto the tagent space
of the low-rank tensor manifold. It extends recently proposed pojector-splitting
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integrators for the dynamical approximation by low-rank matrices [2] and tensors
in the tensor train format [3]. In view of numerical and theoretical results for
those cases, as given in [1], the MCTDH integrator proposed here isxpected
to be completely insensitive to the presence of small singular values imatrix

unfoldings of the core tensor, or equivalently, insensitive to an ill-caditioning of

the density matrices.
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Wigner measures and e ective mass theorems
Clotilde Fermanian-Kammerer
(joint work with Victor Chabu, Fabricio Macia)

We consider the equation
i@ "+31 « THEV X T+ Veu(x) "=0; (Ex)2R R
js=0 — 0
where ( ) is a bounded family of L?(R?), V a potential periodic with respect to
the lattice Z2,Vex an external potential that we assumeC! and the parameter"

goes to 0. We are interested in the description of the limit as’ goes to 0 of time

averaged of energy densities such as
Z:Z

(1)

J'(a) = a(x)j " (t;x)jdxdt; a2 C} (RY):

E T R

We consider a special class of initial data that are linked with the followng
spectral problem : For 2 RY, we consider the operator on the torusT? = R2nZ?,

P()= 5 + D)2+ V) y2 T2

The operator P ( ) is self-adjoint on L?(T?) and has a compact resolvant, hence a
nondecreasing sequence of eigenvalues called Bloch energies

1) 20) n()! +15
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and an orthonormal basis of eigenfunctions '(; ( ))J.ZN, called Bloch waves satis-
fying for all 2 RY,

P() n(5y)= n() n(iy); n2N; y2T2
with Z2-periodic boundary conditions.

We focus on a mode ; ( ) that we assume of multiplicity 1. As a consequence,
it is an isolated eigenvalue from the rest of the spectrum in the sensthat there
exists a gap > O separating ;( ) for the rest of the spectrum. Therefore the
functions 7! ;()and 7!';(; ) are smooth functions of the variable . We
assume that the initial data of our evolution problem (1) is of the form

@) o) = (" ("Dsy ) Ug(X)) = ¢ i

where the family (ug)- o is uniformly bounded in L?(R?) and "-oscillating in the
sense that its frequencies of oscillations are not larger thar :
Z

(3) lim sup Go( ) 2d !

"0 j j>R=" RI +1

Equivalently, equation (2) writes

=@ )¢ et 2 up(y)dyd ;

d

Under these assumptions, we prove the following result.

Theorem 1.1. Assume that the initial data of equation (1) satis es (2), assume
that ;( ) is an eigenvalue of constant multiplicity 1 and that the critical points
of ; are non-degenerated, then there exists a subsequerigewhich goes to0 as "
goes to0 and a function (t;x) 2 L*? (R;Zle(RZ)), 0, such that

8a2C (R?); J' (a)! (Ha(x) (t;x)dtdx;
'0 R R

i - 1
with = ﬁl[O;T]-

This result relies on a microlocal approach, the use of Wigner measas and
in performing a two-microlocal analysis in the spirit of earlier works of two of
the authors [3, 4, 5, 6]. We prove in fact a larger result and we are db to give
a description of the structure of the limit points of J"(a) in the case where the
critical points of ; are isolated without any condition on the Hessian of j.The
fact that the limit points of J"(a) are described by measures which are absolutely
continuous with respect to the Lebesgue measure may fail whenev the non-
degeneracy condition on the Hessian of; is not satis ed. In the case where there
is only one critical point o and where the Hessian is non-degenerated iny, the
density is related with an e ective mass equation : (t;x) = j ( t;x)j?> where
solves the equation

(4) i@ =Hess j(o)D D + V(x) ; (0)= o;
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where  is a weak limit in L?(R?) of the sequencex 7! e~ ° *uy(x). This extends
the results of [2, 1] to a larger class of initial data. It also gives andter approach
which should help to understanding this problems in more general sitations such
as the case where the set of critical points of; consists in a submanifold.
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The semiclassical limit of time correlation functions by pa th integrals
Giovanni Ciccotti
(joint work with Sara Bonella, Michele Monteferrante, Carlo Pierleoni)

The exponential scaling of the computational cost of quantum timeevolution with

the number of degrees of freedom motivates current attemptsd approximate and
interpret quantum dynamics via classical trajectories. These cann fact be com-
puted with essentially linear e ort and provide a more intuitive repres entation of
the dynamics. In spite of these tempting properties of the trajetories, the accu-
racy and generality of such attempts requires careful analysis ste it is unclear
whether they can be successful for condensed phase systemBo illustrate this

point, we comment on how and when guantum evolution can be approxnated
in terms of (generalised) classical dynamics in the calculation of theyanmetrised
time correlation function [1]

(1) Gas (t )= ZiTrfAei—“tcée “fteg

in semiclassical conditions. In the expression abovet, = t % =1=kg T
(T is the temperature and kg Boltzmann's constant), ¥ is the Hamiltonian of
the system andZ = Tr fe rl‘g is the canonical partition function. Eqg. (1) is
equivalent via a relationship in Fourier space to the standard time corelation
Cas (t; ) = LTrfe AAe*ABe “Atg function, but it also shares some formal
properties with classical correlation functions, for example it is by onstruction a
real function, and this suggests that it might be a convenient stating point for
describing semiclassical systems (see for example[2-8]). The ana$/presented in
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the following is described in [9] and we refer to that paper for a detaild derivation
of the results summarised here.

The starting point of our considerations is the Feynman path integral expression
(in a mixed coordinate and momenta representation) of the forwad and backward
propagators in complex time that appear in eg. (1). To examine the smiclassical
limit of that expression, mean and di erence paths in the coordinates and momenta
are introduced and the exponent of the overall path integrals writen as a Taylor
series expansion in the di erence paths.

First order result
Retaining only terms up to linear order in the Taylor series expansion,the sym-

metrised function can be written as
Z 2

pi
— s+ V(ro)

1 _
Ghg (t; )= > drodp.e Aw(ro; p1)Bw(rn;pn)

where O,, stands for the Wigner transform [10] of operator® and (r;; p;) are the

end points of the classical trajectory evolved from (g; p1) for a time t. Both the

dynamics and the statistical weight in the correlation function above thus reduce
to their fully classical counterparts. The Fourier relationship with t he standard
time correlation function mentioned above can, however, be usedot restore some
non-classical properties (such as detailed balance) of this quanygt and it is in

fact formally identical to the so-called quantum correction procedure that was

introduced by Scho eld in ref. [1]. However, it is well known that this correction

can fail at low temperature even when the system is non-interactig (see [9] for
an explanation of this fact) and, more in general, that the temperaure and mass
range in which it is valid are quite limited.

Second order result
The result of a second order truncation of the series expansion dhe exponent,
instead, can be expressed as

Z (w12 )
Za(2 = i d
@ 62w =227 argar, drdpe P
k=1

8 p? P PN 1,Pks1 Pkt th(fk)z-g

2 e 2 == H+V(ro) e 2% I’:‘=l [rk e 1 t‘:nfk]z e k=1 [ 2~ ir ZV(rk) ]JE

> Za2 =) (2 2N (2 >

P 2
2 = N, Ze+v(re 1)

e T Aw(ror p)Buw (i )F (Fricg; Fpcg)
where (rx 1;px) (k = 1;:::;N) are the positions and momenta along the path,
Zy(2 =~) is the classical partition function at inverse temperature 2 =~, and

F is discussed below. The factors in the curly bracket are a probabilitydensity

and the approximate symmetrised correlation function can then becomputed as
P

N PE
== =2 omtV(rk 1)

the expectation of e Aw(ro;p1)Bw(rn;pn)F (Freg; fpeg)
The variables (rk 1;px) can be sampled as follows: The zero time values; p; are
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obtained from the high temperature classical Boltzmann factor

__ p?
2 =~ W%—V(I’o)

€ =Zg(2 =)
while the other variables are generated recursively from

Pk
r r + = k21N
K ST [1;N]

Pker = Pk tf V(rk) kK2 [LN 1]

where ¢ and 41 are Gaussian white noises. This scheme illustrates how quan-
tum mechanical delocalisation sets in in this semiclassical represertian of the
correlation function. Within this approximation in fact, both the new coordinates
and momenta are sampled at each complex time step from Gaussian digutions
centred around classically evolved phase space points. The disp&s around the
classical path is determined by the variances 2 = — and ~ r 2V(rx). The
classical limit is restored for~! 0 and/or ! 0 when these variances tend to
zero. For nite values of Planck's constant or of the inverse tempeature, the non
classical nature of the time evolution of the system appears at e&ctime step in
the form of Gaussian random displacements from the "driving" clasgal propa-
gation. While this interpretation is intriguing, the actual interest of the driving
classical trajectory depends crucially on the system. If the potatial is everywhere
convex, the function F in the integrand is well de ned (it reduces essentially to
the determinant of Hessian of the potential computed along the p#&) and the
estimate of the average as a mean over paths generated as outlth@bove is vi-
able. In the more general case of potentials with regions of negatvcurvature,
on the other hand, this function does not have an explicit form, andthere is no
reason to expect that it will be localised around the complex paths geerated via
the sampling scheme of eq. (2). Furthermore, it can be shown thasmall vari-
ations in its argument result in "explosively" di erent values for F . Attempts
to interpret or estimate the average above via a scheme based ondalised paths
are therefore doomed to failure for two reasons: rst, the integand is not peaked
around the sampling function, second it is a numerically unstable funton. These
characteristics are a direct manifestation of delocalisation, an intmsic property of
guantum mechanics that it is very di cult, if not impossible, to repres ent within
this semiclassical scheme.

To conclude, the path integral expression of the symmetrised coelation func-
tion is a useful tool to examine how and when quantum evolution can b approxi-
mated via (generalised) classical trajectories. In particular, thesecond order result
presented in the previous section shows how, in the semiclassical limithe most
relevant contributions to the path integral localise or, pathologically, de-localise
around guiding or poorly guiding classical trajectories for generabystems. While
we employed the path integral formalism to illustrate how a picture based on classi-
cal dynamics is usually not enough to compute quantum propertiesthe di culty
to account for delocalisation appears also in other approximations oquantum
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mechanics (e.g. Wigner-Liouville, semiclassical IVR) pointing to the interent dif-
culty of using a trajectory based picture to represent this phenomenon.

References

[1] P. Schoeld, Space-Time correlation function formalism for slow neutro  n scattering , Phys.
Rev. Lett. 4 (1960), 239.

[2] V. Filinov, Wigner Approach to quantum statistical mechanics and quant um generalisation
molecular dynamics method. Part | , Mol. Phys. 88 (1996), 1517.

[3] V. Filinov, Wigner Approach to quantum statistical mechanics and quant um generalisation
molecular dynamics method. Part Il , Mol. Phys. 88 (1996), 1529.

