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Introduction by the Organisers

This Computational Engineering Workshop at Oberwolfach focused on mathemat-
ical and numerical aspects of emerging methodologies in mixed and nonstandard
finite element methods and their applications in computational engineering. This
large class of numerical methods included adaptive methods, classical nonconform-
ing methods, h-p finite element methods, discontinuous Galerkin methods, discon-
tinuous Petrov-Galerkin methods, generalized finite element methods, mixed and
hybrid methods, multiscale methods, virtual finite element methods, kinetic meth-
ods, mortar methods, mapped tent-pitching methods and the finite cell method.

Application areas included electromagnetics, solid mechanics, fluid dynamics
and optimal control.

Thirty three talks were given during the main part of the workshop. A special
Thursday evening “After Dinner Special” was also held, which highlighted the
research of some of the younger participants.
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The workshop continued the older tradition of fruitful interactions of applied
mathematics and computational engineering at Oberwolfach with rewarding out-
comes like the Priority Program 1748 “Reliable simulation techniques in solid
mechanics. Development of non-standard discretization methods, mechanical and
mathematical analysis” of the German Research Foundation.
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Ricardo G. Durán (joint with Maŕıa E. Cejas and Mariana I. Prieto)
Mixed methods for degenerate elliptic problems . . . . . . . . . . . . . . . . . . . . . . 2568

Norbert Heuer (joint with Michael Karkulik)
DPG method for a singularly perturbed reaction-diffusion problem . . . . . 2570

Thirupathi Gudi (joint with Sudipto Chowdhury, Thirupathi Gudi, A. K.
Nandakumaran)
Alternative energy space based approach for the finite element
approximation of the Dirichlet boundary control problem . . . . . . . . . . . . . . 2571

Jun Hu
Mixed Finite Element Method for Elasticity Problems . . . . . . . . . . . . . . . . 2572

Laura De Lorenzis (joint with Tymofiy Gerasimov)
A line-search assisted monolithic scheme for phase-field computing of
brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2573



Computational Engineering 2537

Ignacio Muga (joint with Kristoffer G. van der Zee)
Optimal discretization in Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2574

Friederike Hellwig (joint with Carsten Carstensen)
Low-Order dPG-FEMs for Linear Elasticity . . . . . . . . . . . . . . . . . . . . . . . . 2575

Brendan Keith (joint with Federico Fuentes, Leszek Demkowicz)
DPG applied to various variational formulations of linear elasticity . . . . 2576
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Abstracts

DPG Methods for Maxwell Equations

Jay Gopalakrishnan

(joint work with Carsten Carstensen, Leszek Demkowicz)

A DPG method for the time-harmonic Maxwell equations in an electrically sealed
cavity Ω can be designed starting from a weak formulation in H̊(curl, Ω). Like
other DPG methods, this method is also made easily implementable using a “bro-
ken” test space, i.e., space of functions with no continuity constraints across mesh
element interfaces, derived from the standard “unbroken” space H̊(curl, Ω). Let-
ting Ωh denote the mesh partitioning of Ω, consisting of elements K with Lipschitz
boundaries, the broken space is

H(curl, Ωh) =
∏

K∈Ωh

H(curl,K).

We then present a variational formulation for the Maxwell equations using H(curl,
Ωh). As an illustration of a general principle [1] that allows one to conclude that

(1)
Stability of standard

“unbroken” formulation

}
=⇒

{
Stability of

“broken” formulation,

in this talk, we present a full proof of the stability of a DPG formulation for
Maxwell equations. An ingredient in the proof, that has applications beyond the
DPG method, is an elementary proof of

‖n× E‖H−1/2(div,∂K) = ‖n× E‖[H−1/2(curl,∂K)]∗

for any E in H(curl,K). The proof uses a simple relationship between the norm
of a minimal H(curl,K)-norm extension and the norm of the inverse of a Riesz
map applied to n× E.

The Maxwell cavity problem admits a plethora of weak forms, depending on
which of its equations are treated weakly. Two standard formulations in H̊(curl, Ω)
are the “electric form” (E) (obtained by eliminating the magnetic field) and the
“magnetic form” (M) (obtained by eliminating the electric field). A less standard
form is the “ultraweak form” (U) obtained by weakly imposing both the equa-
tions of the Maxwell system. The “strong form” (S) imposes both the equations
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strongly. We report our results that show that the stability of one formulation im-
plies the stability of any other, via the following diagram of stability implications.

(H)

(S) (U)

(E)

The proof of these implications, as well as application of the general principle (1)
to problems other than Maxwell equations, can be found in [1].

References

[1] Carsten Carstensen, Leszek Demkowicz, and Jay Gopalakrishnan, Breaking spaces and
forms for the DPG method and applications including Maxwell equations, arXiv:1507.05428
(2015).

Rate optimality of adaptive algorithms with separate marking

Hella Rabus

(joint work with Carsten Carstensen)

Mixed finite element methods with flux errors in H(div)-norms and div-least-
squares finite element methods require the separate marking strategy in obligatory
adaptive mesh-refining. The refinement indicator σ2

ℓ (K) = η2ℓ (K) + µ2(K) of a
finite element domain K in a triangulation Tℓ on the level ℓ consists of some
residual-based error estimator ηℓ with some reduction property under local mesh-
refining and some data approximation error µℓ. Separate marking (Safem) means
either Dörfler marking if µ2

ℓ ≤ κη2ℓ or otherwise an optimal data approximation
algorithm run with controlled accuracy as established in [CR11, Rab15] and reads
as follows

for ℓ = 0, 1, . . . do
Compute ηℓ(K), µ(K) for all K ∈ Tℓ
if µ2

ℓ := µ2(Tℓ) ≤ κη2ℓ ≡ κη2ℓ (Tℓ) then
Tℓ+1 := Dörfler marking(θA, Tℓ, η2ℓ )

else
Tℓ+1 := Tℓ ⊕ approx(ρBµ

2
ℓ , T0, µ2

ℓ ).

The enfolded set of axioms simplifies [CFPP14] for collective marking (with σ2 =
η2 + µ2 for Case A and µ2 ≡ 0 for Case B), treats separate marking established
for the first time in an abstract framework, generalizes [CP15] for least-squares
schemes, and extends [CR11] to the mixed FEM with flux error control in H(div).
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The axioms (A1)–(A4) involve ρ2 < 1,Λk < ∞, estimators σ, η, µ and and

distances 0 ≤ δ(T , T̂ ) < ∞ for all ∈ T ∈ T and T̂ ∈ T(T ) and are sufficient for

optimal asymptotic convergence rates. There exists R ⊂ T such that T \ T̂ ⊆
R ∧ |R| ≤ Λ3|T \ T̂ | and

|η(T̂ , T ∩ T̂ )− η(T , T ∩ T̂ )| ≤ Λ1δ(T , T̂ ),(A1)

η(T̂ , T̂ \ T ) ≤ ρ2η(T , T \ T̂ ),+Λ2δ(T , T̂ )(A2)

δ(T , T̂ ) ≤ Λ4 (η(T ,R) + µ(T )) + Λ5η(T̂ ),(A3)
∞∑

k=ℓ

δ2(Tk, Tk+1) ≤ Λ6σ
2
ℓ for all ℓ ∈ N0,(A4)

∀Tol > 0 TTol = data approx(Tol, T0, µ2) ∈ T satisfies µ2(TTol) ≤ Tol and

|TTol| − |T0| ≤ Λ7 Tol
−1/(2s),(B1)

µ2(T̂ ) ≤ Λ8µ
2(T ).(B2)

Theorem. Safem with (A1)-(A4), (B1)-(B2) leads to optimal convergence rates
for total estimator provided θA < θ0 := 1/(1+Λ2

2Λ3) and κ < κ0 := (1−ρA)/(Λ6−
1) plus quasimononicity (e.g. for (Λ2

1 + Λ2
2)Λ

2
5 < 1) in the following sense

sup
N∈N0

(1 +N)s min
T ∈T(N)

σ(T ) ≈ sup
ℓ∈N0

(1 + |Tℓ| − |T0|)sσℓ.

Example. Besides from natural a posteriori error control with residuals in least
squares functional, [CP15] establishes an a posteriori error estimator σ2

ℓ (K) :=

η2ℓ (K)+µ2(K) in H(div,Ω) with µ2(K) := ‖f −Πℓf‖2L2(K). Since µ does not sat-

isfy an estimator reduction Safem has to be applied instead of collective marking.
The proof of discrete reliability (A3) (for k = 0) still leaves the extra term

‖pℓ+m − pℓ −∇(uℓ+m − uℓ)‖2L2(Ω) + ‖div(pℓ+m − pℓ)‖2L2(Ω)

. η2ℓ (Tℓ \ Tℓ+m) + ‖(1−Πℓ) div pℓ+m‖2L2(Ω) ,

which is not covered in [CFPP14]. The presented set of generalized axioms coveres
this special application [CR15].

Final Remark. The presented set of axioms guarantees rate optimality for
AFEMs based on collective and separate marking and covers existing literature of
rate optimality of adaptive FEM. Separate marking is necessary for least-squares
FEM and mixed FEM with convergence rates in H(div,Ω)× L2(Ω).

References

[CFPP14] C. Carstensen, M. Feischl, M. Page, and D. Praetorius. Axioms of adaptivity. Comput.
Methods Appl. Math., 67(6):1195–1253, 2014.

[CR11] C. Carstensen and H. Rabus. An optimal adaptive mixed finite element method. Math.
Comp., 80(274):649–667, 2011.

[CR15] C. Carstensen and H. Rabus. Axioms of adaptivity for separate marking. in prepara-
tion.
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[Rab15] H. Rabus. Quasi-optimal convergence of AFEM based on separate marking – Part I
and II. Journal of Numerical Analysis, 23(2):137–156, 57–174, 2015.

[Ste08] R. Stevenson. The completion of locally refined simplicial partitions created by bisec-
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An HDG-DG IMEX Scheme for Shallow Water System on the Globe

Tan Bui-Thanh

(joint work with Shinhoo Kang, Frank Giraldo)

We extend our previous work [1] on upwind hybridized discontinuous Galerkin
(HDG) to the nonlinear system of shallow water equations on the globe. The
governing partial differential equations read

(1)
∂q

∂t
+∇ ·F (q) = −φ∇φs −

2Ωz

R2
(r×U) + µr,

where q is the conservation variable composed of the geopotential height φ = gh
and the velocity fields U := (u, v, w), i.e.,

q :=





φ
φu
φv
φw




, and the flux F(q) :=




φu φv φw

φu2 + φ2

2 φvu φwu

φuv φv2 + φ2

2 φwv

φuw φvw φw2 + φ2

2


 .

Here, φs = ghs is the bathymetry, R the radius of the globe, Ω the angular
frequency, r := (x, y, z), and µ the Lagrange multiplier which keeps the fluid
particles remain on surface of the earth.

We choose to solve (1) using an operator splitting approach. In particular, we
split the nonlinear flux as follows

F(q) = F(q)− FL(q)︸ ︷︷ ︸
slow

+FL(q)︸ ︷︷ ︸
fast

, with FL(q) :=




φu φv φw
φbφ 0 0
0 φbφ 0
0 0 φbφ


 ,

where φb is a reference geopotential height.
This approach facilitates a class of efficient implicit-explicit (IMEX) time step-

ping scheme. In particular, we employ an additive Runge-Kutta (ARK) method
in which the nonlinear flux F(q)− FL(q) associated with slow waves is treated
with explicit time integration and the linear flux FL(q) associated with fast waves
is solved using implicit method. This allows the shallow water system to be for-
wared in time with large time step while keeping stability. To efficiently integrate
the linear flux FL(q), within an implicit time stepping scheme, we develop an
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HDG spatial discretization by hybridizing the Lax-Friedrichs with unknown trace

q̂ =
[
φ̂, û, v̂, ŵ

]
:

n · F̂L(q, q̂) =





nxφbu+ nyφbv + nzφbw
nxφbφ
nyφbφ
nzφbφ





+
√
φb





φ− φ̂
φbu− φbû
φbv − φbv̂
φbw − φbŵ





With this HDG flux we can show in [2] the resulting HDG is well-posed, stable,
and convergent with solution order p and mesh size h.

Theorem. Assume (φ, φbU) ∈ [Hs (K)]
4
, s ≥ 3/2 for every element K. There

exists a constant c that depends only on the angle condition of K, s, and on φb
such that

(2) E (t) ≤ c
h2σ−1

p2s−1
t max
θ∈[0,t]

Ee (θ) ,

with σ = min {p+ 1, s} and

Ee (t) :=
∑

K

‖φ (t)‖2Hs(K) + ‖φbU (t)‖2Hs(K) .

(a) (b) (c)

Figure 1. Numerical results using HDG-DG IMEX method with
second order ARK scheme for shallow water equations on the
globe: a) Zonal flow over an isolated mountain; b) Rossby-
Haurwitz wave; c) Barotropic instability.