[4] W.H. Miller, S.D. Schwartz, and J.W. Tromp Quantum mechanical rate constants for bi-
molecular reactions , J. Chem. Phys. 79 (1983), 4888.

[5] V. Jadhao, N. Makri Iterative Monte Carlo for quantum dynamics , J. Chem. Phys. 129
(2009), 161102.

[6] J. Poulsen, H. Li, and G. Nyman Classical Wigner method with an e ective quantum force:
Application to reaction rates , J. Chem. Phys. 131 (2009), 024117.

[7] G. Krilov, E. Sim, and B.J. Berne On the Bayesian approach to calculating time correla-
tion functions in quantum systems; reaction dynamics and sp ectroscopy, Chem. Phys. 268
(2001), 21.

[8] N. Chakrabarti, T. Carrington, and B. Roux  Rate constants in quantum mechanical systems:
A rigorous and practical path-integral formulation for com  puter simulations , Chem. Phys.
Lett. 293 (1998), 209.

[9] S. Bonella, M. Monteferrante, C. Pierleoni, and G. Cicco tti Path integral based calculations

of symmetrized time correlation functions. I. , J. Chem. Phys. 133 (2010), 164104.
[10] E. Wigner. On the quantum corrections for thermodynamic equilibrium , Phys. Rev. 40,
(1932), 749.

Quantum Dynamics with (almost) classical trajectories?
Sara Bonella

(joint work with Giovanni Ciccotti, Michele Monteferrante, Carlo Pie rleoni,
Julien Beutier, Rodolphe Vuilleumier)

Several simulation methods for computing approximate quantum time dependent
properties of high dimensional systems employ the so called linearisan approx-
imation. In this framework, time correlation functions are obtained via mixed
schemes in which a set of initial conditions are sampled from the exaajuantum
thermal density via Monte Carlo and then evolved classically via standrd molec-
ular dynamics. The advantage of these methods is that the additioal numerical
e ort compared to classical simulations is concentrated entirely in the sampling
of the initial conditions. The two key questions in this context are: (1) how to
reduce as much as possible the cost of initial condition sampling withauloss of
accuracy; (2) how to improve on the linearised dynamics when a fully lassical
propagation fails to capture important properties of the system sich as quantum
coherence. In this presentation these questions will be addressea numerically
e cient algorithm for (1) will be mentioned, and an attempt to addre ss (2) will
be brie y described together with some open questions related to it
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Both questions above can be addressed, with di erent degree ofuscess, start-
ing from the linearised expression of the symmetrised time correlatio function
(STCF)[1, 2, 3, 4, 5, 6]. This quantity is de ned as

(1) Gas (1, )= S TrihAetfBe thtcg

wheret, =t —-, =1=kgT (T is the temperature and kg Boltzmann's con-

stant), K is the Hamiltonian of the system andZ = Tr fe Ag is the canonical
partition function. The Fourier transform of Gag (t; ) is related to those of the
standard and Kubo quantum time correlation functions, so all these quantities
carry equivalent information. The linearised expression of the STCFcan be ob-
tained via a path integral representation of the forward and backvard propagators
in complex time t;, combined with an approximation of the real time path integral

propagation valid to second order in~ (see ref. [7] for details). The approximate
form of the correlation function can then be expressed as an exptation value of

the form

(2)

In the expression above, the expectation value is taken with respe to an explicit
probability density determined by the path integral expression of the quantum
thermal density reorganised to contain an explicit dependence onlte momentum
po (see ref.[7]), and ro are two of the path variables, and B\ (r¢;p;) is the
Wigner transform [8] of the operator B evaluated at the end point of a classical
trajectory with initial conditions rg;po. The numerical di culty with eq.(2) lies
in the presence of the phase factoe ~P° in the function to be averaged. This
is, for general system, a highly oscillatory function whose rapid chages of sign
make numerical converge of the average extremely di cult. As shavn in [9], this
phase factor can however be controlled via a cumulant expansion vith leads to
the de nition of a new estimator for the linearised STCF given by

(3) <A (ro)Bw(re;pt) >p

which does not contain any phases. The price to pay for this rewritig is that,
as a consequence of the use of cumulants, the probability contains terms that
can only be estimated numerically and are thus known with some unceainty.
Due to this, standard Monte Carlo methods cannot be applied to samling P. In
ref. [9], we showed that this sampling can, however, be accomplishdy combining
the Penalty [10] and Kennedy [11] methods for Monte Carlo of noisy pobability
densities. These two methods combine standard techniques to gerate trial moves
with non-standard acceptance probabilities, which have been modied so as to
compensate for the e ect of the noise and ensure that detailed dance is satis ed.
A detailed description of the algorithm can be found in [9]. The solution d this
phase problem makes it possible to apply the linearised approximationfahe STCF
to multidimensional realistic models of condensed phase systems. Fexample, in
ref [12] the scheme was used to reliably compute the quantum stragre factor for a

<e IPo A(ro)Buw(re;pt) >
<e P >
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system of 64 Neon atoms described by a standard pair potential infte semiclassical
regime.

In spite of this and other useful applications [13, 14], the linearised pproxima-
tion to the quantum dynamics fails when quantum e ects play a more sgni cant
role in the system's dynamics. A possible solution to solve (or mitigate}his prob-
lem originates from the observation that linearisation is valid for shott times. The
idea is then to use the time composition property of the exact quanim propa-
gators in complex time to break the overall propagation in a sequene of shorter
time intervals and to use a linearised approximation to represent edt short time
propagator [15]. The expression of the STCF at longer times is then latained by
concatenating these short time propagators. The underlying dyamics in complex
time can be written as a sequence of exact samplings of quantum thmal densities
at high temperature and classical real time propagations. Unfortinately, while nu-
merical evidence on model systems suggests that this scheme dardeed enable to
extend the accuracy of the approximation to longer times [15], this nethod su ers
from several drawbacks that make it not only numerically expensive but also in
need of more detailed theoretical analysis. From the numerical poinof view, the
problem is that with each linearised short time propagator, a phasedctor appears
in the estimator of the STCF. Unlike what happens in the fully linearised case,
the new phase factors cannot be e ectively controlled via cumulans. This implies
a dramatic increase in the cost of the calculation with the number of egments.
From a theoretical point of view, there are two main open questions Firstly, the
precise nature of the limit of the approximate expression when the amber of seg-
ments goes to in nity is unclear and, in particular, so far it has not been possible
to prove that the exact quantum result is recovered. Secondly, he linearisation
approximation on the individual short time segments is di cult to just ify formally
for deeply quantum systems. These di culties notwithstanding, th e method just
mentioned is, to the best of our knowledge, one of the few - if not te only -
attempt to systematically improve the accuracy of linearised scherad and may
provide an interesting point of departure for future development.
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Dynamically protected cat-qubits: a new paradigm for unive rsal
quantum computation

Mazyar Mirrahimi

(joint work with Z. Leghtas, V. Albert, S. Touzard, R.J. Schoelkopf, L. Jiang,
M.H. Devoret)

We present a new hardware-e cient paradigm for universal quantum computation
which is based on encoding, protecting and manipulating quantum infomation
in a quantum harmonic oscillator. This proposal exploits multi photon driven
dissipative processes to encode quantum information in logical basecomposed of
Schmdinger cat states. More precisely, we consider two scherseln a rst scheme,
a two-photon driven dissipative process is used to stabilize a logicalupit basis
of two-component Schredinger cat states. While such a schemensures a protec-
tion of the logical qubit against the photon dephasing errors, the pominent error
channel of single-photon loss induces bit- ip type errors that camot be corrected.
Therefore, we consider a second scheme based on a four-photiniven dissipative
process which leads to the choice of four-component Schredingeat states as the
logical qubit. Such a logical qubit can be protected against single-pbton loss by
continuous photon number parity measurements. Next, applying sme specic
Hamiltonians, we provide a set of universal quantum gates on the exbded qubits
of each of the two schemes. In particular, we illustrate how these perations can
be rendered fault-tolerant with respect to various decoherencehannels of partic-
ipating quantum systems. Finally, we also propose experimental s@mes based
on quantum superconducting circuits and inspired by methods usedn Josephson
parametric ampli cation, which should allow to achieve these driven dissipative
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processes along with the Hamiltonians ensuring the universal opet@ans in an ef-
cient manner. This work has been published in New Journal of Physis [1] and
have led to preliminary experiments [2].
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Semiclassical Green's functions and an instanton formulat ion of
electron transfer in the nonadiabatic limit

Jeremy O. Richardson
(joint work with Rainer Bauer and Michael Thoss)

Electron transfers are a key step in many important molecular proesses, including
redox reactions in electrochemistry and charge separation in phatsynthesis and
solar cells [1]. The electron resides initially on a donor molecule and is trasferred
to an acceptor, accompanied by a reorganization of the polar envanment. This

reaction can be characterized as a transition between two nuclegvotential-energy

surfaces, describing the reactant and product environments. W& are thus interested
in studying a curve-crossing problem, which as it involves discrete edronic states,

is inherently quantum mechanical.

We consider a general multidimensional system with two electronic stes,

1) = Hojoihoj + H1jlihlj+  jOihlj + jLihoj ;

whereH, = jpj2=2m+ V, (%) is the nuclear Hamiltonian for the electronic statejni.
For this system, we wish to derive a practical computational methal to provide
good approximations to tE% golden-rule reaction probability [2, 3],

2) P(E)=4~ 2 hYIm Go(E)jx°Thx®] Im G4 (E)jxY dx%dx®

where the Green's functions are givgn in the position representatio by
R 1

3) h9G.(E)p® = L hde Mrt=-jx0 5 - dt:

T o0

This golden-rule de nition is valid only for weak electronic coupling, .
The thermal reaction rate is in turnzgiven by the Boltzmann average

— 1 E .
(4) k=5—5 P(E)e © dE;

where the reactant partition function is Zg = Tr[e |40].
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Figure 1. Schematic showing the two imaginary-time bounce
trajectories with energy E in a one-dimensional, two-state system.
The left trajectory is on jOi and the right on jli. The steepest-
descent integration of positions will be taken about the crossing
point x°= x%= xZ at which Vu(x?) = Vi(x?) = VZ.

Following Gutzwiller [4], we begin by replacing the propagator using vanVleck's
semiclassical approximation,

: X .

(5) hde A= ~jx0%/ gSn=""
cl. traj

where we take a sum over all classical trajectories travelling fromx®°to x° in
time t with phases determined by the classical actionS,. Because our electron
transfer problem includes nuclear tunnelling, the end-pointsx? and x°°of interest
are in the classically-forbidden region whereE < V,(x). The stationary-phase
points in Eqg. (3) correspond to imaginary-time trajectories (known as instantons)
with energy E. Deforming the integration contour so as to pass through these
points and evaluating it using steepest descent leads to the followingemiclassical
approximation to the Green's functions:

X
(6) 4G (E)ix*T/ e Wa= i =2

cl. traj

where W,, = RP 2m[V,(X) EJjdx is a line integral along the trajectory. The

Maslov-Morse index, , counts the number of times the trajectory bounces at a
turning point, where E = V,(X), and determines the phase. The dominant imag-
inary part, which appears in Eq.(2), thus comes from trajectories which bounce
exactly once.

This semiclassical approximation to the Green's functions can be enipyed in
Eq. (2) to give the reaction probability and hence in Eq.(4) for the golden-rule
rate. Performing the integrals over positions and energy using themethod of
steepest descents, de nes two dominant classical trajectorieghich join together
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smoothly into a periodic orbit of length ~, as shown in Fig. 1. We thereby ob-
tain a semiclassical formula for the golden-rule rate of a multidimensioal system,
exponentially dependent on the total Euclidean action around the geriodic orbit.

This formula is similar to one derived by Cao and Voth [5] based on a lessgorous
foundation. In the high-temperature limit, the instanton pathway collapses to a
point and the rate formula recovers the classical golden-rule trasition-state theory

result [3].

The method is applicable to study electron-transfer rates in polar @vironments
of interest in chemistry. The instanton trajectory can be located in such complex
multidimensional systems using a discretization scheme [6]. In this appach, the
pathway is described using a ring polymer and the action integral ob&ined using
the trapezium rule. The ring-polymer geometry is optimized to give a sationary
value of the action functional and thus the pathway of the required trajectory. In
this form, the golden-rule instanton method can be seen to be stmagly related to
Wolynes' quantum instanton approach [7].

The semiclassical Green's functions are also a powerful tool for deing other
chemical reaction rate theories. In a similar way, it is possible to redeve the
usual adiabatic instanton theory [6], which includes the Born-Opperneimer ap-
proximation, and we are researching applications to more general anadiabatic
reactions.
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Using Smolyak interpolants to solve the vibrational Schroe dinger
equation
Tucker Carrington
(joint work with Gustavo Avila)

At the workshop, | presented new ideas for computing the vibraticnal spectrum of a
polyatomic molecule. The goal is to calculate many energy levels of a Hiltonian,
H = K + V, for which the potential energy surface (PES) is general and théinetic
energy operator (KEO) is exact. In particular, the methods | discussed do not
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require representing the PES as a sum of products or a sum of tersndepending on
a subset of the coordinates. We have published several papers @it using basis
pruning schemes, Smolyak quadratures, and e cient evaluation ofmatrix-vector

products to compute vibrational spectra. In this talk, | focused on collocation,
which obviates the need for quadrature. To devise a good quadrate method or
a good collocation method one must confront two problems. First, he size of the
basis needed to solve the Schroedinger equation scales exponeltyiaSecond, the
size of the quadrature or collocation grid needed to compute matrixelements or
interpolate the wavefunctions also scales exponentially. A method hat can be
used with a general potential must be able to cope with both these ranifestations
of the curse of dimensionality.

Why collocation? If one uses a variational (Galerkin) method then to avoid a
generalized eigenvalue problem it is common to choose basis functioaad quadra-
tures so that the overlap (Gram) matrix is an identity. This is importa nt because
there are no e cient iterative (i.e. Krylov-based) eigensolvers for generalised eigen
value problems. The need to make the identity matrix an identity (and the desire
to have exact KEO matrix elements) often forces one to choose meoptimal ba-
sis functions and quadrature points. In addition, it is only possible to nd good
nested sets of quadrature points if the 1-D basis functions are cksical orthogo-
nal polynomials. If instead, one uses collocation there are no integis (and no
guadratures) and no need to have exact KEO matrix elements and e is free
to choose any basis functions. Nonetheless, established collocatimmethods have
the key disadvantage that they require solving a generalized eigeale problem.
Using Smolyak interpolants enables one to obviate, even in many dimesions, the
need to solve a generalized eigenvalue problem.

Two new developments were presented at the workshop. First, [lowed that a
Smolyak collocation method can also be used with curvilinear internal oordinates.
This is important because coupling will often be less important in curvilinear (than
normal) coordinates and it is therefore possible to choose better dsis functions
and reduce the number of required points. Curvilinear coordinatesare better
suited for describing large amplitude motion and high-lying states. Incurvilinear
coordinates, the KEO is more complicated. It is easier to use collocain than
variational (Galerkin) methods when the KEO is complicated becausecollocation
obviates the need to determine a basis representation of the KEOSecond, | re-
ported new ideas for writing an interpolated wavefunction as a sum © product
basis functions and showed that they facilitate the evaluation of marix-vector
products for the KEO. The KEO matrix-vector products are computed using a
sequential summation approach. Rather than evaluating a matrixvector prod-
uct for a term in the kinetic energy operator (KEO) by implicitly const ructing a
grid representation of the operator and applying it to a vector labdled by points,
we instead apply the operator to basis functions and then evaluateat collocation
points. Obviating the need to do matrix-vector vector products with vectors la-
belled by points reduces the CPU cost by orders of magnitude. Trasforming the
grid vector to a basis vector is not simple because the basis is not a dict product



1534 Oberwolfach Report 27/2015

basis (it is pruned) and the grid is not a direct product grid (it is a Smolyak grid).
Evaluating KEO matrix-vector products in this manner, the collocat ion method is
as e cient as a Smolyak quadrature method but it allows one to use bdter basis
functions.

References

[1] Gustavo Avila and Tucker Carrington,  Solving the Schroedinger equation using Smolyak
interpolants , Journal of Chemical Physics 139 (2013), 134114.

A new algorithm to compute the Z, invariant of time-reversal
symmetric topological insulators

Gianluca Panati
(joint work with D. Fiorenza, D. Monaco)

In my talk, | consider a gapped periodic quantum system with time-reversal sym-
metry of fermionic type, i.e. the time-reversal operator squares to 1. With my

collaborators, we investigated the existence of periodic and timeaversal invariant
Bloch frames in dimensions 2 and 3. In &8, the obstruction to the existence of such
a frame is shown to be encoded in &,-valued topological invariant , Which

can be computed by a simple algorithm. We prove that the latter agrees with
the Fu-Kane index. In 3d, instead, four Z, invariants emerge from the construc-
tion, again related to the Fu-Kane-Mele indices. When no topologicalobstruction

is present, we provide aconstructive algorithm yielding explicitly a periodic

and time-reversal invariant Bloch frame. The result is formulated in an abstract
setting, so that it applies both to discrete models and to continuousones.

In the recent past, the solid state physics community has developE an in-
creasing interest in phenomena having topological and geometric @in. The rst
occurrence of systems displaying di erent quantum phases whichan be labelled
by topological indices can be traced back at least to the seminal pagr by Thou-
less, Kohmoto, Nightingale and den Nijs [TKNN], in the context of the Integer
Quantum Hall E ect. The rst topological invariants to make their a ppearance
in the condensed matter literature were thus Chern numbers two distinct insu-
lating quantum phases, which cannot be deformed one into the otheby means
of continuous (adiabatic) transformations without closing the gap between energy
bands, are indexed by di erent integers (see [Gr] and references therein). These
topological invariants are related to an observable quantity, namdy to the trans-
verse (Hall) conductivity of the system under consideration [TKNN, Gr]; the fact
that the topological invariant is an integer explains why the observable is quan-
tized. Beyond the realm of Quantum Hall systems, similar non-trivial topological
phases appear whenever time-reversal symmetry is broken, aven absence of ex-
ternal magnetic elds, as early foreseen by Haldane [Hal]. Since thisipneering
observation, the eld of Chern insulators ourished [SPFKS, Ch, FC].
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More recently, a new class of materials has been rst theorized andhen ex-
perimentally realized, where instead interesting topological quantin phases arise
while preserving time-reversal symmetry: these materials are theso-calledtime-
reversal symmetric (TRS) topological insulators (see [An, HK] for recent reviews).
The peculiarity of these materials is that di erent quantum phases are labelled
by integers modulo 2 from a phenomenological point of view, these indices are
connected to the presence of spin edge currents responsible the Quantum Spin
Hall E ect [KM 1, KM3]. It is crucial for the display of these currents that time-
reversal symmetry is offermionic (or odd) type, that is, the time-reversal operator

is such that 2= 1.

In a milestone paper [KM;], Kane and Mele consider a tight-binding model
governing the dynamics of an electron in a 2-dimensional honeyconlhttice subject
to nearest- and next-to-nearest-neighbour hoppings, similarly & what happens
in the Haldane model [Hal], with the addition of further terms, including time-
reversal invariant spin-orbit interaction. This prototype model is used to propose
a Z, index to label the topological phases of @ TRS topological insulators, and
to predict the presence of observable currents in Quantum Spin Hasystems. An
alternative formulation for this Z, index is then provided by Fu and Kane in
[FK], where the authors also argue that such index measures the alruction to
the existence of a continuous periodic Bloch frame which is moreovezompatible
with time-reversal symmetry. Similar indices appear also in 3-dimensinal systems
[FKM].

Since the proposals by Fu, Kane and Mele, there has been an intensetivity
in the community aimed at the explicit construction of smooth symmetric Bloch
frames, in order to connect the possible topological obstructionso the Z, indices
[SV3], and to study the localization of Wannier functions in TRS topological in-
sulators [SVi, SV,]. However, while the geometric origin of the integer-valued
topological invariants is well-established (as was mentioned abovehey represent
Chern numbers of theBloch bundle in the terminology of [Pa]), the situation is less
clear for the Z,-valued indices of TRS topological insulators. Many interpretations
of the Z, indices have been given, using homotopic oK -theoretic classi cations
[AZ, MB, Ki, RSFL], C -algebraic approaches [Py, Pr,, Sch], the bulk-edge cor-
respondence [ASV, GP], monodromy arguments [Py, or gauge-theoretic methods
[FW]. However, we believe that a clear and simple topological explanatio of how
they arise from the symmetries of the system is still missing in the liteature.

In a recent paper [FMP;], we provide a geometric characterization of these
Z, indices as topological obstructions to the existence of continuouperiodic and
time-reversal symmetric Bloch frames, thus substantiating the ¢aim in [FK] on
mathematical grounds. We consider a gapped periodic quantum sysm in presence
of fermionic time-reversal symmetry, and we investigate whetherthere exists a
global continuous Bloch frame which is both periodic and time-reveral symmetric.
While in 1d this always exists, a topological obstruction may arise in 4. We show
that such obstruction is encoded in aZ, index , which is moreover atopological
invariant of the system, with respect to those continuous deformations wich
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preserve the symmetries. We prove that 2 Z, agrees with the Fu-Kane index

2 Z, [FK], thus providing a proof that the latter is a topological invariant.
Lastly, we investigate the same problem in 8, yielding to the de nition of four Z,-
valued topological obstructions, which are compared with the indice proposed by
Fu, Kane and Mele in [FKM]. In all cases where there is no topological otruction
(i.e. the Z, topological invariants vanish), we also provide anexplicit algorithm
to construct a global smooth Bloch frame which is periodic and time-eversal
symmetric.