References

[1] T., Bui-Thanh, From Godunov to a Unified Hybridized Discontinuous Galerkin Framework
for Partial Differential Equations, Journal of Computational Physics 295 (2015), 114–146.

[2] T., Bui-Thanh, Hybridized Discontinuous Galerkin Methods for Linearized Shallow Water
Equations, Submitted (2015).
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hp-adaptive Interior Penalty FEM for Elliptic Obstacle Problems
DG for Laplace, C0 for bi-Laplace

Ernst P. Stephan

(joint work with Lothar Banz)

Firstly, from [1] we consider a mixed formulation for an elliptic obstacle problem for
a 2nd order operator and present an hp-FE interior penalty discontinous Galerkin
(IPDG) method. The primal variable is approximated by a linear combination of
Gauss-Lobatto-Lagrange(GLL)-basis functions, whereas the discrete Lagrangian
multiplier is a linear combination of biorthogonal basis functions. A residual based
a posteriori error estimate is derived. For its construction the approximation error
is split into a discretization error of a linear variational equality problem and
additional consistency and obstacle condition terms.

Secondly, an hp-adaptive C0-interior penalty method for the bi-Laplace obstacle
problem is presented from [2]. Again we take a mixed formulation using GLL-
basis functions for the primal variable and biorthogonal basis functions for the
Lagrangian multiplier and present also a residual a posteriori error estimate. For
both cases (2nd and 4th order obstacle problems) our numerical experiments clearly
demonstrate the superior convergence of the hp-adaptive schemes compared with
uniform and h-adaptive schemes.

References

[1] L.Banz, E.P.Stephan, A posteriori error estimates of hp-adaptive IPDG-FEM for elliptic
obstacle problems, Applied Numerical Mathematics 76,(2014) 76-92

[2] L.Banz, B.P.Lamichhane, E.P.Stephan, An hp-adaptive C0-interior penalty method for the
obstacle problem of clamped Kirchhoff plates, preprint (2015)

Theory of thin elastic shells: From the past to the present and
towards the future

Antti H. Niemi

Thin shell analysis can nowadays be based directly on three-dimensional elasticity
theory. Such an approach rules out the modelling errors arising from the simpli-
fications of dimensionally reduced structural models but requires more degrees of
freedom for the discrete model. Also, if simplified representations of the stress
state such as the stress resultants are needed, they must be post-processed from
the three-dimensional stress field and this can be non-trivial, see e.g. [3].

On the other hand, conventional finite element formulations employed in indus-
trial finite element analysis have been developed mainly through so called “finite
element modelling”, where the kinematic assumptions are described directly in
terms of the approximative mesh geometry in conjunction with different strain
reduction techniques. This makes error analysis of such formulations cumber-
some because the methods have first to be reformulated in context of a well-posed
variational problem in a Sobolev space setting. The shell theories formulated in
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curvilinear coordinates provide such a setting so that they are still needed in nu-
merical analysis. For instance, the degenerated solid approach employed in many
quadrilateral shell elements has been interpreted in context of a specific shell model
in [1] and numerically analysed e.g. in [2] and in the references therein.

However, this line of research is not limited to analysing existing formulations
only, but can also be used to design new ones. In particular, special quadrilateral
and triangular shell elements can be constructed that take into account geometric
curvature locally on each element by using the interpolated normal vector. For
instance, the formulations developed in [4, 5] have better convergence constants
than the corresponding conventional shell elements.

References

[1] M. Malinen, On the classical shell model underlying bilinear degenerated shell finite ele-
ments, International Journal for Numerical Methods in Engineering 52 (2001), 389–416.

[2] A.H. Niemi, Approximation of shell layers using bilinear elements on anisotropically refined
rectangular meshes, Computer Methods in Applied Mechanics and Engineering 197 (2008),
3964–3975.

[3] A.H. Niemi, I. Babuška, J. Pitkäranta, L. Demkowicz Finite element analysis of the Girk-
mann problem using the modern hp-version and the classical h-version, Engineering with
Computers 28 (2012), 123–134.

[4] A.H. Niemi, Benchmark Computations of stresses in a spherical dome with shell finite
elements, Submitted ArXiv ID 1507.03747 (2015), 1–18.

[5] A.H. Niemi, A family of triangular shell elements, Proceedings of the XII Finnish Mechanics
Days (2015).

Remarks on the hypercircle method

Rolf Stenberg

(joint work with Torsten Malm, Mika Juntunen)

The classical hypercircle theorem states: Suppose that we have a statically and
kinematically admissible stress fields. Then the distance in energy norm from the
exact stress to the average of the statically and kinematically fields equals half
the distance between these fields. We will discuss the case when the fields are
not exactly admissible. We show that the errors introduced can be estimated
with computable error constants and hence one obtains an asymptotically exact
estimator.

Generalized Finite Element Method: Its conditioning and the effect
on the associated iterative solvers

Uday Banerjee

(joint work with Ivo Babuška, Kenan Kergrene)

The Generalized Finite Element Method (GFEM) is used to approximate non-
smooth solutions of PDEs, e.g., interface problems, problems involving voids and
inclusions, crack propagation problems etc. GFEM is an extension of the standard
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Finite Element Method (FEM) where the trial space is obtained by augmenting
the space of standard finite element piecewise linear functions, SFEM , by an en-
richment space, SENR. The space SFEM is based on a simple mesh that may
not conform to the “features” of the problem and the shape functions of SENR

are often non-polynomials but with compact supports. The GFEM, with a simple
mesh but with a smartly chosen SENR (problem dependent) yields an accurate
approximation of the non-smooth solution of the underlying problem. Thus it
avoids the difficult mesh generation, which could be prohibitive for time depen-
dent problems, especially in 3D, with changing features that requires re-meshing
at each time step. However, the linear system associated with the GFEM could
be badly conditioned, in fact the conditioning of the GFEM could be much worse
than that of the standard FEM. Furthermore, the conditioning of GFEM may not
be robust with respect to the position of mesh. Thus the ill-conditioning of the
GFEM may adversely affect the use of direct or iterative methods to solve the
underlying linear system.

An improper choice of SENR is the main reason for the bad conditioning of
GFEM. The goal is to choose an SENR such that the associated GFEM yields
accurate approximation and its conditioning is not worse than that of the stan-
dard FEM. A GFEM satisfying these two conditions is called an Stable-GFEM
(SGFEM).

In this talk we presented theoretical results showing that if the chosen SENR

satisfies two axioms, then the conditioning of the GFEM is not worse than that
of the standard FEM. Moreover, the conditioning is robust with respect to the
position of the mesh. One of the crucial axioms states that the “angle” between
the spaces SFEM and SENR stays bounded away from zero, uniformly with respect
to the mesh parameter h and the position of the mesh. We also presented an
“element-wise” sufficient condition to check these axioms for a chosen SENR.

We illuminated these theoretical results by numerical experiments on a simple
interface problem. We considered 3 different SENRs such that the associated
GFEMs yielded optimal order of convergence, i.e., O(h). We showed that the
scaled condition number (SCN) of the stiffness matrix of the GFEM associated
with one of these enrichment spaces (1st SENR) is O(h−4), which is much worse
than that of the standard FEM which is O(h−2). The computed “angle” between
SFEM & the 1st SENR approached zero as h → 0. On the other hand, the SCN
associated with the 2nd SENR is O(h−2) (similar to the FEM). However, for a
particular mesh where the interface is close to the edges of the mesh, the SCN of
the GFEM associated with the 2nd SENR blows up; the “angle” between SFEM &
2nd SENR also becomes very small for this mesh. This show that the conditioning
of GFEM associated with the 2nd SENR is not robust with respect to the position
of the mesh. The 3rd SENR was obtained by subtracting the linear interpolant
(w.r.t. the finite element mesh) of the functions in the 2nd SENR. The SCN of the
GFEM associated with the 3rd SENR is O(h−2) and it is robust with respect to
the position of the mesh, i.e., the GFEM associated with the 3rd SENR is indeed
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an SGFEM. We have also shown theoretically that the 3rd SENR satisfies the two
axioms mentioned before.

Finally we presented an iterative scheme, based on block Gauss-Seidel method,
to solve the linear system of the GFEM. The efficiency of the scheme also depended
on the “angle” between SFEM & SENR. The “angle” between SFEM & the 3rd

SENR was shown to be bigger than than the angle between SFEM & 2nd SENR.
The SGFEM (3rd SENR) required less number of iterations and 8 times less “wall
clock” time than the GFEM based on the 2nd SENR, for a given tolerance.

It is important to note that “subtracting the interpolant” may not yield an
SGFEM for all applications. However subtracting the interpolant could be a basis
for further modifications of the enrichment space to obtain an SGFEM.

A posteriori error analysis for C0 interior penalty methods for fourth
order variational inequalities

Li-yeng Sung

(joint work with Susanne C. Brenner, Joscha Gedicke and Yi Zhang)

Let Ω ⊂ R
2 be a bounded polygonal domain, f ∈ L2(Ω), ψ ∈ C2(Ω)∩C(Ω̄), ψ < 0

on ∂Ω and K = {v ∈ H2
0 (Ω) : v ≥ ψ on Ω}. The obstacle problem for clamped

Kirchhoff plates is to find

u = argmin
v∈K

[1
2
a(v, v)− (f, v)

]
,

where

a(v, w) =

∫

Ω

2∑

i,j=1

wxixjvxixj dx and (f, v) =

∫

Ω

fv dx.

Its unique solution is characterized by the fourth order variational inequality

a(u, v − u) ≥ (f, v − u) ∀ v ∈ K.

C0 interior penalty methods [9, 5] are discontinuous Galerkin methods for fourth
order elliptic boundary value problems that are based on standard Lagrange finite
element spaces for second order problems. They were extended to the obstacle
problem of clamped Kirchhoff plates in [7, 6].

In this talk we present a recent discovery that a residual based error estimator
originally designed for fourth order elliptic boundary value problems [4, 2] is also
reliable and efficient for the obstacle problem. The reasons behind this surprising
phenomenon are (i) the discrete Lagrange multipliers can be naturally expressed
as a sum of Dirac point measures supported at the vertices, (ii) the reliability
estimates for clamped Kirchhoff plates can be carried over to a related boundary
value problem defined in terms of the discrete Lagrange multipliers (à la Braess
[1]) because the discrete Lagrange multipliers only act on functions that vanish at
the vertices, and (iii) the efficiency estimates can also be carried over since bubble
functions vanish at the vertices.
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Numerical results indicate that adaptive quadratic and cubic C0 interior penalty
methods based on this error estimator and the Dörfler bulk marking strategy
perform optimally for the obstacle problem. Similar results also hold for C0 interior
penalty methods for elliptic distributed optimal control problems with pointwise
state constraints formulated as fourth order variational inequalities [8].

Details can be found in [3].
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On (weak) Trefftz discontinuous Galerkin methods: fundamentals and
application to medium-frequency engineering problems (transient

dynamics and acoustics)

Pierre Ladevéze

Recently, numerical predictions have made a forceful entry into design and analy-
sis offices. However, carrying out such simulations on small-wavelength problems,
such as mid- and high-frequency acoustics, vibration or transient dynamics prob-
lems, remains a challenge. In these cases, finite element techniques, which are
well-established tools for larger-wavelength problems, are hampered by pollution
errors and their computation costs can be prohibitive.

Our first solution was a wave approach called the Variational Theory of Complex
Rays for mid-frequency problems, which we have improved over the years [2, 3].

This presentation deals with a reformulation of this approach as a Trefftz Dis-
continuous Galerkin (TDG) method, initially introduced for quasi-static linear
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problems in [1]. Among the classical DG methods [6], this general TDG method
can be viewed as the Trefftz version of Baumann-Oden’s DG formulation [5].

In this presentation, we also show new extensions, called weak Trefftz DG meth-
ods [4], based on weakened Trefftz constraints, which overcome some limitations
of the TGD method. These extensions may pave the way to new computational
techniques for the resolution of engineering problems; in particular, they can be
used to couple different types of numerical models, including classical FE models.
The state of the art will be illustrated by several examples, including engineering
problems.
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Adaptive finite element approximation of mixed eigenvalue problems

Daniele Boffi

We consider the mixed approximation of Laplace eigenvalue problem: find λ ∈ R

and u ∈ L2(Ω) with ‖u‖ = 1 such that for some σ ∈ H(div; Ω) it holds




∫

Ω

σ · τ dx+

∫

Ω

udivτ dx = 0 ∀τ ∈ H(div; Ω)

∫

Ω

vdivσ dx = −λ
∫

Ω

uv dx ∀v ∈ L2(Ω).

Under standard assumptions we prove the convergence and the optimality of
the adaptive finite element approximation in terms of an error quantity that takes
into account the L2(Ω) norm of the error in the u variable and the L2(Ω) norm of
the error in a suitably defined variable corresponding to σ. For the eigenvalues,
double order of convergence is proved. This is the first proof of convergence and
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optimality of AFEM for mixed problems. In this case, one of the crucial aspects is
that mixed methods don’t fulfill the classical orthogonality property of standard
Galerkin formulations. In this context we can prove that the solutions generated
by the AFEM enjoy a quasi-orthogonality estimate which is consequence of a
superconvergence property.

The obtained result is cluster robust in the sense of [3]. More precisely, it
has been recently observed (see [4, 1]) that in presence of multiple eigenvalues an
adaptive strategy should consider an error indicator based on the whole invariant
space and not only on a part of it. In case of cluster of eigenvalues, the results of [3]
show that a robust adaptive strategy should involve simultaneously the invariant
spaces of all eigenvalues of the cluster. In this spirit, our result shows the optimal
convergence of all eigenvalues/eigenfunctions in the approximating cluster towards
the continuous ones.

The result holds in two and three space dimensions when standard Raviart–
Thomas or Brezzi–Douglas–Marini schemes on simplicial meshes are used.
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Hybrid finite element methods in solid mechanics

Christian Wieners

We consider a weakly conforming variant of the DPG method [2] in its hybrid
version, using the reduction to the skeleton Γ = Ω̄ \

⋃
K =

⋃
∂K analyzed in [4].

Here, we discuss the application to nonlinear elasticity, i.e., we aim to minimize
the energy E(u) =

∫
ΩW (u) dx− 〈ℓ,u〉 in the weakly conforming space

Vh =
{
u ∈ L2(Ω)

D : uK ∈ VK and
∑∫

∂K\ΓD

uK · ηn da = 0 for η ∈W
}

with VK ⊂ P(K)D, where continuity is approximated testing with W ⊂ H(div,

Ω)D. Introducing the trace space V̂h =
∏
Vh|∂K and operators BK and RK with

〈BKu,ηK〉 =
∫
∂K u · ηn da and 〈RK û,ηK〉 =

∫
∂K û · ηn da, this results into the

following hybrid algorithm for the skeleton variable û.

S0) Choose û0
h ∈ V̂h with û0

h = uD on ΓD. Set k = 1.
S1) For given ûk

h and every K, find a minimizer of uk
K ∈ VK of

EK(uK) =

∫

K

W (uK) dx− 〈ℓK ,uK〉
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subject to the constraint B′
KuK = RK ûk

h:

L0) Select (uk,0
K ,ηk,0

K ) with B′
Kuk,0

K = RK ûk
h. Set m = 0.

L1) If ℓk,mK = ℓK − ∂W (uk,m)−BKη
k,m
K is small enough,

set uk
K = uk,m

K , ηk
K = η

k,m
K , and Ak

K = Ak,m
K ; go to S2).

L2) Evaluate Ak,m
K = ∂2W (uk,m) and compute (δuk,m

K , δηk,m
K ) solving

Ak,m
K δuk,m

K +BKδη
k,m
K = ℓk,mK ,

B′
Kδu

k,m
K = 0 .

Update (uk,m+1
K ,ηk,m+1

K ) = (uk,m
K ,ηk,m

K )+ (δuk,m
K , δηk,m

K ); go to L1).

S2) If ℓ̂kh =
∑

K C′
Kβk is small enough, STOP.

S3) Assemble Ŝk
h =

∑

K

(
0

ĈK

)′ (
Ak

K B′
K

BK 0

)−1 (
0

ĈK

)
and solve Ŝk

hδû
k
h = ℓ̂kh.

Update ûk+1
h = ûk

h + δûk
h and go to S1).

This algorithm is tested for a composite mate-
rial with Neo-Hooke type energy for poly-butylene
terephthalate (E = 2500 and ν = 0.35), and inclu-
sions of linear elastic E-glass fibers (E = 72000 and
ν = 0.2). We use 4 degrees of freedom per face and
cubic ansatz functions locally. In this configuration
the weakly conforming generalization of Korn’s in-
equality can be applied [1]. For the example we use
77 824 triangles and 468352 degrees of freedom on
the skeleton. The method is realized in the parallel
finite element software system M++ [3].
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Low-memory discontinuous Galerkin methods for wave propagation on
hybrid meshes

Jesse Chan

(joint work with Zheng Wang, Axel Modave, J.F. Remacle, and T. Warburton)

We introduce an adaptation of high order time-explicit discontinuous Galerkin
(DG) methods to hybrid meshes with algorithmic aspects which yield efficient
implementations on accelerators and Graphics Processing Units (GPUs) [2]. We
extend earlier work for accelerating nodal DG on GPUs to meshes which contain
predominantly hexahedral elements, combined with tetrahedra and transitional
prism and pyramid elements for geometric flexibility. These meshes can poten-
tially reduce costs by using exploiting the efficiency of hexahedra where possible.
Recent developments in meshing have made it possible to create unstructured
hex-dominant mixed element meshes for general geometries [6], which can lever-
age the fast tensor-product structure of hexahedral elements while maintaining
the geometric flexibility of tetrahedral elements.

Efficient solvers for hexahedra and tetrahedra both rely on low-memory storage
of mass matrix inverses. To extend such strategies to prismatic elements, we use
a rational Low-Storage Curvilinear (LSC) approach [1], which defines a physical

basis φ(x) by dividing the reference basis φ̂(x) by the geometric mapping factor J

φi =
φ̂i√
J
,

∫

K

φjφi =

∫

K̂

φ̂j√
J

φ̂i√
J
J =

∫

K

φ̂j φ̂i,

which ensures that the mass matrix is identical over every element. Optimal
convergence rates under LSC bases then depend on the growth of a high order
Sobolev norm of J upon mesh refinement. While this quantity is controlled for
prisms, these norms of J can be unbounded for non-affine pyramids, rendering
LSC bases non-convergent. To address this, we construct a new high order basis
which is orthogonal on vertex-mapped pyramids. On the bi-unit cube, this basis
is given as follows:

φijk(a, b, c) = ℓki (a)ℓ
k
j (b)

(
1− c

2

)k

P 2k+3,0
k (c), (a, b, c) ∈ [−1, 1]3,

where ℓki (a), ℓ
k
j (b) are Lagrange basis functions at k-th degree Gaussian quadrature

nodes, and P 2k+3,0
k (c) is a weighted Jacobi polynomial. A collapsed-coordinate

transform then maps the above to a reference pyramid.
By leveraging the above pyramidal and prismatic bases, GPU-accelerated DG

methods can be efficiently extended to hybrid meshes [3]. Specific basis functions
for each element achieve high order accuracy and low-storage simultaneously, while
multi-rate timestepping circumvents restrictive global CFL conditions. The sta-
bility of the method is achieved through a variational formulation which is a-priori
stable and a judicious choice of local timestep based on CFL constants. These
local constants are derived from trace inequalities over each type of element, in-
cluding new sharp face and surface trace inequalities for pyramidal and hexahedral
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elements [4, 3]. Different strategies for the optimization of computational kernels
may then be applied for each element type.
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Hodge decomposition for two-dimensional time harmonic Maxwell’s
equations

Joscha Gedicke

(joint work with Susanne C. Brenner, Li-yeng Sung)

We extend the Hodge decomposition approach for the cavity problem of two-
dimensional time harmonic Maxwell’s equations [1, 4] to include the impedance
boundary condition, with anisotropic electric permittivity ǫ and sign changing
magnetic permeability µ.

Let Ω ⊂ R2 be a bounded polygonal domain with boundary consisting of two
disjoint closed subsets Γpc with perfectly conducting boundary and Γimp with the
impedance boundary condition, f ∈ [L2(Ω)]

2, g ∈ L2(∂Ω), µ and 1/µ in L∞(Ω), ǫ
smooth real symmetric positive-definite 2× 2 tensor field defined on Ω, λ strictly
positive on ∂Ω, and k > 0.

We seek u ∈ Himp(curl; Ω; Γimp)∩H0(curl; Ω; Γpc) ∩H(div0; Ω; ǫ) such that for

all v ∈ Himp(curl; Ω; Γimp) ∩H0(curl; Ω; Γpc) ∩H(div0; Ω; ǫ),

(µ−1∇× u,∇× v)− k2(ǫu,v)− ik〈λn× u,n× v〉Γimp
= (f ,v) + 〈g,n× v〉Γimp

in Ω. In the case where Γimp is the outer boundary and Γpc is the inner boundary
of Ω, this equation relates to a scattering problem where Γpc is the boundary of the
scatterer and the impedance boundary condition acts as an absorbing boundary
condition.
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Figure 1. Cloaking (left) and flat lens (right) simulations.

Let m ∈ N denote the Betti number of the domain Ω with m = 0 for simply
connected domains. The Hodge decomposition of H(div0; Ω; ǫ) leads to

u = ǫ−1∇× φ+
m∑

j=1

cj∇ϕj ,

where φ ∈ H1(Ω) satisfies (φ, 1) = 0 and c1, . . . , cm are constants. The scalar
functions ϕ1, . . . , ϕm are harmonic functions and the function φ is determined by
two scalar elliptic boundary value problems [1, 3].

We derive error estimates for a P1 finite element method based on the Hodge
decomposition approach [3] and develop a residual type a posteriori error estima-
tor [2]. We show that adaptive mesh refinement leads empirically to smaller errors
than uniform mesh refinement for numerical experiments that involve metamate-
rials and electromagnetic cloaking [2]. The well-posedness of the cavity problem
when both electric permittivity and magnetic permeability can change sign is also
discussed [3] and verified for the numerical approximation of a flat lens experiment,
cf. Figure 1.
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A class of mixed finite element methods based on the Helmholtz
decomposition

Mira Schedensack

Non-conforming finite element methods (FEMs) play an important role in compu-
tational mechanics. They allow the discretization of partial differential equations
(PDEs) for incompressible fluid flows modelled in the Stokes equations, for almost
incompressible materials in linear elasticity, and for low polynomial degrees in the
ansatz spaces for the Kirchhoff plate problem. A generalization to higher polyno-
mial degrees which also transfers the desirable properties of the scheme, however,
has been an open question.

This presentation considers higher-order equations of the form (−1)m∆mu = f
and introduces novel formulations based on the new Helmholtz-type decomposition

L2(Ω; S(m)) = DmHm
0 (Ω)⊕ symCurlH1(Ω; S(m− 1)),

where S(m) denotes the set of symmetric m-tensors over R2, along with their dis-
cretizations of arbitrary (globally fixed) polynomial degree. The new formulation
assumes that some function ϕ ∈ H(divm,Ω) is at hand, such that (−1)mdivmϕ =
f , and then decomposes

ϕ = σ + symCurlα and σ⊥L2(Ω)symCurlH1(Ω; S(m− 1)).

Then σ = Dmu. For the lowest-order polynomial degree, discrete Helmholtz
decompositions of [1, 2] prove equivalence of the novel discretizations to the known
famous non-conforming FEMs of Crouzeix and Raviart [3] for the Poisson equation
for m = 1 and the Morley FEM [4] for the biharmonic problem for m = 2.

The direct approximation of Dmu instead of u enables low order discretizations;
only first derivatives appear in the symmetric part of the Curl and so the lowest
order approach only requires piecewise affine functions. Mnemonic diagrams in
Figure 1 illustrate lowest-order standard conforming FEMs and the lowest-order
novel FEMs proposed in this presentation for m = 1, 2, 3. Since the proposed
new FEMs differ only in the number of components in the ansatz spaces, an
implementation of one single program, which runs for arbitrary order, is possible.
Besides the a priori and a posteriori analysis, the presentation presents optimal
convergence rates for adaptive algorithms for the new discretizations.

A generalization of non-conforming FEMs for the Stokes equations and linear
elasticity can be found in [5].
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Figure 1. Lowest order standard conforming and novel FEMs
for the problem (−1)m∆mu = f for m = 1, 2, 3.

[4] L. Morley. The triangular equilibrium element in the solution of plate bending problems,
Aeronaut.Quart. 19 (1968), 149–169.

[5] M. Schedensack, A class of mixed finite element methods based on the Helmholtz decompo-
sition in computational mechanics, doctoral dissertation, Humboldt-Universität zu Berlin,
Mathematisch-Naturwissenschaftliche Fakultät (2015).

Multiscale homogenization for the computational mechanics of
cardiovascular structures: physiopathological behavior

Michele Marino

(joint work with Peter Wriggers)

Cardiovascular structures are planar sheets of soft connective tissues which share
a highly heterogeneous histology with a precise hierarchical organization from the
nanoscale (molecules) through to the microscale (crimped periodic fibers) up to
the macroscale (fiber-reinforced lamellae). Among the existing approaches, con-
stitutive models based on a structural approach are usually employed in numerical
simulations of macroscale biological structures [1]. In the structural approach, tis-
sues are regarded as composite materials reinforced by fibers with an exponential
mechanical behavior. Thereby, model parameters have indeed a phenomenologi-
cal meaning with no straightforward correlation between histological/biochemical
features and mechanical properties.

In this work, a novel approach for describing the constitutive response of car-
diovascular tissues is proposed. The model is developed within a finite-strain
anisotropic framework and it is based on the definition of tissue strain-energy (with
particular attention to the collagenous constituents) by following a structural mul-
tiscale approach [2, 3, 4]. Accordingly, analytical and computational approaches
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are coupled in order to obtain the macroscale tissue response in function of both
nanoscale mechanisms and microscale non-linearities.