The main advantage of our method is that, being geometric in natureit is based
only on the fundamental symmetries of the Hamiltonian modeling the system,
namely invariance by lattice translations (i.e. periodicity) and fermionic time-
reversal symmetry. No further assumptions on the Hamiltonian ard its gaps are
needed in our approach, thus making itmodel-independent in particular, it applies
both to continuous and to tight-binding models, and both to the 2-dimensional
and 3-dimensional setting. To the best of our knowledge, our metbd appears
to be the rst obstruction-theoretic characterization of the Z, invariants in the
pioneering eld of 3-dimensional TRS topological insultators.

Another strong point in our approach is that the construction is algorithmic
in nature, and gives also a way tocompute the Z, invariants in a given system.
This makes our proposal well-suited for numerical implementation, vhich may be
particularly appealing to the computational physics community [SV1, SV3].
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Improved quantum chemistry via electrons on D -dimensional spheres

Peter M.W. Gill

(joint work with Anneke Knol, Caleb Ball, Davids Agboola, Pierre-Francois Loos)

The primary goal of many quantum chemists is to know the electronicenergy of
a given system of nuclei and electrons. Under certain assumptionshis energy is
given by an eigenvalue of the associated Schmdinger equation butn all but the

simplest of cases, the equation is impossible to solve exactly. For thieason, it
is common to use self-consistent eld (or mean eld) methods to obain a good
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approximation and then to append a small correction to the eigenvéue which is
designed to x most of the error in that approximation.

Following Wigner (1934) and Lewdin (1959), the correction is often called the
\electron correlation” energy E. and, in density functional theory, it is assumed
that it can be written as a functional F[ ] of the electron density (r). Although
the existence ofF has been proven [1], its form is unknown and it is often supposed
that, for electrons moving in RP, it may be approximated by the so-called Local
Density Approximation (LDA)

z

1) Ec= (r) ¢ (rs(r))dr

RD
where r¢ is the Seitz radius and 2 (rs) is the correlation energy per electron of
the D-dimensional in nite uniform electron gas (UEG) with Seitz radius rs. The
function P (rs) is not known exactly but has been calculated accurately over a
wide range ofrg values using quantum Monte Carlo (QMC) calculations [2] and
various types of perturbation theory.

Recently, we showed that (1) gives incorrect correlation energieshen applied
to nite UEGSs, such as those that form whenn electrons are con ned to aD-
sphere, i.e. the surface of al@ + 1)-dimensional ball [3]. This revealed that the
correlation energy of a UEG is not uniquely determined by its Seitz radus and
that, therefore, at least one other de ning parameter is required. We have argued
that, because the Seitz radius measures the one-electron densiat each point in
space, it is natural to introduce a parameter that measures (in some way) the

two-electron density at each point and then to propose
z

(2) Ec= - (r) & (rs(r); (r)dr
to generalize (1) so that it is exact for both in nite and nite gases.
There are many reasonable de nitions for but we have begun by investigating
2 .
© (1) = Corg(r)>+? L2010
(r)
where , is the spinless reduced two-electron density matrix. The quantity @) is
a dimensionless measure of the curvature of the electron-electmchole at r.

To develop an understanding of the two-variable function 2 (rs; ), we have be-
gun a systematic analytic and numerical investigation of the correléion energies
of electrons onD-spheres with a range ofrs and values. In the course of this
investigation, we have discovered several families of closed-fornolsitions to the
Schredinger equation for two electrons on aD-sphere [5, 6, 7] and we have devel-
oped a variety of algorithmic techniques [8, 9, 10, 11, 12] for obtaimg accurate
numerical solutions for three or more electrons.

The study is complete forD =1 [4] (i.e. rings) but is still underway for D =2
and D = 3. Once the correlation energies have been obtained, they can be to
judiciously chosen functional forms and the resulting Generalized bcal Density
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Approximation (GLDA) represented by (2) tested on non-uniform D-dimensional
electronic systems.
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State and parameter estimations for open quantum systems
Pierre Rouchon

The rst quantum feedback experiment has been realized in the cany quantum
electro-dynamics group of Serge Haroche and Jean-Michel Raimdrin 2011. The
mathematical models underlying these feedback-loops are hiddertade Markov
chains. In these experiments, the hidden quantum state is the desity operator of
a quantum harmonic oscillator. It is estimated in real-time from the measurement
outcomes via a discrete-time adaptation of Belavkin quantum lters. These lters
rely essentially on quantum probability attached to the collapse of the wave packet
resulting from the measurement process, decoherence seen awaad ctitious
measurements done by the environment, and classical probabilitie® take into-
account measurement imperfections.

We expose the mathematical structure of such quantum Iters. We show with
elementary arguments that their formulations are based on complely positive
linear maps, indexed by the measurement outcomes, and non-nessarily trace
preserving. In the continuous-time (di usive) case, such formuldions are equiva-
lent to usual stochastic master equations driven by Wiener proceses and governing
the density operator dynamics. They provide also numerically e cient formula-
tions of particle quantum lters for Bayesian estimations of classicd parameters.
To illustrate the practical interest of these formulations we show low to precisely
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estimate the detection e ciency from experimental data collected for a supercon-
ducting qubit whose uorescence eld is measured using a heterodye detector.

Quantum mechanics without wavefunctions
Bill Poirier
(joint work with Gerard Parlant, Jeremy Schi, and Hung-Ming Tsa 1)

This presentation explores an alternate \Many Interacting Worlds" [1, 2, 3, 4, 5, 6,
7, 8], quantum framework in which the wavefunction ( t; x) plays no role. Instead,
guantum states are represented as ensembles of real-valued featories, x(t; C),
where C labels a trajectory. Quantum e ects arise from the mutual interaction of
di erent trajectories or \worlds," manifesting as partial derivativ es with respect to
C. The quantum trajectory ensemblex(t; C) satis es an action principle, leading
to a dynamical PDE (via a generalized Euler-Lagrange procedure)as well as
to conservation laws (via Noether's theorem). The action isextremized as in
classical Lagrangian mechanics|rather than exponentiated and summed over, as
in the path-integral formulation. All quantities are real-valued, an d x(t; C) foliates
spacetime (for a single particle). The \worlds" are therefore interacting but non-
branching|exactly opposite behavior from \Everett Many Worlds" [9].

The original, nonrelativistic version of the trajectory-based theay was found
to be mathematically equivalent to the time-dependent Schmdinge equation [1,
2, 3, 10, 11], although it can be derived completely independently [1,,23]. On the
other hand, a more recent, relativistic generalization (for single, pin-zero, massive
particles) [5] is not equivalent to the Klein-Gordon (KG) equation|and in fact,
avoids certain well-known issues of the latter, such as negative phbability density.
It therefore makes new physical predictions that could in principle ke validated or
refuted by experiment. Likewise, a discretized version of the norelativistic theory
that was recently proposed [6, 7, 8] could also lead to new physicalredictions.

Consider a trajectory x(t) for a single spatial coordinatex and time coordinatet,
presumed to be the solution of some as-yet-unspeci ed dynamicaaw (ODE). We
wish to determine x(t), as well as the dynamical law itself, solely by applying the
two bedrock physical principles of action extremization and energyconservation.
The former implies that x(t) obeys an Euler-Lagrange equation obtained from a
Lagrangian L, which we take to be of the form

(1) LI x]= T VIX:

For the moment, T[x] and V[x] are arbitrary. By Noether's theorem, the lack of
implicit dependence ofL ont implies a conserved quantity alongx(t). If we take
this to be the energy E[x; x] = T[x] + V][x], this results in a constraint on the
allowed forms for T[x] and V[x], thereby determining the dynamical law.

Speci cally, one nds that T[x] must take the form of a constant times x?
(V[x] is arbitrary). Identifying that constant as one half the mass (m=2) leads to
Newton's ODE. Thus is the familiar classical dynamical law derived, presuming
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only a Lagrangian of the generic Eqg. (1) form, in addition to the two physical
principles. Moreover, it can be shown [2] that a more generalizet [x; x] form|i.e.,
not restricted to EqQ. (1)|gives rise to the generalized (non-Euclid eanx) dynamical
law of standard classical Lagrangian mechanics. Thusonly the standard forms
of classical physics emerge as permissible dynamical laws, when thadrangian is
rst order in the time derivatives of x (with one caveat [2]).

Conversely, any nonclassical dynamical laws must arise from Lagraians in-
volving higher-order derivatives. Towards this end, a kinematic \quantum correc-
tion" is presumed, leading to the following modi ed expressions:

TxI VIX] QXix X;::1]
Tx]+ V[X]+ Q[x; x; X;:::]

L[x; x;%x;:::]
E[x; x;x;:::]

The existence of a nontrivial Q[x; x; X’;:::] (i.e., not Q = const) that satis es both
physical principles is not guaranteeda priori. A systematic, order-by-order search
reveals the following to be the simplest, lowest-order, meromorphisolution:

5 x?2

(2) Qx;x; X]=B 3 EX__“

Other dynamical laws also exist, at third order, and every higher odl order.

The identi cation B = % in Eq. (2) leads to trajectories that are equivalent
to those of Bohmian mechanics [12] in the special case of 1D time-indendent
stationary scattering. The Q of Eq. (2) is therefore the \quantum potential,”
although it is derived here without reference to a wavefunction|no r indeed, to
any quantum mechanical postulates whatever. Note that in this caitext, a single
guantum trajectory represents a single quantum state in one-teone fashion.

For time-dependent 1D applications, a single trajectory no longer g ces to
represent a single quantum state; rather, a one-parameter eesble of trajectories,
x(C;t), must be used. For the time-independent special case describembove,
these trajectories must all be time-delayed copies of one anothdr.e., e ectively
a single trajectory, as discussed), so that, e.gx(C;t) = x(C t ). Because all
terms in Eq. (2) are invariant under the rescalingt ! t , the time derivatives
may be replaced with \spatial* (C) derivatives|suggesting a more general form
of Q, suitable also for the time-dependent case. Equivalently, energyrad action
considerations of the type discussed above also lead to this sam@;derivative Q

form. The resulting Euler-Lagrange dynamical PDE for x(C;t) is
|
2 0000 0000 08
@w) , - x g % +10% _o -
@x 4m x% x® x®

(3) mx +

where primes denote partial derivatives with respect toC, keepingt xed.

The trajectories emerging from Eg. (3) are equivalent to those oBohmian me-
chanics { and the trajectory theory equivalent to 1D time-dependent Schredinger
theory { provided that: (a) probability is presumed to be conserved along trajecto-
ries; (b) the parameter C is presumed to \uniformize" the probability density { i.e.
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f (C) = const, where j ( x)j?dx = (x)dx = f(C)dC. (Arbitrary reparametriza-

tions of C may also be considered, but will not be here). For many-D applicatios,

X is replaced with the vectorx = x', and C with C = C'. Equation (3) becomes
!