Denoting with C the right Cauchy-Green deformation tensor, let λ4 =√
Tr(CM) be introduced where M = eoC ⊗ eoC is the structural tensor associ-

ated with the main direction eoC of collagen fibers [5]. It is worth pointing out
that λ4 physically represents the stretch along the direction eoC of collagen fibers
and that M results piecewise constant along tissue thickness due to tissue lamellar
organization. The collagen-related contribution to tissue strain energy is defined
as:

(1) ΨC(C) =

{
0 for λ4 < 1∫ λ4

1

∫ ξ

1
EC(η)

η dηdξ for λ4 ≥ 1
,

where EC(λ4) represents the tangent modulus of crimped collagen fibers corre-
lating the perturbation of collagen-related stress with the perturbation of fibers
configuration. Function EC(λ4) is obtained as a results of a homogenization pro-
cess involving:

• the application of the Principle of Virtual Power, in the framework of
the classical beams’ theory, for coupling the material and geometric non-
linearities at the microscale associated with the straightening of crimped
fibers;

• the definition of material non-linearities at the mesosocale between micro-
and nanoscale, by coupling molecular and intermolecular effects in collagen
fibrils;

• the refined modeling of collagen macromolecules at the nanoscale, account-
ing for the entropic effects associated with thermal fluctuations and for the
energetic mechanisms related to the uncoiling of the triple helix and the
stretching of molecular backbone.

In order to ensure the convergence properties of numerical schemes adopted
in simulations, the polyconvexity of the proposed strain-energy term in Eq. (1)
is discussed [5, 6]. For the sake of notation, let R++ the set of strictly positive
numbers and R+ = R++ ∪ {0}.

Remark 1. For any given function EC : [1,+∞) 7→ R++, the strain-energy term
in Eq. (1) is polyconvex.

For the proof of Remark 1, the following result is proved:

Remark 2. Let F ∈ R3×3, C = FTF, and M = a ⊗ a with a ∈ R3. Function
f : R3×3 7→ R+, f(F) = Tr(CM)k = |Fa|2k is convex if and only if k ≥ 1/2.

Remark 2 extends the results in [5] (holding for k ≥ 1) and in [6] (for k = 1/2).
The effectiveness of the proposed approach is shown by comparison with avail-

able experimental data on the pressure/radius relationship of aortic segments from
different age-groups [7]. Thanks to the employed multiscale framework, the model
allows to correlate the variation of the macroscopic mechanical response with the
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one of tissue histological and biochemical properties. Finally, the approach is ex-
tended for the modeling of inelastic mechanisms in biological tissues, allowing to
recover the peculiar features of collagen fibrils elasto-damage response [8].

In conclusion, the proposed approach opens to the development of numerical
simulations where the constitutive behavior of biological tissues is developed within
a patient-specific framework or following clinically-motivated considerations. For
instance, the effects of collagen cross-linking enzymatic activity, metabolism and
histological arrangement can be analyzed, providing an insight on physiological or
pathological remodeling mechanisms.
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Finite element methods for the Von Kármán Equations

Neela Nataraj

(joint work with Gouranga Mallik)

Based on the thickness to length ratio, several plate models have been studied in lit-
erature; the most important ones being linear models like Kirchhoff and Reissner-
Mindlin plates for thin and moderately thick plates respectively; and non-linear von
Kármán plate model for very thin plates. In this report, a nonconforming Morley
finite element method [2] is presented for the von Kármán equations. Optimal
order error estimates in broken energy and H1 norms are stated under minimal
regularity assumptions on the solution. Over the last few decades, the finite ele-
ment methodology has developed in various directions. For higher-order problems,
nonconforming methods and discontinuous Galerkin methods are gaining popular-
ity as they have a clear advantage over conforming finite elements with respect
to simplicity in implementation. For the von Kármán plate model, theoretical
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and computational results can also be obtained using a conforming finite element
method [1].

Let Ω ⊂ R2 be a polygonal domain with boundary ∂Ω. Consider the von
Kármán equations for the deflection of very thin elastic plates defined by: for
given f ∈ L2(Ω), seek the vertical displacement u and the Airy stress function v
such that

∆2u = [u, v] + f, ∆2v = −1

2
[u, u](1)

with clamped boundary conditions u = ∂u
∂ν = v = ∂v

∂ν = 0 on ∂Ω, where the

biharmonic operator ∆2 is defined by ∆2ϕ := ϕxxxx + 2ϕxxyy + ϕyyyy, the von
Kármán bracket [·, ·] is defined by [η, χ] := cof(D2η) : D2χ, and ν denotes the unit
outward normal to the boundary ∂Ω of Ω.

A vector form of the weak formulation is defined as: for F = (f, 0) with f ∈
L2(Ω), seek Ψ = (u, v) ∈ V := H2

0 (Ω)×H2
0 (Ω), such that

(2) A(Ψ,Φ) +B(Ψ,Ψ,Φ) = L(Φ) ∀Φ ∈ V ,
where ∀Ξ = (ξ1, ξ2),Θ = (θ1, θ2) and Φ = (ϕ1, ϕ2) ∈ V , L(Φ) =

∫
Ω fϕ1 dx,

A(Θ,Φ) := a(θ1, ϕ1) + a(θ2, ϕ2),

B(Ξ,Θ,Φ) := b(ξ1, θ2, ϕ1) + b(ξ2, θ1, ϕ1)− b(ξ1, θ1, ϕ2),

∀η, χ, ϕ ∈ H2
0 (Ω),

a(η, χ) :=

∫

Ω

D2η : D2χdx, b(η, χ, ϕ) :=
1

2

∫

Ω

cof(D2η)Dχ ·Dϕdx.

Assume that the solution Ψ is nonsingular. That is, the linearized problem defined
by: for given G = (g1, g2) ∈ V ′, seek Θ = (θ1, θ2) ∈ V such that
A(Θ,Φ) +B(Ψ,Θ,Φ) +B(Θ,Ψ,Φ) = (G,Φ) ∀Φ ∈ V is well posed.
The nonconforming formulation corresponding to (2) can be stated as: seek Ψh =
(uh, vh) ∈ Vh such that

(3) Ah(Ψh,Φ) +Bh(Ψh,Ψh,Φ) = Lh(Φ) ∀Φ ∈ Vh,

where Vh := Vh × Vh, Vh is the Morley finite element space associated with a
regular, quasi-uniform triangulation of Ω̄ defined by

Vh := {ϕ ∈ L2(Ω) : ϕ|T ∈ P2(T ) ∀T ∈ Th, ϕ is continuous at the vertices of Th,
the normal derivatives of ϕ at the midpoint of the edges of Th are continuous,

ϕ = 0 at the vertices on ∂Ω, ∂ϕ/∂ν = 0 at the midpoint of the edges on ∂Ω},
and Ah(·, ·), Bh(·, ·), Lh(·) are the piecewise versions of A(·, ·), B(·, ·), L(·), respec-
tively defined on Th. The main theorem is stated now.

Theorem. Let Ψ be a nonsingular solution of (2). Then, for sufficiently small
h, there exists a solution Ψh of the discrete problem (3), which is locally unique.
The following error estimates hold true:

|||Ψ−Ψh|||2,h ≤ Chα and |||Ψ−Ψh|||1,h ≤ Ch2α,
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# unknowns |u− uh|2,h Order |u− uh|1,h Order ‖u− uh‖L2 Order

25 0.874685E-1 - 0.102155E-1 - 0.386068E-2 -

113 0.405787E-1 1.1080 0.257318E-2 1.9891 0.919743E-3 2.0695

481 0.209921E-1 0.9508 0.732470E-3 1.8127 0.248134E-3 1.8901

1985 0.106209E-1 0.9829 0.191118E-3 1.9383 0.636227E-4 1.9635

8065 0.532754E-2 0.9953 0.483404E-4 1.9831 0.160158E-4 1.9900

32513 0.266595E-2 0.9988 0.121213E-4 1.9956 0.401107E-5 1.9974

where α ∈ (1/2, 1] is the index of elliptic regularity and |||·|||2,h and |||·|||1,h denote

the broken energy and H1 norms in Vh.

A working procedure to find an approximation for the discrete solution Ψh is
defined now. Starting with an initial guess Ψ0

h, the iterates of the Newton’s method
are defined by ∀Φ ∈ Vh,

Ah(Ψ
n
h,Φ) +Bh(Ψ

n−1
h ,Ψn

h,Φ) +Bh(Ψ
n
h ,Ψ

n−1
h ,Φ) = Bh(Ψ

n−1
h ,Ψn−1

h ,Φ) + Lh(Φ).

It can be established that the iterates of the Newton’s method are well defined
and converge quadratically to Ψh.

Next, the result of a numerical result that justifies the estimates is presented.
Consider the problem with right hand side load function chosen such that the exact
solution is given by u(x, y) = x2(1−x)2y2(1−y)2; v(x, y) = sin2(πx) sin2(πy) on
the unit square. The Table above shows the errors and experimental convergence
rates for the variable uh. The computational order of convergences in broken
H2, H1 norms are quasi-optimal and verify the theoretical results for α = 1. The
order of convergence with respect to L2 norm is sub-optimal. Similar results can
be obtained for vh also.

An ongoing work is on reliable a posteriori error estimates for conforming and
nonconfoming FEMs that drive the adaptive mesh refinements.
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Auxiliary Space Preconditioners for Discontinuous Galerkin Interior
Penalty methods for H(curl; Ω)-elliptic problems

Blanca Ayuso de Dios

(joint work with Ralf Hiptmair, Cecilia Pagliantini)

Let Ω ⊂ R3 be a simply connected bounded domain with Lipschitz boundary and
let f ∈ L2(Ω)3. We consider the following H0(curl; Ω)-elliptic problem:

(1) ∇× (ν∇× u) + βu = f in Ω, u× n = 0 on ∂Ω.
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where ν = ν(x) > 0 and β = β(x) > 0 are assumed to be bounded functions in
Ω but possibly discontinuous, and represent properties of the medium/material:
ν is typically the inverse of the magnetic permeability and β is proportional to
the ratio of electrical conductivity and the time step. Problems of this type arise
in the modelling of magnetic diffusion phenomena (eddy current models) and also
after implicit time discretisation of resistive magneto-hydrodynamics (MHD).

Let Th be a shape-regular and local quasi-uniform partition of Ω, made of sim-
plices or hexahedra, and let Vh = {v ∈ L2(Ω)3 : v ∈ M(K),K ∈ Th}, with M(K)
the local space of Nédélec elements of the second family, be the discontinuous finite
element space. To approximate problem (1), we introduce a weighted symmetric
Interior Penalty (IP) discontinuous Galerkin (DG) method, designed so that its
stability is not jeopardized by the jumps in the coefficients and so it provides a
robust approximation to (1) in all regimes. Upon discretization, it results in an
ill-conditioned large sparse symmetric linear system of equations. Hence, suitable
preconditioners to be accelerated within iterative solvers like CG are required, so
that the overall convergence does not degrade with respect to mesh refinement
and/or large jumps in the coefficients. For H0(curl; Ω)-conforming approxima-
tions of (1), a domain decomposition preconditioner has been studied in [8].

Here, we provide a simple family of preconditioners for the proposed IP-DG
approximation of (1) and analyze their asymptotic convergence, addressing pre-
cisely the influence of possible discontinuities in the “diffusivity” ν and/or in the
“reaction coefficient” β on their asymptotic performance. The construction and
analysis of the proposed solvers hinges on the Auxiliary Space Method (ASM)
[5, 7, 9, 6] and as starting point, we take for granted that good preconditioners for
any H0(curl; Ω)-conforming finite element approximations of (1) are at hand. The
proposed auxiliary space (AS) preconditioners, in their simpler additive version,
consist of a relaxation operator in the DG space Vh and the solution of the finite
element approximation to problem (1) using an auxiliary space of H0(curl; Ω)-
conforming finite element functions. Two main preconditioners are considered:

• the former uses for the auxiliary space the corresponding H0(curl; Ω)-
conforming finite element space Vh ∩H0(curl; Ω) combined with a simple
pointwise smoother (pointwise Jacobi or non-overlapping block Jacobi),

• the latter AS-preconditioner, effective only if the underlying mesh parti-
tioning consist of simplices, employs as auxiliary space the H0(curl; Ω)-
conforming Nédélec first kind finite element space together with a patch
smoother. We demonstrate that the use of an overlapping relaxation in
this latter case is indeed essential to guarantee optimal convergence.