@) 2 @ . m @K
| —_ \ Y —_— = N
4) mx + ax m @ K'KJ@@@(': 0 ;
where K = J 1 is the inverse Jacobi matrix, i.e. Kij = @C=@Xk. Einstein

notation is used, albeit with mismatched indices, as Euclidearx space is presumed.
The quantum force term in Eq. (4) can be easily rewritten in terms of metric
tensors, leading to a straightforward single-free-particle relativstic generalization:

(5) @_X = exp Q f_ i @Q@’
@r?2 mc2 m mc2 @ @
2 h i

- T 1=4 1=2 jj 1=4 .

where Q o @ @ ;

_ @cC _ @x .

b= ax 7 @c 9%

is the usual (at) Minkowski spacetime metric, is the spatial part of the

(block-diagonal) metric tensor g in the curvilinear (cT ; C) coordinates, andT is
the global \ensemble proper time" coordinate. Equation (5) redues seamlessly
to both classical relativistic mechanics and nonrelativistic quantum mechanics in
the appropriate limits. It also introduces a generalized \global simultaneity” into
relativity theory, as well as a purely quantum \time compression” e ect [5].

Broad ranging rami cations of the trajectory-based approach wntinue to be
realized, including new conservation laws, numerical algorithms, mixé quantum
classical methods, experimental predictions, interpretations ofwavefunction col-
lapse" and measurement, etc.
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Quantum dynamics in open guantum-classical systems
Raymond Kapral

Open quantum systems interact with their environments and theseenvironmental
interactions can lead to decoherence and dissipation. Often, theyhamics of the
environment may be treated classically to a good approximation so tht the system
may be classi ed as an open quantum-classical system. The talk desbed such
open quantum-classical systems whose dynamics is given by the qutam-classical
Liouville equation,

S = AW W O]+ 5 AW T W ©iAwg

Here Ay (X;t) is the density matrix with X = ( R;P) the phase space variables of
the environment, and the square and curly brackets denote the ammutator and
Poisson brackets, respectively. This equation may derived by rsttaking a partial
Wigner transform over the environmental degrees of freedom,hen passing to the
guantum-classical limit through either an expansion in the ratio of the mass of
the (light) quantum subsystem particles to the mass of the (heavy environmental
particles, or though an analysis based on linearized path integrals. &t reviews
with references see Refs. [1, 2]

In the quantum-classical Liouville equation written above, no specic represen-
tation for the quantum subsystem was speci ed. In the talk a representation in
terms of the eigenstates of the subsystem Hamiltonian was consiced. Rather
than dealing directly with this representation of the equation, the eigenstates and
guantum operators were then transformed into the mapping basisn order to ob-
tain a phase space description of the quantum degrees of freedorifhe mapping
representation associates a basis of singly occupied harmonic osdities states with
each subsystem quantum state. For example the subsystem quarm state j i is
mapped to the statejO; ;1 ; ;0 where the 1 appears in the position. Op-
erators may then be written in terms of annihilation and creation operators on
these mapping states. The resulting quantum-classical Liouville eqation may be
written as [3, 4, 5]

@@tm(X;t) = fHm; m(t)ox
~@h. @ @ @ @, @ ,
3 @R(@r + ) == m(l);
@ @p@p’ @P
where x = (r;p) are the phase space variables that arise from a further Wigner
transform over the mapping variables. We use the notationf A, ; B, (t)gx for
a Poisson bracket in the full mapping-bath phase space of the entr system,
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= (x;X). The rst Poisson bracket term on the right side of the equation
speci es a Hamiltonian dynamics that can be solved in terms of an ensable if
independent trajectories. Often, but not always, the dynamics ascribed by this
term provides an accurate description of nonadiabatic dynamics. ttmay happen
that the dynamics described by the rst term alone takes the sysem out of the
physical mapping space. If the second term is also taken into accatithen no such
independent-trajectory description is possible. The dynamics degibed by the full
guantum-classical Liouville equation where both terms are taken inb account is
con ned to the physical space. [5]

Another solution to the quantum-classical Liouville equation may be dtained
by again starting from its representation in the mapping basis. Now lowever one
writes the formal solution in terms of forward and backward quantum-classical
propagators, analogous to the formal solution for the full quanum mechanical
problem. Given this starting point, writing the solution as a concatenation of
short-time segments and inserting complete sets of coherent dis, an approximate
solution may be constructed [6, 7] The equations of motion that goern phase space
variables that enter this forward-backward solution have a Hamiltonian form,

d _ @H(G ). d _ @H(G ).
dt @ ’ dt @ ’
where
He(; ) = P222M + Vp(R)

1
t5zh o(R)(ago+ppot+ o’ + p°p°);

with = (R;q;), and = (P;p;p’) where the lower case unprimed and primed
variables arise from forward and backward quantum dynamics, regectively. The
matrix elements of the Hamiltonian (minus the kinetic energy of the ervironmental
degrees of freedom) aréd  o(R) and Vg, (R) is the potential energy of the environ-
ment minus the trace offi. Because of the Hamiltonian structure of these equations
the dynamics is easily simulated. To obtain this solution, it was assumedhat the
coherent state overlap matrix elements that connect the small tine intervals in
the solution are Dirac delta functions. This approximation may be relaxed sys-
tematically obtain a numerically exact solution, albeit at a considerably increased
computational cost. The simple forward-backward solution is often very accurate
and its validity can be checked by the systematic relaxation of the othogonality
approximation.

The quantum-classical Liouville equation is equivalent to full quantum dynam-
ics for the entire system for an arbitrary quantum subsystem bilinearly coupled
to a harmonic bath. For nonlinear coupling an and nonlinear baths it is an ap-
proximation to full quantum dynamics. Since it is exact for an important class of
systems the accuracy of simulation methods may easily be assessad connec-
tions to other theories established.
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Accurate Thermodynamics with a Noisy Gradient
Ben Leimkuhler

Thermostats are distributional controls commonly used to sample he canonical
distribution in molecular dynamics simulation where the underlying modd is a con-
servative system or gradient ow. In many applications, however,the forces are
corrupted by perturbations due to incomplete averaging in anothe scale regime.
For example, this situation arises in many types of mixed quantum-clasical dy-
namics (Ehrenfest dynamics, TDDFT, QM-MM). It is also an important char-
acteristic of dynamics-based Bayesian inference procedures bgimsed by Google
and others in the data science community.

The usual solutions proposed in the literature include (i) the use of s&ndard
stochastic gradient dynamics (Brownian or Langevin dynamics), igroring the per-
turbation, with the assumption that errors \average out,” and (ii) quanti cation
of the error relative to an underlying gradient model coupled with a crrection pro-
cedure. The rst of these approaches is demonstrably wrong{tle e ect of the force
error is typically an additional random perturbation and failure to ta ke it into con-
sideration will introduce substantial errors in the equilibrium state, whereas the
second is not practical in many cases as it is computationally di cult to directly
extract the unknown underlying force eld in the presence of noise

Itis possible to design a robust thermostat-based procedure addssing the noisy
gradient sampling problem when the noise is Gaussian of unknown varrece[1]
this is a reasonable assumption in many cases due to the central limitheorem.
Our methods come in several avors, for example Adaptive Langewn which can
be viewed as a sort of Langevin dynamics in which the dissipation coe @&nt is
automatically determined by local kinetic energy control; it is e ectiv ely a hybrid of
Nose-Hoover dynamics and Langevin dynamics (but di erent than Nose-Hoover-
Langevin). Although our analysis assumes a Xxed variance, the mdtods can
be generalized to the case where the variance evolves adiabaticallg @ function
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of position. We have have already deployed adaptive thermostatsar QM/MM
simulation in [2].

Our work on numerical analysis for Langevin dynamics [3, 4, 5] has wovered
numerical methods that have exceptional properties with respecto the invari-
ant measure, speci cally they are exact for harmonic systems, hilgly accurate for
weakly perturbed harmonic models, and for general anharmonic stems exhibit
high order of accuracy (superconvergence) for con gurationbaverages in the high
friction regime. In [6] we have demonstrated that a certain integrdion scheme for
the Adaptive Langevin method inherits these accuracy properties dramatic im-
provements in sampling accuracy are therefore unlocked for multsale simulation.
Several model examples have been considered which illustrate theqgperties and
e ciencies attainable.
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Computational error estimates for molecular dynamics
Anders Szepessy

(joint work with Christian Bayer, lkon Hoel, Ashraful Kadir, Pet r Plecte,
Mattias Sandberg)

We have three types of errors in molecular dynamics simulations: timeliscretiza-
tion error, sampling error and modeling error. The time discretization error comes
from approximating the di erential equation for molecular dynamics positions X,
at time t, with a numerical method, based on replacing time derivatives with dif
ference quotients and time steps t. The sampling error is due to truncating
the in nite p and using a nite value of in determining a molecular dynamics
observable ; g(X)dt= . The modeling error originates from eliminating the elec-
trons in the Schredinger nuclei-electron system and replacing thenuclei dynamics
with their classical paths; this approximation error was rst analyz ed by Born and
Oppenheimer in their seminal paper 1927.
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The time discretization and truncation error components are in sone sense
simpler to handle by comparing simulations with di erent choices of t and |,
although it can, of course, be di cult to know that the behavior doe s not change
with even smaller t and larger . The modeling error is more di cult to check
since a direct approach requires the solution of the Schredingerauation. Conse-
guently the modeling error requires mathematical error analysis.

Egorov's theorem is one of the main tools to estimate approximation gor of
molecular dynamics observables as compared to quantum observas in the micro
canonical ensemble. Shnirelman and others have shown how obsables for the
time-independent Schmdinger equation is approximated by ergodt dynamics. Our
work [1] focuses on the following mathematical modi cations, which ae important
in a computational setting.

In general, ergodicity is hard to verify theoretically and computationally.
We use an alternative assumption, which can be tested computatically
based on nite time convergence rate, also leading to an error estiate of
molecular dynamics observables.

The standard proofs usel ?-estimates of remainders in Weyl quantization
compositions which lead to maximum norm bounds on derivatives of the
observable up to the order of the number of particles. We show howo
avoid this many derivatives, using instead a maximum norm estimate ofa
regularized observable.
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The Lieb-Oxford inequality and the Jellium model
Mathieu Lewin
(joint work with Elliott H. Lieb)

One of the central problems in density functional theory is the esimation of the
indirect part Ej,g of the Coulomb energy in the ground state. Ideally, this estimate
should be local, that is, it must be given by an integral of some functim of (x)
and its derivatives.