Both preconditioners are shown to be asymptotically optimal with respect to mesh
refinement and robust with respect to large jumps in the coefficients ν and β except
only when the problem changes from curl-dominated to reaction dominated and
viceversa. We refer to [1] for all the details and further considerations.
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Geometric Multigrid Preconditioners for DPG Systems in Camellia

Nathan V. Roberts

The discontinuous Petrov-Galerkin finite element methodology of Demkowicz and
Gopalakrishnan (DPG) [1, 2] offers a host of appealing features, including au-
tomatic stability and minimization of the residual in a user-controllable energy
norm. DPG is, moreover, well-suited for high-performance computing, in that
the extra work required by the method is embarrassingly parallel; the use of a
discontinuous test space allows the computation of optimal test functions to be
done element-wise. Additionally, the approach gives almost total freedom in the
choice of basis functions, so that high-order discretizations can be employed to
increase computational intensity (the number of floating point operations per unit
of communication). Finally, since the method is stable even on a coarse mesh and
comes with a built-in error measurement, it enables robust adaptivity which in
turn means less human involvement in the solution process, a desirable feature
when running large-scale computations.

Camellia [3] is a software framework for DPG with the aim of enabling rapid
development of DPG solvers both for running on a laptop and at scale. Camellia
supports spatial meshes in 1D through 3D; initial support for space-time elements
is also available. Camellia supports h- and p-adaptivity, and offers distributed
computation of essentially all the algorithmic components of a DPG solve. (One
exception, which we plan to address, is the generation and storage of the mesh
geometry; at present, this happens redundantly on each MPI rank.) Camellia
supports static condensation for reduction of the global problem, and has a robust,
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flexible interface for using third-party direct and iterative solvers for the global
solve.

Until recently, we have almost always solved the global DPG system matrix
using parallel direct solvers such as SuperLU Dist. This is not a scalable strategy,
particularly for 3D and space-time meshes—for instance, SuperLU Dist runs out
of memory during a 3D Stokes solve involving approximately 7 × 105 degrees of
freedom on 256 nodes of Argonne’s Vesta machine—in total, those nodes have
access to 4 terabytes of memory.

Both memory and time costs therefore motivate the present work, an explo-
ration of iterative solvers in the context of Poisson and Stokes problems. Since
Camellia’s adaptive mesh hierarchy provides us with rich geometric information,
we focus on hp-geometric multigrid preconditioners with additive Schwarz smooth-
ers of minimal or small overlap. Preconditioning a conjugate gradient solve using
such preconditioners, we are able to solve much larger problems within the same
memory footprint.
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A novel mixed finite element for anisotropy - Basic Ideas

Jörg Schröder

(joint work with Nils Viebahn, Peter Wriggers, Daniel Balzani)

Unreliable results can occur in the approximation of boundary value problems due
to distinct locking-phenomena, like the well-known Poissonlocking, see [1] and [2].
In order to overcome these locking effects for isotropic materials a volumetric-
isochoric split of the deformation gradient has been successfully introduced [3].
This approach has been extended to a formulation based on different approxima-
tions of the minors of the deformation gradient, see [4]. Several authors, e.g. [5],
have shown that the volumetric isochoric split for anisotropic materials could lead
to unphysical results. Therefore, a novel approach is introduced here, preserving
the structure of polyconvex energy functions. A separation of the approximation
of the deformation measures, associated to the isotropic and anisotropic response,
is introduced in order to relax the constraints resulting from anisotropy.

In the following we focus on free energy functions ψ formulated in terms of
the right Cauchy-Green tensor C = F TF , with the deformation gradient F =
∇Xx. Here the actual placement x is interpolated with quadratic ansatz functions.
Introducing of the structural tensor as M = a⊗ a following [6], where a denotes
the preferred direction, free energy functions for transversely isotropic materials
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can be expressed as isotropic tensor functions ψ = ψ(C,M). Transversal isotropy
may be formulated in the polynomial basis Pti := {I1, I2, I3, J4, J5} with I1, I2, I3
as the principal invariants of C and the mixed invariants J4 = tr[C · M ] and
J5 = tr[C2 ·M ]. Considering a strain energy function, additively decoupled into
an isotropic and an anisotropic part, a new deformation measure C is introduced

(1) ψ = ψiso(•) + ψaniso(C).

For the isotropic part several formulations of the deformation measure are appli-
cable. The Hu-Washizu functional follows as

(2) Π(C,C,S) =

∫

B

ψiso(C)dV +

∫

B

ψaniso(C)dV +

∫

B

1

2
S : (C−C)dV+Πext(x),

where S constitutes a second-order tensorial Lagrange-multiplier. Therefore, the
Euler-Lagrangian equations can be identified by

(3) Div(F (2 ∂Cψ
iso + S)) + f = 0, S = 2 ∂

C
ψaniso and C = C.

The first variations δ
C
Π = 0 and δ

S
Π = 0 yield with a constant ansatz for C, S

(4) C =
1

V e
0

∫

Be

C dV and S =
2

V e
0

∫

Be

∂
C
ψaniso dV,

where V e
0 denotes the volume of a typical element in the reference configuration.

Inserting eq. (4) into the variation δuΠ = 0 leads to a condensed formulation
with the displacements as the only unknowns. Solving a boundary value within
an iterative Newton-Raphson scheme requires a consistent linearization of δuΠ.

The robustness of this formulation is compared with classical FE formulations
by an academical simulation of arterial walls, here applying an unphysiological
high pressure in order to analyze the performance of the variational scheme. The
chosen polyconvex material model goes back to [7]. Fig. 1a depicts the discretized
body and fig. 1b the norm of the displacements |u| of a specified point (dot in
fig. 1a) versus the applied pressure p in fig. 1b. In case of the displacement based

(a) (b)

Figure 1. Arterial wall simulation.

element T2 a maximal pressure of pmax = 9592 kPa can be applied, considering the
T2P0-element the maximal pressure corresponds to pmax = 131 kPa. In contrast
to these results, a pressure even higher than p = 200000 kPa is applicable using
the novel element formulation, denoted as T2A0.
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A superconvergent HDG method for the Incompressible Navier-Stokes
Equations on general polyhedral meshes

Weifeng Frederick Qiu

(joint work with Ke Shi)

We present a superconvergent hybridizable discontinuous Galerkin (HDG) method
for the steady-state incompressible Navier-Stokes equations on general polyhedral
meshes. For arbitrary conforming polyhedral mesh, we use polynomials of degree
k+1, k, k to approximate the velocity, velocity gradient and pressure, respectively.
In contrast, we only use polynomials of degree k to approximate the numerical trace
of the velocity on the interfaces. Since the numerical trace of the velocity field is the
only globally coupled unknown, this scheme allows a very efficient implementation
of the method. The design of the stabilization function corresponding to diffusion
operator comes from Lehrenfeld in Remark 1.2.4 in [1]. In [3, 2], this kind of
stabilization functions is used for HDG methods for linear elasticity and diffusion
problem with complete error analysis. However, the analysis used in [3, 2] can not
be generalized for nonlinear problems like the Navier-Stokes equations because of
lack of the corresponding discrete energy stability. In [4], we provide the discrete
energy stability for HDG method for convection diffusion problem, which uses the
same stabilization function for the diffusion operator. In this paper, by generalizing
the discrete energy stability in [4], for the stationary case, and under the usual
smallness condition for the source term, we prove that the method is well defined
and that the global L2-norm of the error in each of the above-mentioned variables
and the discrete H1-norm of the error in the velocity converge with the order of
k + 1 for k ≥ 0. We also show that for k ≥ 1, the global L2-norm of the error in
velocity converges with the order of k + 2. From the point of view of degrees of
freedom of the globally coupled unknown: numerical trace, this method achieves
optimal convergence for all the above-mentioned variables in L2-norm for k ≥ 0,
superconvergence for the velocity in the discrete H1-norm without postprocessing



2566 Oberwolfach Report 43/2015

for k ≥ 0, and superconvergence for the velocity in L2-normwithout postprocessing
for k ≥ 1.
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Time Dependent Scattering from a Diffraction Grating

Peter Monk

(joint work with Li Fan)

Computing the electromagnetic field in a periodic grating due to light from the
sun is critical for assessing the performance of thin film solar voltaic devices. This
calculation needs to be performed for many angles of incidence and many frequen-
cies across the solar spectrum. To compute at multiple frequencies one approach is
to use a broad band incoming wave and solve the time domain scattering problem
for a grating. The frequency domain response for a band of frequencies can then
be computed by a Fourier transform.

In this presentation we discuss a two dimensional model problem derived from
Maxwell’s equations by assuming that the fields and grating are translation invari-
ant in one coordinate direction. This results in a wave equation with coefficients
appearing as convolutions in the time domain. Assuming plane wave incidence, and
the space-time transformation of [5] we then arrive at a time dependent second
order hyperbolic problem posed on a infinite strip with periodic boundary con-
ditions. Two complications occur: first, as already mentioned, materials used in
practical devices have frequency dependent coefficients. In fact, at optical frequen-
cies, commonly used metals have a frequency domain permittivity with negative
real part but positive imaginary part which describes conductivity. Secondly the
spatial domain for the problem is an infinite strip.

Using the Laplace transform and techniques from [1], we provide a proof of
existence and uniqueness in the time domain for a general class of such frequency
dependent materials [3]. In the Laplace domain we can also derive a simple ex-
pression for the Dirichlet-to-Neumann map (D-t-N), and hence reduce the Laplace
domain problem to a bounded domain containing the grating. Then using Convo-
lution Quadrature we can construct a discrete D-t-N map to truncate the spatial
computational domain after time discretization, and we prove fully discrete error
estimates using a class of multistep methods in time and finite elements in space.
Because of the use of Convolution Quadrature [4], the discrete time domain D-t-N
map t is perfectly matched to the time stepping scheme.
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We end with some preliminary numerical results that demonstrate the conver-
gence and stability of the scheme. We show that using the Backward Differentia-
tion Formula-2 (BDF2) in time and finite elements in space we can compute the
time dependent solution for a metal modeled by a Drude law, and for a dielectric
modeled by the Sellmeier equation.

The main contributions of this paper are a general criterion on the frequency
dependent coefficients in the wave equation under which the continuous problem
is well-posed, and a demonstration that Convolution Quadrature schemes can be
used to compute the fields arising in this problem for two classes of frequency
dependent materials.
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Kinetic Methods for Computational Engineering

Manfred Krafczyk

(joint work with Martin Geier, Andrea Pasquali, Martin Schönherr, Konstantin
Kutscher)

Although there has been quite some progress in terms of numerical methods, dis-
tributed hardware and turbulence models, the computation of complex flow prob-
lems in mechanical or environmental engineering is still a challenge when address-
ing time-dependent three-dimensional flows based on e.g. Large Eddy Simulation
(LES) models. In our presentation we describe kinetic approaches to solve such
problems based on the Lattice-Boltzmann (LBM) approach. We introduce the
modeling hierarchy which allows to obtain approximate solutions of the Navier-
Stokes equations from simplified Boltzmann models. These schemes have the fa-
vorable property that advection is exact and conservative while all non-linearities
are local and thus compute bound instead of memory bound.

After the introduction of the basic concepts we describe in some more detail
our recent development, the so-called cumulant LBM [1] which shows improved
properties in terms of dispersion properties, Galilean invariance and numerical
stability. Several benchmarks will be discussed which indicate the superiority of
this approach over other LBM methods.
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In addition to improvements of the new scheme the approach allows the efficient
implementation on modern many-core hardware such as General Purpose Graph-
ics Processing Units (GPGPUs). Using advanced implementation techniques we
demonstrate how the cumulant LBM on a single GPGPU allows e.g. to compute
the external aerodynamics of a car with an accuracy of about 1 % in about one
day as compared to other proprietary codes which require the use of a midsize
compute cluster to solve the same problem.

Our talk concludes by indicating the potential of our method for three-dimen-
sional time-dependent coupled flow in urban systems with a spatial resolution of
about one meter on a GPGPU-based desktop system.
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Mixed methods for degenerate elliptic problems

Ricardo G. Durán

(joint work with Maŕıa E. Cejas and Mariana I. Prieto)

Given Ω ⊂ R
n a bounded Lipschitz polytope and ω a non-negative measurable

function, we consider mixed finite element approximations of −div (ω∇u) = f
with homogeneous Dirichlet boundary conditions (although other conditions can
be treated analogously).

We are interested in non-uniformly elliptic problems, that is, the coefficient
ω can vanish or become infinity in subsets of Ω with vanishing n-dimensional
measure. We will assume that ω belongs to the Muckenhoupt class A2. Recall
that a non-negative function ω defined in Rn belongs to A2 if

[ω]A2
:= sup

Q

(
1

|Q|

∫

Q

ω dx

)(
1

|Q|

∫

Q

ω−1 dx

)
<∞,

where the supremum is taken over all cube Q with faces parallel to the coordi-
nate axes. Moreover, to prove anisotropic error estimates we will work with the
stronger class As

2 ⊂ A2 defined in an analogous way but taking supremum over all
parallelepipeds with faces parallel to the coordinate axes.

We will denote with L2
ω the L2 space with measure ω(x)dx and with H1

ω the
corresponding weighted Sobolev space.