The indirect part of the Coulomb energy of an N -particle (symmetric) proba-
bility distribution Py on R3’\c') is de ned by
(1) EInd = @ fA dPN D(; )

RN g N I Xkl

1

R
where (x) = N sn 5 dPn (X;X2; 5 XN ) is the corresponding density and

N (x) (¥)
“ PUT e e
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is its (direct) Coulomb energy. A well known bound on E,4 is the Lieb-Oxford
inequality [9]
Z

(3) Eind 1:68 (x)*=3 dx

RS
which was based on an earlier inequality in [7] with the constant 8.52 instad of
1.68, and which was later improved by Chan and Handy to 1.64 in [5].

The Lieb-Oxford inequality has been used to construct some exchrage-corre-
lation functionals, like the famous Perdew-Burke-Erzenhof functonal [11]. Due to
its impact on the models used by practinioners, it is important to nd t he best
constant in the Lieb-Oxford inequality (3). The latter is not yet kno wn. It was
conjectured in [10, 12] that the best constant is attained when is the charactgristic
function of a large set of volumeV ! 1 | and that the lowest value of Ejpg = 473
that can be reached with N -particle probability distributions over R3N yielding
such a density is 1:4442. This value comes from the Jellium problem, as will
be discussed below.

In [6], we gave two new inequalities which are better than the original Leb-
Oxford inequality for a slowly varying and, in particular, when is constant on
a large set. Our inequality is

Z
0 , 1, S 0:001206
@3 9o =3 A % 27 R
(4) Ein c 5 7 . > 0112367 1,
R . — Jrosj
2
for all > 0. After optimizing over in (4), an equivalent formulation is
8
A 4 3
4 4 4
3 9 32, 50:3270 ir o 3
(5)  Emd = 5 3 7 p R 2
5 2 R3 E .. 3 4 3
> 0:9416 jir 3j? 3
R3 R3

The constants have been slightly optimized as compared to [6]. The irgality
on the second line uses a non-optimal estimate for Hardy-Littlewod maximal
functions, and this is why it is much worse than the rst line, which is based
on simpler arguments. Our constant 35(9 = 2)12 ' 1:4508 is very close to the
supposedly optimal 14442 for a slowly varying . Our result extends a previous
work of Benguria, Bley and Loss [1] who got a similar inequality, but invdving
the nonlocal term (" 7 jrj = 7) instead of our gradient corrections. The constant
3=5(9 = 2)'2 also already appeared in a previous work [8] of Lieb and Narnhofer
dealing with Jellium.

Our bounds (5) were numerically studied in [4, 3]. In particular, in [4] it was
found that the new bound is not better than the usual Lieb-Oxford bound (3)
for spherically symmetric atoms with Z  88. Dividing our constant 0:3270 by
a factor two would make it better for all Z 2. It is therefore an important
challenge to improve our bounds.
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Let us now discuss a relation between the Jellium problem and the indiret
energy, which is often mentioned in the literature. The Jellium problem consists
in optimizing the positions of classical Coulomb particles in a neutralizinguniform
background. A famous conjecture of Wigner [13, 2] is that the paticles are, in
the minimizing position, placed on a Body-Centered Cubic (BCC) lattice. The
indirect energy problem has no background but there is a way to intepret the
term D(; ) as coming from a ctitious uniform background, provided that the
density of Py is constant.

Let L be the BCC lattice with unit cell Q of volume 1 and with 02 L. We pick
a big ball Br of radius R (or any other xed set that is dilated of a factor R) and
placeN =# L\ Bgr particles on the sitesz;;:::;zy of L thf'}; are in&iﬂs ball. Next

we average the corresponding probability density K!) * 25y j=1 7 (X y)
over the translations of the unit cell. We thereby obtain a probability density Py
which has the constant density 1 over the union = J-Nzl Q + z; of the cells

that intersect the ball Br. The Coulomb energy of this probability density does
not change, by translation-invariance, and the indirect_energy ofPy is thus

c (N)_l X 1 144 dx dy

ind - - : = : .
2x6'-y2L\ B, XY 2 Xy

Now if we think of having particles at the centers of the cells and a unibrm

background in the domain , the Jellium energyzis

1 X 1 X d
(6) Ejen(N)= > Y

dxdy
wyon Be XY o e, XY Xyl

A calculatgon shows that E e (N)=N ! L(Q) 1:4442 asN ! 1 , where
L(S) = oL Ogjzj s is the Epstein Zeta function, analytically continued to
s =1, see [2]. In the literature, the second term in (6) above is sometimas claimed
to be the same quantity as the third term in (6), up to a factor of 2, in the limit
N !'1 . Inthis manner, one is led to think that one has constructed a prolability
density Py with an indirect energy that is exactly the same as the Jellium energy,
namely 1:4442 in the limit N ! 1 . Unfortunately, this expectation is not
ful lled , as we have shown in [6]. Indeed, a careful calculation gives
@ m Em) Em®) 515 1

N 11 N R JX] o IX Yl 2

-2 jxj2dx ' 0:4935
3 o

Our result relies on the long range of the Coulomb potential. For any oher
potential that decays slightly faster than 1=5jxj at in nity, the Jellium and indirect
energies coincide in the limit. After this computation, it is not clear anymore
that the best Lieb-Oxford inequality is 1:4442. Given the importance of the
uniform electron gas model in density functional theory, we hope hat our work
will stimulate further investigations of the indirect energy problem at constant
density.

+

NI
N
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Coupled Hill's Equations and the Lorentz Oscillator Model
Anthony M. Bloch
(joint work with Fred C. Adams, Rohit Gupta, Hamed Razavi)

We study the stability of a class of coupled Hill's equations with application to the

Lorentz Oscillator Model. In particular we show that there is a transformation

from the Lorentz Oscillator model to the coupled Hill's equation which removes
the dissipation terms and illustrates the stability of both systems. We analyze the
stability using Floquet theory and discuss the structure of the transfer matrix. The

Lorentz Oscillator models bound electron motion. We are interestedn this model

in dielectric materials where electric and magnetic response is of intest. The
work here is inspired by the research in [3]. We include both numerical malysis
of the stability regions and analysis of the Floquet multipliers.

The generaln-dimensional coupled Hills equations (CHE) have the form

(1) x+B({t)x = 0

wherex isn 1 andB(t)isann n periodic real matrix.



Mathematical Methods in Quantum Molecular Dynamics 1551

We are interested in a particular two-dimensional model which is relaed to the
Lorentz Oscillator model:

(2) x + p(t)x q(t)z
) z+ p(t)z q(t)x;

where p(t) is even and periodic andq(t) is odd and periodic, both smooth with
common periodT.

The Lorentz Oscillator Model (LOM) mentioned above is described bythe cou-
pled di erential equations

gEo gBo

(4) X+ X+ 12x = Wcos@t ) Fcos@t )Z;
B
(5) r+ ,z+ 12z = % cos(t )x:

This model described bound electron motion subject to external kectric and
magnetic eldsand amplitudes E, and B respectively. Scaling appropriately we
can rewrite as:

(6) X+ X+ 2x

(7) I+ Z+

cost (cost)z;

2
X
2 (cost)x:

De nition:  The LOM is said to be symmetric if
(8) x= 7= )2( = ; = 2:

We can use a transformation to write the symmetric homogeneous OM as a CHE.
De ne the complex function

. 1 .
9 y=Xx+iz=Wexp Sl sint
2 2
Then we deneW = + i and let
) 2 2 2
1 — + — —
(20) a 7] 3 and b 8
The di erential equations then become
1 :
(12) * +[a+ bcos2] = 3 ( cost sint)
1 :
(12) *+[a+ bcos2] = > ( cost sint) :

We now consider the use of Floquet theory to analyze the generabapled Hills
equations

(13) X+ p(t)x
(24) z+ p(t)z

q(t)z
q(t)x;
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where p(t); g(t) are smooth periodic functions with a common periodT. This
system can be written in the form

(15) Z—\: = A(t)v:

This system is linear periodic, hence we can apply Floquet theory ([4])d study
the stability of the solutions. Let T be the common period ofp(t) and q(t), i.e.

p(t+ T)= p(t) and q(t + T) = q(t).
We can prove the following result:

Theorem: The transfer matrix has the following block form

_ A B |
(16) M = B A
where A and B are 2 2 matrices. The constituent matrices A and B have the

general forms

a1 an b1 b2
17 A= and B =
(17) a1 ax o1 b2

Further the largest Floquet multiplier is determined generically by a formula of
the form

(18) = an afl 1

Thus the stability of symmetric coupled Hills system can be studied by amly looking
at one element of the transfer matrix, a; 1.

We can study the stability regions for a special case of the Hills equadns which
was found from the rotation of the LOM:

1=2

x +[a+ bcos2]x
(29) z+[a+ bcosi]z

csin(t)z
csin(t)z:

Figure 1. (a,b) Stability diagrams in the (a;b) plane for the
coupled equations (19) for the parameterc = 5.
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We provide a picture (linear and logarithmic) of the stability regions in a;b
parameter space for a sample value of. Level sets of largest Floquet multiplier
are given. See Figure 1. We note how this generalizes the regions omels in the
Mathieu equation for example. Details and analysis are given in a forthoming
paper. We also intend to extend to the setting where the equationsre subject to
noise, building on the work in [1] and [2] and related publications.

Acknowledgement:  Work carried out at the University of Michigan, Ann Arbor.
Supported in part by the AFOSR and NSF.
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Algorithms for DFT Ab Initio Molecular Dynamics
Francois Gyqgi

First-Principles molecular dynamics (FPMD) simulations performed within the
Born-Oppenheimer approximation are a popular approach for the @scription of
condensed matter at nite temperature. This approach is most oten used within
the framework of Density Functional Theory [1] and requires the ®lution of the
Kohn-Sham equations[2]. The accuracy of a DFT calculation dependsritically on
the choice of functional used to describe the exchange and cotation energy|[3].
Recently, a new class of density functionals (called "hybrid" density functionals)
was introduced in order to improve the accuracy of the exchangeral correlation
energy. Hybrid functionals include in their de nition a fraction of the Hartree-Fock
exchange energy

Z
EX\I () j_(r) 1 () i(ro)drdro:
=1 o

where ;(r) are Kohn-Sham orbitals, and N denotes the number of occupied or-
bitals. The inclusion of this term results in a large increase of the comptational
cost of simulations involving hybrid functionals. Although this cost can be mit-
igated by expanding the Kohn-Sham orbitals on atom-centered, loalized basis
functions (e.g. gaussians), we are interested in using the plane wavor Fourier)
basis for condensed systems because of their good translationavariance proper-
ties, and the absence of basis set superposition errors (BSSE) ihat basis. The
computational cost of the Hartree-Fock exchange energy i©(N 2 logN) when us-
ing plane waves and exploiting the e ciency of the fast Fourier transform (FFT)

(1) EST =
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algorithm. This high cost has severely hindered the use of hybrid DFTcalculations
for large systems (i.e. systems including several hundred atoms)t has been noted
by several authors that localized orbitals could be used to reducehis cost since an
exchange integral for a pair of orbitals ( ;; ;) can be neglected if the orbitals are
localized in distinct domains in real space. According to the "near-sigtedness"
principle proposed by Kohn[4], it is in general possible to obtain a reprsentation

of the Kohn-Sham occupied subspace in terms of localized orbitals. @ approach
used to generate such localized orbitals is the calculation of Maximally bcalized
Wannier Functions (MLWFs)[5, 6], which were shown to be exponentidly local-

ized in systems exhibiting a nite gap between the eigenvalues of ocqied and
empty orbitals[7]. Following this approach, Wu et al have demonstrated e cient

calculations of the Hartree-Fock exchange energy in liquid water[8].

We have developed an alternative approach[9] to the localization of nbitals,
based on the CS decomposition[10]. In this approach, which we refép as recursive
subspace bisection (RSB), projector® (K): k = x;y; z are associated with bisecting
planes that divide the simulation domain into subdomains  of equal size in the
X, Y, and z directions, e.g.

f(x;y;z) x<a=2

(x) . —
) PO (x;y;2) 0 >ao

where a is the size of the simulation domain in the directionx. The matrices A(K)
representing these projectors in the subspace of occupied orhits are de ned by

(3) ai(jk) = h i;P(k) ji

Performing an approximate simultaneous diagonalization[11] of the ratrices A
[0 the subspace of occupied orbitals provides singular valuesi(k) and s =

Y=
1 ¢ that characterize the localization of the approximate computed eign-

vectors in the subdomains . For example, if ci(x) ' 1, the ith eigenvector is

mostly localized in the regionx < a=2. If however <o, it s mostly local-

i
ized in the regionx > a=2. Given a threshold value > 0, orbitals can then be
truncated to one of these two subdomains if ¢*))2 > 1 orif ()2 < | re-

spectively. If the singular values have intermediate values, i.e. < (ci("))2 <1l ,
the eigenvector is not localized, and therefore it is not truncated.Using this trun-
cation criterion based on a prede ned threshold value , it is gBaranteed that the
truncation procedure does not introduce an error larger than™ — in 2-norm. We
used this truncation procedure to accelerate the computation othe Hartree-Fock
exchange energy in plane wave calculations. In that approach, ekange integrals
for a pair (i;j ) in (1) are not computed if the orbitals ; and ; can be truncated
to separate domains for a given value of the threshold. A large acceleration
of the computation results, as was shown in applications to various ystems in-
cluding liquid water, a chloride ion solvated in water, and a vacancy in a gicon
crystal [12]. When using this truncation method, the 2-norm errorthreshold can
be continuously reduced to zero, leading to smaller errors and a co¥spondingly
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smaller gain in computational speed. The error in the exchange engy can also
be shown to be positive, since each neglected exchange integral isgative (this is
apparent when representing the convolution integrals in (1) as Fouer sums). This
property guarantees that convergence to the exact exchangenergy is monotonic,
which facilitates the error analysis in hybrid DFT simulations.

Further developments of the recursive subspace bisection metidoare under way
to accelerate the computation of other quantities related to the orrelation energy.
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Nanadiabatic transitions through avoided crossings
Benjamin Goddard
(joint work with Volker Betz, Stefan Teufel)

For most molecular dynamics applications, the Born-Oppenheimer (imite nuclear

mass) approximation is used; it is assumed that the electronic enexglevels are
well-separated. However, in many chemical systems this is not valid. Typical

examples are ultra-fast chemical reactions, such as the photodisciation of sodium
iodide and the reception of light in the retina. We have considered thdundamental
case of two electronic energy levels with one nuclear degree of foean x, with

Schmdinger equation

: (xt) _ i X(X)  Z(x) (xt) .
@ oy T 7@ T Xeo TIOU Rly

where | is the 2 2 unit matrix, 2 is the nuclear-electron mass ratio, and =
(1, 2)T 2 L2(dx; C?).
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An interesting physical case is where the two Born-Oppenheimer esrgy levels
become close but do not cross { an avoided crossing. It is naturabtchange to the
adiabatic representation in which the potential matrix becomes diagnal, and the
two levels decouple up to errors of order. Interest lies in starting a wavepacket on
the upper level and investigating the (exponentially small) part transmitted, via
the avoided crossing, to the lower level, far away from the crossinfin the scattering
limit). This exponential smallness, coupled with the highly oscillatory nature of
the wavepackets, makes numerical simulations very computationiyy expensive.

By considering generalizations of the adiabatic representation [1], @ derived
a closed form approximation to the transmitted wavepacket, whichis in excellent
agreement (around 1{2% relative error) with high-precision numeics for a wide
range of potentials and wavepackets. In contrast to most previas mathematical
results, it is highly suited to numerical implementation, requiring only multiplica-
tion in momentum space. When the slope of the potential near the asssing, given
by = $jx=0, is small the formula is

i + k i . .
C (kt)y=e—" f|<2>4@,2jje2_Jk by,

where B is the Born-Oppenheimer propagator on the lower levelp denotes a
scaled Fourier transform, , is the characteristic function (corresponding to energy
conservation), =sgn(k) k2 4 is the classical incoming momentum for outgo-
ing momentum k, is the wavepacket on the upper level at =0, and , , and
are constants easily derivable fromX and Z. When is not small, the formula is
analogous but more complicated [2, 3]. Some typical results are givein Figure 1.

The next avenues of this research involve application of the resultto real-world
chemical systems, such as the photodissociation of Nal, and thexension to higher
dimensions. In particular we are interested in tackling the dynamics rar a true
crossing, say in 2D, in the case that the centre of the wavepackdtavels along a
path well away from the crossing, resulting in a type of avoided crosing with a
non-zero gap.
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Figure 1. (a) The wavepacket on the upper level at the crossing
point (subplot), along with the transmitted wavepacket (solid,
left axis) and relative error (dashed, right axis). (b) Phase of
the wavepackets, and error in the phase; axes as in (a). (c) The
potential energy surfaces, the avoided crossing is at = 0. The
relative error is around 1.8% with a transmission probability of
around 10 °.
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A mathematical analysis of the GW ° method
David Gontier
(joint work with Eric Canees, Gabriel Stoltz)

The aim of this talk was to present a mathematical framework to understand
the properties of the GW° method, which has been proven very successful to
predict electronic-excited energies [1]. This method relies on the sty of the one-
body Green's function for electronic systems. Numerically, the Gren's function
(which is an operator-valued distribution) is di cult to evaluate from its standard
de nition, due to the curse of dimensionality. The state-of-the-art method to
computeit consists in solving Hedin's equations [2].

In this talk, | rst exposed the properties of the one-body Green's function. This
function is very irregular in the time or frequency domain, so that its analysis is
tedious on these axes. It is possible however to consider its analyatcontinuation,
provided some stability condition is satis ed. This continuation is regular, and
contains the same information as the original function.

| then focused on the GWP equations. These equations are obtained from
Hedin's equations by neglecting some terms. The GW equations involve many
operator-valued distributions, among which the dynamically screeed Coulomb
operator W, the self-energy and the Green's function G. The mathematical def-
inition of these operators were clari ed during the talk. The GW? equations are
traditionally set on the time-axis, but it is possible to recast them into formally
equivalent equations on an imaginary axis, where the operator-valed functions
under consideration are smooth.

In the last part of my talk, | investigated the resulting GW ° equations. They are
non-linear equations which are solved self-consistently in practiceOur main result
is that, in some perturbative regime, where the Coulomb interactionis weakened,
the GW? equations are well-posed, in the sense that they admit a unique solign
close to a reference Green's function. Moreover, we proved thdhe self-consistent
procedure converges exponentially fast towards this unique solun.
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The bivariational principle for the time-dependent Schie dinger
equation and coupled-cluster theory
Simen Kvaal
Solving the Schiedinger equation via variational techniq ues. Deriving ac-

curate approximations of solutions to the time-dependent Schralinger equation is
an important task in the study of many physical phenomena, e.qg., iomation of
atoms and molecules in intense laser elds and chemical reactions. EhDirac{
Frenkel/McLachlan variational principle is a cornerstone of the dewlopment of
such approximations [1, 2]. Virtually all common schemes are derivedrém it. In
brief, letting H be the Hilbert space of wavefunctions andH the system Hamil-
tonian, one considers the \action functional" A :H [0;T]! R, de ned by
Z 1

1) Al (1= ; h (i@ H)j ()i dt;
a functional dependent on the whole history () of the system. For simplicity, we
assume thatH is bounded, in addition to being self-adjoint.

The Euler{Lagrange equations for stationarity of A under arbitrary variations
in () are the time-dependent Schredinger equation and its complex cojugate,
ie.,

(2) i@j ()yi=Hj (t)i; i@h (t)j=h ()jH:

Importantly, in order to arrive at Eq. (2), one uses the assumption that H is
self-adjoint.

Approximate schemes are typically derived by devising a complex apmxima-
tion manifold M H  and restricting the action integral to paths t 7! ' (t) 2 M .

Equation (1) is a time-dependent analogue of the common Rayleigh{Rz vari-
ational procedure for computation of the smallest eigenvalue of th self-adjoint
operator H. Assuming that H is below bounded and has a smallest eigenvalugg
(the ground-state energy), this eigenvalue can be computed via

(3) Eo=inf hjHj i= k¥j 2H; 60

Approximate ground-state energies can be computed via restrigbn of the mini-
mization to the manifold M , i.e.

(4) Eo EoM]=inf hjHj i=k kX j 2M: 60

For systems of many degrees of freedom, such as molecular syste in the
Born{Oppenheimer approximation, the cost of systematically re nable \varia-
tional methods" for the time-independent or time-dependent Sciedinger equation
scale exponentially with the numberN of particles, the so-called \curse of dimen-
sionality". The most widely used method today is the multicon guratio nal time-
dependent Hartree method (MCTDH) and variants (e.g., MCTDHF for Fermions)
[3, 4, 5]. (By \systematically refonable” we mean that M carries a discretization
parameter h, such that, ash! 0, we recoverH i a certain sense.)



1560 Oberwolfach Report 27/2015

The bivariational principle. In 1983, a generalization of the above variational
principles was suggested, independently, by P.-O. Lewdin [6] and JArponen [7].
If one lifts the assumption that H is self-adjoint, the left- and right eigenvectors
of H are no longer simply related via complex conjugation. Therefore, it nakes

sense to consider the functionaE: H® H!  C given by
_ h=Hj i
(5) E(T )=~
h¥j i
It is straightforward to verify, that ( 7 ) is a critical point of E if and only if
h7 1&0 and
(6) Hji=Eji; hJjH=EhT;

with E = E(T ) being the critical value. Thus, h7j is a left eigenvector ofH and
J 1 is aright eigenvector ofH belonging to the eigenvalueE.