Introducing the vector variable σσσ = −ω∇u, the mixed finite element approxi-
mation is given by (σσσh, uh) ∈ SSSh × Vh satisfying
∫

Ω

ω−1σσσh · τττ dx−
∫

Ω

uh div τττ dx+

∫

Ω

v divσσσh dx =

∫

Ω

fv dx ∀(τττ , v) ∈ SSSh × Vh



Computational Engineering 2569

We consider the lowest order Raviart-Thomas approximation in rectangular ele-
ments. In this case, given a partition Th the finite element spaces are,

SSSh = {τττ = (τ1, . . . , τn) ∈ H(div ,Ω) : τj |R ∈ R+ xjR , ∀R ∈ Th}
and

Vh = {v ∈ L2(Ω) : v|R ∈ R , ∀R ∈ Th}
It is well known that there exists Πh (the so called Raviart-Thomas interpolation
operator) satisfying the commutative diagram property divΠh = Phdiv , where Ph

is the orthogonal L2−projection onto Vh. To simplify notation we will write Πhσj
instead of (Πhσσσ)j .

In many problems in which the coefficient ω degenerates near some part of the
boundary, it is of interest to have error estimates involving the distance to the
boundary or to a subset of it.

For a rectangular element R = [a1, b1] × · · · × [an, bn] define, for i = 1, · · · , n,
di,R(x) := min{(bi−xi), (xi−ai)}. Assuming that ω ∈ As

2 we obtain the following
error estimates for the Raviart-Thomas interpolation and for the L2-projection:

‖σj −Πhσj‖L2

ω−1
(R) ≤ C

n∑

i=1

∥∥∥∥di,R
∂σj
∂xi

∥∥∥∥
L2

ω−1
(R)

and

‖u− Phu‖L2
ω(R) ≤ C

n∑

i=1

∥∥∥∥di,R
∂u

∂xi

∥∥∥∥
L2

ω(R)

where C is a constant that depends on ω and n. The main tool to prove these
inequalities is a weighted improved Poincaré estimate proved in [1].

In view of these estimates, error estimates for the mixed finite element approx-
imation are a consequence of

‖σσσ − σσσh‖L2

ω−1
(Ω) ≤ 2‖σσσ −Πhσσσ‖L2

ω−1
(Ω)

and

‖u− uh‖L2
ω(Ω) ≤ C

{
‖u− Phu‖L2

ω(Ω) + ‖σσσ −Πhσσσ‖L2

ω−1
(Ω)

}

These estimates can be proved as in the non degenerate case. For the second one
we make use of a weighted inf-sup, or equivalently, of the existence of right inverses
of the operator div : H1

ω−1(Ω) → L2
ω−1(Ω). This can be proved using the theory

of singular integrals (see [2]).

References

[1] I. Drelichman and R. G. Durán, Improved Poincaré inequalities with weights, Indiana Uni-
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DPG method for a singularly perturbed reaction-diffusion problem

Norbert Heuer

(joint work with Michael Karkulik)

The discontinuous Petrov-Galerkin (DPG) method with optimal test functions
aims at generating finite element approximations for singularly perturbed prob-
lems in a robust way. This has been successfully pursued in different variants for
convection-dominated diffusion problems, see [1, 2, 3, 4].

We study the following singularly perturbed problem of reaction-dominated
diffusion,

(1) −ǫ∆u+ u = f in Ω, u = 0 on Γ.

Here, Ω ⊂ Rd (d = 2, 3) is a bounded, simply connected Lipschitz polygo-
nal/polyhedral domain with boundary Γ := ∂Ω. We assume that ǫ > 0 and
f ∈ L2(Ω). Such problems appear in applications, for instance, in implicit time-
discretizations with small time steps of parabolic reaction-diffusion problems, and
when solving nonlinear reaction-diffusion problems by the Newton method. We
develop a DPG method that gives a robust (i.e., uniform in ǫ) approximation of
the solution u to (1), and other field variables. The challenge is to find a setting
that leads to this robust control in a norm that is stronger than the natural norm
(‖ · ‖2 + ǫ‖∇ · ‖2)1/2 (induced by the Dirichlet bilinear form). Here, ‖ · ‖ denotes
the L2(Ω)-norm. Indeed, in [6], Lin and Stynes argue that a balanced norm (in
terms of ǫ) for this problem is (‖ · ‖2 + ǫ1/2‖∇ · ‖2 + ǫ3/2‖∆ · ‖2)1/2. It turns out
that a successful approach is to rewrite (1) as the first order system

ǫ−ασ −∇u = 0, ρ− div σ = 0, −ǫ1−αρ+ u = f,

with parameter α ≥ 0, and to formulate this in an ultra-weak sense by testing
the third equation also with the (piecewise) Laplacian of (piecewise) smooth func-
tions. In this formulation we introduce another parameter β ≥ 0 to equilibrate
the influence of ǫ. We then develop a completely localizable test norm which in-
duces the norm (‖u‖2+ ‖σ‖2+ ǫ2β‖ρ‖2)1/2 on the ansatz side. Main result is that
this norm is robustly controlled by the energy norm of the method when selecting
α = 1/4, β = 1/2. This yields the balanced norm proposed by Lin and Stynes, for
the field variables u, σ = ǫ1/4∇u, and ǫ1/2ρ = ǫ3/4∆u. As a consequence, the DPG
method with optimal test functions converges in this norm, robustly controlled by
the energy norm. Note that, by design, the DPG method is optimal in the energy
norm.

We present several numerical experiments that underline the robustness of the
method, for smooth and non-smooth solutions, and very small ǫ. Generally, adap-
tivity driven by the energy norm (which is automatically local) delivers optimal
convergence rates, once boundary and interior layers are sufficiently resolved.

A detailed analysis and description of the numerical results can be found in [5].

Support by CONICYT-Chile through FONDECYT projects 1150056, 3140614
and Anillo ACT1118 (ANANUM) is gratefully acknowledged.
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Alternative energy space based approach for the finite element
approximation of the Dirichlet boundary control problem

Thirupathi Gudi

(joint work with Sudipto Chowdhury, Thirupathi Gudi, A. K. Nandakumaran)

We consider the Dirichlet boundary control problem formulated as follows: Find
(u, q) ∈ H1(Ω)×H1(Ω) such that

J(u, q) = min
(w,p)∈H1(Ω)×H1(Ω)

J(w, p)

subject to

w = w0 + p w0 ∈ H1
0 (Ω)

(∇w0,∇v) = (f, v)− (∇p,∇v) ∀v ∈ H1
0 (Ω),

where f ∈ L2(Ω) is given and J : H1(Ω)×H1(Ω) → R is defined by

J(w, p) =
1

2
‖w − ud‖2L2(Ω) +

α

2
‖∇p‖2L2(Ω), w ∈ H1(Ω), p ∈ H1(Ω),

for given desired state ud ∈ L2(Ω) and regularizing parameter α > 0. The opti-
mal control problem has a unique solution and the following optimality system is
obtained: There exists a unique state u ∈ H1(Ω), adjoint state φ ∈ H1

0 (Ω) and
control q ∈ H1(Ω) such that

u = uf + q, uf ∈ H1
0 (Ω),

(∇uf ,∇v) = (f, v)− (∇q,∇v) ∀v ∈ H1
0 (Ω),

(∇v,∇φ) = (u− ud, v) ∀v ∈ H1
0 (Ω),

α(∇q,∇p) = (∇p,∇φ) + (ud − u, p) ∀p ∈ H1(Ω).

The approach with the aforementioned formulation provides the sufficient smooth
control and the state on polygonal domains unlike in the case of Dirichlet control
problem seeking the control variable form L2(∂Ω). We discretize the optimality



2572 Oberwolfach Report 43/2015

system using piecewise linear conforming finite element method for approximating
the state, adjoint state and the control. Optimal order a priori error estimates are
derived in the energy and the L2 norm for all the three variables. The L2 norm
error estimate requires an auxiliary optimal control problem and a post-processed
control. Further, a reliable and efficient residual based a posteriori error estimator
is derived. Numerical experiments show optimal order of convergence on uniform
as well as on adaptively refined meshes. It is also observed that if the regularizing
parameter is taken to be small, the state converges to the desired state ud.
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Mixed Finite Element Method for Elasticity Problems

Jun Hu

We developed a new framework to design and analyze the mixed FEM for elasticity
problems by establishing the following three main results:

A structure of the discrete stress space: on simplicial grids, the discrete stress
space can be selected as the symmetric matrix-valued Lagrange element space,
enriched by a symmetric matrix-valued polynomial H(div) bubble function space
on each simplex; a corresponding choice applies to product grids.

Two basic algebraic results: (1) on each simplex, the symmetric matrices of rank
one produced by the tensor products of the unit tangent vectors of the n(n+1)/2
edges of the simplex, form a basis of the space of the symmetric matrices; (2) on
each simplex, the divergence space of the above H(div) bubble function space is
equal to the orthogonal complement space of the rigid motion space with respect
to the corresponding discrete displacement space. (A similar result holds on a
macroelement for the product grids.)

These define a two-step stability analysis which is new and different from the
classic one in literature. As a result, on both simplicial and product grids, we were
able to define he first families of both symmetric and optimal mixed elements with
polynomial shape functions in any space dimension. Furthermore, the discrete
stress space has a simple basis which essentially consists of symmetric matrix-
valued Lagrange element basis functions.
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A line-search assisted monolithic scheme for phase-field computing of
brittle fracture

Laura De Lorenzis

(joint work with Tymofiy Gerasimov)

Phase-field modeling of brittle fracture in elastic solids dates back to the late
1990s and, since then, has been the subject of extensive theoretical and com-
putational investigations. In general, the phase-field approach to model systems
with sharp interfaces consists in incorporating a continuous field variable, the field
order parameter, which differentiates between multiple physical phases within a
given system through a smooth transition. In the context of fracture, such order
parameter describes the smooth transition between the fully broken and intact ma-
terial phases, thus approximating the sharp crack discontinuity, and is, therefore,
referred to as the crack field. The evolution of this field as a result of the exter-
nal loading conditions models the fracture process. The mathematical description
consists of a coupled non-linear system of (quasi-static or dynamic) stress equilib-
rium equations and a gradient-type evolution equation for the crack phase-field.
What makes the approach particularly attractive is its ability to elegantly simulate
complicated fracture processes, including crack initiation, propagation, merging,
and branching, in general situations and for 3D geometries, without the need for
additional ad-hoc criteria. Propagating cracks are tracked automatically by the
evolution of the smooth crack field on a fixed mesh. This leads to a significant
advantage over the discrete fracture description, whose numerical implementation
requires explicit (in the classical finite element setting) or implicit (within extended
finite element methods) handling of the discontinuities. The possibility to avoid
the tedious task of tracking complicated crack surfaces in 3D significantly simplifies
the implementation. Recent publications of our research group on this topic are
[1, 2, 3]. However, within the finite element framework, already a two-dimensional
quasi-static phase-field formulation is computationally quite demanding, mainly
for the following reasons: (i) the need to resolve the small length scale inherent to
the diffusive crack approximation calls for extremely fine meshes, at least locally in
the crack phase-field transition zone, (ii) due to non-convexity of the related free-
energy functional, a robust, but slowly converging staggered solution scheme based
on algorithmic decoupling is typically used. In this contribution we tackle problem
(ii) and propose a faster and equally accurate approach for quasi-static phase-field
computing of (brittle) fracture using a monolithic solution scheme which is ac-
companied by a novel line search procedure to overcome the iterative convergence
issues of non-convex minimization. We present a detailed critical evaluation of the
approach and its comparison with the staggered scheme in terms of computational
cost, accuracy and robustness [4].
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Optimal discretization in Banach spaces

Ignacio Muga

(joint work with Kristoffer G. van der Zee)

In the setting of Banach spaces, we consider the abstract problem

{
Find u ∈ U such that
Bu = f in V∗,

where U and V are Banach spaces, B : U → V∗ is a continuous, bounded-below,
linear operator, and the data f ∈ V∗ is a given element in the dual space of V. For
a given discrete subspace Un ⊂ U (of dimension n), the objective of this talk is to
present a Galerkin-based discretization technique which is guaranteed to provide
a near-best approximation un ∈ Un to the solution u, i.e., un satisfies the a priori
error estimate

‖u− un‖U ≤ C inf
wn∈Un

‖u− wn‖U,

for some constant C ≥ 1, independent of n. In this spirit, we initially propose a
discretization method to achieve

un = arg min
wn∈Un

‖f −Bwn‖U.

The method relies upon the duality map JV : V → V∗ (cf. [1, 2, 3]), which extend
to Banach spaces the concept of the well-known Riesz map of Hilbert spaces.
However, in a non-Hilbert setting, the duality map is nonlinear. To make the
method feasible, a discretization of the test space is needed. Hence, by considering
a finite-dimensional subspace Vm ⊂ V, we end up with a discretization method
that achieves

un = arg min
wn∈Un

‖f −Bwn‖V∗

m
.

We show the well-posedness of these methods, together with error estimates, and
some basic numerical experiments in 1D.
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Low-Order dPG-FEMs for Linear Elasticity

Friederike Hellwig

(joint work with Carsten Carstensen)

Since the design of pointwise symmetric stress approximations in H(div,Ω; S) is
cumbersome, especially in 3D, the discontinuous Petrov-Galerkin methodology
promises a low-order symmetric stress approximation. In [1], we use the ultraweak
formulation of linear elasticity to introduce three new methods. This formulation
seeks x ∈ X with b(x, y) = F (y) for all y ∈ Y , where

x = (σ, u, t, s) ∈ X = L2(Ω; S)× L2(Ω;Rn)×H−1/2(T ;Rn)×H
1/2
0 (T ;Rn),

y = (τ, v) ∈ Y = H(div, T ; S)×H1(T ;Rn),

b((σ, u, t, s), (τ, v)) = (σ,C−1τ − εNC(v))Ω + (u, divNC τ)Ω − 〈t, v〉∂T − 〈τν, s〉∂T .
The methods differ from each other in the choice of norms and the occurence of
some constraint. The practical dPG method [2, 3] seeks xh ∈ argminξh∈Xh

‖F −
b(ξh, •)‖Y ⋆

h
. The discrete trial space Xh ⊆ X consists of piecewise constant ansatz

functions for the displacement and the stress variable and piecewise affine and
continuous interface displacements and piecewise constant interface tractions. The
minimal discrete test space Yh ⊆ Y is of lower order than those presented in [4, 5]
and comprises piecewise (and, in general, discontinuous) symmetric parts of lowest-
order Raviart-Thomas functions and piecewise affine functions. This space allows
for a direct proof of the discrete inf-sup condition

0 < βh := inf
xh∈Xh

sup
yh∈Yh

b(xh, yh)

‖xh‖X‖yh‖Y
with explicit constant 0 < c ≤ βh independent of the mesh-size and the critical
Lamé parameter λ. A splitting lemma and analysis of the trace functions as in [6]
prove the continuous inf-sup condition

0 < β := inf
x∈X

sup
y∈Y

b(x, y)

‖x‖X‖y‖Y
.

This implies the equivalence of the discrete inf-sup condition and the existence of
a linear and bounded projection Π : Y → Yh with b(Xh, (1−Π)Y ) = 0 and yields
a complete a priori

‖x− xh‖ ≤ ‖b‖/βh distX(x,Xh)
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and a posteriori error analysis [5, 7]

β‖x− ξh‖ ≤ ‖Π‖‖F − b(ξh, •)‖Y ⋆
h
+ ‖F ◦ (1−Π)‖Y ⋆ ≤ 2‖b‖‖Π‖‖x− ξh‖.

which is robust in the incompressible limit as λ → ∞. Numerical experiments
with uniform and adaptive mesh-refinings investigate λ-robustness and confirm
that the third scheme is locking-free. Similar schemes can be applied to Stokes
and Maxwell equations as well.
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DPG applied to various variational formulations of linear elasticity

Brendan Keith

(joint work with Federico Fuentes, Leszek Demkowicz)

The DPG method of Demkowicz and Gopalakrishnan [2] has recently presented
itself, through numerical studies, as a reliably stable finite element method in a
wide class of linear problems and some nonlinear problems (see [3] and references
therein).

Until lately, this method has been studied exclusively for variational formula-
tions in the ultra-weak setting. However, the DPG method is applicable to all
well-posed variational problems on Hilbert spaces. In light of the improved theory
presented in [1], we re-examine the DPG method in the context of linear elasticity.
This problem was first studied with the method in the ultra-weak setting in [4].
Our contemporary study is purely a proof-of-concept, the purpose of which is to
demonstrate, through the means of direct numerical experiment, the fitness of the
method in multiple variational formulations.

For our experiments, we have considered four variational formulations for linear
elasticity in 3D; the trivial formulation (equivalent to the first order least squares
method), the ultra-weak variational formulation, the (first) mixed formulation,
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and the primal formulation. In each case, we demonstrate that the expected
convergence rates are obtained.
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Reliable and Efficient A Posteriori Error Analysis for the Obstacle
Problem

Karoline Köhler

(joint work with Carsten Carstensen)

The obstacle problem is the simplest mathematical model of a variational inequal-
ity, with countless applications and relatives in free boundary value problems. The
point of departure for the reliable and efficient a posteriori error analysis is the
methodology presented in [2]. Given the exact solution u and any approximation
v ∈ H1

0 (Ω), as well as the exact Lagrange multiplier λ and some approximation
µ ∈ L2(Ω; (−∞, 0]), the a posteriori error analysis concerns the notion of the total
error

Err :=

(∫

Ω

µ(χ− u)dx

)1/2

+

(∫

Ω

(−λ)(v − χ)+dx

)1/2

+ |||e|||+ |||e + w|||+ |||λ− µ|||∗.
The general situation involves the residual

Res(ϕ) := F (ϕ) −
∫

Ω

µϕdx − a(v, ϕ) for all ϕ ∈ V

and the gap function w := min{0, v − χ}, which vanishes when v is replaced by
max{v, χ}. With the guaranteed upper bound

GUB := |||Res|||∗ +
(∫

Ω

(−µ)(v − χ)+dx

)1/2

+ |||w|||

this leads to reliable and efficient error control for the obstacle problem, even with
known constants, in the following sense.

Theorem. Any Sobolev function v with exact boundary conditions and any non-
positive Lebesgue function µ satisfy

1/2 GUB ≤ Err ≤
√
30/7 GUB.
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The presented approach provides a refined generalization of the known error
control [1, 2, 3, 4, 5, 6, 7, 8] and includes error control also for nonconforming
and mixed finite element methods. The error control of the residual Res may
involve the solve of a linear problem, but circumvents the need of exact solve in
the nonlinear obstacle problem. The general setting provides a larger flexibility
for the choice of µ ∈ L2(Ω; (−∞, 0]) := {µ ∈ L2(Ω)| µ ≤ 0 a.e. in Ω}. For lowest-
order conforming, nonconforming, and mixed finite element methods this allows
for the design of an efficient discrete Lagrange multiplier in the following sense.

Theorem. The discrete lowest-order conforming, nonconforming, and mixed fi-
nite element method allow for the computation of v ∈ H1

0 (Ω) and µ ∈ L2(Ω;
(−∞, 0]) to the solution u ∈ H1

0 (Ω) and the Lagrange multiplier λ := f + ∆u ∈
L2(Ω; (−∞, 0]) such that

|||λ− µ|||∗ . |||u − v|||+HOT

holds with higher-order terms HOT.

References

[1] S. Bartels and C. Carstensen, Averaging techniques yield reliable a posteriori finite element
error control for obstacle problems, Numer. Math 99 (2004), 225–249.

[2] D. Braess, A posteriori error estimators for obstacle problems—another look, Numer. Math
101 (2005), 415–421.

[3] D. Braess, C. Carstensen,and R.H.W. Hoppe, Convergence analysis of a conforming adap-
tive finite element method for an obstacle problem, Numer. Math 107 (2007), 455–471.
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Contact and mesh-tying using mortar methods

Linus Wunderlich

(joint work with E. Brivadis, A. Buffa, O. Steinbach, B. Wohlmuth)

Domain decomposition techniques and mortar methods are used in many situa-
tions, including multi-physics and contact problems, and they provide flexible and
powerful tools for the numerical approximation of partial differential equations.

The first part of the talk considers the approximation of mechanical contact
problems, modeled by variational inequalities. While optimal a priori error es-
timates for contact problems in the natural energy norm do exist, see [3], only
very few results are known for alternative norms. In addition to the primal vari-
able u, the dual variable λ is also of interest. We consider as prototype a simple
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Signorini problem and provide new optimal order a priori error estimates for the
trace and the flux on the Signorini boundary ΓS . Signorini-type problems are non-
linear boundary value problems that can be regarded as a simplified scalar model
of elastic contact problems. For piecewise linear finite element discretizations us-
ing biorthogonal basis functions, we obtain the following a priori estimates in the
natural trace norms, see [4]:

‖u− uh‖H1/2
00 (ΓS)

+ ‖λ− λh‖H−1/2(ΓS) ≤ ch3/2−ε‖u‖H5/2−ε(Ω).

The a priori analysis is based on an equivalent reformulation as a variational in-
equality posed on the Signorini boundary and the use of the continuous and a
discrete Steklov–Poincaré operator. A Strang lemma relates the discretization
error to the difference of the Steklov–Poincaré operators, which is itself charac-
terized as a trace error of a linear problem. Then the trace estimate for a linear
setting can be shown using modern Aubin–Nitsche type duality arguments. A
direct consequence is an a priori bound for the L2 error in the domain, up to the
order of h3/2−ε. However, numerical results presented in [4] show a gap between
the theoretical and numerical results concerning the L2 error, where the order h2

could be observed.
In the second part of the talk, the application of mortar methods in the frame-

work of isogeometric analysis, see [2], is presented. A weak coupling of multi-patch
geometries is needed due to the limiting tensor product grid structure. Based on
the results in [1], we present theoretical as well as numerical aspects of isogeo-
metric mortar methods. For the Lagrange multiplier, the choice of trace spaces of
different spline degrees is considered. Two pairings were found to be suitable in
a domain decomposition context. In one case, we consider an equal order pairing
for which a cross point modification, e.g. based on a local degree reduction, is
required. In the other case, the degree of the dual space is reduced by two com-
pared to the primal degree. This pairing is proven to be inf-sup stable without any
necessary cross point modification. By partial integration, the stability condition
can carefully be traced back to a stable equal order pairing. A degree reduction
by one yields an unstable pairing and spurious oscillations can be numerically
observed. Stable pairings are given by a degree reduction by any even number,
but for a degree difference larger than two, the approximation properties of the
Lagrange multiplier space are then controlling the error decay also of the primal
variable. The optimality of the two suitable pairings and the suboptimality of a
degree reduction by four are shown in a numerical example, see Figure 1.
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Figure 1. Error decay for different dual degrees, originally pre-
sented in [1]. Left: Mesh and domain partitioning. Middle: Error
of the primal variable in the broken H1 norm. Right: Error of
the dual variable in the L2 norm.

[4] O. Steinbach, B. Wohlmuth, L. Wunderlich, Trace and flux a priori error estimates in finite
element approximations of Signorni-type problems, IMA J. Numer. Anal. (2015), published
online.

Multiscale Petrov-Galerkin Finite Element Method for
High-Frequency Acoustic Scattering

Dietmar Gallistl

(joint work with Daniel Peterseim)

The Helmholtz equation in an open bounded Lipschitz polygon Ω ⊆ Rd (d ∈
{1, 2, 3}) with outer unit normal ν reads

(1)

−∆u− κ2u = f in Ω,

u = 0 on ΓD,

∇u · ν − iκu = g on ΓR.

Here, the boundary ∂Ω is decomposed into disjoint parts ∂Ω = ΓD ∪ ΓR. Typi-
cally, the Dirichlet boundary ΓD refers to a sound-soft obstacle whereas the Robin
boundary ΓR results from truncation of the full space problem to the bounded
domain Ω. It is well known that standard finite element approximations to (1) ex-
hibit the so-called pollution effect [1], which means that the ratio of the error of the
finite element method and the best possible approximation in the finite element
space becomes arbitrarily large as the real parameter κ > 0 (the wavenumber)
increases. The mesh-size H for an accurate representation of the wave usually
requires a fixed number of grid points per wavelength, written κH ≈ 1. The sta-
bility of the finite element method, however, requires a much finer mesh-size h
with hκα ≈ 1 for some α > 1. This makes high-frequency scattering simulations
with standard methods problems computationally costly.

The talk presents a pollution-free Petrov-Galerkin multiscale finite element
method for the Helmholtz problem with large wave number κ. The proposed
method employs standard continuous Q1 finite elements at a coarse discretization
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scale H as trial functions, whereas the test functions are computed as the solu-
tions of local problems at a finer scale h. The diameter of the support of the test
functions behaves like mH for some oversampling parameter m. Provided m is
of the order of log(κ) and h is sufficiently small, the resulting method is stable
and quasi-optimal in the regime where H is proportional to κ−1. In homogeneous
(or more general periodic) media, the fine scale test functions depend only on lo-
cal mesh-configurations. Therefore, the seemingly high cost for the computation
of the test functions can be drastically reduced on structured meshes. Numeri-
cal experiments in two and three space dimensions give empirical insight in the
dependence of the parameters H , h, and m.

The talk is based on the recent works [2, 3].
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A Plane Wave Virtual Element Method for the Helmholtz Problem

Ilaria Perugia

(joint work with Paola Pietra, Alessandro Russo)

The virtual element method (VEM) is a generalisation of the finite element method
recently introduced in [2, 3], which takes inspiration from mimetic finite difference
schemes, and allows to use very general polygonal/polyhedral meshes.

My talk was concerned with a new method introduced in [15], based on inserting
plane wave basis functions within the VEM framework in order to construct anH1-
conforming, high-order method for the discretisation of the Helmholtz problem, in
the spirit of the partition of unity method (PUM, see e.g., [12, 13]).