The corresponding generalization of the Dirac{Frenkel/McLachlanaction func-
tional is

Zy
() S(7(); ()= . h=)j(i@ H)j ()i dt;
which Euler{Lagrange equations are
(8) i@j (Di=Hj i; i@h7(t)j=h [M)jH:

Approximations can be made by introducing a submanifoldN H © H , re-
stricting the time-independent and time-dependent functional to N and evaluating
the corresponding critical point and Euler{Lagrange equations. This approach is
referred to asthe (time-dependent or time-independent) bivariational pinciples
(BIVPs). Of course, H is indeed self-adjoint. However, by notusing the as-
sumption, we introduce h~j as an additional variable, obtaining a more exible
parameterization.

Indeed, Arponen introduced the BIVPs in the context of the coupled-cluster
(CC) method [8, 9], nowadays a very popular method for the solutionof the
Schmdinger equation. In quantum chemistry, The CC method is aromalous in the
sense that it isnot obtained using the Rayleigh{Ritz or Dirac{Frenkel/McLachlan
variational principles. Moreover, the CC method has the virtue that it breaks the
curse of dimensionality, scaling only polynomially with the number N of particles
in the system. From the perspective of this work, Arponen's main pant was that it
may be more natural to view CC as derived from the bivariational principle instead
of the common similarity transformation and projection approach, see Ref. [8].

The bivariational approach of Lewdin and Arponen is considered urconven-
tional. One of the challenges is that the mathematical foundation ofthe BIVPs
has not yet been worked out. For example, sincé& is not below bounded, can
we be sure that a critical value of E (restricted to the manifold N) is in fact an
approximation to an eigenvalue? Can we be sure that approximate dyamics from
the time-dependent BIVP will in fact exist?
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Contents of talk. In the talk, the BIVPs are presented and discussed in some
detail, and Arponen's unconventional approach to CC is outlined. Sone ideas and
preliminary results concerning the rigorous mathematical analysis bthe BIVPs
are also discussed. As proof of concept, the orbital-adaptive timelependent CC
method (OATDCC) is described [10]. The OATDCC method is a hierarchy of
approximations to the popular MCTDHF method, based on the time-dependent
BIVP and including the usual CC method as a special case. OATDCC intudes
the orbitals as additional bivariational variables. OATDCC breaks the curse of d-
mensionality in the context of the time-dependent Schredinger egiation, while still
being systematically re nable towards the exact solution. A numerical experiment
is shown, indicating that OATDCC compares favorably with MCTDHF.
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Dynamics of individual Wannier-Mott-type excitons
Rupert Klein

The motivation for this work in progress lies in arti cial photosynthe sis, more
speci cally in the desire to turn photonic energy into chemically bound energy
with the help of some device preferably made from anorganic materia. A cen-
tral element of one possible design of such a device is a semiconduc{mano-)
structure that captures the energy of photons of visible light by @sorption into
localized electronic excitations called \excitons" here. The energytered in these
excitons can be harvested for chemical energy conversion only ahe surface of
the semiconductor material where it is in contact, e.g., with an electolyte. State
of the art models for the \di usion" and \decay" of excitons within t he bulk of
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the material consist of custom-designed random walk models whosgarameters
are tted to experimental data, [1, 2].

In a joint activity with C. Draxl (Humboldt University, Berlin), Carlos  Garcia-
Cervera (UC Santa Barbara), Eric Canes (CERMICS, Paris) we am at developing
a rst-principles, quantum mechanical description of the time dependent evolution
of localized excitons in semi-conductor materials. Focusing on anogmic semi-
conductors in which the Coulomb interaction of electrons is strongly\screened"
owing to large dielectricity, it is reasonable to assume the excitationgo feature
characteristic spacial scales large compared to the crystal lattie spacing. Thus we
aim to describe them by multiple scales asymptotic techniques.

In the presentation | have discussed two aspects of this projectThe rst is the
derivation of an e ective evolution equation for what is called an \electron-hole (e-
h) pair". Starting from a bosonic Schredinger equation for the two quasi-particles

(1) {@ =(He+Hn+ "Hen) ¢ 1

that is used in practice to compute the excitation spectrum of the ©nsidered
material, we have considered the time dependent version of the eation and
developed an e ective evolution equation for an excitation envelope
In (1), He; Hy denote the individual particle Hamiltonians for electron and
hole, respectively, that feature the particles' kinetic energy andlattice periodic
potentials, i.e.,
1

(2) Hy = Zr

> + Wy (x2fe;hg):

Note that we have neglected that electron and hole generally haveicrent e ective
masses in such a description. Next, k in (1) is the electon-hole interaction term
which, in the considered simpli ed setting, is a multiplicative, screenedCoulomb
interaction of the form

1
(Fe;rn)ire  Inj

3) Hen(reirn) =

where (re;rn) is the material's dielectricity.

The small parameter " 1 in (1) indicates that the dielectric screening of
the Coulomb interaction is strong in that the e ective dielectricity is "= (re;rn),
where (re;rp) = O(1) as” ! 0 by the chosen non-dimensionalization. Note

the notational compromise between the material scientists' custm of labelling
dielectricity by \epsilon" (here ), while mathematicians usually reserve \epsilon"
for their small singular perturbation parameter (here ).

A more or less straightforward multiple scales expansion allows us toof-
mally derive an e ective evolution equation for the envelope A("?t;"re;"rp) of
an electron-hole wavepacket described by a WKB-type ansatz,

{ h [
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where we have introduced amplitude and phase functions dependingn appropri-
ate slow space and time coordinates,

A ! A(lth;llre;llrh);
) _ .
S(I) [ S(I)(uZt) :
where ' §(re);" ¢(rn) are the lattice-periodic ground state eigenfunctions of the

single-particle Hamiltonians in (2), and where the higher-order terns have a gen-
eral multiscale dependence according to

6) D OC2trern;"re"rn):
In the sequel we abbreviate
(7) "t " Ty « (x 2 fe;hg):

Expansion of the electron-hole Schredinger equation in (1) to seand order in
" and applying the sublinear growth condition to the second-order stution one
obtains an evolution equation for the (complex) amplitude, A,

(8) {At = HA
where the e ective Hamiltonian is given by

(9) H = %Ud ue):(r . r ) 1 uh c(r L r L) W

2
with anisotropic contributions to the e ective mass tensors, (Id  U*), given by
(10) U= SHgirx rxj' ol 5Hgirki of h'ojrxi' ol
and an e ective potential
(11) W = We+ Wh+ wen

that involves self-interactions of the electron and hole and an elecbn-hole inter-
action term,

XOHE BN 8i°

(12) WX =
i60 EiX EE)(
DR o ey 2
(13) weh= % HF RNl 6 B
g0 & EDT(EL ED
Ek 60

Here the' ¥ and N are the lattice-periodic eigenfunctions of the single-particle

Hamiltonians from (2) for eigenvaluesEy and El', respectively. The conclusion
from this exercise is that it seems entirely feasible to construct a tlkory for exciton
dynamics from rst principles using multiple scales techniques, proviced one can
justify the two-particle Schmdinger equation from (1) in the rs t place.

Some thoughts on this latter issue | discussed in the second part dhe lec-
ture. The two-particle problem from (1) arises as part of Bethe-Slpeter theory
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described, e.g., by Strinati, [3]. In this theory one is interested in twoparticle
Green's functions of the form

(14)  G(trarorara)= WN; 00 Y(tra) ( tra2) Y(O;rs) (0 ;ra)jN;Oi :

Here jN;ti denotes aN {particle state evaluated at time t, typically the ground
state of the system under consideration, and (t;r) and Y(t;r) are the particle
annihilation and creation eld operators of second quantization in the Heisenberg
view, respectively. Now, what is the physical interpretation of (14) and does it
inform us about \particles (electrons) and holes"?

Consider rst the action of the (singular) eld operators on a smooth wave
function for time zero. Let jN; Oi be represented by a fermionic, i.e., antisymmetric
wave function y(r1;::5rn). Then detailed elaboration of the de nitions of the
eld operators found, e.g., in [4] yields

(15) O ;r)jN; O (rg;unrn) = pﬁ nN(r;ra;nrn)
and
(16) Y(O;r)jN; Oi (ro;:nrn) = pmAS[r; n](Fo;inrn)
where

AS[; on](rojunrn) = 3
(17) 1 X!

i1 2‘ (ro) n(re;srn)

N " (ry) N(rl;:::i{rz?;:::rN)g
j

j2

and ((ro)= (ro r). We note that, evenif y is anormalized wave function, the
results of applying the eld operators are generally not. Thus, the eld operators
(r); Y(r)to not create proper N{1{ and N +1{particle states, respectively.

Nevertheless, in the physics literature these operators are geradly interpreted
to \annihilate a particle from r" or \to create a hole at r" for ( r) and to \create
a particle at r" for  Y(r). The formulae in (15), (16) reveal that the \mechanics"
of the eld operators is as follows: (r) simply xes the rst coordinate of the
wave function  at r while leaving the functional dependencies onr(z;:::;rn)
untouched. It thus creates an antisymmetric N {1{particle function, though not
a normalized one. Similarly, Y(r) generates an antisymmetrized multiplication
of n with a delta-distribution at r for an additional particle coordinate r . The
result is an antisymmetric N +1{particle distribution that is again not normalized
and even not square integrable. The physical interpretations metioned above are
therefore to be taken with a grain of salt.

Next we recall that in the Heisenberg view, the eld operators at timet > 0O
are de ned by

(18) (tr)=Uy' (r)Uy

where U}, is the N {particle time evolution operator. With this relation in place
and recalling that Y(r) and UNt are the transposes of (r) and U}, , respectively,
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and vice versa we rewrite (14)Das e

(19) G(triirairara)= Y(r2) (ro) Nt Uy Y(r3) ( ra) N;O

If we buy into the physical interpretations of the eld operators given above, then
the interpretation of this two-particle Green's function is clear: Suppose at time 0
we \create a hole atr 4 and then a particle at r 3" and let the resulting N {particle
function evolve to time t under the N {particle Hamiltonian. Then we project the
resulting (non-normalized) state onto the (non-normalized) state that obtains by
rst evolving jN; Oi to time t and then creating a hole inr; and a particle in r 5.

Di culties with the normalization set aside for the moment, the result ing quan-
tity provides a rough answer to the question: \What is the probabilit y amplitude
that the particle{hole perturbation created at time 0 on top of jN; Oi evolves into
a state that corresponds to some other particle{hole perturbaton created at time
t on top of jN;ti?" Put dierently we may also say: \How likely is it that the
perturbed state created at time O evolves into a fresh perturbaton at time t on
top of the state jN;ti that evolved unperturbed from jN; 0i ?" This is equivalent
to asking how likely it is that the perturbed electronic system has notresponded
to the perturbation except for a shift of the perturbation locatio ns. It seems that
the central question of how the many-body system would react ad rearrange as
a consequence of the initial perturbation cannot be answered bytsdying this
guantity since we project onto a state that.
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