Plane wave functions are a particular case of Trefftz functions for the Helmholtz
problem, i.e., functions belonging to the kernel of the Helmholtz operator. In-
serting Trefftz basis functions within the approximating spaces in finite element
discretisations of the Helmholtz problem allows to obtain, compared to standard
polynomial spaces, similar accuracy with less degrees of freedom, mitigating the
the strong requirements in terms of number of degrees of freedom per wavelength
due to the pollution effect [1]. There are in the literature several finite element
methods for the Helmholtz problem which make use of Trefftz functions (for de-
tails, see the recent survey [8]). Besides the above mentioned PUM, which is
H1-conforming, other approaches use discontinuous Trefftz basis functions and
impose interelement continuity with different strategies: by least square formu-
lations [17, 14]); within a discontinuous Galerkin (DG) framework, like the ultra
weak variational formulation [5, 4] or its Trefftz-DG generalisation [9]; by the use
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of Lagrange multipliers [10, 7]; through weighted residual formulations, like in the
variational theory of complex rays [16, 11], or in the wave based method [6]).

The main ingredients of the plane wave VEM scheme(PW-VEM) are: i) a
low order VEM space whose basis functions, which form a partition of unity and
are associated to the mesh vertices, are not explicitly computed in the element
interiors; ii) a proper local projection operator onto the plane wave space, which
has to provides good approximation properties for Helmholtz solutions; iii) an
approximate stabilization term. Convergence of the h-version of the PW-VEM
was proved, and numerical results testing its performance on general polygonal
meshes were presented.
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[1] I. M. Babuška and S. A. Sauter. Is the pollution effect of the FEM avoidable for the
Helmholtz equation?, SIAM Rev., 42(3):451–484, September 2000.

[2] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo. Basic
principles of virtual element methods, Math. Models Methods Appl. Sci, 23(01):199–214,
2013.

[3] L. Beirão Da Veiga, F. Brezzi, L. D. Marini, and A. Russo. The Hitchhiker’s guide to the
virtual element method, Math. Models Methods Appl. Sci, 24(8):1541–1573, 2014.

[4] A. Buffa and P. Monk. Error estimates for the Ultra Weak Variational Formulation of the
Helmholtz equation, M2AN, Math. Model. Numer. Anal., 42(6):925–940, 2008.

[5] O. Cessenat and B. Després. Application of an ultra weak variational formulation of elliptic
PDEs to the two-dimensional Helmholtz equation, SIAM J. Numer. Anal., 35(1):255–299,
1998.

[6] E. Deckers, O. Atak, L. Coox, R. D’Amico, H. Devriendt, S. Jonckheere, K. Koo,
B. Pluymers, D. Vandepitte, and W. Desmet. The wave based method: An overview of
15 years of research, Wave Motion, 51(4):550–565, 2014. Innovations in Wave Modelling.

[7] C. Farhat, I. Harari, and L. Franca. The discontinuous enrichment method, Comput. Meth-
ods Appl. Mech. Eng., 190(48):6455–6479, 2001.

[8] R. Hiptmair, A. Moiola, and I. Perugia. A survey of trefftz methods for the helmholtz equa-
tion, accepted for publication in in Barrenechea, G. R., Cangiani, A., Geogoulis, E. H. (Eds.),
”Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial
Differential Equations”, LNCSE, Springer.

[9] R. Hiptmair, A. Moiola, and I. Perugia. Plane wave discontinuous Galerkin methods for the
2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49:264–284, 2011.
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Mapped Tent Pitching Methods for Hyperbolic Conservation Laws

Joachim Schöberl

(joint work with Jay Gopalakrishnan, Christoph Wintersteiger)

We introduce a new class of methods called Mapped Tent Pitching (MTP) schemes
for numerically solving hyperbolic problems. These schemes can be thought of
as fully explicit or locally implicit schemes on unstructured space time meshes
obtained by a process known in the literature as tent pitching. This process
creates an advancing front in space time made by canopies of tent-shaped regions.
Each such space time tent is erected (with time as the vertical direction in space
time) so that causality constraints of the hyperbolic problem are never violated.
Such meshing processes were named tent pitching.

Previous tent pitching methods were using Discontinuous Galerkin methods in
space-time. We introduce a mapping from a cylinder in space-time to the diamond-
shaped tent, and pull-pack the conservation law to the cylinder. This allows to
separate space and time discretizations, such that existing Discontinuous Galerkin
methods in combination with traditional Runge Kutta time-stepping methods can
be applied. This reduces computing time as well as memory requirement. Numer-
ical examples for the wave equation and Euler equations are presented.
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The finite cell method: A high-order immersed boundary method

Alexander Düster

(joint work with Stephan Heinze, Simeon Hubrich, Meysam Joulaian)

The finite cell method (FCM) [1, 2] is a combination of the fictitious domain ap-
proach with high-order finite elements. Thanks to the use of Cartesian meshes,
the pre-processing, i.e. mesh generation is significantly simplified. However, due
to the fact that the applied meshes do not conform to the geometry of the prob-
lem, special care has to be taken with respect to the numerical integration of the
weak form, the local refinement of the approximation as well as the treatment of
boundary conditions.

The FCM has been applied to several problems like linear elasticity [2] as well
as to problems in biomechanics [3] or wave propagation [4]. Nonlinear problems
such as geometrically nonlinearity [5] or elastoplasticity [6] have been addressed as
well. The FCM has also been successfully applied to the numerical homogenization
of materials with complicated microstructure [7] or to topology optimization [8]
in structural mechanics. Instead of classical hierarchic shape functions, NURBS,
which have become very popular thanks to the isogeometric analysis, can also
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be successfully used within the FCM. Local refinement strategies have been also
developed for the FCM and it turned out that the hp-d method presents a general
framework for local improvement of accuracy within the FCM, see [9].

The talk is intended to give an overview over the finite cell method, address-
ing also ongoing work and open questions. Several fields of applications will be
presented, where the main advantages of the FCM can be exploited.
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Stress approximation and stress reconstruction for elasticity
computations

Gerhard Starke

(joint work with Benjamin Müller)

Accurate stress approximations are of interest in many applications in solid me-
chanics due to the fact that large local stresses may cause inelastic material behav-
ior or failure and also in order to get accurate approximations of surface traction
forces. We investigate the suitability of different finite element methods regarding
their ability to produce accurate stress approximations associated with elasticity
problems. Starting from linear elasticity, the investigation of hyperelastic mate-
rial models involving geometrical and material nonlinearities is also pursued. Of
particular interest are approaches which remain uniformly accurate in the limit of
incompressible materials.

From standard displacement-pressure finite element methods, accurate stress
approximations can be reconstructed in a post-processing step. Particularly use-
ful in this context are quadratic nonconforming finite elements [6, 5] since the
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associated stresses already obey certain local average momentum balance proper-
ties which give a good starting point for reconstruction algorithms (cf. [7]). In
contrast to the lowest-order case, these elements satisfy a discrete Korn’s inequal-
ity under reasonable assumptions on the prescribed boundary conditions (cf. [3]).
An alternative approach consists in the use of variational formulations involving
the stress as an independent variable which is approximated directly in suitable
H(div)-conforming finite element spaces. Such approaches may either be of saddle-
point type (cf. [2]) or of least-squares type (cf. [1, 4]) and relations between these
two approaches will be investigated in detail. In particular, the error associated
with momentum balance is proved to be of higher order than the overall error for
the least-squares approach while it is well-known that the momentum balance is
approximated in an optimal way for the saddle-point approach if appropriate finite
element combinations are used. Stress-based variational principles for hyperelastic
material models are studied based on the constructions in [8].

The approximations obtained from the stress-based finite element approaches
are compared computationally with those obtained from a reconstruction proce-
dure.

For all of the above approaches, stress approximations in Raviart-Thomas spaces
of next-to-lowest order will be produced and compared. Computational results will
be presented for some two- and three-dimensional model problems in the linearly
elastic as well as in the hyperelastic setting focussing on incompressible materials.
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A general a posteriori estimation for variational inequalities of the
second kind

Andreas Schröder

(joint work with Markus Bürg)

In this note, we briefly present a general residual-based a posteriori error estimation
for variational inequalities of the second kind. The a posteriori error estimation is
derived in [1]. The underlying idea is to express the residual in terms of discrete
Lagrange multipliers which are associated with the constraints of the variational
inequalities and which can be obtained, for instance, by some post-processing or
by the discretization of a mixed formulation. The discretization error is esti-
mated by the dual norm of the residual plus some computable remainder terms
which capture typical error sources resulting, for instance, from the geometrical
error, the violation of some complementarity conditions and the non-conformity
of the discrete Lagrange multipliers. The dual norm of the residual can then be
estimated by the error of an auxiliary problem which is given as a variational
equation. Thus, well-known a posteriori error estimates for variational equations
can be employed. In [1], this concept is applied to a variety of (frictional) contact
problems, such as Signorini and obstacle problems, as well as to the Bingham fluid
problem. Furthermore, the applicability of the estimates is confirmd by several
numerical experiments in [1]. In particular, the general framework allows for the
discretization with hp-adaptivity.

Variational inequalities of the second kind. We consider a Banach space V
equipped with the norm ‖·‖V and a V -elliptic, continuous bilinear form a : V×V →
R. Let W0 and W1 be further Banach spaces, γ0 ∈ L(V,W0) and γ1 ∈ L(V,W1)
with γ0(ker γ1) =W0 and γ1(ker γ0) = γ1(V ) where γ1(V ) is assumed to be dense
in W1. Furthermore, let g ∈ W0 and K := {v ∈ V | g − γ0(v) ∈ G} for a closed
convex cone G ⊂ W0 with 0 ∈ G. We consider the variational inequality of the
second kind: Find u ∈ K such that

a(u, v − u) + j(v) − j(u) ≥ 〈ℓ, v − u〉
for all v ∈ K where j(v) := supµ1∈Λ1

〈µ1, γ1(v)〉 with a closed, convex and bounded
set Λ1 ⊂W ∗

1 .

A general a posteriori error estimation. Let uhp ∈ V , ℓ̃ ∈ V ∗, g̃ ∈ W0

and (λ0,hp, λ1,hp) ∈W ∗
0 ×W ∗

1 and let the residual Res(uhp, λ0,hp, λ1,hp) : V → V ∗

be defined as

〈Res(uhp, λ0,hp, λ1,hp), v〉 := 〈ℓ̃, v〉 − 〈λ0,hp, γ0(v)〉 − 〈λ1,hp, γ1(v)〉 − a(uhp, v)

for v ∈ V . Note that uhp is typically a discretization solution in some finite
dimensional subspace, whereas λ0,hp and λ1,hp may serve as approximations of
Lagrange multipliers. We define an error estimator by

η(µ0, µ1, z) := ‖Res(uhp, λ0,hp, λ1,hp)‖2V ∗ + ‖λ0,hp − µ0‖2W∗

0
+ ‖λ1,hp − µ1‖2W∗

1

+ ‖z‖2W0
+ 〈λ0,hp, z〉+ 〈µ0, g̃ − γ0(uhp)〉+ j(uhp)− 〈µ1, γ1(uhp)〉
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for arbitrary µ0 ∈ Λ0 := G′ (as the dual cone of G), µ1 ∈ Λ1 and z ∈ Z := {z ∈
W0 | g̃−γ0(uhp)+z ∈ G}. In [1, Thm.3.2] it is proven that there exists a constant
C > 0 such that

‖u− uhp‖2V ≤ C
(
η(µ0, µ1, z) + ‖g − g̃‖2W0

+ ‖ℓ− ℓ̃‖2V ∗

)
.

Estimation of the residual. To estimate the dual norm of the residual, we
find that κa‖u∗ − uhp‖V ≤ ‖Res(uhp, λ0,hp, λ1,hp)‖V ∗ ≤ ca‖u∗ − uhp‖V where κa
and ca are the constants of ellipticity and continuity of a and u∗ ∈ V fulfills the
variational equation a(u∗, v) = 〈ℓ̃, v〉 − 〈λ0,hp, v〉 − 〈λ1,hp, v〉 for all v ∈ V . Hence,
the estimation of ‖Res(uhp, λ0,hp, λ1,hp)‖V ∗ implies the estimation of ‖u∗−uhp‖V
and vice versa. Assume uhp ∈ Vhp with Vhp as a subspace of V and let λ0,hp as
well as λ1,hp be determined via the equation

〈λ0,hp, γ0(vhp)〉+ 〈λ1,hp, γ1(vhp)〉 = 〈ℓ̃, vhp〉 − a(uhp, vhp)

for all vhp ∈ Vhp. Then, uhp may also be interpreted as a discrete approxi-
mation of u∗ in the (finite-dimensional) discretization space Vhp. This means,
‖Res(uhp, λ0,hp, λ1,hp)‖V ∗ can be estimated by an a posteriori error estimation
technique which is originally derived for variational equations.
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